CSD18536KTTT [TI]

采用 D2PAK 封装的单路、1.6mΩ、60V、N 沟道 NexFET™ 功率 MOSFET | KTT | 3 | -55 to 175;
CSD18536KTTT
型号: CSD18536KTTT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 D2PAK 封装的单路、1.6mΩ、60V、N 沟道 NexFET™ 功率 MOSFET | KTT | 3 | -55 to 175

文件: 总38页 (文件大小:909K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS25810-Q1  
ZHCSF05 NOVEMBER 2016  
TPS25810-Q1 具有负载检测功能的 USB Type-C DFP 控制器和电源开关  
1 特性  
3 说明  
1
兼容 USB Type-C 版本 1.2 的下行数据端口 (DFP)  
控制器  
TPS25810-Q1 是一款 USB Type-C 下行数据端口  
(DFP) 控制器,集成了一个额定电流为 3A USB 电  
源开关。TPS25810-Q1 器件监测 Type-C 配置通道  
(CC) 线路,确定 USB 设备何时与其相连。如果连接  
与上行数据端口 (UFP) 器件 相连,TPS25810-Q1 可  
将电源应用于 VBUS 并将可选 VBUS 拉电流能力通过  
CC 线路传输至 UFP。如果使用以电气方式标记的电  
缆连接 UFPTPS25810Q1 器件也可以将 VCONN 电  
源应用于电缆的 CC 引脚。TPS25810-Q1 器件还会识  
别何时连接了 Type-C 音频或调试附件。  
连接器连接或断开检测  
配置通道 (CC) STD1.5A3A 电流能力通告  
超高速极性确定  
VBUS 应用和放电  
VCONN 应用于电子标记电缆  
音频和调试附件识别  
端口未连接时,IDDQ 的典型值为 0.7µA  
三个输入电源选项  
IN1USB 充电电源  
IN2VCONN 电源  
AUX:器件电源  
TPS25810-Q1 器件在未连接器件时的电流消耗低于  
0.7µA(典型值)。在未连接 UFP 时,S4 S5 系统  
电源使用 UFP 输出禁用 5V 高功率电源,从而进一步  
实现系统节能。在此模式下,器件能够由电压较低  
(3.3V) 的辅助电源 (AUX) 供电运行,该电源通常在低  
功耗状态(S4 S5)下为系统微控制器供电。  
电源唤醒可保证系统冬眠 (S4) 和关闭 (S5) 功耗状  
态下的低功耗  
34mΩ(典型值)高侧金属氧化物半导体场效应晶  
体管 (MOSFET)  
1.7A 3.4A 可编程 ILIM (±7.1%)  
TPS25810-Q1 34m电源开关具备两种固定电流限值  
可供选择,对应于 Type-C 电流水平。FAULT 输出在  
开关处于过流和过热条件时发出信号。在所有端口无法  
同时提供高电流 (3A) 的环境下,LD_DET 输出可针对  
多个高电流 Type-C 端口的功率管理进行控制。  
端口功率管理可实现多端口功率资源优化  
封装:20 引脚晶圆级四方扁平无引线 (WQFN) 封  
(1)  
(3mm x 4mm)  
2 应用  
器件信息(1)  
汽车信息娱乐系统  
汽车后座 USB 充电  
器件型号  
封装  
封装尺寸(标称值)  
超薄四方扁平无引线  
(WQFN) (20)  
TPS25810-Q1  
3.00mm x 4.00mm  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
(1) CC 引脚符合 IEC-61000-4-2 标准  
简化电路原理图  
6 ´ 100 kΩ  
(Optional)  
TPS25810-Q1  
VBUS  
Bus Power  
CC Power  
4.5 V–6.5 V  
4.5 V–5.5 V  
2.9 V–5.5 V  
120 µF  
OUT  
IN1  
FAULT  
LD_DET  
CC1  
IN2  
Power Switch  
Status Signals  
Auxiliary Power  
AUX  
EN  
CC2  
Control Signals  
CHG  
CHG_HI  
REF  
UFP  
POL  
10 µF  
Type-C DFP  
Status Signals  
AUDIO  
DEBUG  
Thermal Pad  
100 kΩ (1%)  
REF_RTN  
GND  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSD95  
 
 
 
TPS25810-Q1  
ZHCSF05 NOVEMBER 2016  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 23  
Application and Implementation ........................ 25  
8.1 Application Information............................................ 25  
8.2 Typical Applications ................................................ 25  
Power Supply Recommendations...................... 30  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings ............................................................ 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
6.6 Switching Characteristics.......................................... 8  
6.7 Typical Characteristics............................................ 10  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 14  
7.3 Feature Description................................................. 14  
10 Layout................................................................... 31  
10.1 Layout Guidelines ................................................. 31  
10.2 Layout Example .................................................... 32  
11 器件和文档支持 ..................................................... 33  
11.1 器件支持 ............................................................... 33  
11.2 文档支持 ............................................................... 33  
11.3 接收文档更新通知 ................................................. 33  
11.4 社区资源................................................................ 33  
11.5 ....................................................................... 33  
11.6 静电放电警告......................................................... 33  
11.7 Glossary................................................................ 33  
12 机械、封装和可订购信息....................................... 33  
7
4 修订历史记录  
日期  
修订版本  
2016 11 月  
*
最初发布版本  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TPS25810-Q1  
www.ti.com.cn  
ZHCSF05 NOVEMBER 2016  
5 Pin Configuration and Functions  
RVC Package  
20-Pin WQFN With Exposed Thermal Pad  
Top View  
FAULT  
IN1  
1
2
3
4
5
6
16  
15  
14  
13  
12  
11  
DEBUG  
OUT  
Thermal  
Pad  
IN1  
OUT  
IN2  
CC2  
AUX  
EN  
GND  
CC1  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
Fault event indicator. Open-drain logic output that asserts low to indicate a current-limit or thermal-  
shutdown event due to overtemperature.  
1
FAULT  
O
2
3
IN1  
IN1  
I
I
VBUS input supply. Internal power switch connects IN1 to OUT.  
VBUS input supply. Internal power switch connects IN1 to OUT.  
VCONN input supply. Internal power switch connects IN2 to CC1 or CC2. Short to IN1 if only one  
supply is used.  
4
IN2  
I
Auxiliary input supply. Connect to an always-alive system rail to use the power-wake feature. Short  
to IN1 and IN2 if only one supply is used.  
5
6
AUX  
EN  
I
I
Enable logic input. Turns the device on and off  
Charge-logic input to select between standard USB (500 mA for a Type-C receptacle supporting  
only USB 2.0, and 900 mA for Type-C receptacle supporting USB 3.1) or a Type-C current-sourcing  
ability.  
7
CHG  
I
High-charge logic input to select between 1.5-A and 3-A Type-C current sourcing capability. Valid  
when CHG is set to Type-C current.  
8
9
CHG_HI  
REF_RTN  
REF  
I
I
I
Precision signal-reference return. Connect to the REF pin via a 100-k, 1% resistor.  
Analog input used to generate the internal current reference. Connect a 1% or better, 100-ppm,  
100-kresistor between this pin and REF_RTN.  
10  
11  
12  
13  
14  
15  
16  
17  
CC1  
GND  
I/O  
I/O  
O
Analog input/output that connects to the Type-C receptacle CC1 pin  
Power ground  
CC2  
Analog input/output that connects to the Type-C receptacle CC2 pin.  
Power switch output  
OUT  
OUT  
O
Power switch output  
DEBUG  
AUDIO  
O
Open-drain logic output that asserts when a Type-C debug accessory is identified on the CC lines.  
Open-drain logic output that asserts when a Type-C audio accessory is identified on the CC lines.  
O
Copyright © 2016, Texas Instruments Incorporated  
3
TPS25810-Q1  
ZHCSF05 NOVEMBER 2016  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
Polarity open-drain logic output that signals which Type-C CC pin is connected to the CC line. This  
gives the information needed to multiplex the super-speed lines. Asserted when the CC2 pin is  
connected to the CC line in the cable.  
18  
POL  
O
19  
20  
UFP  
O
O
Open-drain logic output that asserts when a Type-C UFP is identified on the CC lines.  
Load-detect open-drain logic output that signals when a device set to source Type-C 3-A current is  
sourcing over 1.95 A, nominal.  
LD_DET  
Thermal pad on the bottom of the package. The thermal pad is internally connected to GND and is  
used to heat-sink the device to the circuit board. Connect the thermal pad to the GND plane.  
Thermal pad  
4
Copyright © 2016, Texas Instruments Incorporated  
TPS25810-Q1  
www.ti.com.cn  
ZHCSF05 NOVEMBER 2016  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range, voltages are respect to GND (unless otherwise noted)  
(1)  
MIN  
MAX  
UNIT  
IN1, IN2, AUX, EN, CHG, CHG_HI, REF, OUT, LD_DET,  
FAULT, CC1, CC2, UFP, POL, AUDIO, DEBUG  
–0.3  
7
V
Pin voltage, V  
Internally  
connected  
to GND  
REF_RTN  
V
Internally  
limited  
Pin positive source current, ISRC  
Pin positive sink current, ISNK  
OUT, REF, CC1, CC2  
A
OUT (while applying VBUS  
)
5
1
A
A
CC1, CC2 (while applying VCONN  
)
Internally  
limited  
LD_DET, FAULT, UFP, POL, AUDIO, DEBUG  
mA  
Operating junction temperature, TJ  
Storage temperature range, Tstg  
–40  
–65  
180  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2 000  
±500  
UNIT  
Human-body model (HBM), per per AEC Q100-002(2)  
Charged-device model (CDM), per per AEC Q100-011  
61000-4-2 contact discharge, CC1 and CC2(3) IEC  
IEC 61000-4-2 air discharge, CC1 and CC2(3)  
Electrostatic  
discharge  
(1)  
V(ESD)  
V
±8 000  
±15 000  
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges  
into the device.  
(2) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(3) Surges per IEC61000-402, 1999 applied between CC1/CC2 and output ground of the TPS25810EVM-745.  
6.3 Recommended Operating Conditions  
Voltages are with respect to GND (unless otherwise noted)  
MIN NOM  
MAX UNIT  
IN1  
4.5  
4.5  
2.9  
0
6.5  
VIN  
Supply voltage  
IN2  
5.5  
5.5  
5.5  
V
AUX  
VI  
Input voltage  
EN, CHG, CHG_HI  
EN, CHG, CHG_HI  
EN, CHG, CHG_HI  
V
V
V
VIH  
VIL  
High-level input voltage  
Low-level voltage  
1.17  
0.63  
5.5  
Used on LD_DET, FAULT, UFP, POL, AUDIO,  
DEBUG  
VPU  
ISRC  
ISNK  
Pullup voltage  
0
V
OUT  
3
A
Positive source current  
CC1 or CC2 when supplying VCONN  
250  
mA  
Positive sink current (10 ms moving  
average)  
LD_DET, FAULT, UFP, POL, AUDIO, DEBUG  
10  
mA  
mA  
Internally  
limited  
ISNK_PULSE Positive repetitive pulse sink current LD_DET, FAULT, UFP, POL, AUDIO, DEBUG  
RREF  
TJ  
Reference resistor  
98  
100  
102  
125  
kΩ  
Operating junction temperature  
–40  
°C  
Copyright © 2016, Texas Instruments Incorporated  
5
TPS25810-Q1  
ZHCSF05 NOVEMBER 2016  
www.ti.com.cn  
6.4 Thermal Information  
TPS25810-Q1  
THERMAL METRIC(1)  
RVC (WQFN)  
UNIT  
20 PINS  
39.3  
43.4  
13  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.7  
ψJB  
13  
RθJC(bot)  
4.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
–40°C TJ 125°C, 4.5 V VIN1 6.5 V, 4.5 V VIN2 5.5 V, 2.9 V VAUX 5.5 V; VEN = VCHG = VCHG_HI = VAUX, RREF  
=
100 k. Typical values are at 25°C. All voltages are with respect to GND. IOUT and IOS defined positive out of the indicated pin  
(unless otherwise noted)  
PARAMETER  
OUT – POWER SWITCH  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TJ = 25°C, IOUT = 3 A  
34  
34  
34  
37  
46  
55  
rDS(on)  
On-resistance(1)  
–40°C TJ 85°C, IOUT = 3 A  
–40°C TJ 125°C, IOUT = 3 A  
VOUT = 6.5 V, VIN1 = VEN = 0 V,  
mΩ  
IREV  
OUT to IN reverse leakage current –40°C TJ 85°C,  
0
3
µA  
IREV is current out of IN1 pin  
OUT – CURRENT LIMIT  
VCHG = 0 V or VCHG = VAUX and VCHG_HI  
0 V  
=
1.58  
3.16  
1.7  
3.4  
1.82  
(1)  
IOS  
Short circuit current limit  
A
3.64  
7
RREF = 10 Ω  
OUT – DISCHARGE  
VOUT = 4 V, UFP signature removed from  
CC lines, time < tw_DCHG  
Discharge resistance  
400  
100  
500  
150  
600  
250  
Ω
VOUT = 4 V, No UFP signature on CC lines,  
time > tw_DCHG  
Bleed discharge resistance  
kΩ  
REF  
VO  
Output voltage  
0.78  
9.5  
0.8  
0.82  
15.3  
V
IOS  
Short circuit current  
RREF = 10 Ω  
µA  
FAULT  
VOL  
Output low voltage  
Off-state leakage  
IFAULT = 1 mA  
VFAULT = 5.5 V  
350  
1
mV  
µA  
IOFF  
LD_DET  
VOL  
Output low voltage  
Off-state leakage  
ILD_DET = 1 mA  
VLD_DET = 5.5 V  
350  
1
mV  
µA  
IOFF  
OUT sourcing, rising threshold  
current for load detect  
Hysteresis(2)  
ITH  
1.8  
1.95  
125  
2.1  
A
mA  
(1) Pulse-testing techniques maintain junction temperature close to ambient temperature; thermal effects must be taken into account  
separately.  
(2) These parameters are provided for reference only and do not constitute part of TI’s published specifications for purposes of TI’s product  
warranty.  
6
Copyright © 2016, Texas Instruments Incorporated  
 
