AMC1311BQDWVRQ1 [TI]

汽车类 2V 输入、精密电压检测增强型隔离式放大器

| DWV | 8 | -40 to 125;
AMC1311BQDWVRQ1
型号: AMC1311BQDWVRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 2V 输入、精密电压检测增强型隔离式放大器

| DWV | 8 | -40 to 125

放大器 分离技术 隔离技术 光电二极管
文件: 总37页 (文件大小:1729K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
AMC1311x-Q1 Automotive, High-Impedance, 2-V Input, Reinforced Isolated Amplifiers  
1 Features  
3 Description  
AEC-Q100 qualified for automotive applications:  
Temperature grade 1: –40°C to +125°C, TA  
Functional Safety-Capable  
Documentation available to aid functional safety  
system design  
2-V, high-impedance input voltage range optimized  
for isolated voltage measurement  
Fixed gain: 1  
The AMC1311-Q1 is a precision, isolated amplifier  
with an output separated from the input circuitry by  
a capacitive isolation barrier that is highly resistant  
to magnetic interference. This barrier is certified to  
provide reinforced galvanic isolation of up to 5 kVRMS  
according to DIN EN IEC 60747-17 (VDE 0884-17)  
and UL1577 and supports a working voltage of up to  
1500 VRMS  
.
Low DC errors:  
– AMC1311-Q1:  
The isolation barrier separates parts of the system  
that operate on different common-mode voltage levels  
and protects the low-voltage side from voltages that  
can cause electrical damage or be harmful to an  
operator.  
Offset error: ±9.9 mV (maximum)  
Offset drift: ±20 µV/°C (typical)  
Gain error: ±1% (maximum)  
Gain drift: ±30 ppm/°C (typical)  
The high-impedance input of the AMC1311-Q1  
is optimized for connection to high-impedance  
resistive dividers or any other high-impedance voltage  
signal source. The excellent DC accuracy and  
low temperature drift support accurate, isolated  
voltage sensing and control in closed-loop systems.  
The integrated missing high-side supply voltage  
detection feature simplifies system-level design and  
diagnostics.  
– AMC1311B-Q1:  
Offset error: ±1.5 mV (maximum)  
Offset drift: ±10 µV/°C (maximum)  
Gain error: ±0.2% (maximum)  
Gain drift: ±40 ppm/°C (maximum)  
– Nonlinearity: 0.04% (maximum)  
3.3-V operation on high-side (AMC1311B-Q1)  
High CMTI: 100 kV/μs (AMC1311B-Q1)  
Missing high-side supply indication  
Safety-related certifications:  
– 7000-VPK reinforced isolation per DIN EN IEC  
60747-17 (VDE 0884-17)  
– 5000-VRMS isolation for 1 minute per UL1577  
The AMC1311-Q1 is offered with two performance  
grade options: AMC1311-Q1 and AMC1311B-Q1.  
Device Information(1)  
PART NUMBER  
AMC1311-Q1  
PACKAGE  
BODY SIZE (NOM)  
2 Applications  
SOIC (8)  
5.85 mm × 7.50 mm  
AMC1311B-Q1  
Isolated voltage sensing in:  
Traction inverters  
Onboard chargers  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
DC/DC converters  
VDC  
High-side supply  
(3.3 V or 5 V)  
Low-side supply  
(3.3 V or 5 V)  
R1  
R2  
AMC1311B-Q1  
VDD1  
VDD2  
OUTP  
IN  
SHTDN  
GND1  
0..2V  
RSNS  
VCMout  
2 V  
ADC  
OUTN  
GND2  
Simplified Schematic  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................6  
6.5 Power Ratings.............................................................6  
6.6 Insulation Specifications ............................................ 7  
6.7 Safety-Related Certifications ..................................... 8  
6.8 Safety Limiting Values ................................................8  
6.9 Electrical Characteristics.............................................9  
6.10 Switching Characteristics........................................11  
6.11 Timing Diagram....................................................... 11  
6.12 Insulation Characteristics Curves........................... 12  
6.13 Typical Characteristics............................................13  
7 Detailed Description......................................................19  
7.1 Overview...................................................................19  
7.2 Functional Block Diagram.........................................19  
7.3 Feature Description...................................................19  
7.4 Device Functional Modes..........................................21  
8 Application and Implementation..................................22  
8.1 Application Information............................................. 22  
8.2 Typical Application.................................................... 22  
8.3 What To Do and What Not To Do..............................25  
9 Power Supply Recommendations................................26  
10 Layout...........................................................................27  
10.1 Layout Guidelines................................................... 27  
10.2 Layout Example...................................................... 27  
11 Device and Documentation Support..........................28  
11.1 Documentation Support.......................................... 28  
11.2 Receiving Notification of Documentation Updates..28  
11.3 Support Resources................................................. 28  
11.4 Trademarks............................................................. 28  
11.5 Electrostatic Discharge Caution..............................28  
11.6 Glossary..................................................................28  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 28  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision B (May 2020) to Revision C (June 2022)  
Page  
Changed Features section..................................................................................................................................1  
Changed isolation standard from DIN VDE V 0884-11 (VDE V 0884-11) to DIN EN IEC 60747-17 (VDE  
0884-17) and updated the Insulation Specifications and Safety-Related Certifications tables accordingly....... 1  
Changed pin names: VIN to IN, VOUTP to OUTP, and VOUTN to OUTN......................................................... 4  
Merged VOS specs for 4.5V ≤ VDD1 ≤ 5.5 V and 3.0 V ≤ VDD1 ≤ 5.5 V ranges (AMC1311B-Q1 only).............9  
Changed VDD1 DC PSRR from –65 dB (typical) to –80 dB (typical)................................................................. 9  
Changed CMTI from 75 kV/µs (minimum), 140 kV/µs (typical) to 100 kV/µs (minimum), 150kV/µs  
(typical) (AMC1311B-Q1 only)............................................................................................................................ 9  
Changed VDD1UV (VDD1 falling) from 1.75 V / 2.53 V / 2.7 V to 2.4 V / 2.6 V / 2.8 V (minimum / typical /  
maximum)...........................................................................................................................................................9  
Changed Rise, Fall, and Delay Time Definition timing diagram........................................................................11  
Changed Reinforced Isolation Capacitor Lifetime Projection figure ................................................................ 12  
Changed functional block diagram................................................................................................................... 19  
Deleted Fail-Safe Output section, added Analog Output section..................................................................... 21  
Changed Typical Application section and subsections.....................................................................................22  
Changed What To Do and What Not To Do section......................................................................................... 25  
Changed Layout section...................................................................................................................................27  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: AMC1311-Q1  
 
