CC3100R11MRGC [TI]

CC3100 SimpleLink Wi-Fi Network Processor, Internet-of-Things Solution for MCU Applications;
CC3100R11MRGC
型号: CC3100R11MRGC
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

CC3100 SimpleLink Wi-Fi Network Processor, Internet-of-Things Solution for MCU Applications

局域网 电信 电信集成电路
文件: 总44页 (文件大小:1999K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
CC3100  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
CC3100 SimpleLink™ Wi-Fi® Network Processor,  
Internet-of-Things Solution for MCU Applications  
1 Device Overview  
1.1 Features  
1
– RX Sensitivity  
• CC3100 SimpleLink Wi-Fi Consists of Wi-Fi  
Network Processor and Power-Management  
Subsystems  
–95.7 dBm @ 1 DSSS  
–74.0 dBm @ 54 OFDM  
• Wi-Fi CERTIFIED™ Chip  
– Application Throughput  
• Wi-Fi Network Processor Subsystem  
– Featuring Wi-Fi Internet-On-a-Chip™  
– Dedicated ARM MCU  
UDP: 16 Mbps  
TCP: 13 Mbps  
• Host Interface  
Completely Offloads Wi-Fi and Internet  
Protocols from the External Microcontroller  
– Interfaces with 8-, 16-, and 32-Bit MCU or  
ASICs Over SPI or UART Interface  
– Wi-Fi Driver and Multiple Internet Protocols in  
ROM  
– 802.11 b/g/n Radio, Baseband, and Medium  
Access Control (MAC), Wi-Fi Driver, and  
Supplicant  
– Low External Host Driver Footprint: Less Than  
7KB of Code Memory and 700 B of RAM  
Memory Required for TCP Client Application  
• Power-Management Subsystem  
– Integrated DC-DC Supports a Wide Range of  
Supply Voltage:  
– TCP/IP Stack  
Industry-Standard BSD Socket Application  
Programming Interfaces (APIs)  
8 Simultaneous TCP or UDP Sockets  
2 Simultaneous TLS and SSL Sockets  
VBAT Wide-Voltage Mode: 2.1 to 3.6 V  
Preregulated 1.85-V Mode  
– Advanced Low-Power Modes  
Hibernate with RTC: 4 µA  
Low-Power Deep Sleep (LPDS): 115 µA  
RX Traffic (MCU Active): 53 mA @  
54 OFDM  
TX Traffic (MCU Active): 223 mA @  
54 OFDM, Maximum Power  
– Powerful Crypto Engine for Fast, Secure Wi-Fi  
and Internet Connections with 256-Bit AES  
Encryption for TLS and SSL Connections  
– Station, AP, and Wi-Fi Direct® Modes  
– WPA2 Personal and Enterprise Security  
– SimpleLink Connection Manager for  
Autonomous and Fast Wi-Fi Connections  
– SmartConfig™ Technology, AP Mode, and  
WPS2 for Easy and Flexible Wi-Fi Provisioning  
Idle Connected: 690 µA @ DTIM = 1  
• Clock Source  
– 40.0-MHz Crystal with Internal Oscillator  
– 32.768-kHz Crystal or External RTC Clock  
• Package and Operating Temperature  
– 0.5-mm Pitch, 64-Pin, 9-mm × 9-mm QFN  
– Ambient Temperature Range: –40°C to 85°C  
– TX Power  
18.0 dBm @ 1 DSSS  
14.5 dBm @ 54 OFDM  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
CC3100  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
www.ti.com  
1.2 Applications  
For Internet-of-Things applications, such as:  
Cloud Connectivity  
Home Automation  
Home Appliances  
Access Control  
Internet Gateway  
Industrial Control  
Smart Plug and Metering  
Wireless Audio  
Security Systems  
Smart Energy  
IP Network Sensor Nodes  
1.3 Description  
Connect any low-cost, low-power microcontroller (MCU) to the Internet of Things (IoT). The CC3100  
device is the industry's first Wi-Fi CERTIFIED chip used in the wireless networking solution. The CC3100  
device is part of the new SimpleLink Wi-Fi family that dramatically simplifies the implementation of Internet  
connectivity. The CC3100 device integrates all protocols for Wi-Fi and Internet, which greatly minimizes  
host MCU software requirements. With built-in security protocols, the CC3100 solution provides a robust  
and simple security experience. Additionally, the CC3100 device is a complete platform solution including  
various tools and software, sample applications, user and programming guides, reference designs and the  
TI E2E™ support community. The CC3100 device is available in an easy-to-layout QFN package.  
The Wi-Fi network processor subsystem features a Wi-Fi Internet-on-a-Chip and contains an additional  
dedicated ARM MCU that completely offloads the host MCU. This subsystem includes an 802.11 b/g/n  
radio, baseband, and MAC with a powerful crypto engine for fast, secure Internet connections with 256-bit  
encryption. The CC3100 device supports Station, Access Point, and Wi-Fi Direct modes. The device also  
supports WPA2 personal and enterprise security and WPS 2.0. This subsystem includes embedded  
TCP/IP and TLS/SSL stacks, HTTP server, and multiple Internet protocols.  
The power-management subsystem includes integrated DC-DC converters supporting a wide range of  
supply voltages. This subsystem enables low-power consumption modes, such as the hibernate with RTC  
mode requiringabout 4 μA of current.  
The CC3100 device can connect to any 8, 16, or 32-bit MCU over the SPI or UART Interface. The device  
driver minimizes the host memory footprint requirements requiring less than 7KB of code memory and 700  
B of RAM memory for a TCP client application.  
Device Information(1)  
PART NUMBER  
CC3100R11MRGCR/T  
PACKAGE  
BODY SIZE  
QFN (64)  
9.0 mm x 9.0 mm  
(1) For all available packages, see the orderable addendum at the end of the datasheet.  
2
Device Overview  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC3100  
 
 
 
CC3100  
www.ti.com  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
1.4 Functional Block Diagram  
Figure 1-1 shows the CC3100 hardware overview.  
RAM  
ROM  
WiFi Driver  
TCP/IP & TLS/SSL  
Stacks  
ARM Processor  
Crypto Engine  
MAC Processor  
Baseband  
SPI  
UART  
DC2DC  
PA  
BAT Monitor  
Oscillators  
Radio  
LNA  
SWAS031-A  
Figure 1-1. CC3100 Hardware Overview  
Figure 1-2 shows an overview of the CC3100 embedded software.  
User Application  
SimpleLink Driver  
SPI or UART Driver  
External Microcontroller  
Internet Protocols  
TLS/SSL  
Embedded Internet  
Embedded Wi-Fi  
TCP/IP  
Supplicant  
Wi-Fi Driver  
Wi-Fi MAC  
Wi-Fi Baseband  
Wi-Fi Radio  
ARM Processor (Wi-Fi Network Processor)  
SWAS031-B  
Figure 1-2. CC3100 Software Overview  
Copyright © 2013–2015, Texas Instruments Incorporated  
Device Overview  
3
Submit Documentation Feedback  
Product Folder Links: CC3100  
 
 
 
CC3100  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
www.ti.com  
Table of Contents  
1
Device Overview ......................................... 1  
1.1 Features .............................................. 1  
1.2 Applications........................................... 2  
1.3 Description............................................ 2  
1.4 Functional Block Diagram ............................ 3  
Revision History ......................................... 4  
Terminal Configuration and Functions.............. 5  
3.1 Pin Attributes ......................................... 5  
Specifications ............................................ 8  
4.1 Absolute Maximum Ratings .......................... 8  
4.2 Handling Ratings ..................................... 8  
4.3 Power-On Hours...................................... 8  
4.4 Recommended Operating Conditions ................ 8  
4.5 Brown-Out and Black-Out ............................ 9  
4.12 External Interfaces .................................. 22  
4.13 Host UART .......................................... 23  
Detailed Description ................................... 26  
5.1 Overview ............................................ 26  
5.2 Functional Block Diagram........................... 27  
5.3 Wi-Fi Network Processor Subsystem ............... 27  
5.4 Power-Management Subsystem .................... 28  
5.5 Low-Power Operating Modes ....................... 29  
5.6 Memory.............................................. 29  
Applications and Implementation................... 31  
6.1 Application Information .............................. 31  
Device and Documentation Support ............... 35  
7.1 Device Support ...................................... 35  
7.2 Documentation Support ............................. 36  
7.3 Community Resources.............................. 36  
7.4 Trademarks.......................................... 36  
7.5 Electrostatic Discharge Caution..................... 36  
7.6 Glossary ............................................. 36  
5
2
3
4
6
7
4.6  
Electrical Characteristics (3.3 V, 25°C) ............. 10  
4.7 WLAN Receiver Characteristics .................... 10  
4.8 WLAN Transmitter Characteristics.................. 10  
4.9 Current Consumption ............................... 11  
4.10 Thermal Characteristics for RGC Package ......... 13  
4.11 Timing and Switching Characteristics............... 13  
8
Mechanical Packaging and Orderable  
Information .............................................. 37  
2 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision C (August 2014) to Revision D  
Page  
Added Wi-Fi CERTIFIED ............................................................................................................ 1  
Changed TCP value from 12 Mbps in Section 1.1, Features .................................................................. 1  
Changed part number in Device Information table from CC3100 .............................................................. 2  
Changed pin 19 from NC and pin 18 from reserved in Figure 3-1 ............................................................. 5  
Changed pin 19 from NC in Table 3-1 ............................................................................................. 6  
Added to pin 2 (nHIB) description in Table 3-1 ................................................................................... 6  
Changed pins 8 and 14 to active low .............................................................................................. 6  
Changed pin 15 to active high ..................................................................................................... 6  
Added note in Section 4.4, Recommended Operating Conditions, on avoiding the PA auto-protect feature ............ 8  
Added Section 4.5, Brown-Out and Black-Out ................................................................................... 9  
Added Table 4-1 ..................................................................................................................... 9  
Added VIL (nRESET pin) and corresponding note in Section 4.6, Electrical Characteristics (3.3 V, 25°C) ............ 10  
Added note on RX current measurement in Section 4.9 Current Consumption. ........................................... 11  
Changed Thib_min description from "minimum pulse width of nHIB = 0" in Table 4-4 ...................................... 16  
Added footnote in Table 4-4 to ensure that the nHIB pulse width is kept above the minimum requirement. .......... 16  
Changed frequency accuracy from ±20 ppm in Table 4-5 .................................................................... 18  
Added 4.11.3.6, WLAN Filter Requirements .................................................................................... 19  
Added note on asserting nCS (active low signal) in Table 4-10 .............................................................. 20  
Changed HOST_SPI_CS to HOST_SPI_nCS in Table 4-13.................................................................. 23  
Changed H_IRQ to HOST_INTR(IRQ) in Figure 4-17 ......................................................................... 24  
Changed TCP of item 17 from 12 Mbps in Table 5-1 .......................................................................... 28  
Changed part number of item 13 from XCC3100RTD in Table 6-1 ......................................................... 32  
Added note following Table 6-1 ................................................................................................... 32  
Changed part number of item 13 from XCC3100RTD in Table 6-2 .......................................................... 34  
Added note following Table 6-2 ................................................................................................... 34  
4
Revision History  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC3100  
 
