DS90UB914QSQ/NOPB [TI]

10MHz 至 100MHz、10/12 位 FPD-Link III 解串器 | RHS | 48 | -40 to 105;
DS90UB914QSQ/NOPB
型号: DS90UB914QSQ/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

10MHz 至 100MHz、10/12 位 FPD-Link III 解串器 | RHS | 48 | -40 to 105

光电二极管
文件: 总72页 (文件大小:1227K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
DS90UB91xQ-Q1 具有双向控制通道的 10MHz 100MHz10 位和 12  
位直流均衡 FPD-Link III 串行器和解串器  
1 特性  
接收器交错输出  
1
10MHz 100MHz 输入像素时钟支持  
2 应用  
单个差分对互连  
前置摄像头或后置摄像头,实现碰撞缓解  
停车辅助系统环视  
可编程的数据有效载荷:  
10 位有效载荷,高达 100MHz  
12 位有效载荷,高达 75MHz  
3 说明  
连续低延迟双向控制接口通道,支持 I2C,频率达  
DS90UB91xQ-Q1 芯片组提供一个具有高速正向通道  
和双向控制通道的 FPD-Link III 接口,用来实现单一差  
分对上的数据传输。 DS90UB91xQ-Q1 芯片组的高速  
正向通道和双向控制通道数据路径上均包含差分信令。  
串行器和解串器对主要用于电子控制单元 (ECU) 中成  
像器与视频处理器的连接。 该芯片组非常适用于驱动  
需要高达 12 位像素深度、2 个同步信号以及双向控制  
通道总线的视频数据。  
400kHz  
2:1 多路复用器,可在两个输入成像器之间进行选  
具有直流均衡编码的嵌入式时钟,支持交流耦合互  
能够驱动长达 25 米的屏蔽双绞线  
接收均衡器自动适应电缆损耗的变化  
串行器和解串器上均提供有 4 个专用通用输入/输出  
引脚 (GPIO)  
解串器上有一个多路复用器,可用于在两个输入成像器  
之间进行选择。 解串器只能激活一个输入成像器。 主  
视频传输将 10 位和 12 位数据转换为单条高速串行数  
据流,另外一个独立的低延迟双向控制通道传输负责接  
收来自 I2C 端口的控制信息,与视频消隐期无关。  
LOCK 输出报告引脚和 AT-SPEED BIST(全速内  
置自检)诊断特性,可验证链路完整性  
串行器上提供 1.8V2.8V 3.3V 兼容并行输入  
1.8V 单电源  
符合 ISO 10605 IEC 61000-4-2 静电放电  
(ESD) 标准  
器件信息(1)  
汽车级产品:符合 AEC-Q100 2 级要求  
温度范围:-40°C +105°C  
器件型号  
封装  
WQFN (32)  
WQFN (48)  
封装尺寸(标称值)  
5.00mm x 5.00mm  
7.00mm x 7.00mm  
DS90UB913Q-Q1  
DS90UB914Q-Q1  
小尺寸串行器 (5mm × 5mm)  
解串器上提供 EMI/EMC 缓解功能  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
可编程扩频 (SSCG) 输出  
典型应用电路  
Parallel  
Data In  
Parallel  
Data Out  
FPD-Link III  
10 or 12  
10 or 12  
2
2
DSP, FPGA/  
µ-Processor/  
ECU  
HSYNC,  
VSYNC  
4
Megapixel  
Imager/Sensor  
HSYNC,  
VSYNC  
4
DS90UB913Q  
DS90UB914Q  
Bidirectional  
Control Channel  
GPO  
2
GPIO  
2
Bidirectional  
Control Bus  
Bidirectional  
Control Bus  
Serializer  
Deserializer  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNLS420  
 
 
 
 
 
 
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
目录  
9.1 AC Timing Diagrams and Test Circuits................... 20  
10 Detailed Description ........................................... 25  
10.1 Overview ............................................................... 25  
10.2 Functional Block Diagram ..................................... 25  
10.3 Feature Description............................................... 26  
10.4 Device Functional Modes...................................... 33  
10.5 Register Maps....................................................... 41  
11 Application and Implementation........................ 56  
11.1 Applications Information........................................ 56  
11.2 Typical Application ................................................ 56  
12 Power Supply Recommendations ..................... 60  
13 Layout................................................................... 60  
13.1 Layout Guidelines ................................................. 60  
13.2 Layout Example .................................................... 61  
14 器件和文档支持 ..................................................... 63  
14.1 文档支持 ............................................................... 63  
14.2 相关链接................................................................ 63  
14.3 社区资源................................................................ 63  
14.4 ....................................................................... 63  
14.5 静电放电警告......................................................... 63  
14.6 Glossary................................................................ 63  
15 机械、封装和可订购信息....................................... 63  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明(续............................................................... 3  
器件比较............................................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 9  
8.1 Absolute Maximum Ratings ...................................... 9  
8.2 ESD Ratings.............................................................. 9  
8.3 Recommended Operating Conditions....................... 9  
8.4 Thermal Information................................................ 10  
8.5 Electrical Characteristics ........................................ 10  
8.6 Timing Requirements: Recommended for Serializer  
PCLK ....................................................................... 14  
8.7 AC Timing Specifications (SCL, SDA) - I2C  
Compliant................................................................. 15  
8.8 Bidirectional Control Bus DC Timing Specifications  
(SCL, SDA) - I2C Compliant..................................... 15  
8.9 Switching Characteristics: Serializer....................... 16  
8.10 Switching Characteristics: Deserializer................. 17  
8.11 Typical Characteristics.......................................... 19  
Parameter Measurement Information ................ 20  
9
4 修订历史记录  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision C (January 2014) to Revision D  
Page  
已添加引脚配置和功能部分,ESD 额定值表,特性描述部分,器件功能模式应用和实施部分,电源相关建议部分,  
布局部分,器件和文档支持部分以及机械、封装和可订购信息部分........................................................................................ 1  
已更新数据表以符合新的 TI 布局............................................................................................................................................ 1  
Added text and graphic to Power Up Requirements ........................................................................................................... 39  
Changes from Revision B (April 2013) to Revision C  
Page  
Changed "PCLK from imager mode" value in DS90UB913Q Serializer MODE Resistor Value table from 0 kΩ to 100  
kΩ ......................................................................................................................................................................................... 35  
Changed Falling to Rising in RRFB...................................................................................................................................... 47  
Changed Rising to Falling in RRFB...................................................................................................................................... 47  
Changes from Revision A (April 2013) to Revision B  
Page  
Changed layout of National Data Sheet to TI format ........................................................................................................... 61  
2
版权 © 2012–2015, Texas Instruments Incorporated  
 