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
www.ti.com  
Changes from Revision A (June 2018) to Revision B (May 2020)  
Page  
Changed automotive-specific Features bullets ..................................................................................................1  
Added Functional Safety-Capable bullets to Features list. ................................................................................1  
Changed AMC1311B-Q1 offset drift from ±15 µV/°C (max) to 10 µV/°C (max) in Features section.................. 1  
Changed AMC1311B-Q1 gain error from ±0.3% (max) to ±0.2% (max) and changed AMC1311B-Q1 gain drift  
from ±45 ppm/°C (max) to ±40 ppm/°C (max) in Features section.....................................................................1  
Changed AMC1311B-Q1 values for TCVOS, EG, and TCEG in Device Comparison Table ................................5  
Added ESD classification levels to ESD Ratings table.......................................................................................5  
Changed CLR and CPG values from 9 mm to 8.5 mm.......................................................................................5  
Changed Insulation Specifications table per ISO standard................................................................................ 5  
Changed Safety-Related Certification table per ISO standard........................................................................... 5  
Changed Safety Limiting Values description as per ISO standard..................................................................... 5  
Changed TCVOS parameter minimum value from –15 μV/°C to –10 μV/°C and maximum value from 15 μV/°C  
to 10μV/°C for the AMC1311B-Q1 in the Electrical Characteristics table...........................................................5  
Changed EG parameter minimum value from –0.3% to –0.2% and maximum value from 0.3% to 0.2% for the  
AMC1311B-Q1 in the Electrical Characteristics table.........................................................................................5  
Changed TCEG parameter minimum value from –45 ppm/°C to –40 ppm/°C and maximum value from 45  
ppm/°C to 40 ppm/°C for the AMC1311B-Q1 in the Electrical Characteristics table.......................................... 5  
Changed Step Response of the AMC1311B-Q1 figure.................................................................................... 25  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: AMC1311-Q1  
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
www.ti.com  
5 Pin Configuration and Functions  
VDD1  
IN  
1
2
3
4
8
7
6
5
VDD2  
OUTP  
OUTN  
GND2  
SHTDN  
GND1  
Not to scale  
Figure 5-1. DWV Package, 8-Pin SOIC (Top View)  
Table 5-1. Pin Functions  
PIN  
NAME  
TYPE  
DESCRIPTION  
NO.  
1
2
3
4
5
6
7
8
VDD1  
IN  
High-side power  
Analog input  
High-side power supply(1)  
Analog input  
SHTDN  
GND1  
GND2  
OUTN  
OUTP  
VDD2  
Digital input  
Shutdown input, active high, with internal pullup resistor (typical value: 100 kΩ)  
High-side analog ground  
High-side ground  
Low-side ground  
Analog output  
Analog output  
Low-side power  
Low-side analog ground  
Inverting analog output  
Noninverting analog output  
Low-side power supply(1)  
(1) See the Power Supply Recommendations section for power-supply decoupling recommendations.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: AMC1311-Q1  
 
 
 
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
see(1)  
MIN  
–0.3  
MAX  
6.5  
UNIT  
High-side VDD1 to GND1  
Power-supply voltage  
Input voltage  
V
Low-side VDD2 to GND2  
–0.3  
6.5  
IN  
GND1 – 6  
GND1 – 0.5  
GND2 – 0.5  
–10  
VDD1 + 0.5  
VDD1 + 0.5  
VDD2 + 0.5  
10  
V
SHTDN  
Output voltage  
Input current  
OUTP, OUTN  
V
Continuous, any pin except power-supply pins  
mA  
Junction, TJ  
Storage, Tstg  
150  
Temperature  
°C  
–65  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.  
If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1), HBM ESD classification Level 2  
Charged-device model (CDM), per AEC Q100-011, CDM ESD classification Level C6  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
POWER SUPPLY  
High-side power supply  
VDD1 to GND1, AMC1311-Q1  
VDD1 to GND1, AMC1311B-Q1  
VDD2 to GND2  
4.5  
3
5
5
5.5  
5.5  
5.5  
V
V
Low-side power supply  
ANALOG INPUT  
3
3.3  
VClipping  
VFSR  
Input voltage before clipping output  
Specified linear full-scale voltage  
IN to GND1  
IN to GND1  
2.516  
V
V
–0.1  
2
ANALOG OUTPUT  
On OUTP or OUTN to GND2  
OUTP to OUTN  
500  
250  
1
CLOAD Capacitive load  
pF  
kΩ  
RLOAD  
DIGITAL INPUT  
Input voltage  
TEMPERATURE RANGE  
Resistive load  
On OUTP or OUTN to GND2  
10  
SHTDN to GND1  
0
VDD1  
125  
V
TA  
Specified ambient temperature  
–40  
°C  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: AMC1311-Q1  
 
 
 
 
 
 
 
 
AMC1311-Q1  
www.ti.com  
UNIT  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
6.4 Thermal Information  
DWV (SOIC)  
8 PINS  
84.6  
THERMAL METRIC(1)  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
28.3  
RθJB  
ΨJT  
ΨJB  
Junction-to-board thermal resistance  
41.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
4.9  
39.1  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
VDD1 = VDD2 = 5.5 V  
VALUE  
UNIT  
98  
PD  
Maximum power dissipation (both sides)  
mW  
VDD1 = VDD2 = 3.6V, AMC1311B-Q1  
only  
56  
VDD1 = 5.5 V  
53  
30  
45  
26  
PD1  
Maximum power dissipation (high-side)  
Maximum power dissipation (low-side)  
mW  
mW  
VDD1 = 3.6 V, AMC1311B-Q1 only  
VDD2 = 5.5 V  
PD2  
VDD2 = 3.6 V, AMC1311B-Q1 only  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: AMC1311-Q1  
 
 
 
 
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
www.ti.com  
6.6 Insulation Specifications  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VALUE  
UNIT  
GENERAL  
CLR  
External clearance(1)  
External creepage(1)  
Shortest pin-to-pin distance through air  
≥ 8.5  
≥ 8.5  
mm  
mm  
CPG  
Shortest pin-to-pin distance across the package surface  
Minimum internal gap (internal clearance) of the double  
insulation  
DTI  
CTI  
Distance through insulation  
≥ 0.021  
mm  
V
Comparative tracking index  
Material group  
DIN EN 60112 (VDE 0303-11); IEC 60112  
According to IEC 60664-1  
≥ 600  
I
Rated mains voltage ≤ 600 VRMS  
Rated mains voltage ≤ 1000 VRMS  
I-IV  
I-III  
Overvoltage category  
per IEC 60664-1  
DIN EN IEC 60747-17 (VDE 0884-17)(2)  
Maximum repetitive peak  
VIORM  
At AC voltage  
2120  
VPK  
isolation voltage  
At AC voltage (sine wave)  
1500  
2120  
7000  
8400  
9800  
VRMS  
VDC  
Maximum-rated isolation  
VIOWM  
working voltage  
At DC voltage  
VTEST = VIOTM, t = 60 s (qualification test)  
VTEST = 1.2 × VIOTM, t = 1 s (100% production test)  
Tested in air, 1.2/50-µs waveform per IEC 62368-1  
Maximum transient  
VIOTM  
VPK  
isolation voltage  
VIMP  
Maximum impulse voltage(3)  
VPK  
VPK  
Maximum surge  
Tested in oil (qualification test),  
1.2/50-µs waveform per IEC 62368-1  
VIOSM  
12800  
≤ 5  
isolation voltage(4)  
Method a, after input/output safety test subgroups 2 and 3,  
Vini = VIOTM, tini = 60 s, Vpd(m) = 1.2 × VIORM, tm = 10 s  
Method a, after environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s, Vpd(m) = 1.6 × VIORM, tm = 10 s  
≤ 5  
qpd  
Apparent charge(5)  
pC  
Method b1, at routine test (100% production) and  
preconditioning (type test), Vini = VIOTM, tini = 1 s, Vpd(m) = 1.875  
× VIORM, tm = 1 s  
≤ 5  
Barrier capacitance,  
input to output(6)  
CIO  
RIO  
VIO = 0.5 VPP at 1 MHz  
~1.5  
pF  
Ω
VIO = 500 V at TA = 25°C  
> 1012  
> 1011  
> 109  
Insulation resistance,  
input to output(6)  
VIO = 500 V at 100°C ≤ TA ≤ 125°C  
VIO = 500 V at TS = 150°C  
Pollution degree  
Climatic category  
2
55/125/21  
UL1577  
VTEST = VISO = 5000 VRMS, t = 60 s (qualification),  
VTEST = 1.2 × VISO = 6000 VRMS, t = 1 s (100% production test)  
VISO  
Withstand isolation voltage  
5000  
VRMS  
(1) Apply creepage and clearance requirements according to the specific equipment isolation standards of an application. Care must be  
taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the  
printed circuit board (PCB) do not reduce this distance. Creepage and clearance on a PCB become equal in certain cases. Techniques  
such as inserting grooves, ribs, or both on a PCB are used to help increase these specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured  
by means of suitable protective circuits.  
(3) Testing is carried out in air to determine the surge immunity of the package.  
(4) Testing is carried in oil to determine the intrinsic surge immunity of the isolation barrier.  
(5) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(6) All pins on each side of the barrier are tied together, creating a two-pin device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: AMC1311-Q1  
 