CC3100  
www.ti.com  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
3 Terminal Configuration and Functions  
Figure 3-1 shows pin assignments for the 64-pin QFN package.  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
VDD_RAM  
UART1_nRTS  
RTC_XTAL_P  
RTC_XTAL_N  
NC  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
nRESET  
RF_BG  
RESERVED  
RESERVED  
NC  
VIN_IO2  
UART1_TX  
VDD_DIG2  
UART1_RX  
TEST_58  
TEST_59  
TEST_60  
UART1_nCTS  
TEST_62  
NC  
NC  
NC  
CC3100  
LDO_IN2  
VDD_PLL  
WLAN_XTAL_P  
WLAN_XTAL_N  
SOP2/TCXO_EN  
NC  
RESERVED  
NC  
NC  
NC  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
Figure 3-1. QFN 64-Pin Assignments (Top View)  
3.1 Pin Attributes  
Table 3-1 describes the CC3100 pins.  
NOTE  
If an external device drives a positive voltage to signal pads when the CC3100 device is not  
powered, DC current is drawn from the other device. If the drive strength of the external  
device is adequate, an unintentional wakeup and boot of the CC3100 device can occur. To  
prevent current draw, TI recommends one of the following:  
All devices interfaced to the CC3100 device must be powered from the same power rail  
as the CC3100 device.  
Use level-shifters between the CC3100 device and any external devices fed from other  
independent rails.  
The nRESET pin of the CC3100 device must be held low until the VBAT supply to the  
device is driven and stable.  
Copyright © 2013–2015, Texas Instruments Incorporated  
Terminal Configuration and Functions  
5
Submit Documentation Feedback  
Product Folder Links: CC3100  
 
CC3100  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
www.ti.com  
Table 3-1. Pin Attributes  
PIN  
DEFAULT FUNCTION  
STATE AT RESET  
AND HIBERNATE  
I/O TYPE  
DESCRIPTION  
1
2
NC  
Hi-Z  
Hi-Z  
N/A  
I
Unused; leave unconnected.  
nHIB  
Hibernate signal input to the NWP (active low).  
This is connected to the MCU GPIO. If the  
GPIO from the MCU can float while the MCU  
enters low power, consider adding a pull-up  
resistor on the board to avoid floating.  
3
4
Reserved  
Hi-Z  
Hi-Z  
NA  
I
Reserved for future use  
FORCE_AP  
For forced AP mode, pull to high on the board  
using 100k resistor. Otherwise, pull down to  
ground using 100k resistor.(1)  
5
6
HOST_SPI_CLK  
HOST_SPI_MOSI  
HOST_SPI_MISO  
HOST_SPI_nCS  
VDD_DIG1  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
I
Host interface SPI clock  
I
Host interface SPI data input  
Host interface SPI data output  
Host interface SPI chip select (active low)  
Digital core supply (1.2 V)  
7
O
8
I
9
Power  
10  
11  
12  
13  
VIN_IO1  
Power  
I/O supply  
FLASH_SPI_CLK  
FLASH_SPI_MOSI  
O
O
I
Serial flash interface: SPI clock  
Serial flash interface: SPI data out  
Serial flash interface: SPI data in  
FLASH _SPI_MISO  
(active high)  
14  
FLASH _SPI_nCS  
Hi-Z  
O
Serial flash interface: SPI chip select (active  
low)  
15  
16  
17  
18  
19  
20  
21  
HOST_INTR  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
O
Interrupt output (active high)  
Unused; leave unconnected.  
Unused; leave unconnected.  
Unused; leave unconnected.  
Connect 100K pull-down to ground.  
Unused; leave unconnected.  
NC  
N/A  
N/A  
N/A  
N/A  
N/A  
O
NC  
NC  
Reserved  
NC  
SOP2/TCXO_EN  
Enable signal for external TCXO. Add 10k  
pulldown to ground.  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
WLAN_XTAL_N  
WLAN_XTAL_P  
VDD_PLL  
LDO_IN2  
NC  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Analog  
Analog  
Power  
Power  
N/A  
N/A  
N/A  
O
Connect the WLAN 40-MHz XTAL here.  
Connect the WLAN 40-MHz XTAL here.  
Internal PLL power supply (1.4 V nominal)  
Input to internal LDO  
Unused; leave unconnected.  
Unused; leave unconnected.  
Unused; leave unconnected.  
Reserved for future use  
NC  
NC  
Reserved  
Reserved  
RF_BG  
O
Reserved for future use  
RF  
2.4-GHz RF TX/RX  
nRESET  
I
RESET input for the device. Active low input.  
Use RC circuit (100k || 0.1 µF) for power on  
reset.  
33  
34  
35  
36  
37  
VDD_PA_IN  
SOP1  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Power  
N/A  
Power supply for the RF power amplifier (PA)  
Add 100K pulldown to ground.  
Add 100K pulldown to ground.  
Input to internal LDO  
SOP0  
N/A  
LDO_IN1  
Power  
Power  
VIN_DCDC_ANA  
Power supply for the DC-DC converter for  
analog section  
(1) Using a configuration file stored on flash, the vendor can optionally block any possibility of bringing up AP using the FORCE_AP pin.  
Terminal Configuration and Functions  
6
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC3100  
CC3100  
www.ti.com  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
Table 3-1. Pin Attributes (continued)  
PIN  
DEFAULT FUNCTION  
STATE AT RESET  
AND HIBERNATE  
I/O TYPE  
DESCRIPTION  
38  
39  
40  
41  
42  
DCDC_ANA_SW  
VIN_DCDC_PA  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Power  
Power  
Power  
Power  
Power  
Analog DC-DC converter switch output  
PA DC-DC converter input supply  
DCDC_PA_SW_P  
DCDC_PA_SW_N  
DCDC_PA_OUT  
PA DC-DC converter switch output +ve  
PA DC-DC converter switch output –ve  
PA DC-DC converter output. Connect the  
output capacitor for DC-DC here.  
43  
44  
DCDC_DIG_SW  
VIN_DCDC_DIG  
Hi-Z  
Hi-Z  
Power  
Power  
Digital DC-DC converter switch output  
Power supply input for the digital DC-DC  
converter  
45  
46  
47  
48  
49  
50  
51  
DCDC_ANA2_SW_P  
DCDC_ANA2_SW_N  
VDD_ANA2  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Power  
Power  
Power  
Power  
Power  
O
Analog2 DC-DC converter switch output +ve  
Analog2 DC-DC converter switch output –ve  
Analog2 power supply input  
VDD_ANA1  
Analog1 power supply input  
VDD_RAM  
Power supply for the internal RAM  
UART host interface  
UART1_nRTS  
RTC_XTAL_P  
Analog  
32.768 kHz XTAL_P/external CMOS level  
clock input  
52  
RTC_XTAL_N  
Hi-Z  
Analog  
32.768 kHz XTAL_N/100k external pullup for  
external clock  
53  
54  
55  
NC  
Hi-Z  
Hi-Z  
Hi-Z  
N/A  
Power  
O
Unused. Leave unconnected.  
VIN_IO2  
UART1_TX  
I/O power supply. Same as battery voltage.  
UART host interface. Connect to test point on  
prototype for flash programming.  
56  
57  
VDD_DIG2  
UART1_RX  
Hi-Z  
Hi-Z  
Power  
I
Digital power supply (1.2 V)  
UART host interface. Connect to test point on  
prototype for flash programming.  
58  
59  
60  
61  
62  
63  
64  
65  
TEST_58  
TEST_59  
TEST_60  
UART1_nCTS  
TEST_62  
NC  
N/A  
N/A  
O
Test signal. Connect to an external test point.  
Test signal. Connect to an external test point.  
Test signal. Connect to an external test point.  
UART host interface  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
I
O
Test signal. Connect to an external test point.  
Leave unconnected  
I/O  
I/O  
Power  
NC  
Leave unconnected  
GND  
Ground tab used as thermal and electrical  
ground  
Copyright © 2013–2015, Texas Instruments Incorporated  
Terminal Configuration and Functions  
7
Submit Documentation Feedback  
Product Folder Links: CC3100  
CC3100  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
www.ti.com  
4 Specifications  
All measurements are referenced at the device pins, unless otherwise indicated. All specifications are over  
process and voltage, unless otherwise indicated.  
4.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
PARAMETERS  
PINS  
37, 39, 44  
10, 54  
MIN  
MAX  
3.8  
UNIT  
V
VBAT and VIO  
–0.5  
VIO-VBAT (differential)  
Digital inputs  
0.0  
V
–0.5  
–0.5  
–0.5  
–40  
VIO + 0.5  
2.1  
V
RF pins  
V
Analog pins (XTAL)  
2.1  
V
Operating temperature range (TA  
)
+85  
°C  
4.2 Handling Ratings  
MIN  
MAX  
UNIT  
Tstg  
Storage temperature range  
Electrostatic discharge  
–55  
+125  
°C  
Human body model (HBM), per ANSI/ESDA/JEDEC  
JS-001, all pins(1)  
–2000  
–500  
+2000  
+500  
V
VESD  
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
4.3 Power-On Hours  
CONDITIONS  
POH  
17,500(1)  
TAmbient up to 85°C, assuming 20% active mode and 80% sleep mode  
(1) The CC3100 device can be operated reliably for 10 years.  
4.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
(1)(2)  
PARAMETERS  
PINS  
CONDITIONS(3) (4)  
MIN  
TYP  
MAX  
UNIT  
VBAT, VIO (shorted to VBAT  
VBAT, VIO (shorted to VBAT  
Ambient thermal slew  
)
10, 37, 39,  
44, 54  
Direct battery connection  
2.1  
3.3  
3.6  
V
)
10, 37, 39,  
44, 54  
Preregulated 1.85 V  
1.76  
–20  
1.85  
1.9  
20  
V
°C/minute  
(1) Operating temperature is limited by crystal frequency variation.  
(2) When operating at an ambient temperature of over 75°C, the transmit duty cycle must remain below 50% to avoid the auto-protect  
feature of the power amplifier. If the auto-protect feature triggers, the device takes a maximum of 60 seconds to restart the transmission.  
(3) To ensure WLAN performance, ripple on the 2.1- to 3.3-V supply must be less than ±300 mV.  
(4) To ensure WLAN performance, ripple on the 1.85-V supply must be less than 2% (±40 mV).  
8
Specifications  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC3100  
CC3100  
www.ti.com  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
4.5 Brown-Out and Black-Out  
The device enters a brown-out condition whenever the input voltage dips below VBROWN (see Figure 4-1 and  
Figure 4-2). This condition must be considered during design of the power supply routing, especially if operating  
from a battery. High-current operations (such as a TX packet) cause a dip in the supply voltage, potentially  
triggering a brown-out. The resistance includes the internal resistance of the battery, contact resistance of the  
battery holder (4 contacts for a 2 x AA battery) and the wiring and PCB routing resistance.  
Figure 4-1. Brown-Out and Black-Out Levels (1 of 2)  
Figure 4-2. Brown-Out and Black-Out Levels (2 of 2)  
In the brown-out condition, all sections of the device shut down except for the Hibernate module (including the  
32-kHz RTC clock), which remains on. The current in this state can reach approximately 400 µA.  
The black-out condition is equivalent to a hardware reset event in which all states within the device are lost.  
Table 4-1 lists the brown-out and black-out voltage levels.  
Table 4-1. Brown-Out and Black-out Voltage Levels  
CONDITION  
VOLTAGE LEVEL  
UNIT  
V
Vbrownout  
Vblackout  
2.1  
1.67  
V
Copyright © 2013–2015, Texas Instruments Incorporated  
Specifications  
9
Submit Documentation Feedback  
Product Folder Links: CC3100  
 