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
5 说明(续)  
凭借德州仪器 (TI) 的嵌入式时钟技术,可在单一差分对上进行透明的全双工通信,两个方向上运载不对称的双向控  
制通道信息。 这种单一串行数据流通过消除并行数据与时钟路径间的偏差,简化了印刷电路板 (PCB) 走线和电缆  
上的宽数据总线传输。 这样,通过限制路径的宽度,大大节省了系统成本,相应地减少了 PCB 层数、电缆宽度以  
及连接器尺寸和引脚数量。 此外,解串器输入还提供自适应均衡功能来补偿较长距离介质上的损耗。 内部直流均  
衡编码和解码被用来支持交流耦合互连。 此串化器采用 32 引脚超薄型四方扁平无引线 (WQFN) 封装,而解串器采  
48 引脚 WQFN 封装。  
6 器件比较表  
器件编号  
FPD-III 功能  
串行器  
封装  
传输介质  
STP  
PCLK 频率  
DS90UB913Q-Q1  
DS90UB913A-Q1  
DS90UB914Q-Q1  
DS90UB914A-Q1  
32 引脚 RTV (WQFN)  
32 引脚 RTV (WQFN)  
48 引脚 RHS (WQFN)  
48 引脚 RHS (WQFN)  
10MHz 100MHz  
25MHz 100MHz  
10MHz 100MHz  
25MHz 100MHz  
串行器  
同轴或屏蔽双绞线 (STP)  
STP  
解串器  
解串器  
同轴或 STP  
Copyright © 2012–2015, Texas Instruments Incorporated  
3
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
7 Pin Configuration and Functions  
RTV Package  
32-Pin WQFN  
Top View  
24  
23  
22  
21  
20  
19  
18  
17  
VDDIO  
DIN[6]  
GPO[1]  
GPO[0]  
VDDCML  
DOUT+  
DOUT-  
VDDT  
DAP = GND  
DIN[7]  
VDDD  
DS90UB913Q  
Serializer  
DIN[8]  
DIN[9]  
VDDPLL  
DIN[10]  
DIN[11]  
PDB  
1
2
3
4
5
6
7
8
DS90UB913Q-Q1 Serializer Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
LVCMOS PARALLEL INTERFACE  
19, 20, 21,  
22, 23, 24,  
26, 27, 29,  
30, 31, 32  
Inputs,  
LVCMOS  
with pulldown  
DIN[0:11]  
Parallel data inputs  
Inputs,  
LVCMOS  
with pulldown  
HSYNC  
PCLK  
1
Horizontal SYNC input  
Input, LVCMOS Pixel clock input pin  
with pulldown  
3
2
Strobe edge set by TRFB control register.  
Inputs,  
LVCMOS  
VSYNC  
Vertical SYNC input  
with pulldown  
4
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
DS90UB913Q-Q1 Serializer Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
GENERAL-PURPOSE OUTPUT (GPO)  
General-purpose output pins can be configured as outputs; used to control and respond  
to various commands. GPO[0:1] can be configured to be the outputs for input signals  
coming from GPIO[0:1] pins on the deserializer or can be configured to be outputs of  
the local register on the serializer.  
Output,  
LVCMOS  
GPO[1:0]  
16, 15  
GPO2 pin can be configured to be the output for input signal coming from the GPIO2  
pin on the deserializer or can be configured to be the output of the local register on the  
serializer. It can also be configured to be the output clock pin when the DS90UB913Q-  
Q1 device is used in the External Oscillator mode. See Applications Information for a  
detailed description of the DS90UB91xQ-Q1 chipsets working with the external  
oscillator.  
GPO[2]/  
CLKOUT  
Output,  
LVCMOS  
17  
GPO3 can be configured to be the output for input signals coming from the GPIO3 pin  
on the deserializer or can be configured to be the output of the local register setting on  
the serializer. It can also be configured to be the input clock pin when the  
DS90UB913Q-Q1 serializer is working with an external oscillator. See Applications  
Information section for a detailed description of the DS90UB91xQ-Q1 chipsets working  
with an external oscillator.  
GPO[3]/  
CLKIN  
Input/Output,  
LVCMOS  
18  
BIDIRECTIONAL CONTROL BUS - I2C COMPATIBLE  
Input/Output,  
Open-Drain  
Clock line for the bidirectional control bus communication  
SCL requires an external pullup resistor to VDDIO  
SCL  
SDA  
4
5
.
Input/Output,  
Open-Drain  
Data line for the bidirectional control bus communication  
SDA requires an external pullup resistor to VDDIO  
.
Device mode select  
Input, LVCMOS Resistor to Ground and 10-kpullup to 1.8-V rail. MODE pin on the serializer can be  
MODE  
8
with pulldown  
Input, analog  
used to select whether the system is running off the PCLK from the imager or an  
external oscillator. See details in Table 3.  
Device ID address select  
ID[x]  
6
The ID[x] pin on the serializer is used to assign the I2C device address. Resistor to  
Ground and 10-kpullup to 1.8-V rail. See Table 1.  
CONTROL AND CONFIGURATION  
Power down Mode Input Pin  
PDB = H, serializer is enabled and is ON.  
Input, LVCMOS  
with pulldown  
PDB  
RES  
9
7
PDB = L, Serailizer is in power-down mode. When the serializer is in power-down, the  
PLL is shutdown, and IDD is minimized. Programmed control register data are NOT  
retained and reset to default values  
Input, LVCMOS Reserved  
with pulldown  
This pin MUST be tied LOW.  
FPD-Link III INTERFACE  
Input/Output,  
CML  
Noninverting differential output, bidirectional control channel input. The interconnect  
must be AC-coupled with a 100-nF capacitor.  
DOUT+  
DOUT–  
13  
12  
Input/Output,  
CML  
Inverting differential output, bidirectional control channel input. The interconnect must be  
AC-coupled with a 100-nF capacitor.  
POWER AND GROUND  
VDDPLL  
VDDT  
10  
11  
14  
28  
Power, Analog PLL Power, 1.8 V ±5%  
Power, Analog Tx Analog Power, 1.8 V ±5%  
Power, Analog CML and bidirectional channel driver power, 1.8 V ±5%  
Power, Digital Digital power, 1.8 V ±5%  
VDDCML  
VDDD  
Power for I/O stage. The single-ended inputs and SDA, SCL are powered from VDDIO  
VDDIO can be connected to a 1.8 V ±5% or 2.8 V ±10% or 3.3 V ±10%  
.
VDDIO  
25  
Power, Digital  
DAP must be grounded. DAP is the large metal contact at the bottom side, located at  
VSS  
DAP  
Ground, DAP  
the center of the WQFN package. Connected to the ground plane (GND) with at least 9  
vias.  
Copyright © 2012–2015, Texas Instruments Incorporated  
5
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
RHS Package  
48-Pin WQFN  
Top View  
MODE  
CMLOUTP  
CMLOUTN  
ROUT[0]  
ROUT[1]  
ROUT[2]  
ROUT[3]  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
DAP = GND  
VDDCML0  
RIN0+  
RIN0-  
VDDIO2  
ROUT[4]  
DS90UB914Q  
Deserializer  
RES  
ROUT[5]  
VDDD  
RES  
ROUT[6]  
ROUT[7]  
ROUT[8]  
ROUT[9]  
VDDPLL  
SEL  
PASS  
LOCK  
DS90UB914Q-Q1 Deserializer Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
LVCMOS PARALLEL INTERFACE  
11, 12, 13,  
14, 15, 16,  
18, 19, 21,  
Outputs,  
LVCMOS  
ROUT[11:0]  
Parallel data outputs  
22, 23, 24  
Output,  
LVCMOS  
HSYNC  
PCLK  
10  
8
Horizontal SYNC output  
Pixel clock output pin  
Output,  
LVCMOS  
Strobe edge set by RRFB control register  
Output,  
LVCMOS  
VSYNC  
9
Vertical SYNC output  
GENERAL-PURPOSE INPUT/OUTPUT (GPIO)  
General-purpose input/output pins can be used to control and respond to various  
commands. They may be configured to be the input signals for the corresponding  
GPOs on the serializer or they may be configured to be outputs to follow local  
register settings.  
Digital  
Input/Output,  
LVCMOS  
GPIO[1:0]  
GPIO[3:2]  
27, 28  
25, 26  
General-purpose input/output pins GPO[2:3] can be configured to be input signals  
for GPOs on the serializer. In addition they can also be configured to be outputs  
to follow the local register settings. When the SerDes chipsets are working with  
an external oscillator, these pins can be configured only to be outputs to follow  
the local register settings.  
Digital  
Input/Output  
LVCMOS  
6
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
DS90UB914Q-Q1 Deserializer Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
BIDIRECTIONAL CONTROL BUS - I2C COMPATIBLE  
Input/Output,  
Open-Drain  
Clock line for the bidirectional control bus communication  
SCL  
SDA  
2
1
SCL requires an external pullup resistor to VDDIO  
.
Input/Output,  
Open-Drain  
Data line for bidirectional control bus communication  
SDA requires an external pullup resistor to VDDIO  
.
Device mode select pin  
Resistor-to-Ground and 10-kpullup to 1.8-V rail. The MODE pin on the  
deserializer can be used to configure the serializer and deserializer to work in  
different input PCLK range. See details in Table 8.  
12-bit low-frequency mode (10- to 50-MHz operation):  
In this mode, the serializer and deserializer can accept up to 12 bits DATA+2  
SYNC. Input PCLK range is from 10 MHz to 50 MHz.  
12-bit high-frequency mode (15- to 75-MHz operation): In this mode, the  
serializer and deserializer can accept up to 12 bits DATA + 2 SYNC. Input PCLK  
range is from 15 MHz to 75 MHz.  
Input, LVCMOS  
with pullup  
MODE  
37  
10-bit mode (20- to 100-MHz operation):  
In this mode, the serializer and deserializer can accept up to 10 bits DATA + 2  
SYNC. Input PCLK frequency can range from 20 MHz to 100 MHz.  
Refer to Table 4 in the Applications Information section on how to configure the  
MODE pin on the deserializer.  
The IDx[0] and IDx[1] pins on the deserializer are used to assign the I2C device  
address. Resistor-to-Ground and 10-kpullup to 1.8-V rail. See Table 2  
Input pin to select the slave device address.  
IDx[0:1]  
35, 34  
Input, analog  
Input is connect to external resistor divider to set programmable Device ID  
address.  
CONTROL AND CONFIGURATION  
Power-down mode input pin  
PDB = H, deserializer is enabled and is ON.  
PDB = L, deserializer is in sleep (power-down mode). When the deserializer is in  
sleep, programmed control register data are NOT retained and reset to default  
values.  
Input, LVCMOS  
with pulldown  
PDB  
30  
LOCK status output pin  
Output,  
LVCMOS  
LOCK = H, PLL is Locked, outputs are active  
LOCK = L, PLL is unlocked, ROUT and PCLK output states are controlled by  
OSS_SEL control register. May be used as link status.  
LOCK  
48  
6
Input  
BIST enable pin  
BISTEN  
LVCMOS with BISTEN=H, BIST mode enabled  
pulldown  
BISTEN=L, BIST mode is disabled  
PASS output pin for BIST mode.  
PASS = H, ERROR FREE transmission  
Output,  
LVCOMS  
PASS  
47  
PASS = L, one or more errors were detected in the received payload.  
See Built-In Self Test section for more information. Leave open if unused. Route  
to test point (pad) recommended.  
Input  
LVCMOS with  
pulldown  
Output enable input  
Refer to Table 5  
OEN  
5
4
Input  
LVCMOS with  
pulldown  
Output sleep state select pin  
Refer to Table 5  
OSS_SEL  
MUX select line  
Input  
SEL = L, RIN0± input. This selects input A as the active channel on the  
SEL  
46  
LVCMOS with deserializer.  
pulldown SEL = H, RIN1± input. This selects input B as the active channel on the  
deserializer.  
Copyright © 2012–2015, Texas Instruments Incorporated  
7
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
DS90UB914Q-Q1 Deserializer Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
FPD-LINK III INTERFACE  
Input/Output,  
CML  
Noninverting differential input, bidirectional control channel. The IO must be AC  
coupled with a 100-nF capacitor  
RIN0+  
RIN0-  
RIN1+  
RIN1-  
41  
Input/Output,  
CML  
Inverting differential input, bidirectional control channel. The IO must be AC  
coupled with a 100-nF capacitor  
42  
32  
33  
Input/Output,  
CML  
Noninverting differential input, bidirectional control channel. The IO must be AC  
coupled with a 100-nF capacitor  
Input/Output,  
CML  
Inverting differential input, bidirectional control channel. The IO must be AC  
coupled with a 100-nF capacitor  
RES  
43, 44  
38, 39  
Reserved; This pin must always be tied low.  
CMLOUTP/N  
Route to test point or leave open if unused  
POWER AND GROUND  
LVCMOS I/O buffer power, The single-ended outputs and control input are  
powered from VDDIO. VDDIO can be connected to a 1.8 V ±5% or 3.3 V ±10%  
VDDIO1/2/3  
29, 20, 7  
Power, Digital  
VDDD  
17  
3
Power, Digital Digital core power, 1.8 V ±5%  
Power, Analog SSCG PLL power, 1.8 V ±5%  
VDDSSCG  
VDDR  
36  
Power, Analog RX analog power, 1.8 V ±5%  
VDDCML0/1  
VDDPLL  
40, 31  
45  
Power, Analog CML and bidirectional control channel drive power, 1.8 V±5%  
Power, Analog PLL Power, 1.8 V ±5%  
DAP must be grounded. DAP is the large metal contact at the bottom side,  
Ground, DAP located at the center of the WQFN package. Connected to the ground plane  
(GND) with at least 16 vias.  
VSS  
DAP  
8
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1) (2) (3)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
MAX  
2.5  
UNIT  
V
Supply voltage – VDDn (1.8 V)  
Supply voltage – VDDIO  
LVCMOS input voltage  
4.0  
V
VDDIO + 0.3  
VDD + 0.3  
VDD + 0.3  
150  
V
CML driver I/O voltage (VDD  
)
V
CML receiver I/O voltage (VDD  
)
V
Junction temperature  
°C  
1/θJA above  
Maximum package power dissipation capacity package  
°C/W  
+25°  
Air discharge (DOUT+, DOUT–, RIN+, RIN–)  
Contact discharge (DOUT+, DOUT–, RIN+, RIN–)  
Storage temperature Tstg  
25  
7  
25  
7
kV  
kV  
°C  
65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
(3) For soldering specifications: see product folder at www.ti.com and SNOA549.  
8.2 ESD Ratings  
VALUE  
±8000  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Machine model (MM)  
±1000  
±250  
Electrostatic  
discharge  
V(ESD)  
Air Discharge (DOUT+, DOUT-, RIN+, RIN-)  
±25 000  
±7000  
±15 000  
±8000  
V
IEC 61000-4-2(2)  
ISO10605(3)(4)  
Contact Discharge (DOUT+, DOUT-, RIN+, RIN-)  
Air Discharge  
Contact Discharge  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) RD = 330 , CS = 150 pF  
(3) RD = 330 , CS = 150 / 330 pF  
(4) RD = 2 K, CS = 150 / 330 pF  
8.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.71  
1.71  
3.0  
NOM  
1.8  
MAX  
1.89  
1.89  
3.6  
UNIT  
Supply voltage (VDDn  
)
V
LVCMOS supply voltage (VDDIO) OR  
LVCMOS supply voltage (VDDIO) OR  
LVCMOS supply voltage (VDDIO) only serializer  
VDDn (1.8 V)  
1.8  
3.3  
V
2.52  
2.8  
3.08  
25  
Supply noise(1)  
VDDIO (1.8 V)  
VDDIO (3.3 V)  
25  
mVp-p  
50  
Operating free-air temperature (TA)  
PCLK clock frequency  
–40  
10  
25  
105  
100  
°C  
MHz  
(1) Supply noise testing was done with minimum capacitors (as shown on Figure 49 and Figure 48) on the PCB. A sinusoidal signal is AC  
coupled to the VDDn (1.8-V) supply with amplitude = 25 mVp-p measured at the device VDDn pins. Bit error rate testing of input to the  
serializer and output of the deserializer with 10 meter cable shows no error when the noise frequency on the serializer is less than  
1 MHz. The deserializer on the other hand shows no error when the noise frequency is less than 750 kHz.  
Copyright © 2012–2015, Texas Instruments Incorporated  
9
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
8.4 Thermal Information  
DS90UB913Q-Q1  
RTV (WQFN)  
32 PINS  
DS90UB914Q-Q1  
RHS (WQFN)  
48 PINS  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
38.4  
26.9  
°C/W  
°C/W  
RθJC(top)  
6.9  
4.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
8.5 Electrical Characteristics  
over recommended operating supply and temperature ranges unless otherwise specified.(1)  
(2) (3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LVCMOS DC SPECIFICATIONS 3.3V I/O (SERIALIZER INPUTS, DESERIALIZER OUTPUTS, GPI, GPO, CONTROL INPUTS AND  
OUTPUTS)  
High level input  
voltage  
VIH  
VIN = 3 V to 3.6 V  
2
VIN  
V
Low level input  
voltage  
VIL  
IIN  
VIN = 3 V to 3.6 V  
GND  
20  
2.4  
0.8  
20  
V
µA  
V
Input current  
VIN = 0 V or 3.6 V, VIN = 3 V to 3.6 V  
VDDIO = 3 V to 3.6 V, IOH = 4 mA  
±1  
High level output  
voltage  
VOH  
VDDIO  
Low level output  
voltage  
VOL  
IOS  
IOZ  
VDDIO = 3 V to 3.6 V, IOL = +4 mA  
Serializer  
GND  
0.4  
V
–15  
–35  
GPO outputs  
Output short circuit  
current  
VOUT = 0 V  
mA  
Deserializer LVCMOS  
outputs  
TRI-STATE output  
current  
PDB = 0 V,  
VOUT = 0 V or VDD  
LVCMOS outputs  
–20  
20  
µA  
LVCMOS DC SPECIFICATIONS 1.8V I/O (SERIALIZER INPUTS, DESERIALIZER OUTPUTS, GPI, GPO, CONTROL INPUTS AND  
OUTPUTS)  
High level input  
voltage  
VIH  
VIN = 1.71 V to 1.89 V  
0.65 VIN  
VIN  
V
Low level input  
voltage  
VIL  
IIN  
VIN = 1.71 V to 1.89 V  
GND  
–20  
0.35 VIN  
20  
Input current  
VIN = 0 V or 1.89 V, VIN = 1.71 V to 1.89 V  
VDDIO = 1.71 V to 1.89 V, IOH = 4 mA  
±1  
µA  
V
High level output  
voltage  
VDDIO –  
VOH  
VDDIO  
0.45  
VDDIO = 1.71 V to 1.89  
Deserializer LVCMOS  
V
IOL = 4 mA  
Low level output  
voltage  
VOL  
GND  
0.45  
V
outputs  
Serializer  
GPO outputs  
–11  
–17  
Output short circuit  
current  
IOS  
VOUT = 0 V  
mA  
µA  
Deserializer LVCMOS  
outputs  
TRI-STATE output  
current  
PDB = 0 V,  
IOZ  
LVCMOS outputs  
VOUT = 0 V or VDD  
–20  
20  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and  
are not ensured.  
(2) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD, ΔVOD, VTH and VTL which are differential voltages.  
(3) Typical values represent most likely parametric norms at 1.8 V or 3.3 V, TA = 25°C, and at the Recommended Operation Conditions at  
the time of product characterization and are not specified.  
10  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
Electrical Characteristics (continued)  
over recommended operating supply and temperature ranges unless otherwise specified.(1) (2) (3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LVCMOS DC SPECIFICATIONS 2.8-V I/O (SERIALIZER INPUTS, GPI, GPO, CONTROL INPUTS AND OUTPUTS)  
High level input  
voltage  
VIH  
VIN = 2.52 V to 3.08 V  
0.7 VIN  
VIN  
V
Low level input  
voltage  
VIL  
IIN  
VIN = 2.52 V to 3.08 V  
GND  
20  
0.3 VIN  
20  
Input current  
VIN = 0 V or 3.08 V, VIN = 2.52 V to 3.08 V  
VDDIO = 2.52 V to 3.08 V, IOH = 4 mA  
±1  
µA  
V
High level output  
voltage  
VOH  
VDDIO – 0.4  
VDDIO  
VDDIO =2.52 V to 3.08  
Deserializer LVCMOS  
V
IOL = 4 mA  
Low level output  
voltage  
VOL  
GND  
0.4  
V
outputs  
Serializer  
GPO outputs  
11  
20  
Output short circuit  
current  
IOS  
VOUT = 0 V  
mA  
µA  
Deserializer LVCMOS  
outputs  
TRI-STATE output  
current  
PDB = 0 V,  
IOZ  
LVCMOS outputs  
VOUT = 0 V or VDD  
20  
20  
CML DRIVER DC SPECIFICATIONS (DOUT+, DOUT–)  
Output differential  
voltage  
|VOD  
|
RL = 100 (see Figure 9)  
RL = 100 Ω  
268  
340  
412  
50  
mV  
mV  
V
Output differential  
voltage unbalance  
ΔVOD  
VOS  
1
Output differential  
offset voltage  
RL = 100 (see Figure 9)  
RL = 100 Ω  
VDD – VOD/2  
Offset voltage  
unbalance  
ΔVOS  
IOS  
1
50  
mV  
mA  
Output short  
circuit current  
DOUT± = 0 V  
–26  
Differential internal  
termination  
RT  
Differential across DOUT+ and DOUT–  
80  
100  
120  
resistance  
CML RECEIVER DC SPECIFICATIONS (RIN0+, RIN0–, RIN1+, RIN1– )  
IIN  
Input current  
VIN = VDD or 0 V, VDD = 1.89 V  
20  
1
20  
µA  
Differential internal  
termination  
RT  
Differential across RIN+ and RIN-  
80  
100  
120  
resistance  
CML RECEIVER AC SPECIFICATIONS (RIN0+, RIN0–, RIN1+, RIN1– )  
Minimum allowable  
|Vswing  
|
swing for 1010  
Line rate = 1.4 Gbps (see Figure 11)  
135  
mV  
pattern(4)  
CML MONITOR OUTPUT DRIVER SPECIFICATIONS (CMLOUTP, CMLOUTN)  
Differential output  
Ew  
0.45  
200  
UI  
eye opening  
RL = 100 Ω  
Jitter frequency > f / 40 (see Figure 20)  
Differential output  
eye height  
EH  
mV  
(4) Specification is ensured by characterization and is not tested in production.  
Copyright © 2012–2015, Texas Instruments Incorporated  
11  
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
over recommended operating supply and temperature ranges unless otherwise specified.(1) (2) (3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SERIALIZER AND DESERIALIZER SUPPLY CURRENT *DIGITAL, PLL, AND ANALOG VDD  
VDDn = 1.89 V  
VDDIO = 3.6 V  
f = 100 MHz,  
10-bit mode  
61  
80  
mA  
default registers  
VDDn = 1.89 V  
VDDIO = 3.6 V  
RL = 100 Ω  
f = 75 MHz,  
61  
80  
80  
WORST CASE pattern 12-bit high-frequency  
(see Figure 6)  
mode  
default registers  
mA  
VDDn = 1.89 V  
VDDIO = 3.6 V  
f = 50 MHz,  
12-bit low-frequency  
mode  
61  
54  
54  
Serializer (TX)  
VDDn supply current  
(includes load  
current)  
default registers  
IDDT  
VDDn = 1.89 V  
VDDIO = 3.6 V  
f = 100 MHz,  
10-bit mode  
default registers  
VDDn = 1.89 V  
VDDIO = 3.6 V  
f = 75 MHz,  
12-bit high-frequency  
mode  
RL = 100 Ω  
RANDOM PRBS-7  
pattern  
mA  
default registers  
VDD = 1.89 V  
VDDIO = 3.6 V  
f = 50 MHz,  
12-bit low-frequency  
mode  
54  
default registers  
VDDIO = 1.89 V  
f = 75 MHz,  
12-bit high-freq mode  
default registers  
1.5  
5
3
8
Serializer (TX)  
VDDIO supply  
current (includes  
load current)  
RL = 100 Ω  
WORST CASE pattern  
(see Figure 6)  
IDDIOT  
mA  
VDDIO = 3.6 V  
f = 75 MHz,  
12-bit high-frequency  
mode default registers  
VDDIO = 1.89 V  
Default registers  
300  
300  
15  
900  
900  
100  
100  
µA  
µA  
µA  
µA  
Serializer (TX)  
supply current  
power-down  
PDB = 0 V; all other  
LVCMOS inputs = 0 V  
IDDTZ  
VDDIO = 3.6 V  
Default registers  
VDDIO = 1.89 V  
Default registers  
Serializer (TX)  
IDDIOTZ VDDIO supply  
current power-down  
PDB = 0 V; All other  
LVCMOS Inputs = 0 V  
VDDIO = 3.6 V  
Default registers  
15  
12  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
Electrical Characteristics (continued)  
over recommended operating supply and temperature ranges unless otherwise specified.(1) (2) (3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
f = 100 MHz, 10-bit  
mode  
22  
42  
VDDIO = 1.89 V  
CL = 8 pF  
WORST CASE pattern  
f = 75 MHz, 12-bit high-  
freq mode  
19  
21  
15  
12  
14  
42  
37  
25  
35  
30  
18  
15  
11  
16  
8
39  
32  
mA  
f = 50 MHz, 12-bit low-  
freq mode  
f = 100 MHz, 10–bit  
mode  
VDDIO = 1.89 V  
CL=8pF  
Random pattern  
f = 75 MHz, 12-bit high-  
freq mode  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
f = 50 MHz, 12-bit low-  
freq mode  
f = 100 MHz, 10-bit  
mode  
55  
50  
38  
VDDIO = 3.6 V  
CL = 8 pF  
WORST CASE pattern  
f = 75 MHz, 12-bit high-  
freq mode  
f = 50 MHz, 12-bit low-  
freq mode  
f = 100 MHz, 10-bit  
mode  
VDDIO = 3.6 V  
CL = 8 pF  
Random pattern  
f = 75 MHz, 12-bit high-  
freq mode  
f = 50 MHz, 12-bit low-  
freq mode  
Deserializer (RX)  
total supply current  
(includes load  
current)  
IDDIOR  
f = 100 MHz, 10-bit  
mode  
VDDIO = 1.89 V  
CL = 4 pF  
WORST CASE pattern  
f = 75 MHz, 12-bit high-  
freq mode  
f = 50 MHz, 12-bit low-  
freq mode  
f = 100 MHz, 10-bit  
mode  
VDDIO = 1.89 V  
CL = 4 pF  
Random pattern  
f = 75 MHz, 12-bit high-  
freq mode  
4
f = 50 MHz, 12-bit low-  
freq mode  
9
f = 100 MHz, 10-bit  
mode  
36  
29  
20  
29  
22  
13  
VDDIO = 3.6 V  
CL = 4 pF  
WORST CASE pattern  
f = 75 MHz, 12-bit high-  
freq mode  
f = 50 MHz, 12-bit low-  
freq mode  
f = 100 MHz, 10-bit  
mode  
VDDIO = 3.6 V  
CL = 4 pF  
Random pattern  
f = 75 MHz, 12-bit high-  
freq mode  
f = 50 MHz, 12-bit low-  
freq mode  
Copyright © 2012–2015, Texas Instruments Incorporated  
13  
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
over recommended operating supply and temperature ranges unless otherwise specified.(1) (2) (3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
f = 100 MHz,  
10-bit mode  
64  
110  
f = 75 MHz,  
12-bit high-frequency  
mode  
VDDn = 1.89 V  
CL = 4 pF  
WORST CASE pattern  
67  
63  
114  
96  
f = 50 MHz,  
12-bit low-frequency  
mode  
Deserializer (RX)  
VDDn supply current  
(includes load  
current)  
IDDR  
mA  
f = 100 MHz,  
10-bit mode  
57  
60  
56  
42  
42  
VDDn = 1.89 V  
CL = 4 pF  
Random pattern  
f = 75 MHz, 12–bit  
high-frequency mode  
f = 50 MHz, 12-bit  
low-frequency mode  
PBB = 0 V, all other  
LVCMOS Inputs=0 V  
VDDIO = 1.89 V  
Default registers  
400  
400  
Deserializer (RX)  
supply current  
power-down  
IDDRZ  
µA  
µA  
PBB = 0 V, all other  
LVCMOS Inputs=0 V  
VDDIO = 3.6 V  
Default registers  
Deserializer (RX)  
IDDIORZ VDD supply current  
power-down  
VDDIO = 1.89 V  
VDDIO = 3.6 V  
8
40  
PDB = 0 V, all other  
LVCMOS Inputs = 0 V  
360  
800  
8.6 Timing Requirements: Recommended for Serializer PCLK  
over recommended operating supply and temperature ranges unless otherwise specified.(1)  
TEST CONDITIONS  
PIN/FREQ  
MIN  
NOM  
MAX  
UNIT  
10-bit mode  
10  
T
50  
12-bit high-frequency  
mode  
13.33  
20  
T
T
66.66  
100  
tTCP  
Transmit clock period  
ns  
12-bit low-frequency  
mode  
Transmit clock  
input high time  
tTCIH  
tTCIL  
0.4T  
0.4T  
0.5T  
0.5T  
0.5T  
0.5T  
0.5T  
2.5T  
2.5T  
2.5T  
0.6T  
0.6T  
0.3T  
0.3T  
0.3T  
ns  
ns  
Transmit clock  
input low time  
20 MHz–100 MHz,  
10-bit mode  
PCLK input transition  
time (Figure 12)  
15 MHz to 75 MHz, 12-bit  
high-frequency mode  
tCLKT  
ns  
10 MHz to 50 MHz, 12-bit  
low-frequency mode  
PCLK input jitter  
(PCLK from imager  
mode)  
tJIT0  
Refer to jitter freq > f / 40 f = 10 to 100 MHz  
Refer to jitter freq > f / 40 f = 10 to 100 MHz  
0.1T  
ns  
PCLK input jitter (external  
oscillator mode)  
tJIT1  
tJIT2  
1T  
ns  
UI  
External oscillator jitter  
0.1  
(1) Recommended input timing requirements are input specifications and not tested in production.  
14  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
8.7 AC Timing Specifications (SCL, SDA) - I2C Compliant  
over recommended supply and temperature ranges unless otherwise specified. (See Figure 5)  
TEST CONDITIONS  
RECOMMENDED INPUT TIMING REQUIREMENTS  
MIN  
NOM  
MAX  
UNIT  
Standard mode  
Fast mode  
>0  
>0  
4.7  
1.3  
4.0  
0.6  
4
100  
400  
fSCL  
SCL clock frequency  
SCL low period  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
ns  
ns  
Standard mode  
Fast mode  
tLOW  
Standard mode  
Fast mode  
tHIGH  
SCL high period  
Standard mode  
Fast mode  
Hold time for a start or a  
repeated start condition  
tHD:STA  
0.6  
4.7  
0.6  
0
Standard mode  
Fast mode  
Setup time for a start or a  
repeated start condition  
tSU:STA  
Standard mode  
Fast mode  
3.45  
900  
tHD:DAT Data hold time  
tSU:DAT Data setup time  
0
Standard mode  
Fast mode  
250  
100  
4
Standard mode  
Fast mode  
Setup time for STOP  
condition  
tSU:STO  
0.6  
4.7  
1.3  
Standard mode  
Fast mode  
Bus free time between  
stop and start  
tBUF  
Standard mode  
Fast mode  
1000  
300  
300  
300  
tr  
tf  
SCL and SDA rise time  
SCL and SDA fall time  
Standard mode  
Fast mode  
8.8 Bidirectional Control Bus DC Timing Specifications (SCL, SDA) - I2C Compliant  
over recommended supply and temperature ranges unless otherwise specified(1)  
TEST CONDITIONS  
RECOMMENDED INPUT TIMING REQUIREMENTS  
MIN  
NOM  
MAX  
UNIT  
VIH  
Input high level  
Input low level  
SDA and SCL  
0.7 × VDDIO  
GND  
VDDIO  
V
V
VIL  
SDA and SCL  
0.3 × VDDIO  
VHY  
VOL  
IIN  
Input hysteresis  
Output low level  
Input current  
>50  
mV  
V
SDA, IOL = 0.5 mA  
0
0.4  
10  
SDA or SCL, VIN = VDDOP OR GND  
10  
µA  
ns  
ns  
ns  
ns  
ns  
pF  
tR  
SDA rise time-READ  
SDA fall time-READ  
430  
20  
SDA, RPU = 10 k, Cb 400 pF (see  
Figure 5)  
tF  
tSU;DAT  
tHD;DAT  
tSP  
See Figure 5  
See Figure 5  
560  
615  
50  
CIN  
SDA or SCL  
<5  
(1) Specification is ensured by design.  
Copyright © 2012–2015, Texas Instruments Incorporated  
15  
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
8.9 Switching Characteristics: Serializer  
over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CML low-to-high transition  
time  
tLHT  
RL = 100 (see Figure 7)  
150  
330  
ps  
CML high-to-low transition  
time  
tHLT  
tDIS  
tDIH  
tPLD  
RL = 100 (see Figure 7)  
150  
330  
ps  
ns  
ns  
ms  
Data input setup to PCLK  
2
2
Serializer data inputs (see Figure 13)  
Data input hold from  
PCLK  
Serializer PLL lock time  
RL = 100 (1) (2), (see Figure 14)  
1
2
RT = 100 , 10-bit mode  
Register 0x03h b[0] (TRFB = 1) (see  
Figure 15)  
32.5T  
38T  
44T  
tSD  
Serializer delay(2)  
ns  
RT = 100 , 12-bit mode  
Register 0x03h b[0] (TRFB = 1) (see  
Figure 15)  
11.75T  
13T  
15T  
Serializer output intrinsic deterministic jitter.  
Measured (cycle-cycle) with PRBS-7 test  
pattern(3) (4)  
Serializer output  
deterministic jitter  
tJIND  
0.13  
0.04  
UI  
UI  
Serializer output  
random jitter  
Serializer output intrinsic random jitter (cycle-  
cycle). Alternating-1,0 pattern.(3) (4)  
tJINR  
Serializer output peak-to-peak jitter includes  
deterministic jitter, random jitter, and jitter  
transfer from serializer input. Measured  
(cycle-cycle) with PRBS-7 test pattern.(3) (4)  
Peak-to-peak serializer  
output jitter  
tJINT  
0.396  
UI  
PCLK = 100 MHz  
10-bit mode. Default registers  
2.2  
2.2  
Serializer jitter  
PCLK = 75 MHz  
12-bit high-frequency mode. Default registers  
λSTXBW transfer function –3-dB  
MHz  
bandwidth(5)  
PCLK = 50 MHz  
12-bit low-frequency mode. Default registers  
2.2  
PCLK = 100 MHz  
10-bit mode. Default Registers  
1.06  
1.09  
1.16  
400  
500  
600  
Serializer jitter  
PCLK = 75 MHz  
12-bit high-frequency mode. Default registers  
δSTX  
transfer function  
dB  
(peaking)(5)  
PCLK = 50 MHz  
12-bit low-frequency mode. Default registers  
PCLK = 100 MHz  
10-bit mode. Default registers  
Serializer jitter  
PCLK = 75 MHz  
12-bit high-frequency mode. Default registers  
δSTXf  
transfer function  
kHz  
(peaking frequency)(5)  
PCLK = 50 MHz  
12-bit low-frequency mode. Default registers  
(1) tPLD and tDDLT is the time required by the serializer and deserializer to obtain lock when exiting power-down state with an active PCLK  
(2) Specification is ensured by design.  
(3) Typical values represent most likely parametric norms at 1.8 V or 3.3 V, TA = 25°C, and at the recommended operation conditions at the  
time of product characterization and are not specified.  
(4) UI – Unit Interval is equivalent to one ideal serialized data bit width. The UI scales with PCLK frequency.  
(5) Specification is ensured by characterization and is not tested in production.  
16  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
8.10 Switching Characteristics: Deserializer  
over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ  
MIN  
TYP  
MAX  
UNIT  
10-bit mode  
10  
50  
12-bit high-frequency  
mode  
Receiver output  
clock period  
PCLK (see  
13.33  
66.66  
tRCP  
ns  
Figure 19)  
PCLK  
12-bit low-frequency  
mode  
10  
45%  
40%  
100  
55%  
60%  
10-bit mode  
50%  
50%  
12-bit high-frequency  
mode  
tPDC  
PCLK duty cycle  
12-bit low-frequency  
mode  
40%  
1.3  
50%  
2
60%  
2.8  
LVCMOS low-to-high  
transition time  
VDDIO: 1.71 V to 1.89 V or  
3.0 V to 3.6 V,  
tCLH  
tCHL  
tCLH  
tCHL  
tROS  
tROH  
ns  
ns  
ns  
ns  
ns  
ns  
CL = 8 pF (lumped load)  
Default registers  
PCLK  
LVCMOS high-to-low  
transition time  
1.3  
1
2
2.5  
2.8  
4
(see Figure 17)(1)  
LVCMOS low-to-high  
transition time  
VDDIO: 1.71 V to 1.89 V or  
3.0 V to 3.6 V,  
ROUT[11:0], HS,  
VS  
CL = 8 pF (lumped load)  
Default registers  
LVCMOS high-to-low  
transition time  
1
2.5  
4
(see Figure 17)(1)  
ROUT setup data to  
PCLK  
VDDIO: 1.71 V to 1.89 V or  
3.0 V to 3.6 V,  
CL = 8 pF (lumped load)  
Default registers (see  
Figure 19)  
0.38T  
0.38T  
0.5T  
0.5T  
ROUT[11:0], HS,  
VS  
ROUT hold data to PCLK  
10-bit mode  
154T  
109T  
158T  
112T  
Default registers  
Register 0x03h b[0]  
(RRFB = 1)  
12-bit low-  
frequency mode  
tDD  
Deserializer delay  
ns  
(see Figure 18)(1)  
12-bit high-  
frequency mode  
73T  
75T  
22  
10-bit mode  
15  
15  
With Adaptive  
Equalization (see  
Figure 16)  
12-bit low-  
frequency mode  
Deserializer data lock  
time  
22  
tDDLT  
ms  
12-bit high-  
frequency mode  
15  
20  
22  
30  
10-bit mode  
PCLK = 100 MHz  
12-bit low-  
PCLK  
frequency mode  
PCLK = 50 MHz  
22  
35  
tRCJ  
Receiver clock jitter  
ps  
SSCG[3:0] = OFF(1)  
12-bit high-  
frequency mode  
PCLK = 75 MHz  
45  
170  
180  
90  
815  
330  
10-bit mode  
PCLK = 100 MHz  
12-bit low-  
frequency mode  
PCLK= 50 MHz  
PCLK  
tDPJ  
Deserializer period jitter  
ps  
SSCG[3:0] = OFF(1) (2)  
12-bit high-  
frequency mode  
PCLK= 75 MHz  
300  
515  
(1) Specification is ensured by characterization and is not tested in production.  
(2) tDPJ is the maximum amount the period is allowed to deviate measured over 30,000 samples.  
Copyright © 2012–2015, Texas Instruments Incorporated  
17  
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
Switching Characteristics: Deserializer (continued)  
over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ  
MIN  
TYP  
MAX  
UNIT  
10-bit mode  
PCLK = 100 MHz  
440  
1760  
12-bit low-  
Deserializer cycle-to-  
cycle clock jitter  
PCLK  
frequency mode  
PCLK = 50 MHz  
460  
565  
730  
tDCCJ  
ps  
SSCG[3:0] = OFF(1) (3)  
12-bit high-  
frequency mode  
PCLK = 75 MHz  
985  
Spread spectrum clocking  
deviation frequency  
±0.5 to  
±1.5%  
fdev  
10 MHz–100 MHz  
10 MHz–100 MHz  
LVCMOS output bus  
SSC[3:0] = ON (see  
Figure 24)(1)  
Spread spectrum clocking  
modulation frequency  
fmod  
5 to 50  
kHz  
(3) tDCCJ is the maximum amount of jitter between adjacent clock cycles measured over 30,000 samples.  
18  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
8.11 Typical Characteristics  
4
2
0.65  
0.60  
0.55  
0.50  
0.45  
0
- 2  
- 4  
- 6  
- 8  
-10  
-12  
-14  
-16  
-18  
1.0E+05  
1.0E+06  
1.0E+07  
1.0E+04  
1E+04  
1E+05  
1E+06  
1E+07  
JITTER FREQUENCY (Hz)  
MODULATION FREQUENCY ( Hz)  
Figure 2. Typical Deserializer Input Jitter Tolerance Curve  
at 1.4-Gbps Line Rate  
Figure 1. Typical Serializer Jitter Transfer Function  
at 100 MHz  
18  
16  
14  
12  
10  
8
25  
20  
15  
10  
5
914 Equalizer Gain (dB)  
VOD-Vswing Loss  
Allowable Interconnect  
Loss  
6
4
0
100  
2
200  
300  
400  
500 600  
700  
SERIAL LINE FREQUENCY (MHz)  
0
100  
200  
300  
400  
500  
600  
700  
SERIAL LINE FREQUENCY (MHz)  
Figure 3. Maximum Equalizer Gain vs. Line Frequency  
Figure 4. Adaptive Equalizer – Interconnect Loss  
Compensation  
Copyright © 2012–2015, Texas Instruments Incorporated  
19  
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
9 Parameter Measurement Information  
9.1 AC Timing Diagrams and Test Circuits  
SDA  
t
BUF  
t
f
t
t
HD;STA  
t
r
LOW  
t
t
f
r
SCL  
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
Figure 5. Bidirectional Control Bus Timing  
Signal Pattern  
Device Pin Name  
T
PCLK  
(RFB = H)  
D
/R  
IN OUT  
Figure 6. Worst Case Test Pattern  
80%  
20%  
80%  
Vdiff  
Vdiff = 0V  
20%  
t
t
HLT  
LHT  
Vdiff = (D +) - (D -)  
OUT OUT  
Figure 7. Serializer CML Output Load and Transition Times  
100 nF  
D
OUT  
+
50:  
50:  
SCOPE  
BW 8 4.0 GHz  
Z
Diff  
= 100:  
100:  
D
OUT  
-
100 nF  
Figure 8. Serializer CML Output Load and Transition Times  
10/12,  
HS,VS  
D
D
+
-
OUT  
R
L
D
IN  
OUT  
PCLK  
Figure 9. Serializer VOD Diagram  
20  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
AC Timing Diagrams and Test Circuits (continued)  
Single Ended  
V
|
OS  
D
OUT  
-
V
V
V
OD-  
OD  
OD+  
D
OUT  
+
Differential  
V
OD+  
0V  
(D  
OUT  
+)-(D )  
OUT-  
V
OD-  
Figure 10. Serializer VOD Diagram  
R
IN  
-
Single Ended  
Vswing-  
Vswing+  
R
IN  
+
0V  
0V  
Differential  
Vswing+  
Vswing-  
(RIN+)-(RIN-)  
Figure 11. Differential Vswing Diagram  
V
DD  
t
TCP  
80%  
80%  
PCLK  
20%  
20%  
0V  
PCLK  
V
/2  
V
DDIO  
/2  
V
V
/2  
DDIO  
DDIO  
t
t
CLKT  
CLKT  
t
t
DIH  
DIS  
DDIO  
DINn  
Setup  
Hold  
V
/2  
V
/2  
DDIO  
DDIO  
0V  
Figure 12. Serializer Input Clock Transition Times  
Figure 13. Serializer Set-Up and Hold Times  
VDDIO/2  
PDB  
PCLK  
t
PLD  
Output Active  
TRI-STATE  
TRI-STATE  
D
±
OUT  
Figure 14. Serializer PLL Lock Time  
Copyright © 2012–2015, Texas Instruments Incorporated  
21  
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
AC Timing Diagrams and Test Circuits (continued)  
SYMBOL N  
VDDIO/2  
SYMBOL N+1  
SYMBOL N+2  
SYMBOL N+3  
D
IN  
t
SD  
PCLK  
SYMBOL N-4  
SYMBOL N-3  
SYMBOL N-2  
SYMBOL N-1  
SYMBOL N  
0V  
DOUT+-  
Figure 15. Serializer Delay  
VDDIO/2  
PDB  
t
DDLT  
R
IN±  
LOCK  
TRI-STATE  
VDDIO/2  
Figure 16. Deserializer Data Lock Time  
80%  
20%  
80%  
20%  
Deserializer  
8 pF  
lumped  
t
t
CHL  
CLH  
Figure 17. Deserializer LVCMOS Output Load and Transition Times  
SYMBOL N  
SYMBOL N + 1  
SYMBOL N + 2  
SYMBOL N + 3  
SYMBOL N + 3  
RIN±  
0V  
t
DD  
PCLK  
VDDIO/2  
SYMBOL N - 3  
SYMBOL N - 2  
SYMBOL N - 1  
SYMBOL N  
SYMBOL N+1  
ROUTn  
Figure 18. Deserializer Delay  
t
RCP  
V
DDIO  
PCLK  
1/2 V  
1/2 V  
DDIO  
DDIO  
0V  
V
DDIO  
ROUT[n],  
VS, HS  
1/2 V  
DDIO  
1/2 V  
DDIO  
0V  
t
t
ROH  
ROS  
Figure 19. Deserializer Output Set-Up and Hold Times  
22  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
AC Timing Diagrams and Test Circuits (continued)  
Ew  
VOD (+)  
EH  
EH  
0V  
VOD (-)  
t
(1 UI)  
BIT  
Figure 20. CML Output Driver  
PDB= H  
VIH  
OEN  
VIL  
VIH  
OSS_SEL  
VIL  
RIN  
(Diff.)  
'RQ¶Wꢀ&DUH  
t
SEH  
t
t
SES  
ONS  
t
ONH  
LOCK  
PASS  
TRI-STATE  
LOW  
TRI-STATE  
LOW  
HIGH  
ACTIVE  
HIGH  
HIGH  
ROUT[0:11],  
HS, VS  
LOW  
LOW  
LOW  
LOW  
TRI-STATE  
TRI-STATE  
TRI-STATE  
TRI-STATE  
ACTIVE  
ACTIVE  
PCLK  
(RFB = L)  
Figure 21. Output State (Set-Up and Hold) Times  
Copyright © 2012–2015, Texas Instruments Incorporated  
23  
 