 
 
 
 
 
 
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
www.ti.com  
6.7 Safety-Related Certifications  
VDE  
UL  
DIN EN IEC 60747-17 (VDE 0884-17),  
EN IEC 60747-17,  
DIN EN IEC 62368-1 (VDE 0868-1),  
EN IEC 62368-1,  
Recognized under 1577 component recognition  
IEC 62368-1 Clause : 5.4.3 ; 5.4.4.4 ; 5.4.9  
Reinforced insulation  
Single protection  
Certificate number: 40040142  
File number: E181974  
6.8 Safety Limiting Values  
Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A  
failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to  
over-heat the die and damage the isolation barrier potentially leading to secondary system failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RθJA = 84.6°C/W, VDDx = 5.5 V,  
TJ = 150°C, TA = 25°C  
268  
IS  
Safety input, output, or supply current  
mA  
RθJA = 84.6°C/W, VDDx = 3.6 V,  
TJ = 150°C, TA = 25°C, AMC1311B-Q1  
only  
410  
PS  
TS  
Safety input, output, or total power  
Maximum safety temperature  
RθJA = 84.6°C/W, TJ = 150°C, TA = 25°C  
1477  
150  
mW  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power, respectively. Do not exceed the maximum limits of IS and PS. These  
limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the Thermal Information table is that of a device installed on a high-K test board for  
leaded surface-mount packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum junction temperature.  
PS = IS × VDDmax, where VDDmax is the maximum supply voltage for high-side and low-side.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: AMC1311-Q1  
 
 
 
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
www.ti.com  
6.9 Electrical Characteristics  
minimum and maximum specifications of the AMC1311-Q1 apply from TA = –40°C to +125°C, VDD1 = 4.5 V to 5.5 V, VDD2  
= 3.0 V to 5.5 V, VIN = –0.1 V to 2 V, and SHTDN = GND1 = 0 V; minimum and maximum specifications of the AMC1311B-Q1  
apply from TA = –55°C to +125°C, VDD1 = 3.0 V to 5.5 V, VDD2 = 3.0 V to 5.5 V, VIN = –0.1 V to 2 V, and SHTDN = GND1 =  
0 V (unless otherwise noted); typical specifications are at TA = 25°C, VDD1 = 5 V, and VDD2 = 3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ANALOG INPUT  
TA = 25°C, 4.5 V ≤ VDD1 ≤ 5.5 V,  
AMC1311-Q1  
–9.9  
–1.5  
±0.4  
9.9  
mV  
VOS  
Input offset voltage(1) (2)  
TA = 25°C, AMC1311B-Q1(3)  
±0.4  
±20  
±3  
1
1.5  
AMC1311-Q1  
TCVOS  
Input offset thermal drift(1) (2) (5)  
µV/°C  
10  
AMC1311B-Q1  
–10  
–15  
RIN  
IIB  
Input resistance  
Input bias current  
Input capacitance  
TA = 25  
GΩ  
IN = GND1, TA = 25℃  
fIN = 275 kHz  
3.5  
7
15  
nA  
pF  
CIN  
ANALOG OUTPUT  
Nominal gain  
1
0.4%  
V/V  
TA = 25, AMC1311-Q1  
TA = 25, AMC1311B-Q1  
AMC1311-Q1  
–1%  
1%  
EG  
Gain error(1)  
–0.2%  
±0.05%  
±30  
0.2%  
TCEG  
Gain error drift(1) (6)  
ppm/°C  
dB  
AMC1311B-Q1  
–40  
±5  
40  
Nonlineartity(1)  
–0.04%  
±0.01%  
0.04%  
VIN = 2 VPP, VIN > 0 V,  
fIN = 10 kHz, BW = 10 kHz  
THD  
SNR  
Total harmonic distortion(4)  
–87  
VIN = 2 VPP, fIN = 1 kHz, BW = 10 kHz  
VIN = 2 VPP, fIN = 10 kHz, BW = 100 kHz  
VIN = GND1, BW = 100 kHz  
vs VDD1, at DC  
79  
82.6  
70.9  
220  
–80  
–85  
–65  
–70  
1.44  
Signal-to-noise ratio  
Output noise  
dB  
µVrms  
vs VDD2, at DC  
PSRR  
Power-supply rejection ratio(2)  
dB  
vs VDD1, 10 kHz / 100-mV ripple  
vs VDD2, 10 kHz / 100-mV ripple  
VCMout  
Output common-mode voltage  
1.39  
1.49  
–2.5  
V
V
VOUT = (VOUTP – VOUTN);  
VIN > VClipping  
VCLIPout  
Clipping differential output voltage  
2.49  
–2.6  
SHTDN = high, or VDD1 undervoltage,  
or VDD1 missing  
VFAILSAFE Failsafe differential output voltage  
V
AMC1311-Q1  
100  
220  
220  
275  
BW  
Output bandwidth  
Output resistance  
kHz  
Ω
AMC1311B-Q1  
On OUTP or OUTN  
ROUT  
<0.2  
On OUTP or OUTN, sourcing or sinking,  
IN = GND1, outputs shorted to  
either GND or VDD2  
Output short-circuit current  
14  
mA  
AMC1311-Q1  
15  
30  
CMTI  
Common-mode transient immunity  
kV/µs  
AMC1311B-Q1  
100  
150  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: AMC1311-Q1  
 