TPS25810-Q1  
www.ti.com.cn  
ZHCSF05 NOVEMBER 2016  
Electrical Characteristics (continued)  
–40°C TJ 125°C, 4.5 V VIN1 6.5 V, 4.5 V VIN2 5.5 V, 2.9 V VAUX 5.5 V; VEN = VCHG = VCHG_HI = VAUX, RREF  
=
100 k. Typical values are at 25°C. All voltages are with respect to GND. IOUT and IOS defined positive out of the indicated pin  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CC1, CC2 – VCONN POWER SWITCH  
TJ = 25°C, IOUT = 250 mA  
365  
365  
365  
420  
530  
600  
rDS(on)  
On-resistance  
–40°C TJ 85°C, IOUT = 250 mA  
–40°C TJ 125°C, IOUT = 250 mA  
mΩ  
CC1, CC2 – VCONN POWER SWITCH – CURRENT LIMIT  
300  
355  
410  
800  
IOS  
Short-circuit current limit(1)  
mA  
µA  
RREF = 10 Ω  
CC1, CC2 – CONNECT MANAGEMENT – DANGLING ELECTRONICALLY MARKED CABLE MODE  
Sourcing current on the pass-  
0 V VCCx 1.5 V  
64  
64  
80  
80  
96  
96  
through CC Line  
ISRC  
Sourcing current on the Ra CC  
0 V VCCx 1.5 V  
line  
CC1, CC2 – CONNECT MANAGEMENT – ACCESSORY MODE  
CCx sourcing current  
0 V VCCx 1.5 V  
64  
80  
0
96  
(CC2 – audio, CC1-debug)  
ISRC  
µA  
µA  
µA  
CCx sourcing current  
0 V VCCx 1.5 V  
(2)  
(CC1 – audio, CC2-debug)  
CC1, CC2 – CONNECT MANAGEMENT – UFP MODE  
0 V VCCx 1.5 V  
VIN1 < VTH_UVLO_IN1 or VIN2 < VTH_UVLO_IN2  
Sourcing current with either IN1 or  
IN2 in UVLO  
ISRC  
64  
75  
80  
80  
96  
85  
VCHG = 0 V and VCHG_HI = 0 V  
0 V VCCx 1.5 V  
VCHG = VAUX and VCHG_HI = 0 V  
0 V VCCx 1.5 V  
ISRC  
Sourcing current  
170  
312  
180  
330  
190  
348  
VCHG = VAUX and VCHG_HI = VAUX  
0 V VCCx 2.45 V  
UFP, POL, AUDIO, DEBUG  
VOL  
IOFF  
Output low voltage  
Off-state leakage  
ISNK_PIN = 1 mA  
VPIN = 5.5 V  
250  
1
mV  
µA  
EN, CHG, CHG_HI – LOGIC INPUTS  
VTH  
VTH  
Rising threshold voltage  
Falling threshold voltage  
Hysteresis(2)  
0.925  
0.875  
50  
1.15  
0.5  
V
V
0.65  
–0.5  
mV  
µA  
IIN  
Input current  
VEN = 0 V or 6.5 V  
OVERTEMPERATURE SHUTDOWN  
Rising threshold temperature for  
device shutdown  
Hysteresis(2)  
TTH_OTSD2  
155  
135  
°C  
°C  
20  
20  
Rising threshold temperature for  
OUT/ VCONN switch shutdown in  
current limit  
Hysteresis(2)  
TTH_OTSD1  
°C  
°C  
IN1  
VTH_UVLO_IN1 Rising threshold voltage for UVLO  
Hysteresis(2)  
3.9  
4.1  
4.3  
V
100  
mV  
µA  
IIN1(DIS)  
Disabled supply current  
VEN = 0 V, –40°C TJ 85°C  
–40°C TJ 85°C  
1
1
Enabled supply current with CC  
lines open  
IIN1(CC_OPEN)  
µA  
Copyright © 2016, Texas Instruments Incorporated  
7
TPS25810-Q1  
ZHCSF05 NOVEMBER 2016  
www.ti.com.cn  
Electrical Characteristics (continued)  
–40°C TJ 125°C, 4.5 V VIN1 6.5 V, 4.5 V VIN2 5.5 V, 2.9 V VAUX 5.5 V; VEN = VCHG = VCHG_HI = VAUX, RREF  
=
100 k. Typical values are at 25°C. All voltages are with respect to GND. IOUT and IOS defined positive out of the indicated pin  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Enabled supply current with  
accessory or dangling  
electronically marked cable  
signature on CC lines  
IIN1(Ra)  
2
µA  
VCHG = 0 V, or VCHG = VAUX and VCHG_HI  
0 V  
=
75  
85  
100  
110  
Enabled supply current with UFP  
attached  
IIN1(Rd)  
µA  
IN2  
VTH_UVLO_IN2 Rising threshold voltage for UVLO  
Hysteresis(2)  
3.9  
4.1  
4.3  
V
100  
mV  
µA  
IIN2(DIS)  
Disabled supply current  
VEN = 0 V, –40°C TJ 85°C  
–40°C TJ 85°C  
1
1
IIN2(CC_OPEN) Enabled supply current with CC  
lines open  
µA  
Enabled supply current with  
accessory or dangling  
electronically marked cable  
IIN2(Ra)  
2
µA  
signature on CC lines  
Enabled supply current with UFP  
signature on CC lines  
(Includes IN current that provides  
the CC output current to the UFP  
Rd resistor)  
VCHG = 0 V, 0 V VCCx 1.5 V  
98  
198  
348  
110  
215  
373  
VCHG = VIN and VCHG_HI = 0 V, 0 V VCCx  
1.5 V  
IIN2(Rd)  
µA  
0 V VCCx 2.45 V  
AUX  
VTH_UVLO_AUX Rising threshold voltage for UVLO  
Hysteresis(2)  
2.65  
2.75  
100  
2.85  
V
mV  
µA  
IAUX(DIS)  
Disabled supply current  
VEN = 0 V, –40°C TJ 85°C  
–40°C TJ 85°C  
1
3
Enabled internal supply current  
with CC lines open  
IAUX(CC_OPEN)  
0.7  
µA  
Enabled supply current with  
accessory or dangling active cable  
signature on CC lines  
IAUX(Ra)  
140  
185  
µA  
Enabled supply current with UFP  
termination on CC lines and with  
either IN1 or IN2 in UVLO  
IAUX(Rd_noIN)  
VIN1 < VTH_UVLO_IN1 or VIN2 < VTH_UVLO_IN2  
145  
55  
190  
82  
µA  
µA  
Enabled supply current with UFP  
termination on CC lines  
IAUX(Rd)  
6.6 Switching Characteristics  
–40°C TJ 125°C, 4.5 V VIN1 6.5 V, 4.5 V VIN2 5.5 V, 2.9 V VAUX 5.5 V; VEN = VCHG = VCHG_HI = VAUX, RREF  
=
100 k. Typical values are at 25°C. All voltages are with respect to GND. IOUT and IOS defined positive out of the indicated pin  
(unless otherwise noted)  
PARAMETER  
OUT – POWER SWITCH  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tr  
tf  
Output-voltage rise time  
Output-voltage fall time  
VIN1 = 5 V, CL = 1 µF, RL = 100 Ω  
(measured from 10% to 90% of final  
value)  
1.2  
1.8  
2.5  
ms  
ms  
0.35  
0.55  
0.75  
ton  
toff  
Output-voltage turnon time  
Output-voltage turnoff time  
2.5  
2
3.5  
3
5
ms  
ms  
VIN1 = 5 V, CL = 1 µF, RL = 100 Ω  
4.5  
OUT – CURRENT LIMIT  
Current-limit response time to short VIN1 – VOUT = 1 V, RL = 10 mΩ, see  
circuit Figure 1  
tios  
1.5  
4
µs  
8
Copyright © 2016, Texas Instruments Incorporated  
TPS25810-Q1  
www.ti.com.cn  
ZHCSF05 NOVEMBER 2016  
Switching Characteristics (continued)  
–40°C TJ 125°C, 4.5 V VIN1 6.5 V, 4.5 V VIN2 5.5 V, 2.9 V VAUX 5.5 V; VEN = VCHG = VCHG_HI = VAUX, RREF  
=
100 k. Typical values are at 25°C. All voltages are with respect to GND. IOUT and IOS defined positive out of the indicated pin  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FAULT  
tDEGA  
Asserting deglitch due to overcurrent  
5.5  
8.2  
0
10.7  
ms  
ms  
ms  
Asserting deglitch due to  
tDEGA(OC)  
overtemperature in current limit(1)  
tDEGA(OT)  
LD_DET  
tDEGA  
Deasserting deglitch  
5.5  
8.2  
10.7  
Asserting deglitch  
45  
65  
85  
ms  
s
tDEGD  
Deasserting deglitch  
1.45  
2.15  
2.9  
OUT – DISCHARGE  
RDCHG discharge time  
CC1, CC2 - VCONN POWER SWITCH  
VOUT = 1 V, time ISNK_OUT > 1 mA  
after UFP signature removed from  
CC lines  
39  
65  
96  
ms  
tr  
tf  
Output voltage rise time  
Output voltage fall time  
VIN2 = 5 V, CL = 1 µF, RL = 100 Ω  
(measured from 10% to 90% of final  
value)  
0.15  
0.18  
0.25  
0.22  
0.35  
0.26  
ms  
ms  
ton  
toff  
Output voltage turnon time  
Output voltage turnoff time  
1
1.5  
0.4  
2
ms  
ms  
VIN2 = 5 V, CL = 1 µF, RL = 100 Ω  
0.3  
0.55  
CC1, CC2 – VCONN POWER SWITCH – CURRENT LIMIT  
Current limit response time to short  
circuit  
VIN2 – VCONN = 1 V, R = 10 mΩ, see  
Figure 1  
tres  
1
3
µs  
UFP, POL, AUDIO, DEBUG  
tDEGR  
tDEGF  
Asserting deglitch  
100  
7.9  
150  
200  
ms  
ms  
Deasserting deglitch  
12.5  
17.7  
(1) These parameters are provided for reference only and do not constitute part of TI’s published specifications for purposes of TI’s product  
warranty.  
IOS  
IOUT  
tios  
Figure 1. Output Short-Circuit Timing Diagram  
Copyright © 2016, Texas Instruments Incorporated  
9
 