 
 
CC3100  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
www.ti.com  
UNIT  
4.6 Electrical Characteristics (3.3 V, 25°C)  
PARAMETER  
TEST  
MIN  
NOM  
MAX  
CONDITIONS  
CIN  
VIH  
VIL  
IIH  
Pin capacitance  
4
pF  
V
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
0.65 × VDD  
–0.5  
VDD + 0.5 V  
0.35 × VDD  
V
5
5
nA  
nA  
V
IIL  
VOH  
High-level output voltage  
(VDD = 3.0 V)  
2.4  
VOL  
Low-level output voltage  
(VDD = 3.0 V)  
0.4  
V
IOH  
IOL  
High-level source current, VOH = 2.4  
Low-level sink current, VOH = 0.4  
6
6
mA  
mA  
Pin Internal Pullup and Pulldown (25°C)  
TEST  
CONDITIONS  
MIN  
5
NOM  
MAX  
UNIT  
µA  
PARAMETER  
IOH  
IOL  
VIL  
Pull-Up current, VOH = 2.4  
(VDD = 3.0 V)  
10  
Pull-Down current, VOL = 0.4  
(VDD = 3.0 V)  
nRESET(1)  
5
µA  
0.6  
V
(1) The nRESET pin must be held below 0.6 V for the device to register a reset.  
4.7 WLAN Receiver Characteristics  
TA = +25°C, VBAT = 2.1 to 3.6 V. Parameters measured at SoC pin on channel 7 (2442 MHz)  
Parameter  
Condition (Mbps)  
1 DSSS  
Min  
Typ  
Max  
Units  
–95.7  
–93.6  
–88.0  
–90.0  
–89.0  
–86.0  
–80.5  
–74.0  
–89.0  
–71.0  
–4.0  
2 DSSS  
11 CCK  
6 OFDM  
Sensitivity  
9 OFDM  
(8% PER for 11b rates, 10% PER for  
11g/11n rates)(10% PER)(1)  
18 OFDM  
36 OFDM  
54 OFDM  
MCS0 (GF)(2)  
MCS7 (GF)(2)  
802.11b  
dBm  
Maximum input level  
(10% PER)  
802.11g  
–10.0  
(1) Sensitivity is 1-dB worse on channel 13 (2472 MHz).  
(2) Sensitivity for mixed mode is 1-dB worse.  
4.8 WLAN Transmitter Characteristics  
10  
Specifications  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC3100  
CC3100  
www.ti.com  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
TA = +25°C, VBAT = 2.1 to 3.6 V. Parameters measured at SoC pin on channel 7 (2442 MHz).(1)  
Parameter  
Condition(2)  
Min  
Typ  
18.0  
18.0  
18.3  
17.3  
17.3  
17.0  
16.0  
14.5  
13.0  
Max  
Units  
dBm  
ppm  
1 DSSS  
2 DSSS  
11 CCK  
6 OFDM  
Maximum RMS output power measured at  
1 dB from IEEE spectral mask or EVM  
9 OFDM  
18 OFDM  
36 OFDM  
54 OFDM  
MCS7 (MM)  
Transmit center frequency accuracy  
–25  
25  
(1) Channel-to-channel variation is up to 2 dB. The edge channels (2412 and 2472 MHz) have reduced TX power to meet FCC emission  
limits.  
(2) In preregulated 1.85-V mode, maximum TX power is 0.25 to 0.75 dB lower for modulations higher than 18 OFDM.  
4.9 Current Consumption  
TA = +25°C, VBAT = 3.6 V  
PARAMETER  
TEST CONDITIONS(1) (2)  
TX power level = 0  
TX power level = 4  
TX power level = 0  
TX power level = 4  
TX power level = 0  
TX power level = 4  
MIN TYP(3) MAX UNIT  
272  
188  
248  
179  
1 DSSS  
6 OFDM  
54 OFDM  
TX  
223  
mA  
160  
1 DSSS  
53  
53  
RX(4)  
54 OFDM  
Idle connected(5)  
LPDS  
0.690  
0.115  
Hibernate(6)  
4
µA  
VBAT = 3.3 V  
VBAT = 2.1 V  
VBAT = 1.85 V  
450  
670  
700  
(7)(4)  
Peak calibration current  
mA  
(1) TX power level = 0 implies maximum power (see Figure 4-3 through Figure 4-5). TX power level = 4 implies output power backed off  
approximately 4 dB.  
(2) The CC3100 system is a constant power-source system. The active current numbers scale based on the VBAT voltage supplied.  
(3) External serial-flash-current consumption is not included.  
(4) The RX current is measured with a 1-Mbps throughput rate.  
(5) DTIM = 1  
(6) For the 1.85-V mode, the Hibernate current is higher by 50 µA across all operating modes because of leakage into the PA and analog  
power inputs.  
(7) The complete calibration can take up to 17 mJ of energy from the battery over a time of 24 ms . Calibration is performed sparingly,  
typically when coming out of Hibernate and only if temperature has changed by more than 20°C or the time elapsed from prior  
calibration is greater than 24 hours.  
Copyright © 2013–2015, Texas Instruments Incorporated  
Specifications  
11  
Submit Documentation Feedback  
Product Folder Links: CC3100  
CC3100  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
www.ti.com  
1 DSSS  
19.00  
17.00  
280.00  
264.40  
249.00  
233.30  
218.00  
202.00  
186.70  
171.00  
Color by  
TX Power (dBm)  
15.00  
13.00  
IBAT (VBAT @ 3.6 V)  
11.00  
9.00  
7.00  
5.00  
3.00  
1.00  
155.60  
140.00  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
TX power level setting  
Note: The area enclosed in the circle represents a significant reduction in current when transitioning from TX power  
level 3 to 4. In the case of lower range requirements (14 dbm output power), TI recommends using TX power level 4  
to reduce the current.  
Figure 4-3. TX Power and IBAT vs TX Power Level Settings (1 DSSS)  
6 OFDM  
19.00  
17.00  
280.00  
264.40  
249.00  
233.30  
218.00  
202.00  
186.70  
171.00  
Color by  
TX Power (dBm)  
15.00  
13.00  
IBAT (VBAT @ 3.6 V)  
11.00  
9.00  
7.00  
5.00  
3.00  
1.00  
155.60  
140.00  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
TX power level setting  
Figure 4-4. TX Power and IBAT vs TX Power Level Settings (6 OFDM)  
12  
Specifications  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC3100  
CC3100  
www.ti.com  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
54 OFDM  
19.00  
17.00  
280.00  
Color by  
264.40  
249.00  
233.30  
218.00  
202.00  
186.70  
171.00  
TX Power (dBm)  
15.00  
13.00  
IBAT (VBAT @ 3.6 V)  
11.00  
9.00  
7.00  
5.00  
3.00  
1.00  
155.60  
140.00  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
TX power level setting  
Figure 4-5. TX Power and IBAT vs TX Power Level Settings (54 OFDM)  
4.10 Thermal Characteristics for RGC Package  
AIR FLOW  
PARAMETER  
0 lfm (C/W)  
150 lfm (C/W)  
250 lfm (C/W)  
500 lfm (C/W)  
θja  
Ψjt  
Ψjb  
θjc  
23  
0.2  
2.3  
6.3  
2.4  
14.6  
0.2  
12.4  
0.3  
10.8  
0.1  
2.3  
2.2  
2.4  
θjb  
4.11 Timing and Switching Characteristics  
4.11.1 Power Supply Sequencing  
For proper operation of the CC3100 device, perform the recommended power-up sequencing as follows:  
1. Tie VBAT (pins 37, 39, 44) and VIO (pins 54 and 10) together on the board.  
2. Hold the RESET pin low while the supplies are ramping up. TI recommends using a simple RC circuit (100K ||  
0.1 µF, RC = 10 ms).  
3. For an external RTC clock, ensure that the clock is stable before RESET is deasserted (high).  
For timing diagrams, see Section 4.11.2, Reset Timing.  
4.11.2 Reset Timing  
4.11.2.1 nRESET (32K XTAL)  
Figure 4-6 shows the reset timing diagram for the 32K XTAL first-time power-up and reset removal.  
Copyright © 2013–2015, Texas Instruments Incorporated  
Specifications  
13  
Submit Documentation Feedback  
Product Folder Links: CC3100  
 
CC3100  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
www.ti.com  
Figure 4-6. First-Time Power-Up and Reset Removal Timing Diagram (32K XTAL)  
Table 4-2 describes the timing requirements for the 32K XTAL first-time power-up and reset removal.  
Table 4-2. First-Time Power-Up and Reset Removal Timing Requirements (32K XTAL)  
Item  
Name  
Description  
Min  
Typ  
Max  
Depends on  
application board  
power supply, decap,  
and so on  
T1  
Supply settling time  
3 ms  
Hardware wakeup  
time  
T2  
T3  
25 ms  
1.35 s  
32-kHz XTAL settling  
+ firmware  
initialization time +  
radio calibration  
Initialization time  
14  
Specifications  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC3100  
 