 
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
www.ti.com  
6.9 Electrical Characteristics (continued)  
minimum and maximum specifications of the AMC1311-Q1 apply from TA = –40°C to +125°C, VDD1 = 4.5 V to 5.5 V, VDD2  
= 3.0 V to 5.5 V, VIN = –0.1 V to 2 V, and SHTDN = GND1 = 0 V; minimum and maximum specifications of the AMC1311B-Q1  
apply from TA = –55°C to +125°C, VDD1 = 3.0 V to 5.5 V, VDD2 = 3.0 V to 5.5 V, VIN = –0.1 V to 2 V, and SHTDN = GND1 =  
0 V (unless otherwise noted); typical specifications are at TA = 25°C, VDD1 = 5 V, and VDD2 = 3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DIGITAL INPUT  
IIN  
Input current  
SHTDN pin, GND1 ≤ SHTDN ≤ VDD1  
SHTDN pin  
–70  
1
µA  
pF  
CIN  
Input capacitance  
5
0.7 ×  
VDD1  
VIH  
VIL  
High-level input voltage  
V
V
0.3 ×  
VDD1  
Low-level input voltage  
POWER SUPPLY  
VDD1 rising  
VDD1 falling  
VDD2 rising  
VDD2 falling  
2.5  
2.4  
2.7  
2.6  
2.9  
2.8  
VDD1 undervoltage detection  
threshold  
VDD1UV  
VDD2UV  
V
V
2.2  
2.45  
2.0  
2.65  
2.2  
VDD2 undervoltage detection  
threshold  
1.85  
3.0 V < VDD1 < 3.6 V, SHTDN = low,  
AMC1311B-Q1 only  
6.0  
8.4  
9.7  
mA  
IDD1  
High-side supply current  
Low-side supply current  
4.5 V < VDD1 < 5.5 V, SHTDN = low  
SHTDN = VDD1  
7.1  
1.3  
5.3  
5.9  
µA  
3.0 V < VDD2 < 3.6 V  
7.2  
8.1  
IDD2  
mA  
4.5 V < VDD2 < 5.5 V  
(1) The typical value includes one standard deviation (sigma) at nominal operating conditions.  
(2) This parameter is input referred.  
(3) The typical value is at VDD1 = 3.3 V.  
(4) THD is the ratio of the rms sum of the amplitudes of first five higher harmonics to the amplitude of the fundamental.  
(5) Offset error temperature drift is calculated using the box method, as described by the following equation:  
TCVOS = (ValueMAX - ValueMIN) / TempRange  
(6) Gain error temperature drift is calculated using the box method, as described by the following equation:  
TCEG (ppm) = (ValueMAX - ValueMIN) / (Value(T=25) x TempRange) x 106  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: AMC1311-Q1  
 
 
 
 
 
 
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
www.ti.com  
6.10 Switching Characteristics  
over operating ambient temperature range (unless otherwise noted)  
PARAMETER  
Output signal rise time  
Output signal fall time  
TEST CONDITIONS  
MIN  
TYP  
1.3  
1.3  
1.5  
1.0  
2.1  
1.6  
3.0  
2.5  
MAX  
UNIT  
µs  
tr  
tf  
µs  
Unfiltered output, AMC1311-Q1  
Unfiltered output, AMC1311B-Q1  
Unfiltered output, AMC1311-Q1  
Unfiltered output, AMC1311B-Q1  
Unfiltered output, AMC1311-Q1  
Unfiltered output, AMC1311B-Q1  
2.5  
1.5  
3.1  
2.1  
4.0  
3.0  
IN to OUTx signal delay (50% – 10%)  
IN to OUTx signal delay (50% – 50%)  
µs  
µs  
IN to OUTx signal delay (50% – 90%)  
Analog settling time  
µs  
µs  
VDD1 step to 3.0 V with VDD2 ≥ 3.0 V, to  
VOUTP, VOUTN valid, 0.1% settling  
tAS  
50  
100  
tEN  
Device enable time  
SHTDN high to low  
SHTDN low to high  
50  
3
100  
10  
µs  
µs  
tSHTDN  
Device shutdown time  
6.11 Timing Diagram  
2 V  
IN  
0 V  
tf  
tr  
OUTN  
OUTP  
VCMout  
50% - 10%  
50% - 50%  
50% - 90%  
Figure 6-1. Rise, Fall, and Delay Time Definition  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: AMC1311-Q1  
 
 
 
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
www.ti.com  
6.12 Insulation Characteristics Curves  
500  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
AVDD = DVDD = 3.6 V  
AVDD = DVDD = 5.5 V  
400  
300  
200  
100  
0
0
50  
100  
TA (°C)  
150  
200  
0
50  
100  
TA (èC)  
150  
200  
D001  
D002  
Figure 6-2. Thermal Derating Curve for Safety-  
Limiting Current per VDE  
Figure 6-3. Thermal Derating Curve for Safety-  
Limiting Power per VDE  
1.E+11  
Safety Margin Zone: 1800 VRMS, 254 Years  
Operating Zone: 1500 VRMS, 135 Years  
TDDB Line (<1 PPM Fail Rate)  
1.E+10  
87.5%  
1.E+9  
1.E+8  
1.E+7  
1.E+6  
1.E+5  
1.E+4  
1.E+3  
20%  
1.E+2  
1.E+1  
500 1500 2500 3500 4500 5500 6500 7500 8500 9500  
Stress Voltage (VRMS  
)
TA up to 150°C, stress-voltage frequency = 60 Hz, isolation working voltage = 1500 VRMS, operating lifetime = 135 years  
Figure 6-4. Reinforced Isolation Capacitor Lifetime Projection  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: AMC1311-Q1  
 
 
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
www.ti.com  
6.13 Typical Characteristics  
at VDD1 = 5 V, VDD2 = 3.3 V, SHTDN = 0 V, fIN = 10 kHz, and BW = 100 kHz (unless otherwise noted)  
2.5  
2
10  
8
vs VDD1  
vs VDD2  
1.5  
1
6
4
0.5  
0
2
0
-0.5  
-1  
-2  
-4  
-6  
-8  
-10  
-1.5  
-2  
Device 1  
Device 2  
Device 3  
-2.5  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDDx (V)  
5
5.25 5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D005  
D019  
3.0 V ≤ VDD1 < 4.5 V for the AMC1311B-Q1 only  
AMC1311-Q1  
Figure 6-6. Input Offset Voltage vs Temperature  
Figure 6-5. Input Offset Voltage vs Supply Voltage  
1.5  
2.5  
Device 1  
Device 2  
Device 3  
2
1.5  
1
1
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1.5  
-2  
Device 1  
Device 2  
Device 3  
-1  
-1.5  
-2.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D006  
D007  
VDD1 = 5 V, AMC1311B-Q1  
Figure 6-7. Input Offset Voltage vs Temperature  
VDD1 = 3.3 V, AMC1311B-Q1  
Figure 6-8. Input Offset Voltage vs Temperature  
14  
12  
10  
8
15  
12  
9
6
3
0
6
-3  
-6  
-9  
-12  
-15  
4
2
0
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDD1 (V)  
5
5.25 5.5  
100  
1000  
fIN (kHz)  
10000  
D010  
D009  
3.0 V ≤ VDD1 < 4.5 V for the AMC1311B-Q1 only  
Figure 6-10. Input Bias Current vs High-Side Supply Voltage  
Figure 6-9. Input Capacitance vs Input Signal Frequency  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: AMC1311-Q1  
 