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
AC Timing Diagrams and Test Circuits (continued)  
4
2
0.65  
0.60  
0.55  
0.50  
0.45  
0
- 2  
- 4  
- 6  
- 8  
-10  
-12  
-14  
-16  
-18  
1E+04  
1E+05  
1E+06  
1E+07  
1.0E+05  
1.0E+06  
1.0E+07  
1.0E+04  
JITTER FREQUENCY (Hz)  
MODULATION FREQUENCY ( Hz)  
Figure 22. Typical Serializer Jitter Transfer  
Function at 100 MHz  
Figure 23. Typical Deserializer Input Jitter  
Tolerance Curve at 1.4-Gbps Line Rate  
Frequency  
fdev (max)  
F
F
F
PCLK+  
PCLK  
fdev  
fdev (min)  
Time  
PCLK-  
1 / fmod  
Figure 24. Spread Spectrum Clock Output Profile  
24  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
10 Detailed Description  
10.1 Overview  
The DS90UB91xQ-Q1 FPD-Link III chipsets are intended to link megapixel camera imagers and video  
processors in ECUs. The serializer and deserializer chipset can operate from 10-MHz to 100-MHz pixel clock  
frequency. The DS90UB913Q-Q1 device transforms a 10- and 12-bit wide parallel LVCMOS data bus along with  
a bidirectional control channel control bus into a single high-speed differential pair. The high-speed serial bit  
stream contains an embedded clock and DC-balanced information which enhances signal quality to support AC  
coupling. The DS90UB914Q-Q1 device receives the single serial data stream and converts it back into a 10- and  
12-bit wide parallel data bus together with the control channel data bus. The DS90UB91xQ-Q1 chipsets can  
accept up to:  
12 bits of DATA+2 bits SYNC for an input PCLK range of 10 MHz-50 MHz in the 12-bit low-frequency mode  
12 bits DATA + 2 SYNC bits for an input PCLK range of 15 MHz to 75 MHz in the 12-bit high-frequency mode  
10 bits DATA + 2 SYNC bits for an input PCLK range of 20 MHz to 100 MHz in the 10-bit mode.  
The DS90UB914Q-Q1 chipset has a 2:1 multiplexer that allows customers to select between two serializer  
inputs. The control channel function of the DS90UB91xQ-Q1 chipset provides bidirectional communication  
between the image sensor and ECUs. The integrated bidirectional control channel transfers data bidirectionally  
over the same differential pair used for video data interface. This interface offers advantages over other chipsets  
by eliminating the need for additional wires for programming and control. The bidirectional control channel bus is  
controlled through an I2C port. The bidirectional control channel offers asymmetrical communication and is not  
dependent on video blanking intervals.  
The DS90UB91xQ-Q1 chipset offer customers the choice to work with different clocking schemes. The  
DS90UB91xQ-Q1 chipsets can use an external oscillator as the reference clock source for the PLL or PCLK from  
the imager as primary reference clock to the PLL.  
10.2 Functional Block Diagram  
10  
or  
12  
10 or  
12  
DIN  
HSYNC  
ROUT  
HSYNC  
VSYNC  
R
T
R
T
DOUT+  
DOUT-  
R
T
R
T
RIN0+  
VSYNC  
4
GPO[3:0]  
4
RIN0-  
RIN1+  
GPIO[3:0]  
Clock  
Gen  
PCLK  
LOCK  
Clock  
Gen  
PCLK  
PLL  
CDR  
PASS  
RIN1-  
PDB  
Timing and  
Control  
Timing and  
Control  
PDB  
BISTEN  
OEN  
SDA  
SCL  
SEL  
SDA  
SCL  
IDx[0]  
IDx[1]  
MODE  
ID[x]  
MODE  
DS90UB914Q - DESERIALIZER  
DS90UB913Q - SERIALIZER  
Copyright © 2012–2015, Texas Instruments Incorporated  
25  
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
10.3 Feature Description  
10.3.1 Serial Frame Format  
The high-speed forward channel is composed of 28 bits of data containing video data, sync signals, I2C and  
parity bits. This data payload is optimized for signal transmission over an AC-coupled link. Data is randomized,  
balanced and scrambled. The 28-bit frame structure changes in the 12-bit low-frequency mode, 12-bit high  
frequency mode and the 10-bit mode internally and is seamless to the customer. The bidirectional control  
channel data is transferred over the single serial link along with the high-speed forward data. This architecture  
provides a full duplex low-speed forward and backward path across the serial link together with a high-speed  
forward channel without the dependence on the video blanking phase.  
10.3.2 Line Rate Calculations for the DS90UB91xQ  
The DS90UB913Q-Q1 device divides the clock internally by divide-by-1 in the 12-bit low-frequency mode, by  
divide-by-2 in the 10-bit mode and by divide-by-1.5 in the 12-bit high-frequency mode. Conversely, the  
DS90UB914Q-Q1 multiplies the recovered serial clock to generate the proper pixel clock output frequency. Thus  
the maximum line rate in the three different modes remains 1.4 Gbps. The following are the formulae used to  
calculate the maximum line rate in the different modes.  
For 12-bit low-frequency mode, Line rate = fPCLK × 28; that is, fPCLK= 50 MHz, line rate = 50 × 28 = 1.4 Gbps  
For 10-bit mode, Line rate = fPCLK / 2 × 28; that is, fPCLK= 100 MHz, line rate = (100 / 2) × 28 = 1.4 Gbps  
For the 12-bit high-frequency mode, Line rate = fPCLK × (2 / 3) × 28; that is, fPCLK= 75 MHz, line rate = (75) ×  
(2 / 3) × 28 = 1.4 Gbps  
10.3.3 Deserializer Multiplexer Input  
The DS90UB914Q-Q1 offers a 2:1 multiplexer that can be used to select which camera is used as the input.  
Figure 25 shows the operation of the 2:1 multiplexer in the deserializer. The selection of the camera can be pin  
controlled as well as register controlled. Both the deserializer inputs cannot be enabled at the same time. If the  
Serializer A is selected as the active serializer, the back-channel for Deserializer A turns ON and vice versa. To  
switch between the two cameras, first the Serializer B has to be selected using the SEL pin/register on the  
deserializer. After that the back channel driver for Deserializer B has to be enabled using the register in the  
deserializer.  
Serializer A  
DS90UB913Q  
Camera A  
DS90UB914Q  
CMOS  
Image  
Sensor  
DATA  
PCLK  
DATA  
PCLK  
FSYNC  
FSYNC  
2
2
I C  
I C  
Serializer B  
DS90UB913Q  
ECU  
Module  
Deserializer A  
Camera B  
CMOS  
Image  
Sensor  
DATA  
PCLK  
FSYNC  
2
I C  
PC  
Serializer B  
Figure 25. Using the Multiplexer on the Deserializer to Enable a Two-Camera System  
26  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
Feature Description (continued)  
10.3.4 Error Detection  
The chipset provides error detection operations for validating data integrity in long distance transmission and  
reception. The data error detection function offers users flexibility and usability of performing bit-by-bit data  
transmission error checking. The error detection operating modes support data validation of the following signals:  
Bidirectional control channel data across the serial link  
Parallel video/sync data across the serial link  
The chipset provides one parity bit on the forward channel and 4 CRC bits on the back channel for error  
detection purposes. The DS90UB91xQ-Q1 chipset checks the forward and back channel serial links for errors  
and stores the number of detected errors in two 8-bit registers in the serializer and the deserializer respectively.  
To check parity errors on the forward-channel, monitor registers 0x1A and 0x1B on the deserializer. If there is a  
loss of LOCK, then the counters on registers 0x1A and 0x1B are reset.  
NOTE  
Whenever there is a parity error on the forward channel, the PASS pin will go low.  
To check CRC errors on the back-channel, monitor registers 0x0A and 0x0B on the serializer.  
10.3.5 Description of Bidirectional Control Bus and I2C Modes  
The I2C-compatible interface allows programming of the DS90UB913Q-Q1, DS90UB914Q-Q1, or an external  
remote device (such as image sensor) through the bidirectional control channel. Register programming  
transactions to/from the DS90UB913xQ-Q1 chipset are employed through the clock (SCL) and data (SDA) lines.  
These two signals have open-drain I/Os and both lines must be pulled up to VDDIO by an external resistor.  
Pullup resistors or current sources are required on the SCL and SDA busses to pull them high when they are not  
being driven low. A logic LOW is transmitted by driving the output low. Logic HIGH is transmitted by releasing the  
output and allowing it to be pulled up externally. The appropriate pullup resistor values will depend upon the total  
bus capacitance and operating speed. The DS90UB91xQ-Q1 I2C bus data rate supports up to 400 kbps  
according to I2C fast mode specifications.  
Bus Activity:  
Master  
Register  
Address  
Slave  
Address  
Data  
SDA Line  
7-bit Address  
P
S
0
A
C
K
A
C
K
A
C
K
Bus Activity:  
Slave  
Figure 26. Write Byte  
N
A
C
K
Bus Activity:  
Master  
Register  
Address  
Slave  
Address  
Slave  
Address  
S
P
SDA Line  
S
7-bit Address  
7-bit Address  
0
1
A
C
K
A
C
K
A
C
K
Data  
Bus Activity:  
Slave  
Figure 27. Read Byte  
Copyright © 2012–2015, Texas Instruments Incorporated  
27  
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
Feature Description (continued)  
ACK  
MSB  
N/ACK  
SDA  
MSB  
LSB  
LSB  
R/W  
Direction  
Bit  
7-bit Slave Address  
Data Byte  
Acknowledge  
*Acknowledge  
or Not-ACK  
from the Device  
8
9
8
9
1
2
6
7
1
2
SCL  
Repeated for the Lower Data Byte  
and Additional Data Transfers  
START  
STOP  
Figure 28. Basic Operation  
SDA  
SCL  
S
P
STOP condition  
START condition, or  
START repeat condition  
Figure 29. Start and Stop Conditions  
10.3.6 Slave Clock Stretching  
The I2C-compatible interface allows programming of the DS90UB913Q-Q1, DS90UB914Q-Q1, or an external  
remote device (such as image sensor) through the bidirectional control.  
NOTE  
To communicate and synchronize with remote devices on the I2C bus through the  
bidirectional control channel/MCU, the chipset utilizes bus clock stretching (holding the  
SCL line low) during data transmission where the I2C slave pulls the SCL line low on the  
9th clock of every I2C transfer (before the ACK signal).  
The slave device will not control the clock and only stretches it until the remote peripheral has responded. The  
I2C master must support clock stretching to operate with the DS90UB91xQ-Q1 chipset.  
10.3.7 I2C Pass-Through  
I2C pass-through provides an alternative means to independently address slave devices. The mode enables or  
disables I2C bidirectional control channel communication to the remote I2C bus. This option is used to determine  
whether or not an I2C instruction is to be transferred over to the remote I2C device. When enabled, the I2C bus  
traffic will continue to pass through, I2C commands will be excluded to the remote I2C device. The pass-through  
function also provides access and communication to only specific devices on the remote bus.  
See Figure 30 for an example of this function.  
If master controller transmits I2C transaction for address 0xA0, the SER A with I2C pass-through enabled will  
transfer I2C commands to remote Camera A. The SER B with I2C pass-through disabled, any I2C commands will  
be bypassed on the I2C bus to Camera B.  
28  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
Feature Description (continued)  
DS90UB913Q  
DS90UB914Q  
CMOS  
Image  
Sensor  
DIN[11:0]  
,HS,VS  
PCLK  
ROUT[11:0],  
HS,VS,  
PCLK  
2
2
SDA  
SCL  
SDA  
SCL  
I C  
I C  
Camera A  
Slave ID: (0xA0)  
SER A: I2C _MASTER  
DES A: I2C_SLAVE  
DS90UB914Q  
I2C_PASS_THRU Enabled  
ECU  
Module  
DS90UB913Q  
CMOS  
Image  
Sensor  
DIN[11:0]  
,HS,VS  
PCLK  
ROUT[11:0],  
HS,VS,  
PCLK  
2
2
SDA  
SCL  
I C  
I C  
PC  
Camera B  
Slave ID: (0xA0)  
SER B: I2C_MASTER  
I2C_PASS_THRU Disabled  
Master  
DES B: I2C_SLAVE  
Figure 30. I2C Pass-Through  
10.3.8 ID[x] Address Decoder on the Serializer  
The ID[x] pin on the serializer is used to decode and set the physical slave address of the serializer (I2C only) to  
allow up to five devices on the bus connected to the serializer using only a single pin. The pin sets one of the 5  
possible addresses for each serializer device. The pin must be pulled to VDD (1.8 V, not VDDIO) with a 10-k  
resistor and a pulldown resistor (RID) of the recommended value to set the physical device address. The  
recommended maximum resistor tolerance is 1%.  
1.8V  
10k  
V
DDIO  
ID[x]  
RPU  
RPU  
R
ID  
HOST  
DS90UB913Q  
SCL  
SDA  
SCL  
SDA  
To other Devices  
Figure 31. ID[x] Address Decoder on the Serializer  
Copyright © 2012–2015, Texas Instruments Incorporated  
29  
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
Table 1. ID[x] Resistor Value for DS90UB913Q-Q1 Serializer  
ID[x] Resistor Value — DS90UB913Q-Q1 Serializer  
Resistor RID0  
(1% Tolerance)  
Address 8'b 0 appended  
Address 7'b  
(WRITE)  
0 k  
2 k  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0xB0  
0xB2  
4.7 k  
8.2 k  
14 k  
100 k  
0xB4  
0xB6  
0xB8  
0xBA  
10.3.9 ID[x] Address Decoder on the Deserializer  
The IDx[0] and IDx[1] pins on the deserializer are used to decode and set the physical slave address of the  
deserializer (I2C only) to allow up to 16 devices on the bus using only two pins. The pins set one of 16 possible  
addresses for each deserializer device. As there will be more deserializer devices connected on the same board  
than serializers, more I2C device addresses have been defined for the DS90UB914Q-Q1 deserializer than the  
DSDS90UB913Q-Q1 serializer. The pins must be pulled to VDD (1.8 V, not VDDIO) with a 10-kresistor and  
two pulldown resistors (RID0 and RID1) of the recommended value to set the physical device address. The  
recommended maximum resistor tolerance is 1%.  
1.8V  
1.8V  
10k  
10k  
R
ID1  
R
ID0  
V
DDIO  
IDx[0]  
IDx[1]  
RPU  
RPU  
HOST  
DS90UB914Q  
SCL  
SDA  
SCL  
SDA  
To other  
Devices  
Figure 32. ID[x[ Address Decoder on the Deserializer  
Table 2. Resistor Values for IDx[0] and IDx[1] on DS90UB914Q-Q1 Deserializer  
ID[X] RESISTOR VALUE — DS90UB913Q SERIALIZER  
RESISTOR RID1 Ω  
(1%TOLERANCE)  
RESISTOR RID0 Ω  
(1%TOLERANCE)  
ADDRESS 8'b 0 APPENDED  
ADDRESS 7'b  
(WRITE)  
0 k  
0 k  
0 k  
0 k  
3 k  
0 k  
3 k  
0x60  
0x61  
0x62  
0x63  
0x64  
0xC0  
0xC2  
11 k  
100 k  
0 k  
0xC4  
0xC6  
0xC8  
30  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
Table 2. Resistor Values for IDx[0] and IDx[1] on DS90UB914Q-Q1 Deserializer (continued)  
ID[X] RESISTOR VALUE — DS90UB913Q SERIALIZER  
3 k  
3 k  
3 k  
11 k  
100 k  
0 k  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0xCA  
0XCC  
0XCE  
0XD0  
0XD2  
0XD4  
0XD6  
0XD8  
0XDA  
0XDC  
0XDE  
3 k  
11 k  
11 k  
11 k  
11 k  
100 k  
100 k  
100 k  
100 k  
3 k  
11 k  
100 k  
0 k  
3 k  
11 k  
100 k  
10.3.10 Programmable Controller  
An integrated I2C slave controller is embedded in the DS90UB913Q-Q1 serializer as well as the DS90UB914Q-  
Q1 deserializer. It must be used to configure the extra features embedded within the programmable registers or it  
can be used to control the set of programmable GPIOs.  
10.3.11 Synchronizing Multiple Cameras  
For applications requiring multiple cameras for frame-synchronization, TI recommends to utilize the General-  
Purpose Input/Output (GPIO) pins to transmit control signals to synchronize multiple cameras together. To  
synchronize the cameras properly, the system controller needs to provide a field sync output (such as a vertical  
or frame sync signal) and the cameras must be set to accept an auxiliary sync input. The vertical synchronize  
signal corresponds to the start and end of a frame and the start and end of a field.  
NOTE  
this form of synchronization timing relationship has a non-deterministic latency. After the  
control data is reconstructed from the bidirectional control channel, there will be a time  
variation of the GPIO signals arriving at the different target devices (between the parallel  
links). The maximum latency delta (t1) of the GPIO data transmitted across multiple links  
is 25 µs.  
NOTE  
The user must verify that the timing variations between the different links are within their  
system and timing specifications.  
Copyright © 2012–2015, Texas Instruments Incorporated  
31  
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
See Figure 33 for an example of synchronizing multiple cameras.  
The maximum time (t1) between the rising edge of GPIO (that is, sync signal) arriving at Camera A and Camera  
B is 25 µs.  
DS90UB913Q  
Camera A  
DS90UB914Q  
CMOS  
Image  
Sensor  
DATA  
PCLK  
DATA  
PCLK  
FSYNC  
FSYNC  
2
2
I C  
I C  
Serializer A  
Deserializer A  
ECU  
Module  
Camera B  
DS90UB913Q  
DS90UB914Q  
CMOS  
Image  
Sensor  
DATA  
PCLK  
DATA  
PCLK  
FSYNC  
FSYNC  
2
2
I C  
I C  
PC  
Serializer B  
Deserializer B  
Figure 33. Synchronizing Multiple Cameras  
DES A  
GPIO[n] Input  
DES B  
GPIO[n] Input  
SER A  
GPIO[n] Output  
SER B  
GPIO[n] Output  
t1  
Figure 34. GPIO Delta Latency  
10.3.12 General-Purpose I/O (GPIO) Descriptions  
There are 4 GPOs on the serializer and 4 GPIOs on the deserializer when the DS90UB91xQ-Q1 chipsets are run  
off the pixel clock from the imager as the reference clock source. The GPOs on the serializer can be configured  
as outputs for the input signals that are fed into the deserializer GPIOs. In addition, the GPOs on the serializer  
can behave as outputs of the local register on the serializer. The GPIOs on the deserializer can be configured to  
be the input signals feeding the output of the GPOs on the serializer. In addition the GPIOs on the deserializer  
can be configured to behave as outputs of the local register on the deserializer. If the DS90UB91xQ-Q1 chipsets  
are run off the external oscillator source as the reference clock, then GPO3 on the serializer is automatically  
configured to be the input for the external clock and GPIO2 on the deserializer is configured to be the output of  
the divide-by-2 clock which is fed into the imager as its reference clock. In this case, the GPIO2 and GPIO3 on  
the deserializer can only behave as outputs of the local register on the deserializer. The GPIO maximum  
switching rate is up to 66 kHz when configured for communication between deserializer GPIO to serializer GPO.  
32  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
10.3.13 LVCMOS VDDIO Option  
1.8-V, 2.8-V, and 3.3-V serializer inputs and 1.8-V and 3.3-V deserializer outputs are user configurable to provide  
compatibility with 1.8-V, 2.8-V and 3.3-V system interfaces.  
10.3.14 Deserializer – Adaptive Input Equalization (AEQ)  
The receiver inputs provide an adaptive input equalization filter in order to compensate for loss from the media.  
The level of equalization can also be manually selected through register controls. The fully-adaptive equalizer  
output can be seen using the CMLOUTP/CMLOUTN pins in the deserializer.  
18  
16  
14  
12  
10  
8
6
4
2
0
100  
200  
300  
400  
500  
600  
700  
SERIAL LINE FREQUENCY (MHz)  
Figure 35. Maximum Equalizer Gain vs. Line Frequency  
10.3.15 EMI Reduction  
10.3.15.1 Deserializer Staggered Output  
The receiver staggers output switching to provide a random distribution of transitions within a defined window.  
Outputs transitions are distributed randomly. This minimizes the number of outputs switching simultaneously and  
helps to reduce supply noise. In addition it spreads the noise spectrum out reducing overall EMI.  
10.3.15.2 Spread Spectrum Clock Generation (SSCG) on the Deserializer  
The DS90UB914Q-Q1 parallel data and clock outputs have programmable SSCG ranges from 10 MHz to 100  
MHz. The modulation rate and modulation frequency variation of output spread is controlled through the SSC  
control registers on the DS90UB914Q-Q1 device. SSC profiles can be generated using bits [3:0] in register 0x02  
in the deserializer.  
10.4 Device Functional Modes  
10.4.1 DS90UB91xQ-Q1 Operation With External Oscillator as Reference Clock  
In some applications, the pixel clock that comes from the imager can have jitter which exceeds the tolerance of  
the DS90UB91xQ-Q1 chipsets. In this case, the DS90UB913Q-Q1 device should be operated by using an  
external clock source as the reference clock for the DS90UB91xQ-Q1 chipsets. This is the recommended  
operating mode. The external oscillator clock output goes through a divide-by-2 circuit in the DS90UB913Q-Q1  
serializer and this divided clock output is used as the reference clock for the imager. The output data and pixel  
clock from the imager are then fed into the DS90UB913Q-Q1 device. Figure 36 shows the operation of the  
DS90UB1xQ-Q1 chipsets while using an external automotive grade oscillator.  
Copyright © 2012–2015, Texas Instruments Incorporated  
33  
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
Device Functional Modes (continued)  
DS90UB913Q  
Serializer  
DS90UB914Q  
Deserializer  
FPD Link III-  
High Speed  
Camera Data  
Camera Data  
DOUT+  
DOUT-  
RIN+  
RIN-  
10 or 12  
10 or 12  
ROUT[11:0]  
or  
ROUT[9:0]  
HSYNC,  
VSYNC  
DIN[11:0] or  
DATA  
Image  
Sensor  
DATA  
DIN[9:0]  
HSYNC,  
VSYNC  
HSYNC  
HSYNC  
VSYNC  
VSYNC  
Bi-Directional  
PCLK  
PCLK  
ECU Module  
Pixel Clock  
Pixel Clock  
Control Channel  
SDA  
SCL  
SDA  
SCL  
2
4
PLL  
GPIO[3:0]  
GPO[1:0]  
GPO[3:0]  
Microcontroller  
GPO[1:0]  
SDA  
SCL  
SDA  
SCL  
Camera Unit  
GPO3  
Reference Clock  
(Ext. OSC/2)  
÷2  
GPO2  
External  
Oscillator  
Figure 36. DS90UB91xQ-Q1 Operation in the External Oscillator Mode  
When the DS90UB913Q-Q1 device is operated using an external oscillator, the GPO3 pin on the  
DS90UB913Q-Q1 is the input pin for the external oscillator. In applications where the DS90UB913Q-Q1 device is  
operated from an external oscillator, the divide-by-2 circuit in the DS90UB913Q-Q1 device feeds back the  
divided clock output to the imager device through GPO2 pin. The pixel clock to external oscillator ratios needs to  
be fixed for the 12-bit high-frequency mode and the 10-bit mode.  
NOTE  
In the 10-bit mode, the pixel clock frequency divided by the external oscillator frequency  
must be 2. In the 12-bit high-frequency mode, the pixel clock frequency divided by the  
external oscillator frequency must be 1.5.  
For example, if the external oscillator frequency is 48 MHz in the 10-bit mode, the pixel clock frequency of the  
imager needs to be twice of the external oscillator frequency, that is, 96 MHz. If the external oscillator frequency  
is 48 MHz in the 12-bit high-frequency mode, the pixel clock frequency of the imager needs to be 1.5 times of the  
external oscillator frequency, that is, 72 MHz. In this mode, GPO2 and GPO3 on the serializer cannot act as the  
output of the input signal coming from GPIO2 or GPIO3 on the deserializer.  
10.4.2 DS90UB91xQ-Q1 Operation With Pixel Clock from Imager as Reference Clock  
The DS90UB91xQ-Q1 chipsets can be operated by using the pixel clock from the imager as the reference  
clock.Figure 37 shows the operation of the DS90UB91xQ-Q1 chipsets using the pixel clock from the imager. If  
the DS90UB913Q-Q1 device is operated using the pixel clock from the imager as the reference clock, then the  
imager uses an external oscillator as its reference clock. There are 4 GPIOs on the serializer and 4 GPIOs on  
the deserializer in this mode.  
34  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
Device Functional Modes (continued)  
DS90UB914Q  
Deserializer  
DS90UB913Q  
Camera Data  
Camera Data  
FPD-Link III  
DOUT+  
DOUT-  
10 or 12  
RIN0+  
RIN0-  
10 or 12  
ROUT[11:0]  
or  
ROUT[9:0]  
FV, LV  
Image  
DIN[11:0] or  
YUV  
YUV  
DIN[9:0]  
FV,LV  
Sensor  
HSYNC  
HSYNC  
VSYNC  
SDA  
VSYNC  
Bi-Directional  
Back Channel  
SDA  
SCL  
PCLK  
ECU Module  
Pixel Clock  
SCL  
RIN1+  
4
4
GPO[3:0]  
PCLK  
GPIO[3:0]  
GPO  
GPIO  
Microcontroller  
RIN1-  
PLL  
SDA  
SCL  
Pixel Clock  
SDA  
SCL  
Camera Unit  
Ext.  
Oscillator  
Figure 37. DS90UB91xQ-Q1 Operation in PCLK mode  
10.4.3 MODE Pin on Serializer  
The mode pin on the serializer can be configured to select if the DS90UB913Q-Q1 device is to be operated from  
the external oscillator or the PCLK from the imager. The pin must be pulled to VDD (1.8 V, not VDDIO) with a  
10-kΩ resistor and a pulldown resistor (RMODE) of the recommended value to set the modes shown in Figure 38.  
The recommended maximum resistor tolerance is 1%.  
1.8V  
10k  
V
DDIO  
MODE  
RPU  
RPU  
R
MODE  
DS90UB913Q  
HOST  
SCL  
SDA  
SCL  
SDA  
To other  
Devices  
Figure 38. MODE Pin Configuration on DS90UB913Q-Q1  
Table 3. DS90UB913Q-Q1 Serializer MODE Resistor  
Value  
MODE SELECT  
RMODE RESISTOR VALUE  
PCLK from imager mode  
External Oscillator mode  
100 kΩ  
4.7 kΩ  
Copyright © 2012–2015, Texas Instruments Incorporated  
35  
 
