LM25101CMAX/NOPB [TI]

LM25101A/B/C 3A, 2A, and 1A 80V Half-Bridge Gate Drivers; LM25101A / B / C 3A ,2A和1A 80V半桥栅极驱动器
LM25101CMAX/NOPB
型号: LM25101CMAX/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LM25101A/B/C 3A, 2A, and 1A 80V Half-Bridge Gate Drivers
LM25101A / B / C 3A ,2A和1A 80V半桥栅极驱动器

驱动器 栅极 栅极驱动
文件: 总25页 (文件大小:1257K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM25101A, LM25101B, LM25101C  
www.ti.com  
SNVS859B JULY 2012REVISED APRIL 2013  
LM25101A/B/C 3A, 2A, and 1A 80V Half-Bridge Gate Drivers  
Check for Samples: LM25101A, LM25101B, LM25101C  
1
FEATURES  
PACKAGES  
2
Independent high and low driver logic inputs  
Bootstrap supply voltage up to 100V DC  
SOIC-8  
SO Power Pad-8  
Drives both a high-side and low-side N-  
Channel MOSFETs  
WSON-8 (4 mm x 4 mm)  
WSON-10 (4 mm x 4 mm)  
MSOP Power Pad-8  
Fast propagation times (25 ns typical)  
Drives 1000 pF load with 8 ns rise and fall  
times  
DESCRIPTION  
The LM25101A/B/C High Voltage Gate Drivers are  
designed to drive both the high-side and the low-side  
N-Channel MOSFETs in a synchronous buck or a  
half-bridge configuration. The “A” versions provide a  
full 3A of gate drive while the “B” and “C” versions  
provide 2A and 1A respectively. The outputs are  
independently controlled with TTL input thresholds.  
An integrated high voltage diode is provided to  
charge the high-side gate drive bootstrap capacitor. A  
robust level shifter operates at high speed while  
consuming low power and providing clean level  
transitions from the control logic to the high-side gate  
driver. Under-voltage lockout is provided on both the  
low-side and the high-side power rails. These devices  
are available in the standard SOIC-8 pin, SO Power  
Pad-8, WSON-8 (4 mm x 4 mm), WSON-10 (4 mm x  
4 mm), and MSOP Power Pad-8 packages.  
Excellent propagation delay matching (3 ns  
typical)  
Supply rail under-voltage lockout  
Low power consumption  
Pin compatible with HIP2100/HIP2101  
TYPICAL APPLICATIONS  
Motor controlled drivers  
Half and Full Bridge power converters  
Synchronous buck converters  
Two switch forward power converters  
Forward with Active Clamp converters  
48V server power  
Solar DC/DC and DC/AC converters  
SIMPLIFIED BLOCK DIAGRAM  
HB  
HO  
UVLO  
DRIVER  
LEVEL  
SHIFT  
HS  
HI  
VDD  
UVLO  
LO  
LI  
DRIVER  
VSS  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
2
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2012–2013, Texas Instruments Incorporated  
LM25101A, LM25101B, LM25101C  
SNVS859B JULY 2012REVISED APRIL 2013  
www.ti.com  
Table 1. Input/Output Options  
Part Number  
LM25101A  
Input Thresholds  
Peak Output Current  
TTL  
TTL  
TTL  
3A  
2A  
1A  
LM25101B  
LM25101C  
Connection Diagrams  
VDD  
HB  
LO  
1
2
3
4
8
7
6
5
LO  
VSS  
LI  
1
2
3
4
8
VDD  
HB  
VSS  
SOIC-8  
7
SO  
Power  
Pad-8  
HO  
HS  
LI  
HI  
HO  
HS  
6
5
HI  
Exposed Pad  
Connect to VSS  
LO  
VDD  
1
2
3
4
5
10  
VDD  
1
2
3
4
8
7
6
5
LO  
9
HB  
HO  
HS  
NC  
VSS  
LI  
HB  
HO  
HS  
VSS  
8
7
6
WSON-10  
WSON-8  
LI  
HI  
HI  
NC  
VDD  
HB  
LO  
VSS  
MSOP-  
PowerPad-8  
HO  
HS  
LI  
HI  
2
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: LM25101A LM25101B LM25101C  
LM25101A, LM25101B, LM25101C  
www.ti.com  
SNVS859B JULY 2012REVISED APRIL 2013  
PIN DESCRIPTIONS(1)  
Pin #  
SO  
MSOP-  
PowerPad  
-8(1)  
Name  
Description  
Application Information  
WSON-  
WSON-  
10(1)  
SOIC-8 Power  
Pad-8  
8(1)  
Positive gate  
drive supply  
Locally decouple to VSS using low ESR/ESL  
capacitor located as close to the IC as possible.  