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
www.ti.com  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, SHTDN = 0 V, fIN = 10 kHz, and BW = 100 kHz (unless otherwise noted)  
15  
12  
9
1
0.8  
0.6  
0.4  
0.2  
0
6
3
0
-3  
-6  
-9  
-12  
-15  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
AMC1311-Q1 vs VDD1  
AMC1311-Q1 vs VDD2  
AMC1311B-Q1 vs VDD1  
AMC1311B-Q1 vs VDD2  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDDx (V)  
5
5.25 5.5  
D011  
D014  
3.0 V ≤ VDD1 < 4.5 V for the AMC1311B-Q1 only  
Figure 6-11. Input Bias Current vs Temperature  
Figure 6-12. Gain Error vs Supply Voltage  
1
0.8  
0.6  
0.4  
0.2  
0
0.3  
0.2  
0.1  
0
Device 1  
Device 2  
Device 3  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.1  
-0.2  
-0.3  
Device 1  
Device 2  
Device 3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D016  
D015  
AMC1311B-Q1  
AMC1311-Q1  
Figure 6-14. Gain Error vs Temperature  
Figure 6-13. Gain Error vs Temperature  
5
0
50  
0
-5  
-50  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-100  
-150  
-200  
-250  
-300  
-350  
-400  
AMC1311B-Q1  
AMC1311-Q1  
AMC1311B-Q1  
AMC1311-Q1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
fIN (kHz)  
fIN (kHz)  
D04034  
D044  
Figure 6-15. Normalized Gain vs Input Frequency  
Figure 6-16. Output Phase vs Input Frequency  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: AMC1311-Q1  
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
www.ti.com  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, SHTDN = 0 V, fIN = 10 kHz, and BW = 100 kHz (unless otherwise noted)  
0.04  
0.03  
0.02  
0.01  
0
5
4.5  
4
VOUTP  
VOUTN  
3.5  
3
2.5  
2
-0.01  
-0.02  
-0.03  
-0.04  
1.5  
1
0.5  
0
-0.2  
0
0.2 0.4 0.6 0.8 1  
VIN (V)  
1.2 1.4 1.6 1.8  
2
-0.1  
0.3  
0.7  
1.1  
1.5  
1.9  
2.3  
2.7  
D020  
VIN (V)  
D018  
Figure 6-18. Nonlinearity vs Input Voltage  
Figure 6-17. Output Voltage vs Input Voltage  
0.04  
0.03  
0.02  
0.01  
0
0.04  
0.03  
0.02  
0.01  
0
vs VDD1  
vs VDD2  
-0.01  
-0.02  
-0.03  
-0.04  
-0.01  
-0.02  
-0.03  
-0.04  
Device 1  
Device 2  
Device 3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDDx (V)  
5
5.25 5.5  
D022  
D021  
3.0 V ≤ VDD1 < 4.5 V for the AMC1311B-Q1 only  
Figure 6-19. Nonlinearity vs Supply Voltage  
Figure 6-20. Nonlinearity vs Temperature  
-70  
-75  
-70  
-75  
vs VDD1  
vs VDD2  
-80  
-80  
-85  
-85  
-90  
-90  
Device 1  
Device 2  
Device 3  
-95  
-95  
-100  
-100  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDDx (V)  
5
5.25 5.5  
D024  
D023  
3.0 V ≤ VDD1 < 4.5 V for the AMC1311B-Q1 only  
Figure 6-22. Total Harmonic Distortion vs Temperature  
Figure 6-21. Total Harmonic Distortion vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: AMC1311-Q1  
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
www.ti.com  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, SHTDN = 0 V, fIN = 10 kHz, and BW = 100 kHz (unless otherwise noted)  
1000  
100  
10  
72.5  
70  
67.5  
65  
62.5  
60  
57.5  
55  
52.5  
50  
1
47.5  
45  
0.1  
42.5  
0.1  
1
10  
Frequency (kHz)  
100  
1000  
0
0.2 0.4 0.6 0.8  
1
VIN (V)  
1.2 1.4 1.6 1.8  
2
D025  
D026  
Figure 6-23. Input-Referred Noise Density vs Frequency  
Figure 6-24. Signal-to-Noise Ratio vs Input Voltage  
80  
80  
vs VDD1  
vs VDD2  
77.5  
75  
77.5  
75  
72.5  
70  
72.5  
70  
67.5  
67.5  
65  
65  
Device 1  
Device 2  
Device 3  
62.5  
60  
62.5  
60  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDDx (V)  
5
5.25 5.5  
D028  
D027  
3.0 V ≤ VDD1 < 4.5 V for the AMC1311B-Q1 only  
Figure 6-26. Signal-to-Noise Ratio vs Temperature  
Figure 6-25. Signal-to-Noise Ratio vs Supply Voltage  
0
1.49  
1.48  
1.47  
1.46  
1.45  
1.44  
1.43  
1.42  
1.41  
1.4  
-20  
-40  
-60  
-80  
-100  
VDD1  
VDD2  
-120  
0.1  
1.39  
1
10  
Ripple Frequency (kHz)  
100  
1000  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDD2 (V)  
5
5.25 5.5  
D029  
D031  
100-mV ripple  
Figure 6-27. Power-Supply Rejection Ratio vs Ripple Frequency  
Figure 6-28. Output Common-Mode Voltage vs Low-Side Supply  
Voltage  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: AMC1311-Q1  
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
www.ti.com  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, SHTDN = 0 V, fIN = 10 kHz, and BW = 100 kHz (unless otherwise noted)  
300  
290  
280  
270  
260  
250  
240  
230  
220  
210  
200  
1.49  
1.48  
1.47  
1.46  
1.45  
1.44  
1.43  
1.42  
1.41  
1.4  
AMC1311B-Q1  
AMC1311-Q1  
1.39  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDD2 (V)  
5
5.25 5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D033  
D032  
Figure 6-30. Output Bandwidth vs Low-Side Supply Voltage  
Figure 6-29. Output Common-Mode Voltage vs Temperature  
300  
8.5  
8
AMC1311B-Q1  
AMC1311-Q1  
290  
280  
270  
260  
250  
240  
230  
220  
210  
200  
7.5  
7
6.5  
6
5.5  
5
4.5  
IDD1 vs VDD1  
IDD2 vs VDD2  
4
3.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDDx (V)  
5
5.25 5.5  
D034  
D035  
3.0 V ≤ VDD1 < 4.5 V for the AMC1311B-Q1 only  
Figure 6-32. Supply Current vs Supply Voltage  
Figure 6-31. Output Bandwidth vs Temperature  
8.5  
4
3.5  
3
8
7.5  
7
2.5  
2
6.5  
6
5.5  
5
1.5  
1
4.5  
4
IDD1  
IDD2  
0.5  
0
3.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDD2 (V)  
5
5.25 5.5  
D036  
D037  
Figure 6-33. Supply Current vs Temperature  
Figure 6-34. Output Rise and Fall Time vs Low-Side Supply  
Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: AMC1311-Q1  
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
www.ti.com  
6.13 Typical Characteristics (continued)  
at VDD1 = 5 V, VDD2 = 3.3 V, SHTDN = 0 V, fIN = 10 kHz, and BW = 100 kHz (unless otherwise noted)  
4
3.5  
3
3.8  
3.4  
3
2.6  
2.2  
1.8  
1.4  
1
2.5  
2
1.5  
1
50% - 90%  
50% - 50%  
50% - 10%  
0.5  
0
0.6  
0.2  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDD2 (V)  
5
5.25 5.5  
D038  
D039  
AMC1311-Q1  
Figure 6-35. Output Rise and Fall Time vs Temperature  
Figure 6-36. IN to OUTP, OUTN Signal Delay vs Low-Side  
Supply Voltage  
3.8  
3.8  
3.4  
3
50% - 90%  
50% - 50%  
50% - 10%  
3.4  
3
2.6  
2.2  
1.8  
1.4  
1
2.6  
2.2  
1.8  
1.4  
1
50% - 90%  
50% - 50%  
50% - 10%  
0.6  
0.2  
0.6  
0.2  
-40 -25 -10  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VDD2 (V)  
5
5.25 5.5  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D040  
D041  
AMC1311B-Q1  
AMC1311-Q1  
Figure 6-37. IN to OUTP, OUTN Signal Delay vs Low-Side  
Supply Voltage  
Figure 6-38. IN to OUTP, OUTN Signal Delay vs Temperature  
3.8  
3.4  
3
50% - 90%  
50% - 50%  
50% - 10%  
2.6  
2.2  
1.8  
1.4  
1
0.6  
0.2  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D042  
AMC1311B-Q1  
Figure 6-39. IN to OUTP, OUTN Signal Delay vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: AMC1311-Q1  
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The AMC1311-Q1 is a precision, single-ended input, isolated amplifier with a high input impedance and wide  
input voltage range. The input stage of the device drives a second-order, delta-sigma (ΔΣ) modulator. The  
modulator converts the analog input signal into a digital bitstream that is transferred across the isolation barrier  
and separates the high-side from the low-side. On the low-side, the received bitstream is processed by a  
fourth-order analog filter that outputs a differential signal at the OUTP and OUTN pins proportional to the input  
signal.  
The SiO2-based, capacitive isolation barrier supports a high level of magnetic field immunity, as described  
in the ISO72x Digital Isolator Magnetic-Field Immunity application report. The digital modulation used in the  
AMC1311-Q1 to transmit data across the isolation barrier, and the isolation barrier characteristics itself, result in  
high reliability and high common-mode transient immunity.  
7.2 Functional Block Diagram  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
AMC1311B-Q1  
Analog Filter  
IN  
ΔΣ Modulator  
SHTDN  
GND1  
7.3 Feature Description  
7.3.1 Analog Input  
The single-ended, high-impedance input stage of the AMC1311-Q1 feeds a second-order, switched-capacitor,  
feed-forward ΔΣ modulator. The modulator converts the analog signal into a bitstream that is transferred across  
the isolation barrier, as described in the Isolation Channel Signal Transmission section.  
There are two restrictions on the analog input signal IN. First, if the input voltage VIN exceeds the range  
specified in the Absolute Maximum Ratings table, the input current must be limited to the absolute maximum  
value because the electrostatic discharge (ESD) protection turns on. Secondly, the linearity and parametric  
performance of the device is ensured only when the analog input voltage remains within the linear full-scale  
range (VFSR) as specified in the Recommended Operating Conditions table.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: AMC1311-Q1  
 