 
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
10.4.4 MODE Pin on Deserializer  
The mode pin on the deserializer can be used to configure the device to work in the 12-bit low-frequency mode,  
12-bit high frequency mode or the 10-bit mode of operation. Internally, the DS90UB91xQ-Q1 chipset operates in  
a divide-by-1 mode in the 12-bit low-frequency mode, divide-by-2 mode in the 10-bit mode and a divide-by-1.5  
mode in the 12-bit high-frequency mode. The pin must be pulled to VDD (1.8 V, not VDDIO) with a 10-kΩ resistor  
and a pulldown resistor (RMODE) of the recommended value to set the different modes in the deserializer as  
mentioned in Table 4. The deserializer automatically configures the serializer to correct mode through the back-  
channel. The recommended maximum resistor tolerance is 1%  
.
1.8V  
10k  
V
DDIO  
MODE  
RPU  
RPU  
R
MODE  
DS90UB914Q  
SCL  
HOST  
SCL  
SDA  
SDA  
To Other  
Devices  
Figure 39. Mode Pin Configuration on DS90UB914Q-Q1 Deserializer  
Table 4. DS90UB914Q-Q1 Deserializer MODE Resistor  
Value  
DS90UB914Q-Q1 DESERIALIZER MODE RESISTOR VALUE  
MODE SELECT  
RMODE RESISTOR VALUE  
12-bit low-frequency mode  
10 to 50 MHz PCLK  
0 Ω  
10 to 12 bit DATA + 2 SYNC  
12-bit low-frequency mode  
15 to 75 MHz PCLK  
3 kΩ  
10 to 12 bit DATA + 2 SYNC  
10-bit mode  
20 to 100 MHz PCLK  
11 kΩ  
10 to 10 bit DATA + 2 SYNC  
36  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
10.4.5 Clock-Data Recovery Status Flag (LOCK), Output Enable (OEN) and Output State Select  
(OSS_SEL)  
When PDB is driven HIGH, the CDR PLL of the deserializer begins locking to the serial input and LOCK is TRI-  
STATE or LOW (depending on the value of the OEN setting). After the DS90UB914Q-Q1 completes its lock  
sequence to the input serial data, the LOCK output is driven HIGH, indicating valid data and clock recovered  
from the serial input is available on the parallel bus and PCLK outputs. The states of the outputs are based on  
the OEN and OSS_SEL setting (Table 3). See Figure 20.  
Table 5. Output States  
INPUTS  
PDB  
OUTPUTS  
DATA, GPIO, I2S  
SERIAI INPUTS  
OEN  
OSS  
LOCK  
Z
PASS  
CLK  
X
X
X
0
1
1
X
0
0
X
0
1
Z
L
Z
Z
L
Z
Z
L
Z
L or H  
L or H  
L/Osc (Register  
Bit Enable)  
Static  
1
1
0
L
L
L
Static  
Active  
Active  
1
1
1
1
1
1
1
0
1
H
H
H
Previous State  
L
L
L
L
L
Valid  
Valid  
Valid  
10.4.6 Multiple Device Addressing  
Some applications require multiple camera devices with the same fixed address to be accessed on the same I2C  
bus. The DS90UB91xQ-Q1 provides slave ID matching/aliasing to generate different target slave addresses  
when connecting more than two identical devices together on the same bus. This allows the slave devices to be  
independently addressed. Each device connected to the bus is addressable through a unique ID by programming  
of the SLAVE_ID_MATCH register on deserializer. This will remap the SLAVE_ID_MATCH address to the target  
SLAVE_ID_INDEX address; up to 8 ID indexes are supported. The ECU Controller must keep track of the list of  
I2C peripherals in order to properly address the target device.  
See Figure 40 for an example of multiple device addressing.  
ECU is the I2C master and has an I2C master interface  
The I2C interfaces in DES A and DES B are both slave interfaces  
The I2C protocol is bridged from DES A to SER A and from DES B to SER B  
The I2C interfaces in SER A and SER B are both master interfaces  
If master controller transmits I2C slave 0xA0, the DES A address 0xC0 will forward the transaction to remote  
Camera A. If the controller transmits slave address 0xA4, the DES B 0xC2 will recognize that 0xA4 is mapped to  
0xA0 and will be transmitted to the remote Camera B. If controller sends command to address 0xA6, the DES B  
0xC2 will forward transaction to slave device 0xA2.  
The Slave ID index/match is supported only in the camera mode (SER: MODE pin = L; DES: MODE pin = H).  
For Multiple device addressing in display mode (SER: MODE pin = H; DES: MODE pin = L), use the I2C pass-  
through function.  
Copyright © 2012–2015, Texas Instruments Incorporated  
37  
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
Camera A  
Slave ID: (0xA0)  
DS90UB913Q  
DS90UB914Q  
ROUT[11:0],  
HS, VS,  
PCLK  
CMOS  
Image  
Sensor  
DIN[11:0]  
, HS, VS,  
PCLK  
2
2
SDA  
SCL  
SDA  
SCL  
I C  
I C  
DES A: ID[x](0xC0)  
SER A: ID[x](0xB0)  
PC/  
SLAVE_ID1_MATCH(0xA0)  
SLAVE_ID1_INDEX(0xA0)  
SLAVE_ID2_MATCH(0xA2)  
SLAVE_ID2_INDEX(0xA2)  
DS90UB914Q  
EEPROM  
ECU  
Module  
Slave ID: (0xA2)  
Camera B  
Slave ID: (0xA0)  
DS90UB913Q  
DIN[11:0]  
, HS, VS,  
PCLK  
ROUT[11:0],  
HS, VS,  
PCLK  
CMOS  
Image  
Sensor  
2
2
SDA  
SCL  
SDA  
SCL  
I C  
I C  
PC  
PC/  
SER B: ID[x](0xB2)  
DES B: ID[x](0xC2)  
EEPROM  
SLAVE_ID2_MATCH(0xA4)  
SLAVE_ID2_INDEX(0xA0)  
SLAVE_ID2_MATCH(0xA6)  
SLAVE_ID2_INDEX(0xA2)  
Master  
Slave ID: (0xA2)  
Figure 40. Multiple Device Addressing  
10.4.7 Powerdown  
The SER has a PDB input pin to ENABLE or Powerdown (SLEEP) the device. The modes can be controlled by  
the host and is used to disable the Link to save power when the remote device is not operational. In this mode, if  
the PDB pin is tied High and the SER will enter SLEEP when the PCLK stops. When the PCLK starts again, the  
SER will then lock to the valid input PCLK and transmit the data to the DES. In SLEEP mode, the high-speed  
driver outputs are static (High). The DES has a PDB input pin to ENABLE or Powerdown (SLEEP) the device.  
This pin can be controlled by the system and is used to disable the DES to save power. An auto mode is also  
available. In this mode, the PDB pin is tied High and the DES will enter SLEEP when the serial stream stops.  
When the serial stream starts up again, the DES will lock to the input stream and assert the LOCK pin and output  
valid data. In SLEEP mode, the Data and PCLK outputs are set by the OSS_SEL configuration.  
10.4.8 Pixel Clock Edge Select (TRFB / RRFB)  
The TRFB/RRFB selects which edge of the Pixel Clock is used. For the SER, this register determines the edge  
that the data is latched on. If TRFB register is 1, data is latched on the Rising edge of the PCLK. If TRFB register  
is 0, data is latched on the Falling edge of the PCLK. For the DES, this register determines the edge that the  
data is strobed on. If RRFB register is 1, data is strobed on the Rising edge of the PCLK. If RRFB register is 0,  
data is strobed on the falling edge of the PCLK.  
PCLK  
DIN/  
ROUT  
TRFB/RRFB: 0  
TRFB/RRFB: 1  
Figure 41. Programmable PCLK Strobe Select  
38  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
10.4.9 Power-Up Requirements and PDB Pin  
When power is applied, the VDDIO supply needs to reach the expected operating voltage (1.8 V to 3.3 V) before  
the other supplies (VDDn) begin to ramp. It is required to delay and release the PDB Signal after VDD (VDDn  
and VDDIO) power supplies have settled to the recommended operating voltage. An external RC network can be  
connected to the PDB pin to ensure PDB arrives after all the VDD has stabilized.  
1.8V OR 3.3V  
1.8V  
VDDIO  
VDD_CORE,  
All other 1.8V Supplies  
1.8V OR 3.3V  
PDB  
Figure 42. Power-Up Sequencing  
10.4.10 Built-In Self Test  
An optional AT-Speed, Built-In Self Test (BIST) feature supports the testing of the high-speed serial link and low-  
speed back channel. This is useful in the prototype stage, equipment production, and in-system test and also for  
system diagnostics.  
10.4.11 BIST Configuration and Status  
The chipset can be programmed into BIST mode using either pins or registers. By default BIST configuration is  
controlled through pins. BIST can be configured through registers using BIST Control register (0x24). Pin based  
configuration is defined as follows:  
BISTEN : Enable the BIST Process  
GPIO0 and GPIO1 : Defines the BIST clock source (PCLK vs. various frequencies of internal OSC  
Table 6. BIST Configuration  
DESERIALIZER GPIO[0:1]  
OSCILLATOR SOURCE  
External PCLK  
Internal  
BIST FREQUENCY (MHZ)  
00  
01  
10  
11  
PCLK or External Oscillator  
50  
25  
Internal  
Internal  
12.5  
The BIST mode provides various options for source PCLK. Using external pins, GPIO0 and GPIO1 or using  
registers, customer can program the BIST mode to use external PCLK or various OSC frequencies. The BIST  
status can be monitored real time on PASS pin. For every frame with error(s), PASS pin toggles low for half  
PCLK period. If two consecutive frames have errors, PCLK will toggle twice to allow counting of frames with  
errors. Once the BIST is done, the PASS pin reflects the pass/fail status of the last BIST run. The status can also  
be read through I2C for the number of frames in errors. BIST status on PASS pin remains until it is changed by a  
new BIST session or a reset. The BIST status on PASS pin is not maintained till RX loses LOCK after BISTEN is  
deassserted. To evaluate BIST in the external oscillator mode, both external oscillator and PCLK need to be  
present.  
The BIST status on PASS pin is not maintained till RX loses LOCK after BISTEN is deassserted. So for all  
practical purposes, the BIST status can be monitored from register 0x25, that is, BIST Error Count on the  
DS90UB914Q-Q1 deserializer. To evaluate BIST in the external oscillator mode, both external oscillator and  
PCLK need to be present.  
Copyright © 2012–2015, Texas Instruments Incorporated  
39  
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
10.4.11.1 Sample BIST Sequence  
Step 1. For the DS90UB91xQ-Q1 FPD-Link III chipset, BIST Mode is enabled through the BISTEN pin of  
DS90UB914Q-Q1 FPD-Link III deserializer. The desired clock source is selected through the GPIO0 and GPIO1  
pins as shown in Table 4.  
Step 2. The DS90UB913Q-Q1 serializer is woken up through the back channel if it is not already on. The SSO  
pattern on the data pins is send through the FPD-Link III to the deserializer. Once the serializer and deserializer  
are in the BIST mode and the deserializer acquires Lock, the PASS pin of the deserializer goes high and BIST  
starts checking data stream. If an error in the payload is detected the PASS pin will switch low for one half of the  
clock period. During the BIST test, the PASS output can be monitored and counted to determine the payload  
error rate.  
Step 3. To stop the BIST mode, the deserializer BISTEN pin is set low. The deserializer stops checking the data.  
The final test result is not maintained on the PASS pin. To monitor the BIST status, check the BIST Error Count  
register, 0x25 on the deserializer.  
Step 4. The link returns to normal operation after the deserailzer BISTEN pin is low. Figure 44 shows the  
waveform diagram of a typical BIST test for two cases. Case 1 is error free, and Case 2 shows one with multiple  
errors. In most cases, it is difficult to generate errors due to the robustness of the link (differential data  
transmission, and so forth), thus they may be introduced by greatly extending the cable length, faulting the  
interconnect, or by reducing signal condition enhancements (RX equalization).  
Normal  
Step 1: DES in BIST  
BIST  
Wait  
Step 2: Wait, SER in BIST  
BIST  
start  
Step 3: DES in Normal  
Mode - check PASS  
BIST  
stop  
Step 4: DES/SER in Normal  
Figure 43. AT-Speed BIST System Flow Diagram  
BISTEN  
(DES)  
LOCK  
PCLK  
(RFB = L)  
ROUT[0:11],  
SSO  
HS, VS  
DATA  
(internal)  
PASS  
Prior Result  
PASS  
X = bit error(s)  
DATA  
(internal)  
X
X
X
PASS  
FAIL  
Prior Result  
Normal  
BIST  
Result  
Held  
Normal  
BIST Test  
BIST Duration  
Figure 44. BIST Timing Diagram  
40  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
10.5 Register Maps  
Table 7. DS90UB913Q-Q1 Control Registers  
ADDR  
NAME  
(HEX)  
BITS  
FIELD  
DEVICE ID  
R/W DEFAULT  
DESCRIPTION  
7-bit address of serializer; 0x58'h  
(0101_1000X'b) default  
7:1  
0x00  
I2C Device ID  
RW  
0x58'h  
0: Device ID is from ID[x]  
0
7
SER ID SEL  
RSVD  
1: Register I2C Device ID overrides ID[x]  
Reserved  
Digital Output Drive Strength  
1: High Drive Strength  
0: Low Drive Strength  
6
5
4
RDS  
RW  
RW  
RW  
0
1
1
Auto Voltage Control  
1: Enable  
0: Disable  
VDDIO Control  
VDDIO MODE  
VDDIOVoltage set  
0: 1.8V  
1: 3.3V  
This register can be set only through local I2C access  
1: Analog power-down : Powers Down the analog block  
in the serializer  
0x01  
Power and Reset  
3
2
1
ANAPWDN  
RSVD  
RW  
RW  
RW  
0
0
0
0: No effect  
Reserved  
1: Resets the digital block except for register values  
values. Does not affect device I2C Bus or Device ID.  
This bit is self-clearing.  
DIGITAL  
RESET1  
0: Normal Operation  
1: Digital Reset, resets the entire digital block including  
all register values.This bit is self-clearing.  
0: Normal Operation.  
0
DIGITAL RESET0  
RW  
1
RESERVED  
1
0x02  
Back-channel CRC Checker Enable  
1:Enabled  
0:Disabled  
RX CRC Checker  
Enable  
7
6
RW  
RW  
Forward channel Parity Generator Enable  
1: Enable  
0: Disable  
TX Parity Generator  
Enable  
1
0
Clear CRC Error Counters.  
This bit is NOT self-clearing.  
1: Clear Counters  
5
4
CRC Error Reset  
RW  
RW  
0: Normal Operation  
Automatically Acknowledge I2C Remote Write  
The mode works when the system is LOCKed.  
1: Enable: When enabled, I2C writes to the deserializer  
(or any remote I2C Slave, if I2C PASS ALL is enabled)  
are immediately acknowledged without waiting for the  
deserializer to acknowledge the write. The accesses are  
then re-mapped to address specified in 0x06.  
0: Disable  
I2C Remote Write  
Auto Acknowledge  
General  
Configuration  
0x03  
0
1: Enable Forward Control Channel pass-through of all  
I2C accesses to I2C Slave IDs that do not match the  
Serializer I2C Slave ID. The I2C accesses are then  
remapped to address specified in register 0x06.  
0: Enable Forward Control Channel pass-through only of  
I2C accesses to I2C Slave IDs matching either the  
remote Deserializer Slave ID or the remote Slave ID.  
I2C Pass-Through Mode  
0: Pass-Through Disabled  
1: Pass-Through Enabled  
3
2
I2C Pass All  
RW  
RW  
0
1
I2C PASSTHROUGH  
Copyright © 2012–2015, Texas Instruments Incorporated  
41  
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
Register Maps (continued)  
Table 7. DS90UB913Q-Q1 Control Registers (continued)  
ADDR  
(HEX)  
NAME  
BITS  
FIELD  
R/W DEFAULT  
DESCRIPTION  
1:Enabled : When enabled this registers overrides the  
clock to PLL mode (External Oscillator mode or Direct  
PCLK mode) defined through MODE pin and allows  
selection through register 0x35 in the serializer  
0: Disabled : When disabled, Clock to PLL mode  
(External Oscillator mode or Direct PCLK mode) is  
defined through MODE pin on the serializer.  
1
OV_CLK2PLL  
RW  
RW  
0
1
General  
Configuration  
0x03  
0x04  
Pixel Clock Edge Select  
1: Parallel Interface Data is strobed on the Rising Clock  
Edge.  
0: Parallel Interface Data is strobed on the Falling Clock  
Edge.  
0
TRFB  
RESERVED  
7
6
RSVD  
RSVD  
RW  
RW  
0
0
Reserved  
Reserved.  
Allows overriding mode select bits coming from back-  
channel  
1: Overrides MODE select bits  
0: Does not override MODE select bits  
5
MODE_OVERRIDE  
RW  
0
0x05  
Mode Select  
Indicates that the status of mode select from deserializer  
is up to date  
4
3
MODE_UP To DATE  
R
R
R
0
0
0
Pin_MODE_12–bit  
High Frequency  
1: 12-bit high-frequency mode is selected.  
0: 12-bit high-frequency mode is not selected.  
Pin_MODE_10–bit  
mode  
1: 10-bit mode is selected.  
0: 10-bit mode is not selected.  
2
1:0  
RSVD  
Reserved  
7-bit Deserializer Device ID configures the I2C Slave ID  
of the remote deserializer. A value of 0 in this field  
disables I2C access to the remote deserializer. This field  
is automatically configured by the Bidirectional Control  
Channel once RX Lock has been detected. Software  
may overwrite this value, but should also assert the  
FREEZE DEVICE ID bit to prevent overwriting by the  
Bidirectional Control Channel.  
7:1  
Desializer Device ID  
RW  
0x00  
0x06  
DES ID  
1: Prevents auto-loading of the Deserializer Device ID by  
the bidirectional control channel. The ID will be frozen at  
the value written.  
0
Freeze Device ID  
RW  
RW  
0
0
0: Update  
7-bit Remote Deserializer Device Alias ID Configures the  
decoder for detecting transactions designated for an I2C  
deserializer device. The transaction will be remapped to  
the address specified in the DES ID register.  
A value of 0 in this field disables access to the remote  
I2C Slave.  
7:1  
0
Deserializer ALIAS ID  
RSVD  
0x07  
0x08  
DESAlias  
Reserved  
7-bit Remote Slave Device ID Configures the physical  
I2C address of the remote I2C Slave device attached to  
the remote deserializer. If an I2C transaction is  
addressed to the Slave Alias ID, the transaction will be  
remapped to this address before passing the transaction  
across the Bidirectional Control Channel to the  
deserializer. A value of 0 in this field disables access to  
the remote I2C slave.  
7:1  
0
SLAVE ID  
RSVD  
RW  
0x00  
SlaveID  
Reserved  
42  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
Register Maps (continued)  
Table 7. DS90UB913Q-Q1 Control Registers (continued)  
ADDR  
(HEX)  
NAME  
BITS  
FIELD  
R/W DEFAULT  
DESCRIPTION  
7-bit Remote Slave Device Alias ID Configures the  
decoder for detecting transactions designated for an I2C  
Slave device attached to the remote deserializer. The  
transaction will be remapped to the address specified in  
the Slave ID register. A value of 0 in this field disables  
access to the remote I2C Slave.  
7:1  
SLAVE ALIAS ID  
RW  
0x00  
0x09  
SlaveAlias  
0
RSVD  
Reserved  
Number of back-channel CRC errors during normal  
operation. Least Significant byte  
0x0A  
0x0B  
CRC Errors  
CRC Errors  
7:0  
CRC Error Byte 0  
R
R
R
R
R
R
0
0
0
0
0
0
Number of back-channel CRC errors during normal  
operation. Most Significant byte  
7:0  
7:5  
4
CRC Error Byte 1  
Rev-ID  
Revision ID  
0x00: Production  
1: RX LOCKED  
0: RX not LOCKED  
RX Lock Detect  
BIST CRC Error  
Status  
1: CRC errors in BIST mode  
0: No CRC errors in BIST mode  
3
1: Valid PCLK detected  
0: Valid PCLK not detected  
2
PCLK Detect  
1: CRC error is detected during communication with  
deserializer.  
0x0C  
General Status  
1
0
DES Error  
R
R
0
0
This bit is cleared upon loss of link or assertion of CRC  
ERROR RESET in register 0x04.  
0: No effect  
1: Cable link detected  
0: Cable link not detected  
This includes any of the following faults  
— Cable Open  
LINK Detect  
— + and - shorted  
— Short to GND  
— Short to battery  
Local GPIO Output Value This value is output on the  
GPIO pin when the GPIO function is enabled, the local  
GPIO direction is Output, and remote GPIO control is  
disabled.  
7
6
GPO1 Output Value  
RW  
RW  
0
1
Remote GPIO Control  
1: Enable GPIO control from remote deserializer. The  
GPIO pin needs to be an output, and the value is  
received from the remote deserializer.  
GPO1 Remote  
Enable  
0: Disable GPIO control from remote deserializer.  
1: Input  
0: Output  
5
4
GPO1 Direction  
GPO0 Enable  
RW  
RW  
0
1
1: GPIO enable  
0: Tri-state  
GPO[0]  
0x0D  
and GPO[1]  
Configuration  
Local GPIO Output Value This value is output on the  
GPIO pin when the GPIO function is enabled, the local  
GPIO direction is Output, and remote GPIO control is  
disabled.  
3
2
GPO0 Output Value  
RW  
RW  
0
1
Remote GPIO Control  
1: Enable GPIO control from remote deserializer. The  
GPIO pin needs to be an output, and the value is  
received from the remote deserializer.  
GPO0 Remote  
Enable  
0: Disable GPIO control from remote deserializer.  
1: Input  
0: Output  
1
0
GPO0 Direction  
GPO0 Enable  
RW  
RW  
0
1
1: GPIO enable  
0: Tri-state  
Copyright © 2012–2015, Texas Instruments Incorporated  
43  
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
Register Maps (continued)  
Table 7. DS90UB913Q-Q1 Control Registers (continued)  
ADDR  
(HEX)  
NAME  
BITS  
FIELD  
R/W DEFAULT  
DESCRIPTION  
Local GPIO Output Value This value is output on the  
GPIO pin when the GPIO function is enabled, the local  
GPIO direction is Output, and remote GPIO control is  
disabled.  
7
GPO3 Output Value  
RW  
RW  
0
0
Remote GPIO Control  
1: Enable GPIO control from remote deserializer. The  
GPIO pin needs to be an output, and the value is  
received from the remote deserializer.  
GPO3 Remote  
Enable  
6
0: Disable GPIO control from remote deserializer.  
1: Input  
0: Output  
5
4
GPO3 Direction  
GPO3 Enable  
RW  
RW  
1
1
1: GPIO enable  
0: Tri-state  
GPO[2]  
0x0E  
and GPO[3]  
Configuration  
Local GPIO Output Value This value is output on the  
GPIO pin when the GPIO function is enabled, the local  
GPIO direction is Output, and remote GPIO control is  
disabled.  
3
GPO2 Output Value  
RW  
RW  
0
1
Remote GPIO Control  
1: Enable GPIO control from remote deserializer. The  
GPIO pin needs to be an output, and the value is  
received from the remote deserializer.  
GPO2 Remote  
Enable  
2
1
0: Disable GPIO control from remote deserializer.  
1: Input  
0: Output  
GPO2 Direction  
RW  
RW  
0
1
1: GPIO enable  
0: Tri-state  
0
GPO2 Enable  
RSVD  
7:5  
Reserved  
SDA Output Delay This field configures output delay on  
the SDA output. Setting this value will increase output  
delay in units of 50 ns. Nominal output delay values for  
SCL to SDA are:  
00 : 350 ns  
01: 400 ns  
10: 450 ns  
11: 500 ns  
4:3  
SDA Output Delay  
Local Write Disable  
RW  
00  
Disable Remote Writes to Local Registers Setting this bit  
to a 1 will prevent remote writes to local device registers  
from across the control channel. This prevents writes to  
the serializer registers from an I2C master attached to  
the deserializer. Setting this bit does not affect remote  
access to I2C slaves at the serializer.  
Speed up I2C Bus Watchdog Timer  
1: Watchdog Timer expires after approximately 50  
microseconds  
2
1
RW  
RW  
0
0
0x0F I2C Master Config  
I2C Bus Timer  
Speed up  
0: Watchdog Timer expires after approximately 1  
second.  
1. Disable I2C Bus Watchdog Timer When the I2C  
Watchdog Timer may be used to detect when the I2C  
bus is free or hung up following an invalid termination of  
a transaction. If SDA is high and no signaling occurs for  
approximately 1 second, the I2C bus will assumed to be  
free. If SDA is low and no signaling occurs, the device  
will attempt to clear the bus by driving 9 clocks on SCL  
0: No effect  
I2C Bus Timer  
Disable  
0
RW  
0
44  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
Register Maps (continued)  
Table 7. DS90UB913Q-Q1 Control Registers (continued)  
ADDR  
(HEX)  
NAME  
BITS  
FIELD  
R/W DEFAULT  
DESCRIPTION  
7
RSVD  
Reserved  
Internal SDA Hold Time. This field configures the amount  
of internal hold time provided for the SDA input relative  
to the SCL input. Units are 50 ns.  
I2C Glitch Filter Depth This field configures the maximum  
width of glitch pulses on the SCL and SDA inputs that  
will be rejected. Units are 10 ns.  
I2C Master SCL High Time This field configures the high  
pulse width of the SCL output when the serializer is the  
Master on the local I2C bus. Units are 50 ns for the  
nominal oscillator clock frequency. The default value is  
set to provide a minimum (4µs + 1µs of rise time for  
cases where rise time is very fast) SCL high time with  
the internal oscillator clock running at 26MHz rather than  
the nominal 20 MHz.  
6:4  
3:0  
SDA Hold Time  
I2C Filter Depth  
RW  
RW  
0x1  
0x7  
0x10  
0x11  
I2C Control  
SCL High Time  
7:0  
SCL High Time  
RW  
0x82  
I2C SCL Low Time This field configures the low pulse  
width of the SCL output when the serializer is the Master  
on the local I2C bus. This value is also used as the SDA  
setup time by the I2C Slave for providing data prior to  
releasing SCL during accesses over the Bidirectional  
Control Channel. Units are 50 ns for the nominal  
oscillator clock frequency. The default value is set to  
provide a minimum (4.7 µs + 0.3 µs of fall time for cases  
where fall time is very fast) SCL low time with the  
internal oscillator clock running at 26 MHz rather than  
the nominal 20 MHz.  
0x12  
0x13  
SCL LOW Time  
7:0  
SCL Low Time  
RW  
RW  
0x82  
General-Purpose  
Control  
1: High  
0: Low  
7:0  
7:3  
GPCR[7:0]  
RSVD  
0
Reserved  
Allows choosing different OSC clock frequencies for  
forward channel frame.  
OSC Clock Frequency in Functional Mode when OSC  
mode is selected or when the selected clock source is  
not present, for example, missing PCLK/ External  
Oscillator. See Table 9 for oscillator clock frequencies  
when PCLK/ External Clock is missing.  
2:1  
0
Clock Source  
BIST Enable  
RW  
RW  
0x0  
0x14  
BIST Control  
BIST Control:  
1: Enable BIST mode  
0: Disable BIST mode  
0
0x15 -  
0x1D  
RESERVED  
The watchdog timer allows termination of a control  
channel transaction if it fails to complete within a  
programmed amount of time. This field sets the  
Bidirectional Control Channel Watchdog Timeout value  
in units of 2ms. This field should not be set to 0.  
7:1  
0
BCC Watchdog Timer RW  
0x7F  
0
BCC Watchdog  
Control  
0x1E  
Disable Bidirectional Control Channel Watchdog Timer  
1: Disables BCC Watchdog Timer operation  
0: Enables BCC Watchdog Timer operation  
BCC Watchdog Timer  
RW  
Disable  
0x1F-  
0x29  
RESERVED  
BIST Mode CRC  
R
Number of CRC Errors in the back channel when in  
BIST mode  
0x2A  
CRC Errors  
7:0  
0
Errors Count  
Copyright © 2012–2015, Texas Instruments Incorporated  
45  
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
Register Maps (continued)  
Table 7. DS90UB913Q-Q1 Control Registers (continued)  
ADDR  
(HEX)  
NAME  
BITS  
FIELD  
R/W DEFAULT  
RESERVED  
DESCRIPTION  
0x2B -  
0x34  
7:4  
3
RSVD  
Reserved  
Status of mode select pin  
1: Indicates External Oscillator mode is selected by  
mode-resistor  
0: External Oscillator mode is not selected by mode-  
resistor  
PIN_LOCK to  
External Oscillator  
RW  
0
PLL Clock  
Overwrite  
Status of mode select pin  
1: Indicates PCLK mode is selected by mode-resistor  
0: PCLK mode not selected by mode-resistor  
0x35  
PIN_LOCK to  
Oscillator  
2
RW  
RW  
0
0
Affects only when 0x03[1]=1 (OV_CLK2PLL) and  
0x35[0]=0.  
1: Routes GPO3 directly to PLL  
0: Allows PLL to lock to PCLK"  
LOCK to External  
Oscillator  
1
0
RSVD  
Reserved  
Table 8. DS90UB914Q-Q1 Control Registers  
ADDR  
(HEX)  
NAME  
BITS  
FIELD  
DEVICE ID  
R/W  
DEFAULT  
DESCRIPTION  
7-bit address of deserializer;  
0x60h  
7:1  
RW  
0x60'h  
0x00  
I2C Device ID  
0: Deserializer Device ID is set using address  
coming from CAD  
Deserializer ID  
Select  
0
RW  
RW  
0
0
1: Register I2C Device ID overrides ID[x]  
7:6  
RSVD  
Reserved  
This register can be set only through local I2C  
access  
1: Analog power-down : Powers down the  
analog block in the serializer  
0: No effect  
5
ANAPWDN  
4:2  
1
RSVD  
Reserved  
0x01  
Reset  
Digital Reset Resets the entire digital block  
except registers. This bit is self-clearing.  
1: Reset  
Digital Reset 1  
RW  
RW  
0
0
0: No effect  
Digital Reset Resets the entire digital block  
including registers. This bit is self-clearing.  
1: Reset  
0
Digital Reset 0  
0: No effect  
46  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
Table 8. DS90UB914Q-Q1 Control Registers (continued)  
ADDR  
(HEX)  
NAME  
BITS  
FIELD  
R/W  
DEFAULT  
DESCRIPTION  
7
6
RSVD  
RSVD  
Reserved  
Reserved  
1: Output PCLK or OSC clock when not  
LOCKED  
0: Only PCLK  
5
4
Auto-Clock  
RW  
RW  
0
0
1: Selects 8x mode for 10-18 MHz frequency  
range in SSCG  
SSCG LFMODE  
0: SSCG running at 4X mode  
SSCG Select  
0000: Normal Operation, SSCG OFF  
0001: fmod (kHz) PCLK/2168, fdev ±0.50%  
0010: fmod (kHz) PCLK/2168, fdev ±1.00%  
0011: fmod (kHz) PCLK/2168, fdev ±1.50%  
0100: fmod (kHz) PCLK/2168, fdev ±2.00%  
0101: fmod (kHz) PCLK/1300, fdev ±0.50%  
0110: fmod (kHz) PCLK/1300, fdev ±1.00%  
0111: fmod (kHz) PCLK/1300, fdev ±1.50%  
1000: fmod (kHz) PCLK/1300, fdev ±2.00%  
1001: fmod (kHz) PCLK/868, fdev ±0.50%  
1010: fmod (kHz) PCLK/868, fdev ±1.00%  
1011: fmod (kHz) PCLK/868, fdev ±1.50%  
1100: fmod (kHz) PCLK/868, fdev ±2.00%  
1101: fmod (kHz) PCLK/650, fdev ±0.50%  
1110: fmod (kHz) PCLK/650, fdev ±1.00%  
1111: fmod (kHz) PCLK/650, fdev ±1.50%  
Note: This register should be changed only  
after disabling SSCG.  
General  
Configuration 0  
0x02  
3:0  
SSCG  
RW  
0
Forward-Channel Parity Checker Enable  
1: Enable  
0: Disable  
RX Parity Checker  
Enable  
7
6
5
4
3
RW  
RW  
RW  
RW  
RW  
1
1
1
0
1
Back-Channel CRC Generator Enable  
1: Enable  
0: Disable  
TX CRC Checker  
Enable  
General  
Configuration 1  
0x03  
Auto voltage control  
1: Enable (auto-detect mode)  
0: Disable  
VDDIO Control  
VDDIO Mode  
VDDIO voltage set  
1: 3.3 V  
0: 1.8 V  
I2C Pass-Through Mode  
1: Pass-Through Enabled  
0: Pass-Through Disabled  
I2C Passthrough  
Automatically Acknowledge I2C Remote Write  
When enabled, I2C writes to the deserializer (or  
any remote I2C Slave, if I2C PASS ALL is  
enabled) are immediately acknowledged  
without waiting for the deserializer to  
acknowledge the write. The accesses are then  
remapped to address specified in 0x06. This  
allows I2C bus without LOCK.  
2
AUTO ACK  
RW  
0
General  
Configuration 1  
0x03  
1: Enable  
0: Disable  
Parity Error Reset, This bit is self-clearing.  
1: Parity Error Reset  
0: No effect  
1
0
Parity Error Reset  
RRFB  
RW  
RW  
0
1
Pixel Clock Edge Select  
1: Parallel Interface Data is strobed on the  
Rising Clock Edge.  
0: Parallel Interface Data is strobed on the  
Falling Clock Edge.  
Copyright © 2012–2015, Texas Instruments Incorporated  
47  
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
Table 8. DS90UB914Q-Q1 Control Registers (continued)  
ADDR  
(HEX)  
NAME  
BITS  
FIELD  
R/W  
DEFAULT  
DESCRIPTION  
Equalization gain  
0x00 = ~0.0 dB  
0x01 = ~4.5 dB  
0x03 = ~6.5 dB  
0x07 = ~7.5 dB  
0x0F = ~8.0 dB  
0x1F = ~11.0 dB  
0x3F = ~12.5 dB  
EQ level - when  
AEQ bypass is  
enabled EQ setting  
is provided by this  
register  
EQ Feature  
Control 1  
0x04  
7:0  
RW  
0x00  
0x05  
0x06  
RESERVED  
7:1  
0
Remote ID  
RW  
0x0C  
Remote Serializer ID  
Freeze Serializer Device ID Prevent auto-  
loading of the serializer Device ID from the  
Forward Channel. The ID will be frozen at the  
value written.  
SER ID  
Freeze Device ID  
RW  
0
7:1  
7-bit Remote Serializer Device Alias ID  
Configures the decoder for detecting  
transactions designated for an I2C deserializer  
device. The transaction will be remapped to the  
address specified in the SER ID register. A  
value of 0 in this field disables access to the  
remote I2C Slave.  
Serializer Alias ID  
RSVD  
RW  
0x00  
0x07  
SER Alias  
0
7:1  
0
Reserved  
7-bit Remote Slave Device ID 0 Configures the  
physical I2C address of the remote I2C Slave  
device attached to the remote serializer. If an  
I2C transaction is addressed to the Slave Alias  
ID0, the transaction will be remapped to this  
address before passing the transaction across  
the Bidirectional Control Channel to the  
serializer.  
Slave ID0  
RSVD  
RW  
0
0x08  
Slave ID[0]  
Slave ID[1]  
Slave ID[2]  
Slave ID[3]  
Reserved  
7-bit Remote Slave Device ID 1 Configures the  
physical I2C address of the remote I2C Slave  
device attached to the remote serializer. If an  
I2C transaction is addressed to the Slave Alias  
ID1, the transaction will be remapped to this  
address before passing the transaction across  
the Bidirectional Control Channel to the  
serializer.  
7:1  
0
Slave ID1  
RSVD  
RW  
RW  
RW  
0
0x00  
0
0x09  
0x0A  
0x0B  
Reserved  
7-bit Remote Slave Device ID 2 Configures the  
physical I2C address of the remote I2C Slave  
device attached to the remote serializer. If an  
I2C transaction is addressed to the Slave Alias  
ID2, the transaction will be remapped to this  
address before passing the transaction across  
the Bidirectional Control Channel to the  
serializer.  
7:1  
0
Slave ID2  
RSVD  
Reserved  
7-bit Remote Slave Device ID 3 Configures the  
physical I2C address of the remote I2C Slave  
device attached to the remote serializer. If an  
I2C transaction is addressed to the Slave Alias  
ID3, the transaction will be remapped to this  
address before passing the transaction across  
the Bidirectional Control Channel to the  
serializer.  
7:1  
0
Slave ID3  
RSVD  
Reserved  
48  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
Table 8. DS90UB914Q-Q1 Control Registers (continued)  
ADDR  
(HEX)  
NAME  
BITS  
FIELD  
R/W  
DEFAULT  
DESCRIPTION  
7-bit Remote Slave Device ID 4 Configures the  
physical I2C address of the remote I2C Slave  
device attached to the remote serializer. If an  
I2C transaction is addressed to the Slave Alias  
ID4, the transaction will be remapped to this  
address before passing the transaction across  
the Bidirectional Control Channel to the  
serializer.  
7:1  
0
Slave ID4  
RW  
0
0x0C  
0x0D  
0x0E  
0x0F  
Slave ID[4]  
RSVD  
Reserved  
7-bit Remote Slave Device ID 5 Configures the  
physical I2C address of the remote I2C Slave  
device attached to the remote serializer. If an  
I2C transaction is addressed to the Slave Alias  
ID5 , the transaction will be remapped to this  
address before passing the transaction across  
the Bidirectional Control Channel to the  
serializer.  
7:1  
0
Slave ID5  
RSVD  
RW  
RW  
RW  
RW  
RW  
0x00  
Slave ID[5]  
Slave ID[6]  
Slave ID[7]  
Reserved  
7-bit Remote Slave Device ID 6 Configures the  
physical I2C address of the remote I2C Slave  
device attached to the remote serializer. If an  
I2C transaction is addressed to the Slave Alias  
ID6, the transaction will be remapped to this  
address before passing the transaction across  
the Bidirectional Control Channel to the  
serializer.  
7:1  
0
Slave ID6  
RSVD  
0
Reserved  
7-bit Remote Slave Device ID 7 Configures the  
physical I2C address of the remote I2C Slave  
device attached to the remote serializer. If an  
I2C transaction is addressed to the Slave Alias  
ID7, the transaction will be remapped to this  
address before passing the transaction across  
the Bidirectional Control Channel to the  
serializer.  
7:1  
0
Slave ID7  
RSVD  
0x00  
0x00  
0x00  
Reserved  
7-bit Remote Slave Device Alias ID 0  
Configures the decoder for detecting  
transactions designated for an I2C Slave device  
attached to the remote serializer. The  
transaction will be remapped to the address  
specified in the Slave ID0 register. A value of 0  
in this field disables access to the remote I2C  
Slave.  
7:1  
0
Slave Alias ID0  
RSVD  
0x10  
Slave Alias[0]  
Reserved  
7-bit Remote Slave Device Alias ID 1  
Configures the decoder for detecting  
transactions designated for an I2C Slave device  
attached to the remote serializer. The  
transaction will be remapped to the address  
specified in the Slave ID1 register. A value of 0  
in this field disables access to the remote I2C  
Slave.  
7:1  
0
Slave Alias ID1  
RSVD  
0x11  
Slave Alias[1]  
Reserved  
Copyright © 2012–2015, Texas Instruments Incorporated  
49  
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
Table 8. DS90UB914Q-Q1 Control Registers (continued)  
ADDR  
(HEX)  
NAME  
BITS  
FIELD  
R/W  
DEFAULT  
DESCRIPTION  
7-bit Remote Slave Device Alias ID 2  
Configures the decoder for detecting  
transactions designated for an I2C Slave device  
attached to the remote serializer. The  
transaction will be remapped to the address  
specified in the Slave ID2 register. A value of 0  
in this field disables access to the remote I2C  
Slave.  
7:1  
0
Slave Alias ID2  
RSVD  
RW  
0x00  
0x12  
0x13  
0x14  
0x15  
0x16  
Slave Alias[2]  
Reserved  
7-bit Remote Slave Device Alias ID 3  
Configures the decoder for detecting  
transactions designated for an I2C Slave device  
attached to the remote serializer. The  
transaction will be remapped to the address  
specified in the Slave ID3 register. A value of 0  
in this field disables access to the remote I2C  
Slave.  
7:1  
0
Slave Alias ID3  
RSVD  
RW  
RW  
RW  
RW  
0x00  
0x00  
0x00  
0x00  
Slave Alias[3]  
Slave Alias[4]  
Slave Alias[5]  
Slave Alias[6]  
Slave Alias[7]  
Reserved  
7-bit Remote Slave Device Alias ID 4  
Configures the decoder for detecting  
transactions designated for an I2C Slave device  
attached to the remote serializer. The  
transaction will be remapped to the address  
specified in the Slave ID4 register. A value of 0  
in this field disables access to the remote I2C  
Slave.  
7:1  
0
Slave Alias ID4  
RSVD  
Reserved  
7-bit Remote Slave Device Alias ID 5  
Configures the decoder for detecting  
transactions designated for an I2C Slave device  
attached to the remote serializer. The  
transaction will be remapped to the address  
specified in the Slave ID5 register. A value of 0  
in this field disables access to the remote I2C  
Slave.  
7:1  
0
Slave Alias ID5  
RSVD  
Reserved  
7-bit Remote Slave Device Alias ID 6  
Configures the decoder for detecting  
transactions designated for an I2C Slave device  
attached to the remote serializer. The  
transaction will be remapped to the address  
specified in the Slave ID6 register. A value of 0  
in this field disables access to the remote I2C  
Slave.  
7:1  
0
Slave Alias ID6  
RSVD  
Reserved  
7-bit Remote Slave Device Alias ID 7  
Configures the decoder for detecting  
transactions designated for an I2C Slave device  
attached to the remote serializer. The  
transaction will be remapped to the address  
specified in the Slave ID7 register. A value of 0  
in this field disables access to the remote I2C  
Slave.  
7:1  
Slave Alias ID7  
RSVD  
RW  
RW  
0x00  
0x17  
0x18  
0
Reserved  
Parity errors threshold on the Forward channel  
during normal information. This sets the  
maximum number of parity errors that can be  
counted using register 0x1A.  
Parity Errors  
Threshold  
Parity Error  
Threshold Byte 0  
7:0  
0
Least significant Byte.  
50  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
Table 8. DS90UB914Q-Q1 Control Registers (continued)  
ADDR  
(HEX)  
NAME  
BITS  
FIELD  
R/W  
DEFAULT  
DESCRIPTION  
Parity errors threshold on the Forward channel  
during normal operation. This sets the  
maximum number of parity errors that can be  
counted using register 0x1B.  
Parity Errors  
Threshold  
Parity Error  
Threshold Byte 1  
0x19  
7:0  
RW  
0
Most significant Byte  
Number of parity errors in the Forward channel  
during normal operation.  
Least significant Byte  
0x1A  
0x1B  
Parity Errors  
Parity Errors  
7:0  
7:0  
Parity Error Byte 0  
Parity Error Byte 1  
RW  
0
Number of parity errors in the Forward channel  
during normal operation  
Most significant Byte  
RW  
R
0
0
Revision ID  
0x0000: Production  
7:4  
3
Rev-ID  
RSVD  
Reserved  
Parity Error detected  
1: Parity Errors detected  
0: No Parity Errors  
2
1
Parity Error  
R
R
0
0
0x1C  
General Status  
1: Serial input detected  
0: Serial input not detected  
Signal Detect  
Deserializer CDR, PLL's clock to recovered  
clock frequency  
1: Deserializer locked to recovered clock  
0: Deserializer not locked  
0
Lock  
R
0
0
Local GPIO Output Value This value is the  
output on the GPIO pin when the GPIO function  
is enabled, the local GPIO direction is Output.  
7
6
5
GPIO1 Output Vaue  
RW  
RSVD  
Reserved  
GPIO1 Direction  
1
Local GPIO Direction  
1: Input  
0: Output  
RW  
RW  
RW  
GPIO[1] and  
GPIO[0] Config  
0x1D  
GPIO Function Enable  
1: Enable GPIO operation  
0: Enable normal operation  
4
GPIO1 Enable  
1
0
Local GPIO Output Value This value is output  
on the GPIO pin when the GPIO function is  
enabled, the local GPIO direction is Output.  
3
2
1
GPIO0 Output Value  
RSVD  
Reserved  
Local GPIO Direction  
1: Input  
0: Output  
GPIO0 Direction  
RW  
RW  
1
1
GPIO[1] and  
GPIO[0] Config  
0x1D  
GPIO Function Enable  
1: Enable GPIO operation  
0: Enable normal operation  
0
GPIO0 Enable  
Copyright © 2012–2015, Texas Instruments Incorporated  
51  
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
Table 8. DS90UB914Q-Q1 Control Registers (continued)  
ADDR  
(HEX)  
NAME  
BITS  
FIELD  
R/W  
DEFAULT  
DESCRIPTION  
Local GPIO Output Value This value is the  
output on the GPIO pin when the GPIO function  
is enabled, the local GPIO direction is Output.  
7
6
5
GPIO3 Output Vaue  
RSVD  
RW  
0
Reserved  
Local GPIO Direction  
1: Input  
0: Output  
GPIO3 Direction  
RW  
RW  
RW  
1
1
0
GPIO Function Enable  
1: Enable GPIO operation  
0: Enable normal operation  
4
GPIO3 Enable  
GPIO[3] and  
GPIO[2] Config  
0x1E  
Local GPIO Output Value This value is output  
on the GPIO pin when the GPIO function is  
enabled, the local GPIO direction is Output.  
3
2
1
GPIO2 Output Value  
RSVD  
Reserved  
Local GPIO Direction  
1: Input  
0: Output  
GPIO2 Direction  
RW  
RW  
1
1
GPIO Function Enable  
1: Enable GPIO operation  
0: Enable normal operation  
0
7
GPIO2 Enable  
Allows overriding OEN and OSS select coming  
from Pins  
1: Overrides OEN/OSS_SEL selected by pins  
0: Does NOT override OEN/OSS_SEL select  
by pins  
OEN_OSS Override  
RW  
0
6
5
OEN Select  
OSS Select  
RW  
R
0
0
OEN configuration from register  
OSS_SEL configuration from register  
Allows overriding mode select bits coming from  
back-channel  
1: Overrides MODE select bits  
0: Does not override MODE select bits  
4
MODE_OVERRIDE  
RW  
0
PIN_MODE_12–bit  
HF mode  
Status of mode select pin  
Mode and OSS  
Select  
3
2
R
R
0
0
0x1F  
PIN_MODE_10-bit  
mode  
Status of mode select pin  
Selects 12-bit high-frequency mode. This bit is  
automatically updated by the mode settings  
from RX unless MODE_OVERRIDE is SET  
1: 12-bit high-frequency mode is selected.  
0: 12-bit high-frequency mode is not selected.  
MODE_12–bit High  
Frequency  
1
0
RW  
RW  
0
0
Selects 10-bit mode. This bit is automatically  
updated by the mode settings from RX unless  
MODE_OVERRIDE is SET  
MODE_10–bit mode  
1: Enables 10-bit mode.  
0: Disables 10-bit mode.  
The watchdog timer allows termination of a  
control channel transaction if it fails to complete  
within a programmed amount of time. This field  
sets the Bidirectional Control Channel  
Watchdog Timeout value in units of 2ms. This  
field should not be set to 0.  
BCC Watchdog  
timer  
7:1  
0
RW  
RW  
0
0
BCC Watchdog  
Control  
0x20  
Disable Bidirectional Control Channel  
Watchdog Timer  
1: Disables BCC Watchdog Timer operation  
0: Enables BCC Watchdog Timer operation  
BCC Watchdog  
Timer Disable  
52  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
Table 8. DS90UB914Q-Q1 Control Registers (continued)  
ADDR  
(HEX)  
NAME  
BITS  
FIELD  
R/W  
DEFAULT  
DESCRIPTION  
I2C Pass-Through All Transactions  
0: Disabled  
7
I2C pass-through all  
RW  
0
1: Enabled  
Internal SDA Hold Time This field configures  
the amount of internal hold time provided for  
the SDA input relative to the SCL input. Units  
are 50ns.  
I2C Glitch Filter Depth This field configures the  
maximum width of glitch pulses on the SCL and  
SDA inputs that will be rejected. Units are 10ns.  
0x21  
I2C Control 1  
6:4  
3:0  
I2C SDA Hold  
RW  
RW  
0
0
I2C Filter Depth  
Control Channel Sequence Error Detected This  
bit indicates a sequence error has been  
detected in forward control channel.  
1: If this bit is set, an error may have occurred  
in the control channel operation  
Forward Channel  
Sequence Error  
7
R
0
0
0: No forward channel errors have been  
detected on the control channel  
Clear Sequence  
Error  
Clears the Sequence Error Detect bit  
6
5
RW  
RSVD  
Reserved  
SDA Output Delay This field configures output  
delay on the SDA output. Setting this value will  
increase output delay in units of 50 ns. Nominal  
output delay values for SCL to SDA are:  
00 : 350ns  
4:3  
SDA Output Delay  
RW  
0
01: 400ns  
10: 450ns  
11: 500ns  
Disable Remote Writes to local registers  
0x22  
I2C Control 2  
Setting this bit to a 1 will prevent remote writes  
to local device registers from across the control  
channel. This prevents writes to the deserializer  
registers from an I2C master attached to the  
serializer. Setting this bit does not affect remote  
access to I2C slaves at the deserializer.  
Speed up I2C Bus Watchdog Timer  
1: Watchdog Timer expires after approximately  
50 µs  
2
1
Local Write Disable  
RW  
RW  
0
0
I2C Bus Timer  
Speed up  
0: Watchdog Timer expires after approximately  
1 s.  
Disable I2C Bus Watchdog Timer When the I2C  
Watchdog Timer may be used to detect when  
the I2C bus is free or hung up following an  
invalid termination of a transaction. If SDA is  
high and no signaling occurs for approximately  
1 second, the I2C bus will assumed to be free.  
If SDA is low and no signaling occurs, the  
device will attempt to clear the bus by driving 9  
clocks on SCL  
I2C Bus Timer  
Disable  
0
RW  
0
General-Purpose  
Control  
Scratch Register  
0x23  
0x24  
7:0  
7:4  
GPCR  
RSVD  
RW  
RW  
0
1
Reserved  
Bist Configured through Pin.  
1: Bist configured through pin.  
0: Bist configured through register bit  
"reg_24[0]"  
BIST Pin  
Configuration  
3
BIST Control  
BIST Clock Source  
See Table 10  
2:1  
0
BIST Clock Source  
BIST Enable  
RW  
RW  
00  
0
BIST Control  
1: Enabled  
0: Disabled  
Copyright © 2012–2015, Texas Instruments Incorporated  
53  
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
Table 8. DS90UB914Q-Q1 Control Registers (continued)  
ADDR  
(HEX)  
NAME  
BITS  
FIELD  
R/W  
DEFAULT  
DESCRIPTION  
Number of Forward channel Parity errors in the  
BIST mode.  
0x25  
Parity Error Count  
7:0  
BIST Error Count  
R
0
0x26 -  
0x3B  
RESERVED  
7:2  
1:0  
RSVD  
Reserved  
Selects the divider for the OSC clock out on  
PCLK when system is not locked and selected  
by OEN/OSSSEL 0x02[5]  
00: 50M (± 30%)  
Oscillator output  
divider select  
0x3C  
OSC OUT DIVIDER  
SEL  
RW  
0
01: 25M (± 30%)  
1X: 12.5M (± 30%)  
0x3D -  
0x3E  
RESERVED  
7:5  
4
RSVD  
Reserved  
CML Output  
Enable  
0: CML Loop-through Driver is powered up  
1: CML Loop-through Driver is powered down.  
0x3F  
CML OUT Enable  
RSVD  
RW  
1
3:0  
Reserved  
I2C Master SCL High Time This field configures  
the high pulse width of the SCL output when  
the deserializer is the Master on the local I2C  
bus. Units are 50 ns for the nominal oscillator  
clock frequency. The default value is set to  
provide a minimum (4μs + 0.3μs of rise time for  
cases where rise time is very fast) SCL high  
time with the internal oscillator clock running at  
26MHz rather than the nominal 20MHz.  
0x40  
SCL High Time  
7:0  
SCL High Time  
RW  
0x82  
I2C SCL Low Time This field configures the low  
pulse width of the SCL output when the  
deserializer is the Master on the local I2C bus.  
This value is also used as the SDA setup time  
by the I2C Slave for providing data prior to  
releasing SCL during accesses over the  
Bidirectional Control Channel. Units are 50 ns  
for the nominal oscillator clock frequency. The  
default value is set to provide a minimum  
(4.7µs + 0.3µs of fall time for cases where fall  
time is very fast) SCL low time with the internal  
oscillator clock running at 26MHz rather than  
the nominal 20MHz.  
0x41  
SCL Low Time  
7:0  
SCL Low Time  
RW  
0x82  
7:2  
1
RSVD  
Reserved  
1: This bit introduces multiple errors into Back  
channel frame.  
0: No effect  
Force Back Channel  
Error  
RW  
RW  
0
0
0x42  
CRC Force Error  
1: This bit introduces ONLY one error into Back  
channel frame. Self clearing bit  
0: No effect  
Force One Back  
Channel Error  
0
0x43 -  
0x4C  
RESERVED  
7
RSVD  
Reserved  
AEQ Test Mode  
Select  
Bypass AEQ and use set manual EQ value  
using register 0x04  
0x4D  
6
AEQ Bypass  
RSVD  
RW  
R
0
0
5:0  
7:0  
Reserved  
AEQ / Manual Eq  
Readback  
Read back the adaptive and manual  
Equalization value  
0x4E EQ Value  
54  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
Table 9. Clock Sources for Forward Channel Frame on the Serializer During Normal Operation  
DS90UB913Q  
REG 0x14 [2:1]  
10-BIT  
MODE  
12-BIT  
12-BIT  
HIGH-FREQUENCY MODE  
LOW-FREQUENCY MODE  
00  
01  
10  
11  
50 MHz  
100 MHz  
50 MHz  
25MHz  
37.5 MHz  
75 MHz  
25 MHz  
50 MHz  
25 MHz  
12.5 MHz  
37.5 MHz  
18.75 MHz  
Table 10. BIST Clock Sources  
DS90UB914Q  
REG 0x24 [2:1]  
10-BIT  
MODE  
12-BIT  
12-BIT  
HIGH-FREQUENCY MODE  
LOW-FREQUENCY MODE  
00  
01  
10  
11  
PCLK  
100 MHz  
50 MHz  
25MHz  
PCLK  
PCLK  
50 MHz  
25 MHz  
12.5 MHz  
75 MHz  
37.5 MHz  
18.75 MHz  
Copyright © 2012–2015, Texas Instruments Incorporated  
55  
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
11 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
11.1 Applications Information  
The serializer and deserializer support only AC-coupled interconnects through an integrated DC-balanced  
decoding scheme. External AC-coupling capacitors must be placed in series in the FPD-Link III signal path as  
illustrated in Figure 45.  
D
+
OUT  
R
IN  
+
D
R
R
IN  
-
D
-
OUT  
Figure 45. AC-Coupled Connection  
For high-speed FPD-Link III transmissions, the smallest available package should be used for the AC-coupling  
capacitor. This will help minimize degradation of signal quality due to package parasitics. The I/Os require a  
100-nF AC-coupling capacitors to the line.  
11.2 Typical Application  
DS90UB913Q  
Serializer  
DS90UB914Q  
Deserializer  
FPD-Link III  
Camera Data  
Camera Data  
DOUT+  
DOUT-  
10 or 12  
RIN+  
RIN-  
10 or 12  
ROUT[11:0]  
or  
ROUT[9:0]  
HSYNC,  
VSYNC  
DIN[11:0] or  
DIN[9:0]  
HSYNC,  
VSYNC  
Image  
Sensor  
DATA  
DATA  
HSYNC  
HSYNC  
VSYNC  
VSYNC  
Bi-Directional  
PCLK  
PCLK  
ECU Module  
Pixel Clock  
Control Channel  
Pixel Clock  
4
4
GPO[3:0]  
GPIO[3:0]  
GPO[3:0]  
GPIO[3:0]  
Microcontroller  
SDA  
SCL  
SDA  
SCL  
SDA  
SCL  
SDA  
SCL  
Camera Unit  
Figure 46. Application Block Diagram  
11.2.1 Design Requirements  
11.2.1.1 Transmission Media  
The DS90UB91xQ-Q1 chipset is intended to be used in a point-to-point configuration through a shielded twisted  
pair cable. The serializer and deserializer provide internal termination to minimize impedance discontinuities. The  
interconnect (cable and connectors) should have a differential impedance of 100 Ω. The maximum length of  
cable that can be used is dependent on the quality of the cable (gauge, impedance), connector, board  
(discontinuities, power plane), the electrical environment (for example, power stability, ground noise, input clock  
jitter, PCLK frequency, and so forth). The resulting signal quality at the receiving end of the transmission media  
may be assessed by monitoring the differential eye opening of the serial data stream. A differential probe should  
be used to measure across the termination resistor at the CMLOUTP/N pins. Figure 20 illustrates the minimum  
eye width and eye height that is necessary for bit error free operation.  
56  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
Typical Application (continued)  
11.2.1.2 Adaptive Equalizer – Loss Compensation  
The adaptive equalizer is designed to compensate for signal degradation due to the differential insertion loss of  
the interconnect components. There are limits to the amount of loss that can be compensated – these limits are  
defined by the gain curve of the equalizer. In addition, there is an inherent tolerance for loss defined by the delta  
between the minimum VDO of the serializer and the input threshold (Vswing) of the deserializer. In order to  
determine the maximum cable reach, other factors that affect signal integrity such as jitter, skew, ISI, crosstalk,  
and so forth, need to be taken into consideration. Figure 49 illustrates the maximum allowable interconnect loss  
with the adaptive equalizer at its maximum gain setting (914 equalizer gain).  
11.2.2 Detailed Design Procedure  
Figure 47 shows the typical connection of a DS90UB913Q-Q1 serializer.  
VDDIO  
DS90UB913Q (SER)  
1.8V  
VDDT  
VDDIO  
C3  
C8  
C4  
C10  
C11  
C7  
C9  
C13  
1.8V  
DIN0  
DIN1  
DIN2  
DIN3  
DIN4  
DIN5  
DIN6  
VDDPLL  
VDDCML  
VDDD  
C14  
C5  
C6  
FB1  
FB2  
1.8V  
C15  
C12  
1.8V  
DIN7  
DIN8  
DIN9  
DIN10  
DIN11  
HS  
LVCMOS  
Parallel  
Bus  
C1  
C2  
VS  
PCLK  
1.8V  
Serial  
FPD-Link III  
Interface  
DOUT+  
DOUT-  
10 k:  
MODE  
1.8V  
RID  
10 k:  
LVCMOS  
ID[X]  
Control  
Interface  
RID  
PDB  
GPO[0]  
GPO[1]  
GPO[2]  
GPO[3]  
GPO  
Control  
Interface  
NOTE:  
C1 - C2 = 0.1 PF (50 WV)  
C3 ± C7 = 0.01 PF  
C8 - C12 = 0.1 PF  
C13 - C14 = 4.7 PF  
VDDIO  
C15 = 22 PF  
C16 - C17 = >100 pF  
RPU = 1 k: to 4.7 k:  
RID (see ID[x] Resistor Value Table)  
FB1 - FB4: Impedance = 1 k: (@ 100 MHz)  
low DC resistance (<1:)  
RPU  
RPU  
C17  
I2C  
Bus  
SCL  
SDA  
FB3  
RES  
DAP (GND)  
Interface  
FB4  
C16  
The "Optional" components shown are  
provisions to provide higher system noise  
immunity and will therefore result in higher  
performance.  
Optional  
Optional  
Figure 47. DS90UB913Q-Q1 Typical Connection Diagram — Pin Control  
Copyright © 2012–2015, Texas Instruments Incorporated  
57  
 