1
2
3
4
1
2
3
4
1
1
2
3
4
1
2
3
4
VDD  
HB  
Connect the positive terminal of the bootstrap  
capacitor to HB and the negative terminal to HS. The  
bootstrap capacitor should be placed as close to the  
IC as possible.  
High-side gate  
driver bootstrap  
rail  
2
3
4
High-side gate  
driver output  
Connect to the gate of high-side MOSFET with a  
short, low inductance path.  
HO  
HS  
High-side  
MOSFET  
source  
Connect to the bootstrap capacitor negative terminal  
and the source of the high-side MOSFET.  
connection  
The LM25101A/B/C inputs have TTL type thresholds.  
Unused inputs should be tied to ground and not left  
open.  
High-side driver  
control input  
5
6
5
6
5
6
7
8
5
6
HI  
LI  
The LM25101A/B/C inputs have TTL type thresholds.  
Unused inputs should be tied to ground and not left  
open.  
Low-side driver  
control input  
7
8
7
8
7
8
9
7
8
VSS  
LO  
Ground return  
All signals are referenced to this ground.  
Low-side gate  
driver output  
Connect to the gate of the low-side MOSFET with a  
short, low inductance path.  
10  
EP (WSON and SO  
PowerPad and MSOP-  
PowerPad packages)  
Solder to the ground plane under the IC to aid in heat  
dissipation.  
EP  
EP  
EP  
EP  
(1) Note: For SO Power Pad - 8, WSON-8, WSON-10 and MSOP-PowerPad-8 package, it is recommended that the exposed pad on  
the bottom of the package is soldered to ground plane on the PC board, and that ground plane should extend out from  
beneath the IC to help dissipate heat. For WSON-10 package, pins 5 and 6 have no connection.  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
Absolute Maximum Ratings(1)  
VDD to VSS  
0.3V to +18V  
0.3V to +18V  
0.3V to VDD +0.3V  
0.3V to VDD +0.3V  
HS 0.3V to VHB +0.3V  
5V to +100V  
100V  
HB to HS  
LI or HI Input  
LO Output  
HO Output  
HS to VSS(2)  
V
HB to VSS  
Junction Temperature  
Storage Temperature Range  
ESD Rating, HBM(3)  
+150°C  
55°C to +150°C  
2 kV  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings are conditions under  
which operation of the device is specified. Operating Ratings do not imply performance limits. For performance limits and associated test  
conditions, see the Electrical Characteristics tables.  
(2) In the application the HS node is clamped by the body diode of the external lower N-MOSFET, therefore the HS node will generally not  
exceed -1V. However, in some applications, board resistance and inductance may result in the HS node exceeding this stated voltage  
transiently. If negative transients occur, the HS voltage must never be more negative than VDD-15V. For example if VDD = 10V, the  
negative transients at HS must not exceed -5V.  
(3) The Human Body Model (HBM) is a 100 pF capacitor discharged through a 1.5kresistor into each pin. 2 kV for all pins except Pin 2,  
Pin 3 and Pin 4 which are rated at 1000V for HBM. Machine Model (MM) rating is 100V.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LM25101A LM25101B LM25101C  
LM25101A, LM25101B, LM25101C  
SNVS859B JULY 2012REVISED APRIL 2013  
www.ti.com  
Recommended Operating Conditions  
VDD  
+9V to +14V  
1V to 100V - VDD  
VHS +8V to VHS +14V  
< 50 V/ns  
HS  
HB  
HS Slew Rate  
Junction Temperature  
40°C to +125°C  
Electrical Characteristics  
Limits in standard type are for TJ = 25°C only; limits in boldface type apply over the junction temperature (TJ) range of -40°C  
to +125°C. Minimum and Maximum limits are specified through test, design, or statistical correlation. Typical values represent  
the most likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise specified, VDD  
=
(1)  
VHB = 12V, VSS = VHS = 0V, No Load on LO or HO  
.