 
 
 
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
www.ti.com  
7.3.2 Isolation Channel Signal Transmission  
The AMC1311-Q1 uses an on-off keying (OOK) modulation scheme, as shown in Figure 7-1, to transmit the  
modulator output bitstream across the SiO2-based isolation barrier. The transmit driver (TX) shown in the  
Functional Block Diagram transmits an internally-generated, high-frequency carrier across the isolation barrier  
to represent a digital one and does not send a signal to represent a digital zero. The nominal frequency of the  
carrier used inside the AMC1311-Q1 is 480 MHz.  
The receiver (RX) on the other side of the isolation barrier recovers and demodulates the signal and provides  
the input to the fourth-order analog filter. The AMC1311-Q1 transmission channel is optimized to achieve the  
highest level of common-mode transient immunity (CMTI) and lowest level of radiated emissions caused by the  
high-frequency carrier and RX/TX buffer switching.  
Internal Clock  
Modulator Bitstream  
on High-side  
Signal Across Isolation Barrier  
Recovered Sigal  
on Low-side  
Figure 7-1. OOK-Based Modulation Scheme  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: AMC1311-Q1  
 
 
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
www.ti.com  
7.3.3 Analog Output  
The AMC1311-Q1 provides a differential analog output on the OUTP and OUTN pins. For input voltages of VIN in  
the range from –0.1 V to +2 V, the device provides a linear response with a nominal gain of 1. For example, for  
an input voltage of 2 V, the differential output voltage (VOUTP – VOUTN) is 2 V. At zero input (IN shorted to GND1),  
both pins output the same common-mode output voltage VCMout, as specified in the Electrical Characteristics  
table. For input voltages greater than 2 V but less than approximately 2.5 V, the differential output voltage  
continues to increase but with reduced linearity performance. The outputs saturate at a differential output voltage  
of VCLIPout, as shown in Figure 7-2, if the input voltage exceeds the VClipping value.  
Maximum input range before clipping (VClipping  
)
Linear input range (VFSR  
)
VFail-safe  
VOUTN  
VCLIPout  
VOUTP  
VCMout  
0
2.516 V  
Input Voltage (VIN  
)
2 V  
Figure 7-2. Output Behavior of the AMC1311-Q1  
The AMC1311-Q1 output offers a fail-safe feature that simplifies diagnostics on a system level. Figure 7-2 shows  
the fail-safe mode, in which the AMC1311-Q1 outputs a negative differential output voltage that does not occur  
under normal operating conditions. The fail-safe output is active in three cases:  
When the high-side supply VDD1 of the AMC1311-Q1 device is missing  
When the high-side supply VDD1 falls below the undervoltage threshold VDD1UV  
When the SHTDN pin is pulled high  
Use the maximum VFail-safe voltage specified in the Electrical Characteristics table as a reference value for  
fail-safe detection on a system level.  
7.4 Device Functional Modes  
The AMC1311-Q1 is operational when the power supplies VDD1 and VDD2 are applied, as specified in the  
Recommended Operating Conditions table.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: AMC1311-Q1  
 
 
 