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
Typical Application (continued)  
Figure 48 shows a typical connection of the DS90UB914Q-Q1 deserializer.  
DS90UB914Q (Des)  
1.8V  
VDDIO  
VDDD  
VDDIO1  
VDDIO2  
VDDIO3  
C3  
C11  
C8  
C16  
C18  
VDDR  
C9  
C4  
C5  
C12  
C13  
VDDSSCG  
VDDPLL  
VDDCML  
C10  
1.8V  
1.8V  
ROUT0  
ROUT1  
ROUT2  
ROUT3  
ROUT4  
ROUT5  
ROUT6  
C14  
C17  
C19  
C6  
FB1  
FB2  
C15  
C1  
C7  
LVCMOS  
Parallel  
Outputs  
ROUT7  
ROUT8  
ROUT9  
ROUT10  
ROUT11  
HS  
RIN1+  
RIN1-  
Serial  
FPD-Link II  
Interface  
C2  
C1  
RIN0+  
RIN0-  
VS  
PCLK  
C2  
LOCK  
PASS  
1.8V  
1.8V  
GPIO[0]  
GPIO[1]  
GPIO[2]  
10 k:  
10 k:  
GPIO[3]  
MODE  
IDx[0]  
RMODE  
RID0  
PDB  
SEL  
OEN  
1.8V  
OSS_SEL  
BISTEN  
VDDIO  
RPU  
10 k:  
IDx[1]  
RPU  
C21  
RID1  
I2C  
SCL  
SDA  
Bus  
FB3  
NOTE:  
Interface  
C1 - C2 = 0.1 PF (50 WV)  
C3 - C10 = 0.01 PF  
FB4  
C20  
C11 - C16 = 0.1 PF  
Optional  
C17 - C18 = 4.7 PF  
C19 = 22 PF  
C20 - C21 = >100 pF  
RPU = 1 k: to 4.7 k:  
Optional  
RES_PIN43  
DAP (GND)  
RID (see ID[x] Resistor Value Table)  
FB1 - FB4: Impedance = 1 k: (@ 100 MHz)  
low DC resistance (<1:)  
The "Optional" components shown are  
provisions to provide higher system noise  
immunity and will therefore result in higher  
performance.  
Figure 48. DS90UB914Q-Q1 Typical Connection Diagram — Pin Control  
58  
Copyright © 2012–2015, Texas Instruments Incorporated  
 