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SUPPLY CURRENTS  
IDD  
VDD Quiescent Current, LM25101A/B/C  
VDD Operating Current  
LI = HI = 0V  
0.25  
2.0  
0.4  
3
mA  
mA  
mA  
mA  
µA  
IDDO  
IHB  
f = 500 kHz  
Total HB Quiescent Current  
Total HB Operating Current  
HB to VSS Current, Quiescent  
HB to VSS Current, Operating  
LI = HI = 0V  
f = 500 kHz  
0.06  
1.6  
0.2  
3
IHBO  
IHBS  
IHBSO  
HS = HB = 100V  
f = 500 kHz  
0.1  
10  
0.4  
mA  
INPUT PINS  
VIL  
Input Voltage Threshold LM25101A/B/C  
Rising Edge  
1.3  
100  
6.0  
5.7  
1.8  
50  
2.3  
400  
7.4  
7.1  
V
VIHYS  
RI  
Input Voltage Hysteresis LM25101A/B/C  
Input Pulldown Resistance  
mV  
kΩ  
200  
UNDER VOLTAGE PROTECTION  
VDDR  
VDDH  
VHBR  
VHBH  
VDD Rising Threshold  
VDD Threshold Hysteresis  
HB Rising Threshold  
6.9  
0.5  
6.6  
0.4  
V
V
V
V
HB Threshold Hysteresis  
(1) Min and Max limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlation  
using Statistical Quality Control (SQC) methods. Limits are used to calculate Average Outgoing Quality Level (AOQL).  
4
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: LM25101A LM25101B LM25101C  
LM25101A, LM25101B, LM25101C  
www.ti.com  
SNVS859B JULY 2012REVISED APRIL 2013  
Electrical Characteristics (continued)  
Limits in standard type are for TJ = 25°C only; limits in boldface type apply over the junction temperature (TJ) range of -40°C  
to +125°C. Minimum and Maximum limits are specified through test, design, or statistical correlation. Typical values represent  
the most likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise specified, VDD  
=
VHB = 12V, VSS = VHS = 0V, No Load on LO or HO (1)  
.
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
BOOT STRAP DIODE  
VDL  
VDH  
RD  
Low-Current Forward Voltage  
High-Current Forward Voltage  
Dynamic Resistance LM25101A/B/C  
IVDD-HB = 100 µA  
0.52  
0.8  
0.85  
1
V
V
IVDD-HB = 100 mA  
IVDD-HB = 100 mA  
1.0  
1.65  
LO & HO GATE DRIVER  
VOL  
VOH  
IOHL  
IOLL  
Low-Level Output Voltage LM25101A  
IHO = ILO = 100 mA  
0.12  
0.16  
0.28  
0.24  
0.28  
0.60  
3
0.25  
0.4  
Low-Level Output Voltage LM25101B  
Low-Level Output Voltage LM25101C  
High-Level Output Voltage LM25101A  
High-Level Output Voltage LM25101B  
High-Level Output Voltage LM25101C  
Peak Pullup Current LM25101A  
V
V
A
A
0.65  
0.45  
0.60  
1.10  
IHO = ILO = 100 mA  
VOH = VDD– LO or  
VOH = HB - HO  
HO, LO = 0V  
Peak Pullup Current LM25101B  
2
Peak Pullup Current LM25101C  
1
Peak Pulldown Current LM25101A  
Peak Pulldown Current LM25101B  
Peak Pulldown Current LM25101C  
HO, LO = 12V  
3
2
1
THERMAL RESISTANCE  
θJA Junction to Ambient  
(2)  
SOIC-8  
170  
40  
40  
40  
80  
SO power Pad-8  
WSON-8  
°C/W  
WSON-10  
Msop Power Pad-8  
(2) The θJA is not a given constant for the package and depends on the printed circuit board design and the operating environment.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LM25101A LM25101B LM25101C  
LM25101A, LM25101B, LM25101C  
SNVS859B JULY 2012REVISED APRIL 2013  
www.ti.com  
Switching Characteristics  
Limits in standard type are for TJ = 25°C only; limits in boldface type apply over the junction temperature (TJ) range of -40°C  
to +125°C. Minimum and Maximum limits are specified through test, design, or statistical correlation. Typical values represent  
the most likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise specified, VDD  
=
(1)  
VHB = 12V, VSS = VHS = 0V, No Load on LO or HO  
.