CC3100  
www.ti.com  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
4.11.2.2 nRESET (External 32K)  
Figure 4-7 shows the reset timing diagram for the external 32K first-time power-up and reset removal.  
Figure 4-7. First-Time Power-Up and Reset Removal Timing Diagram (External 32K)  
Table 4-3 describes the timing requirements for the external 32K first-time power-up and reset removal.  
Table 4-3. First-Time Power-Up and Reset Removal Timing Requirements (External 32K)  
Item  
Name  
Description  
Min  
Typ  
Max  
Depends on  
application board  
power supply, decap,  
and so on  
T1  
Supply settling time  
3 ms  
Hardware wakeup  
time  
T2  
T3  
25 ms  
Firmware initialization  
time + radio  
Initialization time  
250 ms  
calibration  
Copyright © 2013–2015, Texas Instruments Incorporated  
Specifications  
15  
Submit Documentation Feedback  
Product Folder Links: CC3100  
 
 
CC3100  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
www.ti.com  
4.11.2.3 Wakeup from Hibernate  
Figure 4-8 shows the timing diagram for wakeup from the hibernate state.  
Figure 4-8. nHIB Timing Diagram  
NOTE  
The 32.768-kHz XTAL is kept enabled by default when the chip goes to hibernate in response to  
nHIB being pulled low.  
Table 4-4 describes the timing requirements for nHIB.  
Table 4-4. nHIB Timing Requirements  
Item  
Name  
Description  
Min  
Typ  
Max  
Thib_min  
Minimum hibernate  
time  
Minimum pulse width 10 ms  
of nHIB being low(1)  
(2)  
Twake_from_hib  
Hardware wakeup  
time plus firmware  
initialization time  
See  
.
50 ms  
(1) Ensure that the nHIB pulse width is kept above the minimum requirement under all conditions (such as power up, MCU reset, and so  
on).  
(2) If temperature changes by more than 20°C, initialization time from HIB can increase by 200 ms due to radio calibration.  
4.11.3 Clock Specifications  
The CC3100 device requires two separate clocks for its operation:  
A slow clock running at 32.768 kHz is used for the RTC.  
A fast clock running at 40 MHz is used by the device for the internal processor and the WLAN subsystem.  
The device features internal oscillators that enable the use of cheaper crystals rather than dedicated TCXOs for  
these clocks. The RTC can also be fed externally to provide reuse of an existing clock on the system and reduce  
overall cost.  
16  
Specifications  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC3100  
 
 
CC3100  
www.ti.com  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
4.11.3.1 Slow Clock Using Internal Oscillator  
The RTC crystal connected on the device supplies the free-running slow clock. The accuracy of the slow clock  
frequency must be 32.768 kHz ±150 ppm. In this mode of operation, the crystal is tied between RTC_XTAL_P  
(pin 51) and RTC_XTAL_N (pin 52) with a suitable load capacitance.  
Figure 4-9 shows the crystal connections for the slow clock.  
51  
RTC_XTAL_P  
10 pF  
GND  
32.768 kHz  
52  
RTC_XTAL_N  
10 pF  
GND  
SWAS031-028  
Figure 4-9. RTC Crystal Connections  
4.11.3.2 Slow Clock Using an External Clock  
When an RTC clock oscillator is present in the system, the CC3100 device can accept this clock directly as an  
input. The clock is fed on the RTC_XTAL_P line and the RTC_XTAL_N line is held to VIO. The clock must be a  
CMOS-level clock compatible with VIO fed to the device.  
Figure 4-10 shows the external RTC clock input connection.  
32.768 kHz  
RTC_XTAL_P  
Host system  
VIO  
100 K  
RTC_XTAL_N  
SWAS031-029  
Figure 4-10. External RTC Clock Input  
4.11.3.3 Fast Clock (Fref) Using an External Crystal  
The CC3100 device also incorporates an internal crystal oscillator to support a crystal-based fast clock. The  
XTAL is fed directly between WLAN_XTAL_P (pin 23) and WLAN_XTAL_N (pin 22) with suitable loading  
capacitors.  
Figure 4-11 shows the crystal connections for the fast clock.  
Copyright © 2013–2015, Texas Instruments Incorporated  
Specifications  
17  
Submit Documentation Feedback  
Product Folder Links: CC3100  
 
 
CC3100  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
www.ti.com  
23  
WLAN_XTAL_P  
6.2 pF  
GND  
40 MHz  
22  
WLAN_XTAL_N  
6.2 pF  
GND  
SWAS031-030  
Figure 4-11. Fast Clock Crystal Connections  
4.11.3.4 Fast Clock (Fref) Using an External Oscillator  
The CC3100 device can accept an external TCXO/XO for the 40-MHz clock. In this mode of operation, the clock  
is connected to WLAN_XTAL_P (pin 23). WLAN_XTAL_N (pin 22) is connected to GND. The external TCXO/XO  
can be enabled by TCXO_EN (pin 21) from the device to optimize the power consumption of the system.  
If the TCXO does not have an enable input, an external LDO with an enable function can be used. Using the  
LDO improves noise on the TCXO power supply.  
Figure 4-12 shows the connection.  
Vcc  
XO (40MHz)  
EN  
CC3200  
TCXO_EN  
82 pF  
WLAN_XTAL_P  
OUT  
WLAN_XTAL_N  
SWAS031-087  
Figure 4-12. External TCXO Input  
Table 4-5 lists the external Fref clock requirements.  
Table 4-5. External Fref Clock Requirements (–40°C to +85°C)  
Characteristics  
Condition  
Sym  
Min  
Typ  
Max  
Unit  
MHz  
ppm  
%
Frequency  
40.00  
Frequency accuracy (Initial + temp + aging)  
Frequency input duty cycle  
±25  
55  
45  
50  
Clock voltage limits  
Sine or clipped  
sine wave, AC  
coupled  
Vpp  
0.7  
1.2  
Vpp  
Phase noise @ 40 MHz  
@ 1 kHz  
–125  
–138.5  
–143  
dBc/Hz  
dBc/Hz  
dBc/Hz  
KΩ  
@ 10 kHz  
@ 100 kHz  
Input impedance  
Resistance  
12  
Capacitance  
7
pF  
18  
Specifications  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC3100  
 
 
CC3100  
www.ti.com  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
4.11.3.5 Input Clocks/Oscillators  
Table 4-6 lists the RTC crystal requirements.  
Table 4-6. RTC Crystal Requirements  
CHARACTERISTICS  
Frequency  
CONDITION  
SYM  
MIN  
TYP  
MAX  
UNIT  
kHz  
ppm  
kΩ  
32.768  
Frequency accuracy  
Crystal ESR  
Initial + temp + aging  
±150  
70  
32.768 kHz, C1 = C2 = 10 pF  
Table 4-7 lists the external RTC digital clock requirements.  
Table 4-7. External RTC Digital Clock Requirements  
CHARACTERISTICS  
Frequency  
CONDITION  
SYM  
MIN  
TYP  
MAX  
UNIT  
Hz  
32768  
Frequency accuracy  
±150  
ppm  
(Initial + temp + aging)  
Input transition time tr/tf (10% to 90%)  
Frequency input duty cycle  
Slow clock input voltage limits  
tr/tf  
100  
80  
ns  
%
20  
50  
Square wave, DC coupled  
Vih  
Vil  
0.65 × VIO  
VIO  
V
0
1
0.35 × VIO  
V peak  
MΩ  
pF  
Input impedance  
5
Table 4-8 lists the WLAN fast-clock crystal requirements.  
Table 4-8. WLAN Fast-Clock Crystal Requirements  
CHARACTERISTICS  
Frequency  
CONDITION  
SYM  
MIN  
TYP  
MAX  
UNIT  
MHz  
ppm  
Ohm  
40  
Frequency accuracy  
Crystal ESR  
Initial + temp + aging  
±25  
60  
40 MHz, C1 = C2 = 6.2 pF  
40  
50  
4.11.3.6 WLAN Filter Requirements  
The device requires an external bandpass filter to meet the various emission standards, including FCC. Table 4-  
9 presents the attenuation requirements for the bandpass filter. TI recommends using the same filter used in the  
reference design to ease the process of certification.  
Table 4-9. WLAN Filter Requirements  
Requirements  
Parameter  
Frequency (MHz)  
Min  
Typ  
Max  
Units  
dB  
Return loss  
Insertion loss(1)  
2412 to 2484  
2412 to 2484  
10  
1
1.5  
dB  
(1) Insertion loss directly impacts output power and sensitivity. At customer discretion, insertion loss can be relaxed to meet attenuation  
requirements.  
Copyright © 2013–2015, Texas Instruments Incorporated  
Specifications  
19  
Submit Documentation Feedback  
Product Folder Links: CC3100  
 
 
 