TPS25810-Q1  
ZHCSF05 NOVEMBER 2016  
www.ti.com.cn  
6.7 Typical Characteristics  
50  
500  
450  
400  
350  
300  
250  
40  
30  
20  
10  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TJ - Junction Temperature (oC)  
TJ - Junction Temperature (oC)  
D001  
D001  
Figure 2. VBUS Current-Limiting Switch On-Resistance vs  
Temperature  
Figure 3. VCONN Current-Limiting Switch On-Resistance vs  
Temperature  
0.25  
0.2  
0.15  
0.1  
0.05  
0
4000  
3500  
3000  
VBUS ILIM 3 A  
VBUS ILIM 1.5 A  
VCONN_ILIM  
2500  
2000  
1500  
1000  
500  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TJ - Junction Temperature (oC)  
TJ - Junction Temperature (oC)  
D001  
D001  
Device = Disabled; (VOUT – VIN) = 6. 5V  
Figure 4. OUT Reverse Leakage Current vs Temperature  
Figure 5. ILIM for VBUS and VCONN vs Temperature  
2010  
350  
300  
250  
200  
150  
100  
50  
LD_DET Threshold Rising  
LD_DET Threshold Falling  
1990  
1970  
1950  
1930  
1910  
1890  
1870  
1850  
1830  
1810  
1790  
1770  
1750  
UFP 3 A  
UFP 1.5 A  
UFP 0.5 A/0.9 A  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TJ - Junction Temperature (oC)  
TJ - Junction Temperature (oC)  
D001  
D001  
Figure 6. LD_DET Threshold vs Temperature  
Figure 7. CC Sourcing Current to UFP vs Temperature  
10  
Copyright © 2016, Texas Instruments Incorporated  
TPS25810-Q1  
www.ti.com.cn  
ZHCSF05 NOVEMBER 2016  
Typical Characteristics (continued)  
100  
400  
350  
300  
250  
200  
150  
100  
50  
IN1 UFP 3 A  
IN1 UFP 0.5 A/1.5 A  
95  
IN2 UFP 3 A  
IN2 UFP 1.5 A  
IN2 UFP 0.5 A  
90  
85  
80  
75  
70  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TJ - Junction Temperature (oC)  
TJ - Junction Temperature (oC)  
D001  
D001  
Figure 8. IN1 Current With UFP vs Temperature  
Figure 9. IN2 Current With UFP vs Temperature  
70  
65  
60  
55  
50  
45  
40  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TJ - Junction Temperature (oC)  
D001  
VAUX = 5 V  
Figure 10. AUX Current With UFP vs Temperature  
Copyright © 2016, Texas Instruments Incorporated  
11  
TPS25810-Q1  
ZHCSF05 NOVEMBER 2016  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS25810-Q1 device is a highly integrated USB Type-C™ downstream-facing port (DFP) controller with  
built-in power switch developed for the new USB Type-C connector and cable. The device provides all of the  
functionality needed to support a USB Type-C DFP in a system where USB power delivery (PD) source  
capabilities (for example, VBUS > 5 V) are not implemented. The device is designed to be compliant with the  
TypeC specification, revision 1.1.  
7.1.1 USB Type-C Basic  
For a detailed description of the Type-C specification, see the USB-IF Web site to download the latest released  
version. Some of the basic concepts of the Type-C specification that pertain to understanding the operation of  
the TPS25810-Q1 device (a DFP device) are described as follows.  
USB Type-C removes the need for different plug and receptacle types for host and device functionality. The  
Type-C receptacle replaces both Type-A and Type-B receptacles because the Type-C cable is pluggable in  
either direction between host and device. A host-to-device logical relationship is maintained via the configuration  
channel (CC). Optionally, hosts and devices can be either providers or consumers of power when USB PD  
communication is used to swap roles.  
All USB Type-C ports operate in one of the following three data modes:  
Host mode: the port can only be host (provider of power).  
Device mode: the port can only be device (consumer of power).  
Dual-role mode: the port can be either host or device.  
Port types:  
DFP (downstream facing port): Host  
UFP (upstream facing port): Device  
DRP (dual-role port): Host or device  
Valid DFP-to-UFP connections:  
Table 1 describes valid DFP-to-UFP connections.  
Host-to-host and device-to-device have no functions.  
Table 1. DFP-to-UFP Connections  
DEVICE-MODE  
PORT  
HOST-MODE PORT  
DUAL-ROLE PORT  
Host-mode port  
Device-mode port  
Dual-role port  
No function  
Works  
Works  
No function  
Works  
Works  
Works  
Works(1)  
Works  
(1) This may be automatic or manually driven.  
7.1.2 Configuration Channel  
The function of the configuration channel (CC) is to detect connections and configure the interface across the  
USB Type-C cables and connectors.  
Functionally, the configuration channel serves the following purposes:  
Detect connection to the USB ports  
Resolve cable orientation and twist connections to establish USB data bus routing  
Establish DFP and UFP roles between two connected ports  
Discover and configure power: USB Type-C current modes or USB power delivery  
Discover and configure optional alternate and accessory modes  
Enhance flexibility and ease of use  
Typical flow of DFP to UFP configuration is shown in Figure 11:  
12  
Copyright © 2016, Texas Instruments Incorporated  
 