Symbol  
tLPHL  
Parameter  
Conditions  
Min  
Typ  
22  
Max  
56  
Unit  
ns  
LO Turn-Off Propagation Delay  
LI Falling to LO Falling  
LI Rising to LO Rising  
HI Falling to HO Falling  
HI Rising to HO Rising  
tLPLH  
tHPHL  
tHPLH  
tMON  
tMOFF  
tRC, tFC  
tR  
LO Turn-On Propagation Delay  
26  
56  
ns  
HO Turn-Off Propagation Delay  
LO Turn-On Propagation Delay  
22  
56  
ns  
26  
56  
ns  
Delay Matching: LO on & HO Off  
Delay Matching: LO on & HO Off  
Either Output Rise/Fall Time  
4
10  
ns  
4
10  
ns  
CL = 1000 pF  
CL = 0.1 µF  
8
ns  
Output Rise Time (3V to 9V) LM25101A  
Output Rise Time (3V to 9V) LM25101B  
Output Rise Time (3V to 9V) LM25101C  
Output Fall Time (3V to 9V) LM25101A  
Output Fall Time (3V to 9V) LM25101B  
Output Fall Time (3V to 9V) LM25101C  
430  
570  
990  
260  
430  
715  
ns  
ns  
tF  
CL = 0.1 µF  
tPW  
tBS  
Minimum input pulse duration that changes  
the output  
50  
37  
ns  
ns  
Bootstrap diode reverse recovery time  
IF = 100 mA,  
IR = 100 mA  
(1) Min and Max limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlation  
using Statistical Quality Control (SQC) methods. Limits are used to calculate Average Outgoing Quality Level (AOQL).  
6
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: LM25101A LM25101B LM25101C  
LM25101A, LM25101B, LM25101C  
www.ti.com  
SNVS859B JULY 2012REVISED APRIL 2013  
Typical Performance Characteristics  
Peak Sourcing Current  
Peak Sinking Current  
vs  
vs  
VDD  
VDD  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
LM25101A  
LM25101A  
LM25101B  
LM25101B  
LM25101C  
LM25101C  
0.5  
0.0  
0.5  
0.0  
7
8
9
10 11 12 13 14 15  
7
8
9
10 11 12 13 14 15  
VDD (V)  
VDD (V)  
Figure 1.  
Figure 2.  
Sink Current  
vs  
Output Voltage  
Source Current  
vs  
Output Voltage  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
V
= 12V  
DD  
V
= 12V  
DD  
LM25101A  
LM25101A  
LM25101B  
LM25101B  
LM25101C  
LM25101C  
0.5  
0.0  
0.5  
0.0  
0
2
4
8
10  
12  
6
0
2
4
8
10  
12  
6
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 3.  
Figure 4.  
LM25101A/B/C IDD  
vs  
Operating Current  
vs  
Frequency  
Temperature  
100000  
10000  
1000  
2.3  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
V
DD  
= 12V  
I
DDO  
C
L
= 4400 pF  
I
HBO  
C
= 1000 pF  
L
C
L
= 0 pF  
100  
0.1  
1
10  
100  
1000  
-50 -25  
0
25 50 75 100 125 150  
FREQUENCY (kHz)  
TEMPERATURE (oC)  
Figure 5.  
Figure 6.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LM25101A LM25101B LM25101C  
LM25101A, LM25101B, LM25101C  
SNVS859B JULY 2012REVISED APRIL 2013  
www.ti.com  
Typical Performance Characteristics (continued)  
IHB  
vs  
Frequency  
Quiescent Current  
vs  
Supply Voltage  
100000  
10000  
1000  
100  
400  
350  
300  
250  
200  
150  
100  
50  
HB = 12V,  
HS = 0V  
C
= 4400 pF  
L
I
DD  
C
L
= 1000 pF  
C
= 0 pF  
L
I
HB  
10  
0
0.1  
1
10  
100  
1000  
8
9
10 11 12 13 14 15 16  
, V (V)  
FREQUENCY (kHz)  
V
DD HB  
Figure 7.  