 
CC3100  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
www.ti.com  
Table 4-9. WLAN Filter Requirements (continued)  
Requirements  
Typ Max  
Parameter  
Frequency (MHz)  
Min  
30  
20  
30  
45  
20  
20  
20  
35  
20  
Units  
800 to 830  
1600 to 1670  
3200 to 3300  
4000 to 4150  
4800 to 5000  
5600 to 5800  
6400 to 6600  
7200 to 7500  
7500 to 10000  
2412 to 2484  
Bandpass  
45  
25  
48  
50  
25  
25  
35  
45  
25  
50  
Attenuation  
dB  
Reference Impendence  
Filter type  
Ω
4.11.4 Interfaces  
This section describes the interfaces that are supported by the CC3100 device:  
Host SPI  
Flash SPI  
Host UART  
4.11.4.1 Host SPI Interface Timing  
I2  
CLK  
I6  
I7  
MISO  
MOSI  
I9  
I8  
SWAS032-017  
Figure 4-13. Host SPI Interface Timing  
Table 4-10. Host SPI Interface Timing Parameters  
Parameter  
Number  
Parameter(1)  
Parameter Name  
Min  
Max  
Unit  
I1  
F
Clock frequency @ VBAT = 3.3 V  
Clock frequency @ VBAT 2.1 V  
Clock period  
20  
12  
MHz  
(2)  
I2  
I3  
I4  
I5  
I6  
I7  
I8  
tclk  
50  
ns  
ns  
ns  
%
tLP  
tHT  
D
Clock low period  
25  
25  
55  
Clock high period  
Duty cycle  
45  
4
tIS  
RX data setup time  
RX data hold time  
ns  
ns  
tIH  
tOD  
4
TX data output delay  
20  
(1) The timing parameter has a maximum load of 20 pf at 3.3 V.  
(2) Ensure that nCS (active-low signa)l is asserted 10 ns before the clock is toggled. nCS can be deasserted 10 ns after the clock edge.  
20 Specifications  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC3100  
CC3100  
www.ti.com  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
Table 4-10. Host SPI Interface Timing Parameters (continued)  
Parameter  
Parameter(1)  
Parameter Name  
Min  
Max  
Unit  
Number  
I9  
tOH  
TX data hold time  
24  
ns  
4.11.4.2 Flash SPI Interface Timing  
I2  
CLK  
I6  
I7  
MISO  
MOSI  
I9  
I8  
SWAS032-017  
Figure 4-14. Flash SPI Interface Timing  
Copyright © 2013–2015, Texas Instruments Incorporated  
Specifications  
21  
Submit Documentation Feedback  
Product Folder Links: CC3100  
CC3100  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
www.ti.com  
Table 4-11. Flash SPI Interface Timing Parameters  
Parameter  
Number  
Parameter  
Parameter Name  
Min  
Max  
Unit  
I1  
I2  
I3  
I4  
I5  
I6  
I7  
I8  
I9  
F
Clock frequency  
Clock period  
20  
MHz  
ns  
ns  
ns  
%
tclk  
tLP  
tHT  
D
50  
Clock low period  
Clock high period  
Duty cycle  
25  
25  
55  
45  
1
tIS  
RX data setup time  
RX data hold time  
TX data output delay  
TX data hold time  
ns  
ns  
ns  
ns  
tIH  
2
tOD  
tOH  
8.5  
8
4.12 External Interfaces  
4.12.1 SPI Flash Interface  
The external serial flash stores the user profiles and firmware patch updates. The CC3100 device acts as  
a master in this case; the SPI serial flash acts as the slave device. This interface can work up to a speed  
of 20 MHz.  
Figure 4-15 shows the SPI flash interface.  
CC3100 (master)  
Serial flash  
FLASH_SPI_CLK  
SPI_CLK  
SPI_CS  
FLASH_SPI_nCS  
FLASH_SPI_MISO  
FLASH_SPI_MOSI  
SPI_MISO  
SPI_MOSI  
SWAS031-026  
Figure 4-15. SPI Flash Interface  
Table 4-12 lists the SPI flash interface pins.  
Table 4-12. SPI Flash Interface  
Pin Name  
Description  
FLASH_SPI_CLK  
FLASH_SPI_CS  
FLASH_SPI_MISO  
FLASH_SPI_MOSI  
Clock (up to 20 MHz) CC3100 device to serial flash  
CS (active low) signal from CC3100 device to serial flash  
Data from serial flash to CC3100 device  
Data from CC3100 device to serial flash  
4.12.2 SPI Host Interface  
The device interfaces to an external host using the SPI interface. The CC3100 device can interrupt the  
host using the HOST_INTR line to initiate the data transfer over the interface. The SPI host interface can  
work up to a speed of 20 MHz.  
Figure 4-16 shows the SPI host interface.  
22  
Specifications  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC3100  
 
 
CC3100  
www.ti.com  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
CC3100 (slave)  
MCU  
HOST_SPI_CLK  
SPI_CLK  
SPI_nCS  
HOST_SPI_nCS  
HOST_SPI_MISO  
HOST_SPI_MOSI  
HOST_INTR  
SPI_MISO  
SPI_MOSI  
INTR  
nHIB  
GPIO  
SWAS031-027  
Figure 4-16. SPI Host Interface  
Table 4-13 lists the SPI host interface pins.  
Table 4-13. SPI Host Interface  
Pin Name  
Description  
HOST_SPI_CLK  
HOST_SPI_nCS  
Clock (up to 20 MHz) from MCU host to CC3100 device  
CS (active low) signal from MCU host to CC3100 device  
Data from MCU host to CC3100 device  
HOST_SPI_MOSI  
HOST_INTR  
HOST_SPI_MISO  
nHIB  
Interrupt from CC3100 device to MCU host  
Data from CC3100 device to MCU host  
Active-low signal that commands the CC3100 device to enter hibernate mode (lowest power  
state)  
4.13 Host UART  
The SimpleLink device requires the UART configuration described in Table 4-14.  
Table 4-14. SimpleLink UART Configuration  
Property  
Baud rate  
Supported CC3100 Configuration  
115200 bps, no auto-baud rate detection, can be changed by the host up to 3 Mbps using a special command  
Data bits  
8 bits  
Flow control  
Parity  
CTS/RTS  
None  
Stop bits  
1
Bit order  
LSBit first  
Active high  
Rising edge or level 1  
Little-endian only(1)  
Host interrupt polarity  
Host interrupt mode  
Endianness  
(1) The SimpleLink device does not support automatic detection of the host length while using the UART interface.  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Specifications  
23  
Product Folder Links: CC3100  
 
 
CC3100  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
www.ti.com  
4.13.1 5-Wire UART Topology  
Figure 4-17 shows the typical 5-wire UART topology comprised of 4 standard UART lines plus one IRQ  
line from the device to the host controller to allow efficient low power mode.  
RTS  
CTS  
TX  
RTS  
CTS  
TX  
HOST MCU  
UART  
CC3100 SL  
UART  
RX  
RX  
HOST_INTR(IRQ)  
HOST_INTR(IRQ)  
SWAS031-088  
Figure 4-17. Typical 5-Wire UART Topology  
This is the typical and recommended UART topology because it offers the maximum communication  
reliability and flexibility between the host and the SimpleLink device.  
4.13.2 4-Wire UART Topology  
The 4-wire UART topology eliminates the host IRQ line (see Figure 4-18). Using this topology requires  
one of the following conditions to be met:  
Host is always awake or active.  
Host goes to sleep but the UART module has receiver start-edge detection for auto wakeup and does  
not lose data.  
RTS  
CTS  
TX  
RTS  
CTS  
TX  
HOST MCU  
UART  
CC3100 SL  
UART  
RX  
RX  
H_IRQ  
H_IRQ  
X
SWAS031-089  
Figure 4-18. 4-Wire UART Configuration  
4.13.3 3-Wire UART Topology  
The 3-wire UART topology requires only the following lines (see Figure 4-19):  
RX  
TX  
CTS  
RTS  
CTS  
TX  
RTS  
CTS  
TX  
X
HOST MCU  
UART  
CC3100 SL  
UART  
RX  
RX  
H_IRQ  
H_IRQ  
X
SWAS031-090  
Figure 4-19. 3-Wire UART Topology  
Using this topology requires one of the following conditions to be met:  
Host always stays awake or active.  
24  
Specifications  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC3100  
 
 
 
CC3100  
www.ti.com  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
Host goes to sleep but the UART module has receiver start-edge detection for auto wakeup and does  
not lose data.  
Host can always receive any amount of data transmitted by the SimpleLink device because there is no  
flow control in this direction.  
Because there is no full flow control, the host cannot stop the SimpleLink device to send its data; thus, the  
following parameters must be carefully considered:  
Max baud rate  
RX character interrupt latency and low-level driver jitter buffer  
Time consumed by the user's application  
Copyright © 2013–2015, Texas Instruments Incorporated  
Specifications  
25  
Submit Documentation Feedback  
Product Folder Links: CC3100  
CC3100  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
www.ti.com  
5 Detailed Description  
5.1 Overview  
5.1.1 Device Features  
5.1.1.1 WLAN  
802.11b/g/n integrated radio, modem, and MAC supporting WLAN communication as a BSS station  
with CCK and OFDM rates in the 2.4-GHz ISM band  
Auto-calibrated radio with a single-ended 50-Ω interface enables easy connection to the antenna  
without requiring expertise in radio circuit design.  
Advanced connection manager with multiple user-configurable profiles stored in an NVMEM allows  
automatic fast connection to an access point without user or host intervention.  
Supports all common Wi-Fi security modes for personal and enterprise networks with on-chip security  
accelerators  
SmartConfig technology: A 1-step, 1-time process to connect a CC3100-enabled device to the home  
wireless network, removing dependency on the I/O capabilities of the host MCU; thus, it is usable by  
deeply embedded applications.  
802.11 transceiver mode: Allows transmitting and receiving of proprietary data through a socket  
without adding MAC or PHY headers. This mode provides the option to select the working channel,  
rate, and transmitted power. The receiver mode works together with the filtering options.  
5.1.1.2 Network Stack  
Integrated IPv4 TCP/IP stack with BSD socket APIs for simple Internet connectivity with any MCU,  
microprocessor, or ASIC  
Support of eight simultaneous TCP, UDP, or RAW sockets  
Built-in network protocols: ARP, ICMP, DHCP client, and DNS client for easy connection to the local  
network and the Internet  
Service discovery: Multicast DNS service discovery lets a client advertise its service without a  
centralized server. After connecting to the access point, the CC3100 device provides critical  
information, such as device name, IP, vendor, and port number.  
5.1.1.3 Host Interface and Driver  
Interfaces over a 4-wire serial peripheral interface (SPI) with any MCU or a processor at a clock speed  
of 20 MHz.  
Interfaces over UART with any MCU with a baud rate up to 3 Mbps. A low footprint driver is provided  
for TI MCUs and is easily ported to any processor or ASIC.  
Simple APIs enable easy integration with any single-threaded or multithreaded application.  
5.1.1.4 System  
Works from a single preregulated power supply or connects directly to a battery  
Ultra-low leakage when disabled (hibernate mode) with a current of less than 4 µA with the RTC  
running  
Integrated clock sources  
26  
Detailed Description  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC3100  
CC3100  
www.ti.com  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
5.2 Functional Block Diagram  
Figure 5-1 shows the functional block diagram of the CC3100 SimpleLink Wi-Fi solution.  
VCC  
SPI  
FLASH  
40-MHz  
XTAL  
32-kHz  
XTAL  
32 kHz  
CC3100  
Network processor  
MCU  
nHIB  
HOST_INTR  
SPI/UART  
SWAS031-018  
Figure 5-1. Functional Block Diagram  
5.3 Wi-Fi Network Processor Subsystem  
The Wi-Fi network processor subsystem includes a dedicated ARM MCU to completely offload the host  
MCU along with an 802.11 b/g/n radio, baseband, and MAC with a powerful crypto engine for a fast,  
secure WLAN and Internet connections with 256-bit encryption. The CC3100 device supports station, AP,  
and Wi-Fi Direct modes. The device also supports WPA2 personal and enterprise security and WPS 2.0.  
The Wi-Fi network processor includes an embedded IPv4 TCP/IP stack.  
Table 5-1 summarizes the NWP features.  
Table 5-1. Summary of Features Supported by the NWP Subsystem  
Item  
1
Domain  
TCP/IP  
TCP/IP  
TCP/IP  
TCP/IP  
TCP/IP  
TCP/IP  
TCP/IP  
TCP/IP  
TCP/IP  
TCP/IP  
TCP/IP  
Category  
Network Stack  
Network Stack  
Protocols  
Feature  
IPv4  
Details  
Baseline IPv4 stack  
Base protocols  
2
TCP/UDP  
DHCP  
3
Client and server mode  
Support ARP protocol  
4
Protocols  
ARP  
5
Protocols  
DNS/mDNS  
IGMP  
DNS Address resolution and local server  
6
Protocols  
Up to IGMPv3 for multicast management  
7
Applications  
Applications  
Applications  
Security  
mDNS  
Support multicast DNS for service publishing over IP  
Service discovery protocol over IP in local network  
8
mDNS-SD  
9
Web Sever/HTTP Server URL static and dynamic response with template.  
10  
11  
TLS/SSL  
TLS/SSL  
TLS v1.2 (client/server)/SSL v3.0  
Security  
For the supported Cipher Suite, go to SimpleLink Wi-Fi  
CC3100 SDK.  
12  
13  
14  
TCP/IP  
WLAN  
WLAN  
Sockets  
Connection  
MAC  
RAW Sockets  
Policies  
User-defined encapsulation at WLAN MAC/PHY or IP  
layers  
Allows management of connection and reconnection  
policy  
Promiscuous mode  
Filter-based Promiscuous mode frame receiver  
Copyright © 2013–2015, Texas Instruments Incorporated  
Detailed Description  
27  
Submit Documentation Feedback  
Product Folder Links: CC3100  
 