TPS25810-Q1  
www.ti.com.cn  
ZHCSF05 NOVEMBER 2016  
Detect Valid  
Connection  
Establish USB  
Power Method  
USB Device  
Enumeration  
Figure 11. Flow of DFP to UFP Configuration  
7.1.3 Detecting a Connection  
DFPs and DRPs fulfill the role of detecting a valid connection over USB Type-C. Figure 12 shows a DFP-to-UFP  
connection made with Type-C cable. As shown in Figure 12, the detection concept is based on being able to  
detect terminations in the product that has been attached. A pullup and pulldown termination model is used. A  
pullup termination can be replaced by a current source.  
In the DFP-UFP connection, the DFP monitors both CC pins for a voltage lower than the unterminated  
voltage.  
A UFP advertises Rd on both its CC pins (CC1 and CC2).  
A powered cable advertises Ra on only one of the CC pins of the plug. Ra is used to inform the source to  
apply VCONN  
.
An analog audio device advertises Ra on both CC pins of the plug, which identifies it as an analog audio  
device. VCONN is not applied on either CC pin in this case.  
UFP monitors for  
connection  
DFP monitors for  
connection  
Cable  
CC  
Rp  
Rp  
Rds  
Rds  
Ra  
Ra  
DFP monitors for  
connection  
UFP monitors for  
connection  
Figure 12. DFP-UFP Connection  
Copyright © 2016, Texas Instruments Incorporated  
13  
 
TPS25810-Q1  
ZHCSF05 NOVEMBER 2016  
www.ti.com.cn  
7.2 Functional Block Diagram  
7.3 Feature Description  
The TPS25810-Q1 device is a DFP Type-C port controller with integrated power switches for VCONN and VBUS  
.
The TPS25810-Q1 device does not support BC1.2 charging modes, because it does not interact with USB D+  
and D– data lines. The TPS25810-Q1 device can be used in conjunction with a BC 1.2 device like the  
TPS2514A-Q1 to support BC1.2 and Type-C charging modes in a single Type-C DFP port. See the TPS25810  
EVM user's guide (SLVUAI0) and Application and Implementation section of this data sheet for more details. The  
TPS25810-Q1 device can be used in a USB 2.0 only or in a USB 3.1 port implementation. When used in a USB  
3.1 port, the TPS25810-Q1 device can control an external super-speed MUX to handle the Type-C flippable  
feature.  
14  
Copyright © 2016, Texas Instruments Incorporated  
 
TPS25810-Q1  
www.ti.com.cn  
ZHCSF05 NOVEMBER 2016  
Feature Description (continued)  
7.3.1 Configuration Channel Pins CC1 and CC2  
The TPS25810-Q1 device has two pins, CC1 and CC2, that serve to detect an attachment to the port and to  
resolve cable orientation. These pins are also used to establish the current broadcast to a valid UFP, configure  
VCONN, and detect attachment of a debug or audio-adapter accessory.  
Table 2 lists the TPS25810-Q1 response to various attachments to its port.  
Table 2. TPS25810-Q1 Response  
TPS25810-Q1 RESPONSE(1)  
VCONN  
on CC1 or  
CC2  
TPS25810-Q1 TYPE-C PORT  
CC1  
CC2  
OUT  
POL  
UFP  
AUDIO  
DEBUG  
Nothing attached  
UFP connected  
UFP connected  
OPEN  
Rd  
OPEN  
OPEN  
Rd  
OPEN  
IN1  
NO  
NO  
NO  
Hi-Z  
Hi-Z  
Hi-Z  
LOW  
LOW  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
OPEN  
IN1  
LOW  
Powered cable, no UFP  
connected  
OPEN  
Ra  
Ra  
OPEN  
Ra  
OPEN  
OPEN  
IN1  
NO  
NO  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Powered cable, no UFP  
connected  
Powered cable, UFP  
connected  
Rd  
CC2  
LOW  
Powered cable, UFP  
connected  
Ra  
Rd  
Ra  
Rd  
Rd  
Ra  
IN1  
CC1  
NO  
LOW  
Hi-Z  
Hi-Z  
LOW  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
LOW  
Hi-Z  
Debug accessory connected  
OPEN  
OPEN  
Audio-adapter accessory  
connected  
NO  
LOW  
(1) POL, UFP, AUDIO, and DEBUG are open-drain outputs; pull high with 100 kto AUX when used. Tie to GND or leave open when not  
used.  
7.3.2 Current Capability Advertisement and Overload Protection  
The TPS25810-Q1 device supports all three Type-C current advertisements as defined by the USB Type-C  
standard. Current broadcast to a connected UFP is controlled by the CHG and CHG_HI pins. For each broadcast  
level, the device protects itself from a UFP that draws current in excess of the USB Type-C current  
advertisement of that port by setting the current limit as shown in Table 3.  
Table 3. USB Type-C Current Advertisement  
CC CAPABILITY  
BROADCAST  
LOAD DETECT  
THRESHOLD (TYP)  
CHG  
CHG_HI  
CURRENT LIMIT (TYP)  
0
0
1
1
0
1
0
1
STD  
STD  
1.5 A  
3 A  
1.7 A  
1.7 A  
1.7 A  
3.4 A  
NA  
NA  
NA  
1.95 A  
Under OUT overload conditions, an internal OUT current-limit regulator limits the output current to the selected  
ILIM based on CHG and CHG_HI selection. In applications where VCONN is supplied via CC1 or CC2, separate  
fixed current-limit regulators protect these pins from overload at the level indicated in the Electrical  
Characteristics table. When an overload condition is present, the device maintains a constant output current, with  
the output voltage determined by (IOS × RLOAD). Two possible overload conditions can occur. The first overload  
condition occurs when either: 1) input voltage is first applied, enable is true, and a short circuit is present (load  
which draws IOUT > IOS), or 2) input voltage is present and the TPS25810-Q1 device is enabled into a short  
circuit. The output voltage is held near zero potential with respect to ground and the TPS25810-Q1 device ramps  
the output current to IOS. The TPS25810-Q1 device limits the current to IOS until the overload condition is  
removed or the device begins to thermal cycle. This is demonstrated in Figure 24 where the device was enabled  
into a short, and subsequently cycles current off and on as the thermal protection engages.  
Copyright © 2016, Texas Instruments Incorporated  
15  
 