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
Typical Application (continued)  
11.2.3 Application Curve  
25  
20  
15  
10  
5
914 Equalizer Gain (dB)  
VOD-Vswing Loss  
Allowable Interconnect  
Loss  
0
100  
200  
300  
400  
500 600  
700  
SERIAL LINE FREQUENCY (MHz)  
Figure 49. Adaptive Equalizer – Interconnect Loss Compensation  
Copyright © 2012–2015, Texas Instruments Incorporated  
59  
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
12 Power Supply Recommendations  
This device is designed to operate from an input core voltage supply of 1.8 V. Some devices provide separate  
power and ground terminals for different portions of the circuit. This is done to isolate switching noise effects  
between different sections of the circuit. Separate planes on the PCB are typically not required. Terminal  
description tables typically provide guidance on which circuit blocks are connected to which power terminal pairs.  
In some cases, an external filter may be used to provide clean power to sensitive circuits such as PLLs.  
13 Layout  
13.1 Layout Guidelines  
Printed-circuit-board layout and stack-up for the serializer and deserializer devices should be designed to provide  
low-noise power feed to the device. Good layout practice will also separate high frequency or high-level inputs  
and outputs to minimize unwanted stray noise pickup, feedback and interference. Power system performance  
may be greatly improved by using thin dielectrics (2 to 4 mils) for power/ground sandwiches. This arrangement  
provides plane capacitance for the PCB power system with low-inductance parasitics, which has proven  
especially effective at high frequencies, and makes the value and placement of external bypass capacitors less  
critical. External bypass capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors  
may use values in the range of 0.01 µF to 0.1 µF. Tantalum capacitors may be in the 2.2-µF to 10-µF range.  
Voltage rating of the tantalum capacitors should be at least 5× the power supply voltage being used.  
Surface mount capacitors are recommended due to their smaller parasitics. When using multiple capacitors per  
supply pin, locate the smaller value closer to the pin. A large bulk capacitor is recommend at the point of power  
entry. This is typically in the 50-µF to 100-µF range and will smooth low frequency switching noise. It is  
recommended to connect power and ground pins directly to the power and ground planes with bypass capacitors  
connected to the plane with a via on both ends of the capacitor. Connecting power or ground pins to an external  
bypass capacitor will increase the inductance of the path.  
A small body size X7R chip capacitor, such as 0603, is recommended for external bypass. Its small body size  
reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance frequency of  
these external bypass capacitors, usually in the range of 20 to 30 MHz. To provide effective bypassing, multiple  
capacitors are often used to achieve low impedance between the supply rails over the frequency of interest. At  
high frequency, it is also a common practice to use two vias from power and ground pins to the planes, reducing  
the impedance at high frequency.  
Some devices provide separate power for different portions of the circuit. This is done to isolate switching noise  
effects between different sections of the circuit. Separate planes on the PCB are typically not required. Pin  
description tables typically provide guidance on which circuit blocks are connected to which power pin pairs. In  
some cases, an external filter many be used to provide clean power to sensitive circuits such as PLLs.  
Use at least a four-layer board with a power and ground plane. Locate LVCMOS signals away from the  
differential lines to prevent coupling from the LVCMOS lines to the differential lines. Closely-coupled differential  
lines of 100 Ω are typically recommended for differential interconnect. The closely coupled lines help to ensure  
that coupled noise will appear as common-mode and thus is rejected by the receivers. The tightly coupled lines  
will also radiate less.  
Information on the WQFN style package is provided in Texas Instruments' Application Note: AN-1187  
(SNOA401).  
See AN-1108 (SNLA008) and AN-905 (SNLA035) for full details.  
Use 100-Ω coupled differential pairs  
Use the S, 2S, and 3S rule in spacings  
S = space between the pair  
2S = space between pairs  
3S = space to LVCMOS signal  
Minimize the number of Vias  
Use differential connectors when operating above 500Mbps line speed  
Maintain balance of the traces  
Minimize skew within the pair  
60  
Copyright © 2012–2015, Texas Instruments Incorporated  
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
Layout Guidelines (continued)  
Additional general guidance can be found in the LVDS Owner’s Manual - available in PDF format from the Texas  
Instrument web site at: www.ti.com/lvds  
13.2 Layout Example  
Stencil parameters such as aperture area ratio and the fabrication process have a significant impact on paste  
deposition. Inspection of the stencil prior to placement of the WQFN package is highly recommended to improve  
board assembly yields. If the via and aperture openings are not carefully monitored, the solder may flow  
unevenly through the DAP. Stencil parameters for aperture opening and via locations are shown in Figure 50.  
Figure 50. No Pullback WQFN, Single Row Reference Diagram  
Figure 50 and Figure 51 PCB layout examples are derived from the layout design of the DS90UB913Q-Q1  
Serializer and DS90UB914Q-Q1 Deserializer Evaluation Kit (SNLU110). These graphics and additional layout  
description are used to demonstrate both proper routing and proper solder techniques when designing in the  
serializer and deserializer.  
Table 11. No Pullback WQFN Stencil Aperture Summary for DS90UB913Q-Q1 and DS90UB914Q-Q1  
GAP  
BETWEEN  
DAP  
APERTURE  
(Dim A mm)  
STENCIL  
DAP  
APERTURE  
(mm)  
NUMBER OF  
DAP  
APERTURE  
OPENINGS  
PCB I/O PAD  
SIZE  
PCB  
PITCH  
(mm)  
PCB DAP  
SIZE  
(mm)  
STENCIL I/O  
APERTURE  
(mm)  
PIN  
COUNT  
DEVICE  
MKT DWG  
(mm)  
DS90UB913Q-Q1  
DS90UB914Q-Q1  
32  
48  
RTV  
RHS  
0.25 x 0.6  
0.25 x 0.6  
0.5  
0.5  
3.1 x 3.1  
5.1 x 5.1  
0.25 x 0.7  
0.25 x 0.7  
1.4 x 1.4  
1.1 x 1.1  
4
0.2  
0.2  
16  
版权 © 2012–2015, Texas Instruments Incorporated  
61  
 