 
CC3100  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
www.ti.com  
Table 5-1. Summary of Features Supported by the NWP Subsystem (continued)  
Item  
Domain  
Category  
Feature  
Details  
15  
WLAN  
Performance  
Initialization time  
From enable to first connection to open AP less than  
50 ms  
16  
17  
18  
19  
WLAN  
WLAN  
WLAN  
WLAN  
Performance  
Performance  
Provisioning  
Provisioning  
Throughput  
Throughput  
WPS2  
UDP = 16 Mbps  
TCP = 13 Mbps  
Enrollee using push button or PIN method.  
AP Config  
AP mode for initial product configuration (with  
configurable Web page and beacon Info element)  
20  
21  
22  
WLAN  
WLAN  
WLAN  
Provisioning  
Role  
SmartConfig  
Station  
Alternate method for initial product configuration  
802.11bgn Station with legacy 802.11 power save  
Role  
Soft AP  
802.11 bg single station with legacy 802.11 power  
save  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
WLAN  
WLAN  
WLAN  
WLAN  
WLAN  
WLAN  
WLAN  
WLAN  
WLAN  
WLAN  
WLAN  
WLAN  
Role  
P2P  
P2P operation as GO  
P2P operation as CLIENT  
WPA2 personal security  
WPA2 enterprise security  
EAP-TLS  
Role  
P2P  
Security  
Security  
Security  
Security  
Security  
Security  
Security  
Security  
Security  
Security  
STA-Personal  
STA-Enterprise  
STA-Enterprise  
STA-Enterprise  
STA-Enterprise  
STA-Enterprise  
STA-Enterprise  
STA-Enterprise  
STA-Enterprise  
AP-Personal  
EAP-PEAPv0/TLS  
EAP-PEAPv1/TLS  
EAP-PEAPv0/MSCHAPv2  
EAP-PEAPv1/MSCHAPv2  
EAP-TTLS/EAP-TLS  
EAP-TTLS/MSCHAPv2  
WPA2 personal security  
5.4 Power-Management Subsystem  
The CC3100 power-management subsystem contains DC-DC converters to accommodate the differing  
voltage or current requirements of the system.  
Digital DC-DC  
Input: VBAT wide voltage (2.1 to 3.6 V) or preregulated 1.85 V  
ANA1 DC-DC  
Input: VBAT wide voltage (2.1 to 3.6 V)  
In preregulated 1.85-V mode, the ANA1 DC-DC converter is bypassed.  
PA DC-DC  
Input: VBAT wide voltage (2.1 to 3.6 V)  
In preregulated 1.85-V mode, the PA DC-DC converter is bypassed.  
In preregulated 1.85-V mode, the ANA1 DC-DC and PA DC-DC converters are bypassed. The CC3100  
device is a single-chip WLAN radio solution used on an embedded system with a wide-voltage supply  
range. The internal power management, including DC-DC converters and LDOs, generates all of the  
voltages required for the device to operate from a wide variety of input sources. For maximum flexibility,  
the device can operate in the modes described in the following sections.  
5.4.1 VBAT Wide-Voltage Connection  
In the wide-voltage battery connection, the device is powered directly by the battery. All other voltages  
required to operate the device are generated internally by the DC-DC converters. This scheme is the most  
common mode for the device as it supports wide-voltage operation from 2.1 to 3.6 V (for electrical  
connections, see Section 6.1.1, Typical Application – CC3100 Wide-Voltage Mode).  
28  
Detailed Description  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC3100  
CC3100  
www.ti.com  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
5.4.2 Preregulated 1.85 V  
The preregulated 1.85-V mode of operation applies an external regulated 1.85 V directly at the pins 10,  
25, 33, 36, 37, 39, 44, 48, and 54 of the device. The VBAT and the VIO are also connected to the 1.85-V  
supply. This mode provides the lowest BOM count version in which inductors used for PA DC-DC and  
ANA1 DC-DC (2.2 and 1 µH) and a capacitor (22 µF) can be avoided. For electrical connections, see  
Section 6.1.2, Typical Application – CC3100 Preregulated 1.85-V Mode.  
In the preregulated 1.85-V mode, the regulator providing the 1.85 V must have the following  
characteristics:  
Load current capacity 900 mA.  
Line and load regulation with <2% ripple with 500 mA step current and settling time of <4 µs with the  
load step.  
The regulator must be placed very close to the CC3100 device so that the IR drop to the device is very  
low.  
5.5 Low-Power Operating Modes  
This section describes the low-power modes supported by the device to optimize battery life.  
5.5.1 Low-Power Deep Sleep  
The low-power deep-sleep (LPDS) mode is an energy-efficient and transparent sleep mode that is entered  
automatically during periods of inactivity based on internal power optimization algorithms. The device can  
wake up in less than 3 ms from the internal timer or from any incoming host command. Typical battery  
drain in this mode is 115 µA. During LPDS mode, the device retains the software state and certain  
configuration information. The operation is transparent to the external host; thus, no additional handshake  
is required to enter or exit this sleep mode.  
5.5.2 Hibernate  
The hibernate mode is the lowest power mode in which all of the digital logic is power-gated. Only a small  
section of the logic powered directly by the main input supply is retained. The real-time clock (RTC) is kept  
running and the device wakes up once the nHIB line is asserted by the host driver. The wake-up time is  
longer than LPDS mode at about 50 ms.  
NOTE  
Wake-up time can be extended to 75 ms if a patch is loaded from the serial flash.  
5.6 Memory  
5.6.1 External Memory Requirements  
The CC3100 device maintains a proprietary file system on the SFLASH. The CC3100 file system stores  
the service pack file, system files, configuration files, certificate files, web page files, and user files. By  
using a format command through the API, users can provide the total size allocated for the file system.  
The starting address of the file system cannot be set and is always located at the beginning of the  
SFLASH. The applications microcontroller must access the SFLASH memory area allocated to the file  
system directly through the CC3100 file system. The applications microcontroller must not access the  
SFLASH memory area directly.  
The file system manages the allocation of SFLASH blocks for stored files according to download order,  
which means that the location of a specific file is not fixed in all systems. Files are stored on SFLASH  
using human-readable file names rather than file IDs. The file system API works using plain text, and file  
encryption and decryption is invisible to the user. Encrypted files can be accessed only through the file  
system.  
Copyright © 2013–2015, Texas Instruments Incorporated  
Detailed Description  
29  
Submit Documentation Feedback  
Product Folder Links: CC3100  
CC3100  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
www.ti.com  
All file types can have a maximum of 128 supported files in the file system. All files are stored in blocks of  
4KB and thus use a minimum of 4KB of flash space. Encrypted files with fail-safe support and optional  
security are twice the original size and use a minimum of 8KB. Encrypted files are counted as fail safe in  
terms of space. The maximum file size is 16MB.  
Table 5-2 lists the SFLASH size recommendations.  
Table 5-2. CC3100 SFLASH Size Recommendations  
Item  
Typical Fail-Safe  
20KB  
Typical NonFail-Safe  
File system  
20KB  
112KB  
108KB  
2Mb  
Service pack  
224KB  
System and configuration files  
Total  
216KB  
4Mb  
Recommended  
8Mb  
4Mb  
The CC3100 device supports JEDEC specification SFDP (serial flash device parameters). The following  
SFLASH devices are verified for functionality with the CC3100 device in addition to the ones in the  
reference design:  
Micron (N25Q128-A13BSE40): 128Mb  
Spansion (S25FL208K): 8Mb  
Winbond (W25Q16V): 16Mb  
Adesto (AT25DF081A): 8Mb  
Macronix (MX25L12835F-M2): 128Mb  
For compatibility with the CC3100 device, the SFLASH device must support the following commands:  
Command 0x9F (read the device ID [JEDEC]). Procedure: SEND 0x9F, READ 3 bytes.  
Command 0x05 (read the status of the SFLASH). Procedure: SEND 0x05, READ 1 byte. Assume bit 0  
is busy and bit 1 is write enable.  
Command 0x06 (set write enable). Procedure: SEND 0x06, read status until write-enable bit is set.  
Command 0xC7 (chip erase). Procedure: SEND 0xC7, read status until busy bit is cleared.  
Command 0x03 (read data). Procedure: SEND 0x03, SEND 24-bit address, read n bytes.  
Command 0x02 (write page). Procedure: SEND 0x02, SEND 24-bit address, write n bytes (0<n<256).  
Command 0x20 (sector erase). Procedure: SEND 0x20, SEND 24-bit address, read status until busy  
bit is cleared. Sector size is assumed to be always 4K.  
30  
Detailed Description  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC3100  
 