 
TPS25810-Q1  
ZHCSF05 NOVEMBER 2016  
www.ti.com.cn  
The second condition is when an overload occurs while the device is enabled and fully turned on. The device  
responds to the overload condition within time tios (see Figure 1) when the specified overload (per Electrical  
Characteristics) is applied. The response speed and shape vary with the overload level, input circuit, and rate of  
application. The current-limit response varies between simply settling to IOS or turnoff and controlled return to IOS  
.
Similar to the previous case, the TPS25810-Q1 device limits the current to IOS until the overload condition is  
removed or the device begins to thermal cycle.  
The TPS25810-Q1 device thermal cycles if an overload condition is present long enough to activate thermal  
limiting in any of the above cases. This is due to the relatively large power dissipation [(VIN – VOUT) × IOS] driving  
the junction temperature up. The device turns off when the junction temperature exceeds 135°C (min) while in  
current limit. The device remains off until the junction temperature cools 20°C and then restarts. The  
TPS25810Q1 current-limit profile is shown in Figure 13.  
VOUT  
Slope = -r DS(on)  
0 V  
IOUT  
0 A  
IOS  
Figure 13. Current Limit Profile  
7.3.3 Undervoltage Lockout (UVLO)  
The undervoltage lockout (UVLO) circuit disables the power switch until the input voltage reaches the UVLO  
turnon threshold. Built-in hysteresis prevents unwanted on-off cycling due to input voltage droop during turnon.  
7.3.3.1 Device Power Pins (IN1, IN2, AUX, OUT, and GND)  
The device has multiple input power pins: IN1, IN2 and AUX. IN1 is connected to OUT by the internal power FET  
and serves the supply for the Type-C charging current. IN2 is the supply for VCONN and ties directly between the  
VCONN power switch on its input and CC1 or CC2 on its output. AUX, the auxiliary input supply, provides power to  
the device. See the Functional Block Diagram.  
In the simplest implementation where multiple supplies are not available; IN1, IN2, and AUX can be tied together.  
However, in mobile systems (battery powered) where system power savings is paramount, IN1 and IN2 can be  
powered by the high-power dc-dc supply (>3-A capability), and AUX can be connected to the low-power supply  
that typically powers the system microcontroller when the system is in the hibernate or sleep power state. Unlike  
IN1 and IN2, AUX can operate directly from a 3.3-V supply commonly used to power the microcontroller when  
the system is put in low-power mode. Ceramic bypass capacitors close to the device from the INx and AUX pins  
to GND are recommended to alleviate bus transients.  
The recommended operating voltage range for IN1 and IN2 is 4.5 V to 5.5 V, whereas AUX can be operated  
from 2.9 V to 5.5 V. However IN1, the high-power supply, can operate up to 6.5 V. This higher input voltage  
affords a larger IR loss budget in systems where a long cable harness is used, and results in high IR losses with  
3-A charging current. Increasing IN1 beyond 5.5 V enables longer cable and board trace lengths between the  
device and the Type-C receptacle while meeting the USB specification for VBUS 4.75 V at the connector.  
Figure 14 illustrates the point. In this example IN1 is at 5 V, which restricts the IR loss budget from the dc-dc  
converter to the connector to 250 mV.  
16  
Copyright © 2016, Texas Instruments Incorporated  
 
TPS25810-Q1  
www.ti.com.cn  
ZHCSF05 NOVEMBER 2016  
Total IR Drop Budget = 250 mV  
Trace IR Drop Budget at 3 A  
= 250 – 165 = 85 mV  
V_Trace1  
V_Trace2  
V_TPS25810-Q1  
V_DC-DC = 5 V  
V_Connector  
= 4.75 V (MIN)  
IN1  
OUT  
5-V DC-DC  
MaxRds_On = 55 mΩ  
165-mV Drop at 3 A  
82.5-mV Drop at 1.5 A  
Figure 14. Total IR Loss Budget  
7.3.3.2 FAULT Response  
The FAULT pin is an open-drain output asserted low when the device OUT current exceeds its programmed  
value and the overtemperature threshold (TTH_OTSD1) is crossed. See the Electrical Characteristics for overcurrent  
and overtemperature values. The FAULT signal remains asserted until the fault condition is removed and the  
device resumes normal operation. The TPS25810-Q1 device is designed to eliminate false overcurrent fault  
reporting by using an internal deglitch circuit.  
Connect FAULT with a pullup resistor to AUX. FAULT can be left open or tied to GND when not used.  
7.3.3.3 Thermal Shutdown  
The device has two internal overtemperature shutdown thresholds, TTH_OTSD1 and TTH_OTSD2, to protect the  
internal FET from damage and assist with overall safety of the system. TTH_OTSD2 is greater than TTH_OTSD1  
.
FAULT is asserted low to signal a fault condition when the device temperature exceeds TTH_OTSD1 and the  
current-limit switch is disabled. However when TTH_OTSD2 is exceeded, all open-drain outputs are left open and  
the device is disabled such that minimum power and heat are dissipated. The device attempts to power up when  
the die temperature decreases by 20°C.  
7.3.3.4 REF  
A 100-k(1% or better recommended) resistor is connected from this pin to REF_RTN. The REF pin sets the  
reference current required to bias the internal circuitry of the device. The overload current-limit tolerance and CC  
currents depend upon the accuracy of this resistor. Using a ±1% or better low-temperature-coefficient resistor  
yields the best current-limit accuracy and overall device performance.  
7.3.3.5 Audio Accessory Detection  
The USB Type-C specification defines an audio-adapter decode state which allows implementation of an analog  
USB Type-C to 3.5-mm headset adapter. The TPS25810-Q1 device detects an audio accessory device when  
both CC1 and CC2 pins detect VRa voltage (when pulled to ground by an Ra resistor). The device asserts the  
open-drain AUDIO pin low to indicate the detection of such a device.  
Copyright © 2016, Texas Instruments Incorporated  
17  
TPS25810-Q1  
ZHCSF05 NOVEMBER 2016  
www.ti.com.cn  
Table 4. Audio Accessory Detection  
CC1  
CC2  
AUDIO  
STATE  
Audio-adapter accessory connected  
Ra  
Ra  
Asserted (pulled low)  
Platforms supporting the audio accessory function can be triggered by the AUDIO pin to enable accessory mode  
circuits to support the audio function. When the Ra pulldown is removed from the CC2 pin, AUDIO is deasserted  
or pulled high. The TPS25810-Q1 device monitors the CC2 pin for audio device detach. When this function is not  
needed (for example in a data-less port), AUDIO can be tied to GND or left open.  
7.3.3.6 Debug Accessory Detection  
The Type-C spec supports an optional debug-accessory mode, used for debug only and not to be used for  
communicating with commercial products. When the TPS25810-Q1 device detects VRd voltage on both CC1 and  
CC2 pins (when pulled to ground by an Rd resistor), it asserts DEBUG low. With DEBUG asserted, the system  
can enter debug mode for factory testing or a similar functional mode. DEBUG deasserts or pulls high when Rd  
is removed from CC1. The TPS25810-Q1 device monitors the CC1 pin for debug-accessory detach.  
If the debug-accessory mode is not used, tie DEBUG to GND or leave it open.  
Table 5. Debug Accessory Detection  
CC1  
CC2  
POL  
STATE  
Rd  
Rd  
Asserted (pulled low)  
Debug accessory connected  
7.3.3.7 Plug Polarity Detection  
Reversible Type-C plug orientation is reported by the POL pin when a UFP is connected. However, when no  
UFP is attached POL remains deasserted, irrespective of cable plug orientation. Table 6 describes the POL state  
based on which of the device CC pins detects VRd from an attached UFP pulldown.  
Table 6. Plug Polarity Detection  
CC1  
Rd  
CC2  
Open  
Rd  
POL  
Hi-Z  
STATE  
UFP connected  
Open  
Asserted (pulled low)  
UFP connected with reverse plug orientation  
18  
Copyright © 2016, Texas Instruments Incorporated  
 
TPS25810-Q1  
www.ti.com.cn  
ZHCSF05 NOVEMBER 2016  
Figure 15 shows an example implementation which uses the POL terminal to control the SEL terminal on the  
HD3SS3212 device. The HD3SS3212 device provides switching on the differential channels between Port B and  
Port C to Port A, depending on cable orientation. For details on the HD3SS3212 device, see the HD3SS3212  
data sheet (SLASE74).  
3.3 V  
HD3SS3212  
USB C  
SSTXp2  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
B0+  
Dp1  
Dp2  
USB Host  
SSTXp  
VCC  
Dp  
B0–  
C0+  
C0–  
B1+  
B1–  
C1+  
C1–  
SSTXn2  
SSTXp1  
SSTXn1  
SSRXp2  
SSRXn2  
SSRXp1  
SSRXn1  
A0+  
A0–  
Dm  
Dm1  
Dm2  
SSTXn  
SSRXp  
A1+  
A1–  
SSRXn  
Dp  
GND  
GND  
GND  
GND  
Dp  
Dm  
Dm  
OEn  
SEL  
3.3 V  
GND  
GND  
GND  
TPS25810-Q1  
OUT  
5 V  
POL  
OUT  
UFP  
CC1  
CC2  
IN1  
IN1  
5 V  
IN2  
CHG  
AUX  
EN  
CHG H_I  
FAULT  
LD_DET  
AUDIO  
REF  
REF_RTN  
GND  
DEBUG  
Thermal Pad  
Copyright © 2016, Texas Instruments Incorporated  
Figure 15. Example Implementation  
7.3.3.8 Device Enable Control  
The logic enable pin (EN) controls the power switch and device supply current. The supply current is reduced to  
less than 1 μA when a logic low is present on EN. The EN pin provides a convenient way to turn on or turn off  
the device while it is powered. The enable input threshold has built-in hysteresis. When this pin is pulled high, the  
device is turned on or enabled. When the device is disabled (EN pulled low) the internal FETs tied to IN1 and  
IN2 are disconnected, all open-drain outputs are left open (Hi-Z), and the monitor block for CC1 and CC2 is  
turned off. The EN terminal should not be left floating.  
7.3.3.9 Load Detect  
The load-detect function in the device is enabled when the device is set to broadcast high-current VBUS charging  
(CHG = CHG_HI = High) on the CC pin. In this mode, the device monitors the OUT current to a UFP; if the  
current exceeds 1.95 A (typ), the LD_DET pin asserts. Because LD_DET is an open-drain output, pull it high with  
100 kto AUX when used; tie it to GND or leave it open when not used.  
Copyright © 2016, Texas Instruments Incorporated  
19  
 