DS90UB913Q-Q1, DS90UB914Q-Q1  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
www.ti.com.cn  
Figure 51. 48-Pin WQFN Stencil Example of Via and Opening Placement  
62  
版权 © 2012–2015, Texas Instruments Incorporated  
DS90UB913Q-Q1, DS90UB914Q-Q1  
www.ti.com.cn  
ZHCSDZ6D JULY 2012REVISED JULY 2015  
14 器件和文档支持  
14.1 文档支持  
14.1.1 相关文档  
相关文档如下:  
《焊接相关的最大绝对额定值》SNOA549  
AN-1187《无引线框架封装 (LLP)SNOA401  
AN-1108《通道链路 PCB 和互连设计指南》SNLA008  
《传输线路 RAPIDESIGNER 操作和应用指南》SNLA035  
DS90UB913Q-Q1 串行器和 DS90UB914Q-Q1 解串器评估套件》SNLU110  
14.2 相关链接  
以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
12. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
DS90UB913Q-Q1  
DS90UB914Q-Q1  
14.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
14.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
14.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
14.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
15 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2012–2015, Texas Instruments Incorporated  
63  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS90UB913QSQ/NOPB  
DS90UB913QSQE/NOPB  
DS90UB913QSQX/NOPB  
DS90UB914QSQ/NOPB  
DS90UB914QSQE/NOPB  
DS90UB914QSQX/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RTV  
RTV  
RTV  
RHS  
RHS  
RHS  
32  
32  
32  
48  
48  
48  
1000 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
-40 to 105  
UB913SQ  
SN  
SN  
SN  
SN  
SN  
UB913SQ  
4500 RoHS & Green  
1000 RoHS & Green  
UB913SQ  
UB914QSQ  
UB914QSQ  
UB914QSQ  
250  
RoHS & Green  
2500 RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS90UB913QSQ/NOPB WQFN  
DS90UB913QSQE/NOPB WQFN  
DS90UB913QSQX/NOPB WQFN  
DS90UB914QSQ/NOPB WQFN  
DS90UB914QSQE/NOPB WQFN  
DS90UB914QSQX/NOPB WQFN  
RTV  
RTV  
RTV  
RHS  
RHS  
RHS  
32  
32  
32  
48  
48  
48  
1000  
250  
178.0  
178.0  
330.0  
330.0  
178.0  
330.0  
12.4  
12.4  
12.4  
16.4  
16.4  
16.4  
5.3  
5.3  
5.3  
7.3  
7.3  
7.3  
5.3  
5.3  
5.3  
7.3  
7.3  
7.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
8.0  
8.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
4500  
1000  
250  
8.0  
12.0  
12.0  
12.0  
2500  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS90UB913QSQ/NOPB  
DS90UB913QSQE/NOPB  
DS90UB913QSQX/NOPB  
DS90UB914QSQ/NOPB  
DS90UB914QSQE/NOPB  
DS90UB914QSQX/NOPB  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RTV  
RTV  
RTV  
RHS  
RHS  
RHS  
32  
32  
32  
48  
48  
48  
1000  
250  
208.0  
208.0  
356.0  
356.0  
208.0  
356.0  
191.0  
191.0  
356.0  
356.0  
191.0  
356.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
4500  
1000  
250  
2500  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RTV0032A  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.15  
4.85  
A
B
PIN 1 INDEX AREA  
5.15  
4.85  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
SYMM  
EXPOSED  
THERMAL PAD  
(0.1) TYP  
9
16  
8
17  
SYMM  
33  
2X 3.5  
3.1 0.1  
28X 0.5  
1
24  
0.30  
32X  
0.18  
32  
25  
PIN 1 ID  
0.1  
C A B  
0.5  
0.3  
32X  
0.05  
4224386/B 04/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTV0032A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(3.1)  
SYMM  
SEE SOLDER MASK  
DETAIL  
32  
25  
32X (0.6)  
1
24  
32X (0.24)  
28X (0.5)  
(3.1)  
33  
SYMM  
(4.8)  
(1.3)  
8
17  
(R0.05) TYP  
(
0.2) TYP  
VIA  
9
16  
(1.3)  
(4.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224386/B 04/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTV0032A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.775) TYP  
25  
32  
32X (0.6)  
1
32X (0.24)  
28X (0.5)  
24  
(0.775) TYP  
(4.8)  
33  
SYMM  
(R0.05) TYP  
4X (1.35)  
17  
8
9
16  
4X (1.35)  
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
EXPOSED PAD 33  
76% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4224386/B 04/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DS90UB914QSQE/NOPB