CC3100  
www.ti.com  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
6 Applications and Implementation  
6.1 Application Information  
6.1.1 Typical Application – CC3100 Wide-Voltage Mode  
Figure 6-1 shows the schematics for an application using the CC3100 wide-voltage mode.  
Consider adding extra decoupling capacitors  
if the battery cannot source the peak current.  
VBAT  
VBAT  
VBAT  
R1  
100k  
C27  
100uF  
C26  
100uF  
C6  
C2  
C3  
C4  
C5  
0.1uF  
4.7uF  
4.7uF  
4.7uF  
0.1uF  
C1  
0.1uF  
FL1  
2.4GHz Filter  
DEA202450BT-1294C1-H  
U1  
L2  
3.6nH  
E1  
2.45GHz Ant  
AH316M245001-T  
1
3
IN  
OUT  
C8  
1.0pF  
VBAT  
Antenna match  
(Depends on type of  
antenna)  
50 Ohm  
31  
RF_BG  
L1  
2.2uH  
R75  
38  
100k  
DCDC_ANA_SW  
U2  
VBAT  
C7  
VBAT  
48  
14  
13  
12  
11  
1
2
5
6
8
7
3
4
VDD_ANA1  
FLASH_SPI_CSn  
FLASH_SPI_MISO  
FLASH_SPI_MOSI  
FLASH_SPI_CLK  
CS  
VCC  
10uF  
DOUT  
DIN  
RESET  
WP  
C9  
0.1uF  
C10  
0.1uF  
R79  
CLK  
GND  
36  
25  
100k  
LDO_IN1  
LDO_IN2  
R76  
100k  
100k  
nRESET  
R77  
8M (1M x 8)  
M25PX80-VMN6TP  
61  
50  
55  
57  
Flash programming  
CC_UART1_CTS  
CC_UART1_RTS  
CC_UART1_TX  
UART1_nCTS  
UART1_nRTS  
UART1_TX  
C11  
0.1uF  
C12  
0.1uF  
(Connect TP to UART, nRESET  
to be driven by external programmer)  
RTS/CTS optional  
L3  
CC_UART1_RX  
UART1_RX  
40  
41  
42  
DCDC_PA_SW_P  
DCDC_PA_SW_N  
DCDC_PA_OUT  
58  
59  
TP1  
1uH  
TEST_58  
TEST_59  
R78  
TP2  
100k  
Needed only when using  
UART as host interface  
33  
60  
62  
C13  
22uF  
C14  
22uF  
TP3  
TP4  
VDD_PA_IN  
TEST_60  
TEST_62  
C15  
1.0uF  
63  
64  
3
NC  
NC  
L4  
2.2uH  
43  
9
R84  
100k  
R83  
100k  
DCDC_DIG_SW  
VDD_DIG1  
RESERVED  
FORCE_AP  
4
C16  
10uF  
56  
C17  
0.1uF  
VDD_DIG2  
C18  
2
CC_nHIB  
nHIB  
HOST_SPI_nCS  
HOST_SPI_CLK  
HOST_SPI_MOSI  
HOST_SPI_MISO  
HOSTINTR  
0.1uF  
HOST INTERFACE  
(Do not leave nHIB floating.  
Always connect to host)  
8
CC_SPI_CS  
CC_SPI_CLK  
CC_SPI_DIN  
CC_SPI_DOUT  
CC_IRQ  
45  
46  
47  
DCDC_ANA2_SW_P  
DCDC_ANA2_SW_N  
VDD_ANA2  
5
6
7
15  
49  
24  
R81  
R82  
10k  
100k  
VDD_RAM  
VDD_PLL  
C21  
0.1uF  
18  
C20  
0.1uF  
RESERVED  
27  
28  
26  
NC_27  
NC_28  
NC_26  
23  
22  
WLAN_XTALP  
WLAN_XTALM  
C22  
52  
51  
RTC_XTAL_N  
RTC_XTAL_P  
Y2  
10pF  
C23  
53  
29  
30  
1
NC_53  
NC_29  
NC_30  
NC_01  
Y1  
Crystal  
32.768KHz  
ABS07-32.768KHZ-T  
C25  
C24  
6.2pF  
10pF  
6.2pF  
CC3100R  
40 MHz  
Q24FA20H00396  
40MHz, ESR < 50, CL = 8pF, 20ppm  
R9  
100k  
R4  
100k  
R10  
100k  
R11  
10k  
Figure 6-1. Schematics for CC3100 Wide-Voltage Mode Application  
Copyright © 2013–2015, Texas Instruments Incorporated  
Applications and Implementation  
31  
Submit Documentation Feedback  
Product Folder Links: CC3100  
 
CC3100  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
www.ti.com  
Table 6-1 lists the bill of materials for an application using the CC3100 wide-voltage mode.  
Table 6-1. Bill of Materials for CC3100 Wide Voltage Mode ApplicationTable 6-1  
Item  
Qty  
Reference  
Value  
Manufacturer  
Part Number  
Description  
1
12  
C1 C5 C6 C9  
C10 C11 C12  
C17 C18 C20  
C21 C28  
0.1 µF  
Taiyo Yuden  
LMK105BJ104KV-F  
CAP CER 0.1 µF 10 V 10% X5R 0402  
2
3
3
1
C2 C3 C4  
4.7 µF  
Samsung Electro- CL05A475MQ5NRNC  
Mechanics  
America, Inc  
CAP CER 4.7 µF 6.3 V 20% X5R 0402  
C8  
1.0 pF Murata Electronics GJM1555C1H1R0BB01D CAP CER 1 pF 50 V NP0 0402  
North America  
4
5
1
1
C13  
C16  
22 µF  
10 µF  
Taiyo Yuden  
AMK107BBJ226MAHT  
CAP CER 22 µF 4 V 20% X5R 0603  
Murata Electronics GRM188R60J106ME47D CAP CER 10 µF 6.3 V 20% X5R 0603  
North America  
6
2
C22 C23  
10 pF  
Murata Electronics GRM1555C1H100FA01D CAP CER 10 pF 50 V 1% NP0 0402  
North America  
7
8
9
2
2
1
C24 C25  
C26 C27  
E1  
6.2 pF  
Kemet  
CBR04C609B1GAC  
CAP CER 6 pF 100 V NP0 0402  
100 µF  
TDK Corportation C3216X5R0J107M160AB CAP CER 100 µF 6.3 V 20% X5R 1206  
2.45G  
Hz Ant  
Taiyo Yuden  
TDK-Epcos  
AH316M245001-T  
ANT BLUETOOTH WLAN ZIGBEE  
WIMAX  
10  
11  
12  
1
1
1
FL1  
L2  
2.4G Hz  
Filter  
DEA202450BT-1294C1-H FILTER BANDPASS 2.45 GHZ WLAN  
SMD  
3.6 nH Murata Electronics LQP15MN3N6B02D  
North America  
INDUCTOR 3.6 nH 0.1 nH 0402  
L4  
2.2 µH Murata Electronics LQM2HPN2R2MG0L  
North America  
INDUCTOR 2.2 µH 20% 1300 mA 1008  
13  
14  
1
1
U1  
U2  
CC3100 Texas Instruments CC3100R1  
802.11bg Wi-Fi Processor  
8M (1M  
x 8)  
Winbond  
W25Q80BWZPIG  
ABS07-32.768KHZ-T  
Q24FA20H00396  
IC FLASH 8 Mb 75 MHZ 8WSON  
15  
16  
1
1
Y1  
Y2  
Crystal  
Abracon  
CRYSTAL 32.768 KHZ 12.5 pF SMD  
CRYSTAL 40 MHZ 8 pF SMD  
Corporation  
Crystal  
Epson  
NOTE  
Use any 5% tolerance resistor 0402 or higher package.  
6.1.2 Typical Application – CC3100 Preregulated 1.85-V Mode  
Figure 6-2 shows the schematics for an application using the CC3100 preregulated 1.85-V mode.  
32  
Applications and Implementation  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC3100  
 