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
www.ti.com  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The high input impedance, low input bias current, low AC and DC errors, and low temperature drift make the  
AMC1311-Q1 a high-performance solution for automotive applications where voltage sensing in the presence of  
high common-mode voltage levels is required.  
8.2 Typical Application  
Figure 8-1 shows an OBC that uses the AMC1311-Q1 to monitor the DC bus voltage that can be as high as  
600 V. The DC bus voltage is divided down to an approximate 2-V level across the bottom resistor (RSNS)  
of a high-impedance resistive divider that is sensed by the AMC1311-Q1. The output of the AMC1311-Q1 is a  
differential analog output voltage of the same value as the input voltage but is galvanically isolated from the  
high-side by a reinforced isolation barrier.  
The reinforced isolation barrier and high common-mode transient immunity (CMTI) of the AMC1311-Q1 ensure  
reliable and accurate operation in harsh and high-noise environments.  
+ DC-Bus  
DC-Link  
Number of unit resistors depends  
on design requirements.  
See design examples for details.  
DC/DC  
EMI  
Filter  
PFC  
Contactor  
SW  
RX1  
RX2  
L1  
L2  
L3  
High-side supply  
(3.3 V or 5 V)  
Low-side supply  
(3.3 V or 5 V)  
SW  
SW  
100 nF 1 uF  
AMC1311B-Q1  
VDD1  
VDD2  
10  
10  
10 nF  
ICROSS  
RSNS  
IN  
OUTP  
OUTN  
GND2  
ADC  
SHTDN  
GND1  
SW  
N
1 uF 100 nF 100 pF  
N
DC-Bus  
Figure 8-1. Using the AMC1311-Q1 for DC Bus Voltage Sensing in an OBC  
8.2.1 Design Requirements  
Table 8-1 lists the parameters for this typical application.  
Table 8-1. Design Requirements  
PARAMETER  
VALUE  
600 V (maximum)  
3.3 V or 5 V  
3.3 V or 5 V  
100 V  
DC bus voltage  
High-side supply voltage  
Low-side supply voltage  
Maximum resistor operating voltage  
Voltage drop across the sense resistor (RSNS) for a linear response  
Current through the resistive divider, ICROSS  
2 V (maximum)  
100 μA  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: AMC1311-Q1  
 
 
 
 
 
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
www.ti.com  
8.2.2 Detailed Design Procedure  
The 100-μA, cross-current requirement at the maximum DC bus voltage (600 V) determines that the total  
impedance of the resistive divider is 6 MΩ. The impedance of the resistive divider is dominated by the top  
portion (shown exemplary as RX1 and RX2 in Figure 8-1) and the voltage drop across RSNS can be neglected  
for a moment. The maximum allowed voltage drop per unit resistor is specified as 100 V; therefore, the minimum  
number of unit resistors in the top portion of the resistive divider is 600 V / 100 V = 6. The calculated unit value is  
6 MΩ / 6 = 1 MΩ and matches a value from the E96 series.  
RSNS is sized such that the voltage drop across the resistor at the maximum DC-bus voltage (600 V) equals the  
linear full-scale range input voltage (VFSR) of the AMC1311-Q1, which is 2 V. The value of RSNS is calculated as  
RSNS = VFSR / (VDC-Bus, max – VFSR) × RTOP, where RTOP is the total value of the top resistor string (6 × 1 MΩ =  
6 MΩ). RSNS is calculated as 20.07 kΩ. The next closest, lower value from the E96 series is 20 kΩ.  
Table 8-2 summarizes the design of the resistive divider.  
Table 8-2. Resistor Value Example  
PARAMETER  
VALUE  
1 MΩ  
Unit resistor value, RX  
Number of unit resistors  
Sense resistor value, RSNS  
Total resistance value  
6
20 kΩ  
6.02 MΩ  
99.7 μA  
1.993 V  
9.9 mW  
59.8 mW  
Resulting current through resistive divider, ICROSS  
Resulting full-scale voltage drop across sense resistor RSNS  
Power dissipated in unit resistor RX  
Total power dissipated in resistive divider  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: AMC1311-Q1  
 
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
www.ti.com  
8.2.2.1 Input Filter Design  
Placing an RC filter in front of the isolated amplifier improves signal-to-noise performance of the signal path. In  
practice, however, the impedance of the resistor divider is high and only a small-value filter capacitor can be  
used to not limit the signal bandwidth to an unacceptable low value. Design the input filter such that:  
The cutoff frequency of the filter is at least one order of magnitude lower than the sampling frequency  
(20 MHz) of the internal ΔΣ modulator  
The input bias current does not generate significant voltage drop across the DC impedance of the input filter  
Most voltage-sensing applications use high-impedance resistor dividers in front of the isolated amplifier to scale  
down the input voltage. In this case, a single capacitor (as shown in Figure 8-2) is sufficient to filter the input  
signal.  
VDC  
R1  
AMC1311B-Q1  
R2  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
100 pF  
IN  
RSNS  
SHTDN  
GND1  
Figure 8-2. Input Filter  
8.2.2.2 Differential to Single-Ended Output Conversion  
Figure 8-3 shows an example of a TLV900x-Q1-based signal conversion and filter circuit for systems using  
single-ended input ADCs to convert the analog output voltage into digital. With R1 = R2 = R3 = R4, the output  
voltage equals (VOUTP – VOUTN) + VREF. Tailor the bandwidth of this filter stage to the bandwidth requirement  
of the system and use NP0-type capacitors for best performance. For most applications, R1 = R2 = R3 = R4 =  
3.3 kΩ and C1 = C2 = 330 pF yields good performance.  
C1  
AMC1311B-Q1  
R2  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
R1  
R3  
IN  
+
ADC  
To MCU  
SHTDN  
GND1  
TLV9001-Q1  
C2  
R4  
VREF  
Figure 8-3. Connecting the AMC1311-Q1 Output to a Single-Ended Input ADC  
For more information on the general procedure to design the filtering and driving stages of SAR ADCs, see  
the 18-Bit, 1MSPS Data Acquisition Block (DAQ) Optimized for Lowest Distortion and Noise and 18-Bit Data  
Acquisition Block (DAQ) Optimized for Lowest Power reference guides, available for download at www.ti.com.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: AMC1311-Q1  
 
 
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
www.ti.com  
8.2.3 Application Curve  
One important aspect of system design is the effective detection of an overvoltage condition to protect switching  
devices and passive components from damage. To power off the system quickly in the event of an overvoltage  
condition, a low delay caused by the isolated amplifier is required. Figure 8-4 shows the typical full-scale step  
response of the AMC1311-Q1.  
VOUTP  
VOUTN  
VIN  
Figure 8-4. Step Response of the AMC1311-Q1  
8.3 What To Do and What Not To Do  
Do not leave the analog input (IN pin) of the AMC1311-Q1 unconnected (floating) when the device is powered  
up on the high-side. If the device input is left floating, the bias current may generate a negative input voltage that  
exceeds the specified input voltage range, causing the output of the device to be invalid.  
Do not connect protection diodes to the input (IN pin) of the AMC1311-Q1. Diode leakage current can introduce  
significant measurement error especially at high temperatures. The input pin is protected against high voltages  
by its ESD protection circuit and the high impedance of the external restive divider.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: AMC1311-Q1  
 
 
 