TPS25810-Q1  
ZHCSF05 NOVEMBER 2016  
www.ti.com.cn  
7.3.3.10 Power Wake  
The power-wake feature supported in the TPS25810-Q1 device offers the mobile-systems designer a way to  
save on system power when no UFP is attached to the Type-C port. See Figure 16. To enable power wake, the  
UFP pins from device No. 1 and No. 2 are tied together (each with its own 100-kpullup) to the enable pin of a  
5-V, 6-A dc-dc buck converter. When no UFP is detected on both Type-C ports, the EN pin of the dc-dc  
converter is pulled high, thereby disabling it. Because both TPS25810-Q1 devices are powered by an always-on  
3.3-V LDO, turning off the supply to IN1 and IN2 does not affect its operation in detach state. Anytime a UFP is  
detected on either port, the corresponding TPS25810-Q1 UFP pin is pulled low, enabling the dc-dc converter to  
provide charging current to the attached UFP. Turning off the high-power dc-dc converter when ports are  
unattached saves on system power. This method can save a significant amount of power, because the  
TPS25810-Q1 device only requires < 5 µA when no UFP device is connected.  
20  
Copyright © 2016, Texas Instruments Incorporated  
TPS25810-Q1  
www.ti.com.cn  
ZHCSF05 NOVEMBER 2016  
Both UFP High  
Converters  
Disabled  
OUT  
CC1  
CC2  
IN1  
TPS54620  
Buck  
Converter  
No UFP  
Attached  
I
IN2  
AUX  
TPS25810-Q1  
No. 1  
EN  
CHG  
UFP_1  
CHG_HI  
12 V  
UFP_1  
(High)  
UFP_2  
(High)  
OUT  
CC1  
CC2  
IN1  
No UFP  
Attached  
IN2  
LP2950-33  
LDO  
AUX  
TPS25810-Q1  
No. 2  
CHG  
UFP_2  
CHG_HI  
One UFP Low  
Converter  
Enabled  
OUT  
CC1  
CC2  
IN1  
TPS54620  
Buck  
Converter  
UFP  
IN2  
Attached  
AUX  
TPS25810-Q1  
No. 1  
EN  
CHG  
UFP_1  
-
CHG_HI  
12 V  
UFP_1  
(High)  
UFP_2  
(High)  
IN1  
OUT  
CC1  
CC2  
No UFP  
Attached  
IN2  
LP2950-33  
LDO  
AUX  
TPS25810-Q1  
No. 2  
CHG  
UFP_2  
CHG_HI  
Copyright © 2016, Texas Instruments Incorporated  
Figure 16. Power-Wake Implementation  
7.3.3.11 Port Power Management (PPM)  
PPM is the intelligent and dynamic allocation of power made possible with the use of the LD_DET pin. PPM is for  
systems that have multiple charging ports but cannot power them all at their maximum charging current  
simultaneously.  
Goals of PPM are:  
Enhanced user experience, because the user needs not to search for a high-current charging port.  
Lowered cost and size of the power supply needed for implementing high-current charging in a multiport  
system.  
Copyright © 2016, Texas Instruments Incorporated  
21  
TPS25810-Q1  
ZHCSF05 NOVEMBER 2016  
www.ti.com.cn  
7.3.3.12 Implementing PPM in a System With Two Type-C Ports  
Figure 17 shows PPM and power wake implemented in a system with two Type-C ports, both initially set to  
broadcast high-current charging (3 A, CHG and CHG_HI pulled high via 100-kresistors to AUX). To enable  
PPM, tie the LD_DET pin from TPS25810-Q1 device No. 1 to CHG_HI of TPS25810-Q1 device No. 2 and vice  
versa, as shown in Figure 17. Each device independently monitors the charging current drawn by its attached  
UFP.  
IN1 and IN2 are connected to a TPS54620, a 6-A synchronous step-down converter. AUX is powered by an  
LP2950-33, a low-quiescent-current 3.3-V LDO. With no UFP attached to either Type-C port, the TPS25810-Q1  
device is powered by the LP2950-33. This method saves a significant amount of power, because the  
TPS25810Q1 device requires less than 2 µA when no USB device is connected.  
TPS54620  
Buck  
Converter  
OUT  
CC1  
CC2  
IN1  
IN2  
3-A Broadcast  
EN  
AUX TPS25810-Q1  
No. 1  
LD_DET_1  
UFP_1  
CHG  
CHG_HI  
12 V  
UFP_1 UFP_2  
OUT  
CC1  
CC2  
IN1  
IN2  
3-A Broadcast  
LP2950-33  
LDO  
AUX TPS25810-Q1  
No. 2  
CHG  
LD_DET_2  
CHG_HI  
UFP_2  
Copyright © 2016, Texas Instruments Incorporated  
Figure 17. PPM and Power Wake Implemented  
7.3.3.13 PPM Operation  
When no UFP is attached, or either of the two attached UFPs is drawing current less than the LD_DET threshold  
(1.95 A typical), the LD_DET output for both devices is high (shown in blue in Figure 18). Now when a UFP is  
attached to device No. 1 that draws a charging current higher than the LD_DET threshold (1.95 A), this causes  
LD_DET to assert or pull low (shown in red in Figure 18). Because the LD-DET pins of the No. 1 and No. 2  
devices are connected to the CHG_HI pins of each other, a high-current detection on device No. 1 forces device  
No. 2 to broadcast 1.5 A or medium charging-current capability on its CC pin. The Type-C specification requires  
a UFP to monitor the CC pins continuously and adjust its current consumption (within 60 ms) to remain within the  
value advertised by the DFP.  
Figure 19 shows the case when a UFP attached to device No. 1 reduces its charging current below the LD_DET  
threshold, which causes LD-DET to de-assert, thereby toggling the device No. 2 CH_HI pin from low to high.  
This scheme:  
Delivers a better user experience, as the user has no worry about the maximum charging current rating of the  
host ports. Both ports initially advertise high-current charging.  
Enables a smaller and lower-cost power supply, as the loading is controlled and never allowed to exceed 5 A.  
22  
Copyright © 2016, Texas Instruments Incorporated  
 
TPS25810-Q1  
www.ti.com.cn  
ZHCSF05 NOVEMBER 2016  
TPS54620  
Buck  
Converter  
OUT  
CC1  
CC2  
IN1  
IN2  
3-A USB Device Connected  
EN  
AUX TPS25810-Q1  
No. 1  
LD_DET_1  
UFP_1  
CHG  
CHG_HI  
12 V  
UFP_1 UFP_2  
OUT  
CC1  
CC2  
IN1  
IN2  
1.5-A Broadcast  
LP2950-33  
LDO  
AUX TPS25810-Q1  
No. 2  
CHG  
LD_DET_2  
UFP_2  
CHG_HI  
Copyright © 2016, Texas Instruments Incorporated  
Figure 18. 3-A USB Device Connected  
TPS54620  
Buck  
Converter  
OUT  
CC1  
CC2  
IN1  
IN2  
1.5-A USB Device Connected  
EN  
AUX TPS25810-Q1  
No. 1  
LD_DET_1  
UFP_1  
CHG  
CHG_HI  
12 V  
UFP_1 UFP_2  
OUT  
CC1  
CC2  
IN1  
IN2  
3-A Broadcast  
LP2950-33  
LDO  
AUX TPS25810-Q1  
No. 2  
CHG  
LD_DET_2  
UFP_2  
CHG_HI  
Copyright © 2016, Texas Instruments Incorporated  
Figure 19. 1.5-A USB Device Connected  
7.4 Device Functional Modes  
The TPS25810-Q1 device is a Type-C controller with integrated power switch that supports all Type-C functions  
in a downstream facing port. The device is also used to manage current advertisement and protection for a  
connected UFP and active cable. The device starts its operation by monitoring the AUX bus. When VAUX exceeds  
the undervoltage-lockout threshold, the device samples the EN pin. A high level on this pin enables the device,  
and normal operation begins. Having successfully completed its start-up sequence, the device now actively  
Copyright © 2016, Texas Instruments Incorporated  
23  
TPS25810-Q1  
ZHCSF05 NOVEMBER 2016  
www.ti.com.cn  
Device Functional Modes (continued)  
monitors its CC1 and CC2 pins for attachment to a UFP. When a UFP is detected on either the CC1 or CC2 pin,  
the internal MOSFET starts to turn on after the required debounce time is met. The internal MOSFET starts  
conducting and allows current to flow from IN1 to OUT. If Ra is detected on the other CC pin (not connected to  
the UFP), VCONN is applied to allow current to flow from IN2 to the CC pin connected to Ra. For a complete listing  
of various device operational modes, see Table 2.  
24  
Copyright © 2016, Texas Instruments Incorporated  
TPS25810-Q1  
www.ti.com.cn  
ZHCSF05 NOVEMBER 2016  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS25810-Q1 device is a Type-C DFP controller that supports all Type-C DFP required functions. The  
TPS25810-Q1 device only applies power to VBUS when it detects that a UFP is attached and removes power  
when it detects the UFP is detached. The device exposes its identity via its CC pin, advertising its current  
capability based on CHG and CHG_HI pin settings. The TPS25810-Q1 device also limits its advertised current  
internally and provides robust protection to a fault on the system VBUS power rail.  
After a connection is established by the TPS25810-Q1 device, the device is capable of providing VCONN to power  
circuits in the cable plug on the CC pin that is not connected to the CC wire in the cable. VCONN is internally  
current limited and has its own supply pin IN2. Apart from providing charging current to a UFP, the  
TPS25810Q1 device also supports audio and debug accessory modes.  
The following design procedure can be used to implement a full-featured Type-C DFP.  
NOTE  
BC 1.2 is not supported in the TPS25810-Q1 device. To support BC1.2 with Type-C  
charging modes in a single Type-C connector, a device like a TPS2514A-Q1 must be  
used.  
8.2 Typical Applications  
8.2.1 Type-C DFP Port Implementation Without BC 1.2 Support  
Figure 20 shows a minimal Type-C DFP implementation capable of supporting 5-V and 3-A charging.  
USB Type-C  
Receptacle  
TPS25810-Q1  
5 V  
2
3
4
5
6
7
8
VBUS  
IN1  
14  
15  
13  
11  
1
OUT  
IN1  
OUT  
CC2  
CC1  
IN2  
AUX  
EN  
FAULT  
20  
19  
18  
17  
16  
10 µF  
CHG  
CHG_HI  
LD_DET  
UFP  
POL  
AUDIO  
DEBUG  
10  
9
REF  
100 kW  
(1%)  
12  
GND  
REF_RTN  
Copyright © 2016, Texas Instruments Incorporated  
Figure 20. Type-C DFP Port Implementation Without BC 1.2 Support  
Copyright © 2016, Texas Instruments Incorporated  
25  
 