CC3100  
www.ti.com  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
5
4
3
2
1
Consider adding extra decoupling capacitors  
if the battery cannot source the peak currents.  
1.85V  
1.85V  
1.85V  
R1  
100k  
C27  
100uF  
C26  
100uF  
C6  
C2  
C3  
C4  
C5  
0.1uF  
4.7uF  
4.7uF  
4.7uF  
0.1uF  
C1  
D
D
C
B
A
0.1uF  
FL1  
2.4GHz Filter  
DEA202450BT-1294C1-H  
U3  
L2  
3.6nH  
E1  
2.45GHz Ant  
AH316M245001-T  
1
3
IN  
OUT  
C8  
1.0pF  
1.85V  
1.85V  
Antenna match  
(Depends on type of  
antenna)  
50 Ohm  
31  
RF_BG  
R75  
38  
100k  
DCDC_ANA_SW  
U2  
1.85V  
48  
14  
13  
12  
11  
1
2
5
6
8
7
3
4
1.85V  
VDD_ANA1  
FLASH_SPI_CSn  
FLASH_SPI_MISO  
FLASH_SPI_MOSI  
FLASH_SPI_CLK  
CS  
VCC  
DOUT  
DIN  
RESET  
WP  
C9  
0.1uF  
C10  
0.1uF  
R79  
CLK  
GND  
36  
25  
100k  
LDO_IN1  
LDO_IN2  
R76  
R77  
100k  
100k  
nRESET  
8M (1M x 8)  
W25Q80BWZPIG  
C7  
61  
50  
55  
57  
Flash programming  
CC_UART1_CTS  
CC_UART1_RTS  
CC_UART1_TX  
UART1_nCTS  
UART1_nRTS  
UART1_TX  
C11  
0.1uF  
C12  
0.1uF  
(Connect TP to UART, nRESET  
to be driven by external programmer)  
RTS/CTS optional  
4.7uF  
CC_UART1_RX  
UART1_RX  
40  
41  
42  
C
B
A
DCDC_PA_SW_P  
DCDC_PA_SW_N  
DCDC_PA_OUT  
58  
59  
TP1  
TP2  
TEST_58  
TEST_59  
Needed only when using  
UART as host interface  
R78  
100k  
33  
60  
62  
TP3  
TP4  
VDD_PA_IN  
TEST_60  
TEST_62  
C13  
22uF  
63  
64  
3
NC  
NC  
L4  
2.2uH  
43  
9
R83  
R84  
100k  
100k  
DCDC_DIG_SW  
VDD_DIG1  
RESERVED  
FORCE_AP  
4
C16  
C17  
0.1uF  
56  
VDD_DIG2  
10uF  
C18  
2
CC_nHIB  
nHIB  
HOST_SPI_nCS  
HOST_SPI_CLK  
HOST_SPI_MOSI  
HOST_SPI_MISO  
HOSTINTR  
0.1uF  
HOST INTERFACE  
(Do not leave nHIB floating.  
Always connect to host)  
8
CC_SPI_CS  
45  
46  
47  
DCDC_ANA2_SW_P  
DCDC_ANA2_SW_N  
VDD_ANA2  
5
CC_SPI_CLK  
CC_SPI_DIN  
CC_SPI_DOUT  
CC_IRQ  
6
7
15  
49  
24  
R81  
R82  
10k  
100k  
VDD_RAM  
VDD_PLL  
C21  
0.1uF  
18  
C20  
0.1uF  
RESERVED  
27  
28  
26  
NC_27  
NC_28  
NC_26  
23  
22  
WLAN_XTALP  
WLAN_XTALM  
C22  
52  
51  
RTC_XTAL_N  
RTC_XTAL_P  
Y2  
10pF  
C23  
53  
29  
30  
1
NC_53  
NC_29  
NC_30  
NC_01  
Y1  
Crystal  
32.768KHz  
ABS07-32.768KHZ-T  
C25  
C24  
6.2pF  
10pF  
6.2pF  
CC3100  
40 MHz  
Q24FA20H00396  
40MHz, ESR < 50, CL = 8pF, 20ppm  
R9  
100k  
R4  
100k  
R10  
100k  
R11  
10k  
5
4
3
2
1
Figure 6-2. Schematics for CC3100 Preregulated 1.85-V Mode Application  
Copyright © 2013–2015, Texas Instruments Incorporated  
Applications and Implementation  
33  
Submit Documentation Feedback  
Product Folder Links: CC3100  
CC3100  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
www.ti.com  
Table 6-1 lists the bill of materials for an application using the CC3100 preregulated 1.85-V mode.  
Table 6-2. Bill of Materials for CC3100 Preregulated 1.85-V Mode Application  
Item  
Qty  
Reference  
Value  
Manufacturer  
Part Number  
Description  
1
12  
C1 C5 C6 C9  
C10 C11 C12  
C17 C18 C20  
C21 C28  
0.1 µF  
Taiyo Yuden  
LMK105BJ104KV-F  
Capacitor, Ceramic: 0.1 µF 10 V 10%  
X5R 0402  
2
4
C2 C3 C4 C7  
4.7 µF  
Samsung Electro- CL05A475MQ5NRNC  
Capacitor, Ceramic: 4.7 µF 6.3 V 20%  
X5R 0402  
Mechanics  
America, Inc  
3
4
5
6
7
8
9
1
1
1
2
2
2
1
C8  
C13  
1.0 pF Murata Electronics GJM1555C1H1R0BB01D Capacitor, Ceramic: 1 pF 50 V NP0 0402  
North America  
22 µF  
10 µF  
10 pF  
6.2 pF  
100 µF  
Taiyo Yuden  
AMK107BBJ226MAHT  
Capacitor, Ceramic: 22 µF 4 V 20% X5R  
0603  
C16  
Murata Electronics GRM188R60J106ME47D Capacitor, Ceramic: 10 µF 6.3 V 20%  
North America X5R 0603  
C22 C23  
C24 C25  
C26 C27  
E1  
Murata Electronics GRM1555C1H100FA01D Capacitor, Ceramic: 10 pF 50 V 1% NP0  
North America  
0402  
Kemet  
CBR04C609B1GAC  
Capacitor, Ceramic: 6 pF 100 V NP0  
0402  
TDK Corportation C3216X5R0J107M160AB Capacitor, Ceramic: 100 µF 6.3 V 20%  
X5R 1206  
2.45-  
GHz  
Ant  
Taiyo Yuden  
AH316M245001-T  
Antenna, Bluetooth: WLAN ZigBee  
WIMAX  
10  
1
FL1  
2.4-  
GHz  
Filter  
TDK-Epcos  
DEA202450BT-1294C1-H Filter, Bandpass: 2.45 GHz WLAN SMD  
11  
12  
1
1
L2  
L4  
3.6 nH Murata Electronics LQP15MN3N6B02D  
North America  
Inductor: 3.6 nH 0.1 nH 0402  
2.2 µH Murata Electronics LQM2HPN2R2MG0L  
North America  
Inductor: 2.2 µH 20% 1300 mA 1008  
13  
14  
1
1
U1  
U2  
CC3100 Texas Instruments CC3100R1  
802.11bg Wi-Fi Processor  
8M  
(1M x  
8)  
Winbond  
W25Q80BWZPIG  
IC Flash 8 Mb 75 MHz 8WSON  
15  
16  
1
1
Y1  
Y2  
Crystal  
Abracon  
Corporation  
ABS07-32.768KHZ-T  
Q24FA20H00396  
Crystal 32.768 kHz 12.5 pF SMD  
Crystal 40 MHZ 8 pF SMD  
Crystal  
Epson  
NOTE  
Use any 5% tolerance resistor 0402 or higher package.  
34  
Applications and Implementation  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC3100  
CC3100  
www.ti.com  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
7 Device and Documentation Support  
7.1 Device Support  
7.1.1 Development Support  
The CC3100 evaluation board includes a set of tools and documentation to help the user during the  
development phase.  
7.1.1.1 Radio Tool  
The SimpleLink radio tool is a utility for operating and testing the CC3100 chipset RF performance  
characteristics during development of the application board. The CC3100 device has an auto-calibrated  
radio that enables easy connection to the antenna without requiring expertise in radio circuit design.  
7.1.1.2 Uniflash Flash Programmer  
The Uniflash flash programmer utility allows end users to communicate with the SimpleLink device to  
update the serial flash. The easy GUI interface enables flashing of files (including read-back verification  
option), storage format (secured and nonsecured formatting), version reading for boot loader and chip ID,  
and so on.  
7.1.2 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of the  
CC3100 device and support tools (see Figure 7-1).  
X
CC  
3
1
0
0
R
1
1M  
RGC  
R
PREFIX  
X = perproduction device  
no prefix = production device  
PACKAGING  
R = tape/reel  
T = small reel  
DEVICE FAMILY  
CC = wireless connectivity  
PACKAGE  
RGC = 9x9 QFN  
SERIES NUMBER  
3 = Wi-Fi Centric  
Figure 7-1. CC3100 Device Nomenclature  
Copyright © 2013–2015, Texas Instruments Incorporated  
Device and Documentation Support  
35  
Submit Documentation Feedback  
Product Folder Links: CC3100  
 
CC3100  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
www.ti.com  
7.2 Documentation Support  
The following documents provide support for the CC3100 device.  
SWRU370  
SWRU375  
SWRU368  
SWRU371  
SWRC288  
CC3100 and CC3200 SimpleLink Wi-Fi and IoT Solution Layout Guidelines  
CC3100 SimpleLink Wi-Fi and IoT Solution Getting Started Guide  
CC3100 SimpleLink Wi-Fi and IoT Solution Programmer's Guide  
CC3100 SimpleLink Wi-Fi and IoT Solution BoosterPack Hardware User Guide  
CC3100 SimpleLink Wi-Fi and IoT Solution Booster Pack Design Files  
7.3 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the  
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;  
see TI's Terms of Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster  
collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge,  
explore ideas and help solve problems with fellow engineers.  
TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help  
developers get started with Embedded Processors from Texas Instruments and to foster  
innovation and growth of general knowledge about the hardware and software surrounding  
these devices.  
7.4 Trademarks  
SimpleLink, Internet-On-a-Chip, SmartConfig, E2E are trademarks of Texas Instruments.  
Wi-Fi CERTIFIED is a trademark of Wi-Fi Alliance.  
Wi-Fi, Wi-Fi Direct are registered trademarks of Wi-Fi Alliance.  
All other trademarks are the property of their respective owners.  
7.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
7.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
36  
Device and Documentation Support  
Copyright © 2013–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: CC3100  
CC3100  
www.ti.com  
SWAS031D JUNE 2013REVISED FEBRUARY 2015  
8 Mechanical Packaging and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and  
revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2013–2015, Texas Instruments Incorporated  
Mechanical Packaging and Orderable Information  
Submit Documentation Feedback  
Product Folder Links: CC3100  
37  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jul-2015  
PACKAGING INFORMATION  
Orderable Device  
CC3100R11MRGC  
CC3100R11MRGCR  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
ACTIVE  
VQFN  
VQFN  
RGC  
64  
64  
260  
Green (RoHS  
& no Sb/Br)  
CU  
Level-3-260C-168 HR  
CC3100R1  
CC3100R1  
ACTIVE  
RGC  
2500  
Green (RoHS  
& no Sb/Br)  
CU  
Level-3-260C-168 HR  
-40 to 85  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jul-2015  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Apr-2015  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
CC3100R11MRGCR  
VQFN  
RGC  
64  
2500  
330.0  
16.4  
9.3  
9.3  
1.1  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Apr-2015  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RGC 64  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 38.0  
CC3100R11MRGCR  
2500  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2015, Texas Instruments Incorporated  

相关型号:

CC3100R11MRGCR

CC3100 SimpleLink Wi-Fi Network Processor, Internet-of-Things Solution for MCU Applications
TI

CC3100_15

CC3100 SimpleLink Wi-Fi Network Processor, Internet-of-Things Solution for MCU Applications
TI

CC3120

适用于 MCU 应用的 SimpleLink™ Wi-Fi® 网络处理器、物联网解决方案
TI

CC3120MOD

适用于物联网且具有 6 个 TLS/SSL 插槽的 SimpleLink™ Wi-Fi CERTIFIED™ 网络处理器模块
TI

CC3120MODRNMMOBR

适用于物联网且具有 6 个 TLS/SSL 插槽的 SimpleLink™ Wi-Fi CERTIFIED™ 网络处理器模块 | MOB | 63 | -40 to 85
TI

CC3120RNMARGKR

适用于 MCU 应用的 SimpleLink™ Wi-Fi® 网络处理器、物联网解决方案 | RGK | 64 | -40 to 85
TI

CC3120RNMARGKT

适用于 MCU 应用的 SimpleLink™ Wi-Fi® 网络处理器、物联网解决方案 | RGK | 64 | -40 to 85
TI

CC3130

具有共存性、WPA3 和 16 个 TLS 插槽的 SimpleLink™ Arm Cortex-M3 Wi-Fi® 网络处理器
TI

CC3130A48M020

Cable Assembly,
MOLEX

CC3130RNMRGKR

具有共存性、WPA3 和 16 个 TLS 插槽的 SimpleLink™ Arm Cortex-M3 Wi-Fi® 网络处理器 | RGK | 64 | -40 to 85
TI

CC3135

SimpleLink™ 32 位 Arm Cortex-M3 双频带 Wi-Fi® 无线网络处理器
TI

CC3135MOD

SimpleLink™ 32 位 Arm Cortex-M3 双频带 Wi-Fi® 无线网络处理器模块
TI