DS90UB913Q/DS90UB914Q 10-100MHz 10/12- Bit DC-Balanced FPD-Link III Serializer and Deserializer with Bidirectional Control Channel
TAOS

DS90UB914QSQE/NOPB

10MHz 至 100MHz、10/12 位 FPD-Link III 解串器 | RHS | 48 | -40 to 105
TI

DS90UB914QSQX/NOPB

DS90UB913Q/DS90UB914Q 10-100MHz 10/12- Bit DC-Balanced FPD-Link III Serializer and Deserializer with Bidirectional Control Channel
TAOS

DS90UB914QSQX/NOPB

10MHz 至 100MHz、10/12 位 FPD-Link III 解串器 | RHS | 48 | -40 to 105
TI

DS90UB921-Q1

5MHz-96MHz 24 位彩色 FPD-Link III 串行器
TI

DS90UB921TRHSRQ1

5MHz-96MHz 24 位彩色 FPD-Link III 串行器 | RHS | 48 | -40 to 105
TI

DS90UB921TRHSTQ1

5MHz-96MHz 24 位彩色 FPD-Link III 串行器 | RHS | 48 | -40 to 105
TI

DS90UB924-Q1

5MHz 至 96MHz 24 位彩色 FPD-Link III 转 OpenLDI 解串器
TI

DS90UB924TRHSRQ1

5MHz 至 96MHz 24 位彩色 FPD-Link III 转 OpenLDI 解串器 | RHS | 48 | -40 to 105
TI

DS90UB924TRHSTQ1

5MHz 至 96MHz 24 位彩色 FPD-Link III 转 OpenLDI 解串器 | RHS | 48 | -40 to 105
TI

DS90UB925Q

5 - 85 MHz 24-bit Color FPD-Link III Serializer with Bidirectional Control Channel
TI

DS90UB925Q-Q1

具有双向控制通道的 5 - 85MHz 24 位彩色 FPD-Link III 串行器
TI