TPS25810-Q1  
ZHCSF05 NOVEMBER 2016  
www.ti.com.cn  
Typical Applications (continued)  
8.2.1.1 Design Requirements  
8.2.1.1.1 Input and Output Capacitance  
Input and output capacitance improves the performance of the device. The actual capacitance should be  
optimized for the particular application. For all applications, a 0.1-μF or greater ceramic bypass capacitor  
between INx and GND is recommended as close to the device as possible for local noise decoupling.  
All protection circuits, such as the TPS25810-Q1 device, have the potential for input voltage overshoots and  
output voltage undershoots. Input voltage overshoots can be caused by either of two effects. The first cause is  
an abrupt application of input voltage in conjunction with input power-bus inductance and input capacitance when  
the INx pin is high-impedance (before turnon). Theoretically, the peak voltage is 2 times the applied voltage. The  
second cause is due to the abrupt reduction of output short-circuit current when the TPS25810-Q1 device turns  
off and energy stored in the input inductance drives the input voltage high. Input voltage droops may also occur  
with large load steps and as the TPS25810-Q1 output is shorted. Applications with large input inductance (for  
instance, connecting the evaluation board to the bench power supply through long cables) may require large  
input capacitance to prevent the voltage overshoot from exceeding the absolute maximum voltage of the device.  
The fast current-limit speed of the TPS25810-Q1 device to hard output short circuits isolates the input bus from  
faults. However, ceramic input capacitance in the range of 1 μF to 22 μF adjacent to the TPS25810-Q1 input aids  
in both response time and limiting the transient seen on the input power bus. Momentary input transients to 6.5 V  
are permitted. Output voltage undershoot is caused by the inductance of the output power bus just after a short  
has occurred and the TPS25810-Q1 device has abruptly reduced the OUT current. Energy stored in the  
inductance drives the OUT voltage down, and potentially negative, as it discharges. An application with large  
output inductance (such as from a cable) benefits from the use of a high-value output capacitor to control voltage  
undershoot.  
When implementing a USB-standard application, 120-μF minimum output capacitance is required. Typically, a  
150-μF electrolytic capacitor is used, which is sufficient to control voltage undershoots. Because in Type-C  
applications, DFP is a cold socket when no UFP is attached, the output capacitance should be placed at the INx  
pin versus the OUT pin, as is done in USB Type-A ports. It is also recommended to put a 10-μF ceramic  
capacitor on the OUT pin for better voltage bypass.  
8.2.1.2 Detailed Design Procedure  
The TPS25810-Q1 device supports up to three different input voltages, based on the application. In the simplest  
implementation, all input pins are tied to a single voltage source set to 5 V, as shown in Figure 20. However, it is  
recommended to set a slightly higher (100 mV to 200 mV) input voltage, when possible, to compensate for IR  
loss from the source to the Type-C connector.  
Other design considerations are listed as follows:  
Place at least 120 µF of bypass capacitance close to the INx pins versus the OUT pin, as Type-C is a cold-  
socket connector.  
A 10-µF bypass capacitor is recommended to be placed near a Type-C receptacle VBUS pin to handle load  
transients.  
Depending on the maximum current-level advertisement supported by the Type-C port in the system, set the  
CHG and CHG_HI levels accordingly. Advertisement of 3 A is shown in Figure 20.  
EN, CHG, and CHG_HI pins can be tied directly to GND or VAUX without a pullup resistor.  
CHG and CHG_HI can also be dynamically controlled by a microcontroller to change the current  
advertisement level to the UFP.  
When an open-drain output of the TPS25810-Q1 device is not used, it can be left open or tied to GND.  
Use a 1% 100-kresistor to connect between the REF and REF_RTN pins, placing it close to the device pin  
and isolated from switching noise on the board.  
26  
Copyright © 2016, Texas Instruments Incorporated  
 
 
TPS25810-Q1  
www.ti.com.cn  
ZHCSF05 NOVEMBER 2016  
Typical Applications (continued)  
8.2.1.3 Application Curves  
VIN  
CC1  
VIN  
VBUS  
VBUS  
CC2  
CC1  
IN  
Time 20 ms/div  
Basic start-up: IN1 = IN2 = AUX = EN = CHG = CHG_HI = 5 V,  
CC1 = Rd, CC2 = open  
Time 50 ms/div  
IN1 = IN2 = AUX = EN = CHG = CHG_HI = 5 V, CC1 = open,  
CC2 = open Rd  
Figure 21. Basic Start-Up  
Figure 22. Start-Up  
VBUS VIN  
VIN  
VBUS  
IN  
CC1  
IN  
CC1  
Time 50 ms/div  
IN1 = IN2 = AUX = EN = CHG = CHG_HI = 5 V, CC1 = Rd,  
CC2 = open, OUT = shorted  
Time 200 ms/div  
IN1 = IN2 = AUX = EN = 5 V; CHG = CHG_HI = 0 V,  
CC1 = open, CC2 = Rd, OUT = open 5 Ω  
Figure 24. Hot-Plug to Short  
Figure 23. Load Step  
VIN  
VIN  
VBUS  
VOUT  
CC1  
IN  
CC1  
CC2  
Time 20 ms/div  
IN1 = IN2 = AUX = EN = CHG = CHG_HI = 5 V, CC1 = short,  
CC2 = Rd  
Time 20 ms/div  
IN1 = IN2 = AUX = EN = CHG = CHG_HI = 5 V, CC1 = Rd →  
open, CC2 = open  
Figure 25. Short On CC1  
Figure 26. Remove Rd  
Copyright © 2016, Texas Instruments Incorporated  
27  
 
TPS25810-Q1  
ZHCSF05 NOVEMBER 2016  
www.ti.com.cn  
Typical Applications (continued)  
VIN  
VBUS  
CC2  
CC1  
Time 50 ms/div  
VIN 5 V 3.5 V (100 ms) 5 V (1 V/ms),  
IN1 = IN2 = AUX = EN = CHG = CHG_HI = 5 V,  
CC1 = Rd, CC2 = Ra  
Figure 27. Brown-Out Test  
28  
Copyright © 2016, Texas Instruments Incorporated  
TPS25810-Q1  
www.ti.com.cn  
ZHCSF05 NOVEMBER 2016  
Typical Applications (continued)  
8.2.2 Type-C DFP Port Implementation With BC 1.2 (DCP Mode) Support  
Figure 28 shows a Type-C DFP implementation capable of supporting 5-V, 3-A charging in a Type-C port that is  
also able to support charging of legacy devices when used with a Type-C µB cable assembly for charging  
phones and handheld devices equipped with a µB connector.  
This implementation requires the use of a TPS2514A-Q1, a USB dedicated charging-port (DCP) controller with  
auto-detect feature to charge not only BC1.2 compliant handheld devices but also popular phones and tablets  
that incorporate their own propriety charging algorithm. See the TPS2514A-Q1 datasheet for more details.  
TPS2514A-Q1  
IN  
DM1  
DP1  
NC  
0.1 µF  
NC  
GND  
USB Type-C  
Receptacle  
TPS25810-Q1  
5 V  
2
3
4
5
6
7
8
VBUS  
IN1  
14  
15  
13  
11  
1
OUT  
OUT  
CC2  
CC1  
IN1  
D–  
D+  
IN2  
AUX  
EN  
FAULT  
20  
19  
18  
17  
16  
12  
10 µF  
CHG  
CHG_HI  
LD_DET  
UFP  
POL  
10  
REF  
AUDIO  
DEBUG  
GND  
100 kW  
(1%)  
9
REF_RTN  
Copyright © 2016, Texas Instruments Incorporated  
Figure 28. Type-C DFP Port Implementation With BC 1.2 (DCP Mode) Support  
8.2.2.1 Design Requirements  
See Design Requirements for the design requirements.  
8.2.2.2 Detailed Design Procedure  
See Detailed Design Procedure for the detailed design procedure.  
8.2.2.3 Application Curves  
See Application Curves for the application curves.  
Copyright © 2016, Texas Instruments Incorporated  
29  
 