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
www.ti.com  
9 Power Supply Recommendations  
In a typical application, the high-side (VDD1) of the AMC1311-Q1 is powered from an already existing, high-  
side, ground-referenced, 3.3-V or 5-V power supply in the system. Alternatively, the high-side supply can be  
generated from the low-side supply (VDD2) by an isolated DC/DC converter. A low-cost solution is based on the  
push-pull driver SN6501-Q1 and a transformer that supports the desired isolation voltage ratings.  
The AMC1311-Q1 does not require any specific power-up sequencing. The high-side power supply (VDD1) is  
decoupled with a low-ESR, 100-nF capacitor (C1) parallel to a low-ESR, 1-μF capacitor (C2). The low-side  
power supply (VDD2) is equally decoupled with a low-ESR, 100-nF capacitor (C3) parallel to a low-ESR, 1-μF  
capacitor (C4). Place all four capacitors (C1, C2, C3, and C4) as close to the device as possible. Figure 9-1  
shows the proper decoupling layout for the AMC1311-Q1.  
VDC  
VDD1  
VDD2  
R1  
R2  
C2 1 µF  
C4 1 µF  
AMC1311B-Q1  
C1 100 nF  
C3 100 nF  
VDD1  
VDD2  
OUTP  
OUTN  
GND2  
IN  
to RC filter / ADC  
to RC filter / ADC  
C5 100 pF  
RSNS  
SHTDN  
GND1  
Figure 9-1. Decoupling of the AMC1311-Q1  
Capacitors must provide adequate effective capacitance under the applicable DC bias conditions they  
experience in the application. Multilayer ceramic capacitors (MLCC) typically exhibit only a fraction of their  
nominal capacitance under real-world conditions and this factor must be taken into consideration when selecting  
these capacitors. This problem is especially acute in low-profile capacitors, in which the dielectric field strength is  
higher than in taller components. Reputable capacitor manufacturers provide capacitance versus DC bias curves  
that greatly simplify component selection.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: AMC1311-Q1  
 
 
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
www.ti.com  
10 Layout  
10.1 Layout Guidelines  
Figure 10-1 shows a layout recommendation with the critical placement of the decoupling capacitors (as close as  
possible to the AMC1311-Q1 supply pins) and placement of the other components required by the device. For  
best performance, place the sense resistor close to the device input pin (IN).  
10.2 Layout Example  
Clearance area, to be  
kept free of any  
conductive materials.  
C4  
C3  
C2  
C1  
to RC filter / ADC  
to RC filter / ADC  
OUTP  
OUTN  
GND2  
INP  
AMC1311B-Q1  
Top Metal  
Inner or Bottom Layer Metal  
Via  
Figure 10-1. Recommended Layout of the AMC1311-Q1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: AMC1311-Q1  
 
 
 
 
 
AMC1311-Q1  
SBAS897C – MARCH 2018 – REVISED JUNE 2022  
www.ti.com  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Isolation Glossary application report  
Texas Instruments, Semiconductor and IC Package Thermal Metrics application report  
Texas Instruments, ISO72x Digital Isolator Magnetic-Field Immunity application report  
Texas Instruments, TLV900x-Q1 Low-Power, RRIO, 1-MHz Automotive Operational Amplifier data sheet  
Texas Instruments, SN6501-Q1 Transformer Driver for Isolated Power Supplies data sheet  
Texas Instruments, AMC1311EVM Users Guide  
Texas Instruments, 18-Bit, 1-MSPS Data Acquisition Block (DAQ) Optimized for Lowest Distortion and Noise  
reference guide  
Texas Instruments, 18-Bit, 1-MSPS Data Acquisition Block (DAQ) Optimized for Lowest Power reference  
guide  
Texas Instruments, Isolated Amplifier Voltage Sensing Excel Calculator design tool  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
11.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: AMC1311-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jan-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
AMC1311BQDWVQ1  
AMC1311BQDWVRQ1  
AMC1311QDWVQ1  
AMC1311QDWVRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
DWV  
DWV  
DWV  
DWV  
8
8
8
8
64  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1311BQ1  
1000 RoHS & Green  
64 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
1311BQ1  
1311Q1  
1311Q1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jan-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF AMC1311-Q1 :  
Catalog: AMC1311  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
AMC1311BQDWVRQ1  
AMC1311BQDWVRQ1  
AMC1311QDWVRQ1  
SOIC  
SOIC  
SOIC  
DWV  
DWV  
DWV  
8
8
8
1000  
1000  
1000  
330.0  
330.0  
330.0  
16.4  
16.4  
16.4  
12.15  
12.05 6.15  
12.15 6.2  
6.2  
3.05  
3.3  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
3.05  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
AMC1311BQDWVRQ1  
AMC1311BQDWVRQ1  
AMC1311QDWVRQ1  
SOIC  
SOIC  
SOIC  
DWV  
DWV  
DWV  
8
8
8
1000  
1000  
1000  
356.0  
350.0  
356.0  
356.0  
350.0  
356.0  
35.0  
43.0  
35.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Jun-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
AMC1311BQDWVQ1  
AMC1311QDWVQ1  
DWV  
DWV  
SOIC  
SOIC  
8
8
64  
64  
505.46  
505.46  
13.94  
13.94  
4826  
4826  
6.6  
6.6  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DWV0008A  
SOIC - 2.8 mm max height  
S
C
A
L
E
2
.
0
0
0
SOIC  
C
SEATING PLANE  
11.5 0.25  
TYP  
PIN 1 ID  
AREA  
0.1 C  
6X 1.27  
8
1
2X  
5.95  
5.75  
NOTE 3  
3.81  
4
5
0.51  
0.31  
8X  
7.6  
7.4  
0.25  
C A  
B
A
B
2.8 MAX  
NOTE 4  
0.33  
0.13  
TYP  
SEE DETAIL A  
(2.286)  
0.25  
GAGE PLANE  
0.46  
0.36  
0 -8  
1.0  
0.5  
DETAIL A  
TYPICAL  
(2)  
4218796/A 09/2013  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DWV0008A  
SOIC - 2.8 mm max height  
SOIC  
8X (1.8)  
SEE DETAILS  
SYMM  
SYMM  
8X (0.6)  
6X (1.27)  
(10.9)  
LAND PATTERN EXAMPLE  
9.1 mm NOMINAL CLEARANCE/CREEPAGE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4218796/A 09/2013  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DWV0008A  
SOIC - 2.8 mm max height  
SOIC  
SYMM  
8X (1.8)  
8X (0.6)  
SYMM  
6X (1.27)  
(10.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4218796/A 09/2013  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

AMC1311DWV

2V 输入、精密电压检测增强型隔离式放大器

| DWV | 8 | -40 to 125
TI

AMC1311DWVR

2V 输入、精密电压检测增强型隔离式放大器

| DWV | 8 | -40 to 125
TI

AMC1311QDWVQ1

汽车类 2V 输入、精密电压检测增强型隔离式放大器

| DWV | 8 | -40 to 125
TI

AMC1311QDWVRQ1

汽车类 2V 输入、精密电压检测增强型隔离式放大器

| DWV | 8 | -40 to 125
TI

AMC1333M10

具有 10MHz 内部时钟和 CMOS 接口的 ±1V 输入电压、增强型隔离调制器
TI

AMC1333M10DWVR

具有 10MHz 内部时钟和 CMOS 接口的 ±1V 输入电压、增强型隔离调制器 | DWV | 8 | -40 to 125
TI

AMC1336

±1V 输入、精密电压检测增强型隔离式调制器
TI

AMC1336-Q1

汽车类 ±1V 输入、精密电压检测增强型隔离式 Δ-Σ 调制器
TI

AMC1336DWV

±1V 输入、精密电压检测增强型隔离式调制器

| DWV | 8 | -40 to 125
TI

AMC1336DWVR

±1V 输入、精密电压检测增强型隔离式调制器

| DWV | 8 | -40 to 125
TI

AMC1336QDWVRQ1

汽车类 ±1V 输入、精密电压检测增强型隔离式 Δ-Σ 调制器 | DWV | 8 | -40 to 125
TI

AMC1350

AMC1350 Precision, ±5-V Input, Reinforced Isolated Amplifier
TI