TPS25810-Q1  
ZHCSF05 NOVEMBER 2016  
www.ti.com.cn  
9 Power Supply Recommendations  
The device has three power supply inputs. IN1, which is directly connected to OUT via the power MOSFET, is  
tied to the VBUS pin in the Type-C receptacle. IN2 also has a current-limiting switch and is multiplexed either to  
the CC1 or CC2 pin in the Type-C receptacle, depending on cable plug polarity. AUX is the device supply. In  
most applications, all three supplies are tied together. In a special implementation like power wake, IN1 and IN2  
are tied to a single supply, whereas AUX is powered by a supply that is always ON and can be as low as 2.9 V.  
USB Specification Revisions 2.0 and 3.1 require VBUS voltage at the connector to be between 4.75 V and 5.5 V.  
Depending on layout and routing from the supply to the connector, the voltage drop on VBUS must be tightly  
controlled. Locate the input supply close to the device. For all applications, a 10-μF or greater ceramic bypass  
capacitor between OUT and GND is recommended, located as close to the Type-C connector of the device as  
possible for local noise decoupling. The power supply should be rated higher than the current limit setting to  
avoid voltage droops during overcurrent and short-circuit conditions.  
30  
Copyright © 2016, Texas Instruments Incorporated  
TPS25810-Q1  
www.ti.com.cn  
ZHCSF05 NOVEMBER 2016  
10 Layout  
10.1 Layout Guidelines  
Layout best practices as they apply to the TPS25810-Q1 device are listed as follows.  
For all applications, a 10-µF ceramic capacitor is recommended near the Type-C receptacle and another  
120µF ceramic capacitor close to the IN1 pin.  
The optimum placement of the 120-µF capacitor is closest to the IN1 and GND pins of the device.  
Care must be taken to minimize the loop area formed by the bypass capacitor connection, the IN1 pin,  
and the GND pin of the IC. See Figure 29 for a PCB layout example.  
High-current-carrying power-path connections to the device should be as short as possible and should be  
sized to carry at least twice the full-load current.  
Have the input and output traces as short as possible. The most common cause of voltage loss failure in  
USB power delivery is the resistance associated with the VBUS trace. Trace length, maximum current being  
supplied for normal operation, and total resistance associated with the VBUS trace must be taken into  
account while budgeting for voltage loss.  
For example, a power-carrying trace that supplies 3 A, at a distance of 20 inches, 0.1-in. wide, with 2oz.  
copper on the outer layer has a total resistance of approximately 0.046 Ω and voltage loss of 0.14 V. The  
same trace at 0.05 in. wide has a total resistance of approximately 0.09 Ω and voltage loss of 0.28 V.  
Make power traces as wide as possible.  
The resistor attached to the REF pin of the device has several requirements:  
It is recommended to use a 1% 100-klow-temperature-cocoefficient resistor.  
It should be connected to the REF and REF_RTN pins (pins 9 and pin 10, respectively).  
The REF_RTN pin should be isolated from the GND plane. See Figure 29.  
The trace routing between the REF and REF_RTN pins of the device should be as short as possible to  
reduce parasitic effects on current-limit and current-advertisement accuracy. These traces should not have  
any coupling to switching signals on the board.  
Locate all TPS25810-Q1 pullup resistors for open-drain outputs close to their connection pin. Pullup resistors  
should be 100 k.  
When a particular open-drain output is not used or needed in the system, leave the associated pin open or  
tied to GND.  
Keep the CC lines close to the same length.  
Thermal considerations:  
When properly mounted, the thermal-pad package provides significantly greater cooling ability than an  
ordinary package. To operate at rated power, the thermal pad must be soldered to the board GND plane  
directly under the device. The thermal pad is at GND potential and can be connected using multiple vias  
to inner-layer GND. Other planes, such as the bottom side of the circuit board, can be used to increase  
heat sinking in higher-current applications. See the PowerPad™ Thermally Enhanced Package technical  
report (SLMA002) and PowerPAD™ Made Easy application brief (SLMA004) for more information on  
using this thermal pad package.  
The thermal via land pattern specific to the TPS25810-Q1 device can be downloaded from the device  
Web page at www.ti.com.  
Obtaining acceptable performance with alternate layout schemes is possible; however, the layout example  
in the following section has been shown to produce good results and is intended as a guideline.  
ESD considerations:  
The TPS25810-Q1 device has built-in ESD protection for CC1 and CC2. Keep trace length to a minimum  
from the Type-C receptacle to the TPS25810-Q1 device on CC1 and CC2.  
A 10-µF output capacitor should be placed near the Type-C receptacle.  
See the TPS25810EVM-745 evaluation module for an example of a double-layer board that passes  
IEC61000-4-2 testing.  
Do not create stubs or test points on the CC lines. Keep the traces short if possible, and use minimal vias  
along the traces (1–2 inches or less).  
See the ESD Protection Layout Guide application report (SLVA680) for additional information.  
Have a dedicated ground plane layer, if possible, to avoid differential voltage buildup.  
Copyright © 2016, Texas Instruments Incorporated  
31  
TPS25810-Q1  
ZHCSF05 NOVEMBER 2016  
www.ti.com.cn  
10.2 Layout Example  
Top Layer Signal Trace  
Top Layer Signal Ground Plane  
Bottom Layer Signal Trace  
Bottom Layer Signal Ground Plane  
Via to Bottom Layer Signal Ground Plane  
Via to Bottom Layer Signal  
AUX  
1
16  
15  
2
Thermal  
Pad  
IN1  
OUT  
3
14  
13  
12  
11  
4
5
6
IN2  
CC2  
GND  
CC1  
AUX  
EN  
Signal Ground  
Bottom Layer  
Signal Ground  
Top Layer  
Figure 29. Layout Example  
32  
版权 © 2016, Texas Instruments Incorporated  
TPS25810-Q1  
www.ti.com.cn  
ZHCSF05 NOVEMBER 2016  
11 器件和文档支持  
11.1 器件支持  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.2 文档支持  
11.2.1 相关文档ꢀ  
PowerPAD™ 耐热增强型封装(文献编号:SLMA002)  
PowerPAD™ 速成》(文献编号:SLMA004)  
TPS25810EVM-745 用户指南》(文献编号SLVUA0)  
TPS25810 高压 DFP 保护》文献编号:SLVA751)  
11.3 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
11.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 商标  
E2E is a trademark of Texas Instruments.  
USB Type-C is a trademark of USB Implementers Forum, Inc..  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件提供的最新数据。本数据随时可能发生变更并且  
不对本文档进行修订,恕不另行通知。要获得这份数据表的浏览器版本,请查阅左侧的导航窗格。  
版权 © 2016, Texas Instruments Incorporated  
33  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
500  
50  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CSD18536KTT  
CSD18536KTTT  
ACTIVE  
DDPAK/  
TO-263  
KTT  
3
3
RoHS-Exempt  
& Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-55 to 175  
-55 to 175  
CSD18536KTT  
CSD18536KTT  
ACTIVE  
DDPAK/  
TO-263  
KTT  
RoHS-Exempt  
& Green  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

CSD18537NKCS

60-V, N-Channel NexFET Power MOSFETs
TI

CSD18537NQ5A

60-V N-Channel NexFET Power MOSFETs
TI

CSD18537NQ5AT

采用 5mm x 6mm SON 封装的单路、13mΩ、60V、N 沟道 NexFET™ 功率 MOSFET | DQJ | 8 | -55 to 150
TI

CSD18537NQ5A_14

60 V N-Channel NexFET™ Power MOSFETs
TI

CSD18541F5

采用 1.5mm x 0.8mm LGA 封装、具有栅极 ESD 保护的单路、65mΩ、60V、N 沟道 NexFET™ 功率 MOSFET
TI

CSD18541F5T

采用 1.5mm x 0.8mm LGA 封装、具有栅极 ESD 保护的单路、65mΩ、60V、N 沟道 NexFET™ 功率 MOSFET | YJK | 3 | -55 to 150
TI

CSD18542KCS

采用 TO-220 封装的单路、4mΩ、60V、N 沟道 NexFET™ 功率 MOSFET
TI

CSD18542KTT

采用 D2PAK 封装的单路、4mΩ、60V、N 沟道 NexFET™ 功率 MOSFET
TI

CSD18542KTTT

采用 D2PAK 封装的单路、4mΩ、60V、N 沟道 NexFET™ 功率 MOSFET | KTT | 3 | -55 to 175
TI

CSD18543Q3A

采用 3mm x 3mm SON 封装的单路、9.9mΩ、60V、N 沟道 NexFET™ 功率 MOSFET
TI

CSD18543Q3AT

采用 3mm x 3mm SON 封装的单路、9.9mΩ、60V、N 沟道 NexFET™ 功率 MOSFET | DNH | 8 | -55 to 150
TI

CSD18563Q5A

60-V N-Channel NexFET Power MOSFETs
TI