Figure 8.  
Quiescent Current  
vs  
Undervoltage Rising Thresholds  
vs  
Temperature  
Temperature  
350  
300  
250  
200  
150  
100  
50  
7.30  
7.20  
7.10  
7.00  
6.90  
6.80  
6.70  
6.60  
6.50  
6.40  
6.30  
I
DD  
V
DDR  
V
HBR  
I
HB  
0
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9.  
Figure 10.  
Undervoltage Threshold Hysteresis  
vs  
Temperature  
Bootstrap Diode Forward Voltage  
0.60  
1.00E-01  
T = 150°C  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
1.00E-02  
1.00E-03  
1.00E-04  
1.00E-05  
1.00E-06  
V
DDH  
T = 25°C  
V
HBH  
T = -40°C  
-50 -25 0_ 25 50_ 75_100_125_150_  
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
TEMPERATURE (oC)  
V
(V)  
D
Figure 11.  
Figure 12.  
8
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: LM25101A LM25101B LM25101C  
LM25101A, LM25101B, LM25101C  
www.ti.com  
SNVS859B JULY 2012REVISED APRIL 2013  
Typical Performance Characteristics (continued)  
LM25101A/B/C Input Threshold  
LM25101A/B/C Input Threshold  
vs  
vs  
Temperature  
VDD  
1.92  
1.91  
1.92  
1.91  
1.90  
1.89  
1.88  
1.87  
1.86  
1.85  
1.84  
1.83  
1.82  
1.81  
1.80  
1.90  
1.89  
1.88  
1.87  
1.86  
Rising  
Rising  
1.85  
1.84  
Falling  
Falling  
1.83  
1.82  
1.81  
1.80  
8
9
10 11 12 13 14 15 16  
VDD (V)  
-50 -25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
Figure 13.  
Figure 14.  
LM25101A/B/C Propagation Delay  
LO & HO Gate Drive - High Level Output Voltage  
vs  
vs  
Temperature  
1.0  
Temperature  
40  
35  
30  
25  
V
DD  
= 12V  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
LM25101C  
T_PLH  
LM25101B  
T_PHL  
LM25101A  
20  
15  
0.0  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15.  
Figure 16.  
LO & HO Gate Drive - Low Level Output Voltage  
LO & HO Gate Drive - Output High Voltage  
vs  
Temperature  
0.50  
vs  
VDD  
0.8  
V
= 12V  
I
= -100 mA  
DD  
OUT  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
LM25101C  
LM25101C  
LM25101B  
LM25101A  
LM25101B  
LM25101A  
0.00  
-50 -25  
0
25 50 75 100 125 150  
7
8
9
10 11 12 13 14 15  
VDD (V)  
TEMPERATURE (°C)  
Figure 17.  
Figure 18.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LM25101A LM25101B LM25101C  
LM25101A, LM25101B, LM25101C  
SNVS859B JULY 2012REVISED APRIL 2013  
www.ti.com  
Typical Performance Characteristics (continued)  
LO & HO Gate Drive - Output Low Voltage  
vs  
VDD  
0.35  
I
= 100 mA  
OUT  
0.30  
0.25  
0.20  
0.15  
0.10  
LM25101C  
LM25101B  
LM25101A  
7
8
9
10 11 12 13 14 15  
VDD (V)  
Figure 19.  
10  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: LM25101A LM25101B LM25101C  
LM25101A, LM25101B, LM25101C  
www.ti.com  
SNVS859B JULY 2012REVISED APRIL 2013  
TIMING DIAGRAM  
LI  
LI  
HI  
HI  
t
t
HPLH  
LPLH  
t
HPHL  
t
LPHL  
LO  
LO  
HO  
HO  
t
t
MOFF  
MON  
Figure 20.  
Layout Considerations  
The optimum performance of high and low-side gate drivers cannot be achieved without taking due  
considerations during circuit board layout. Following points are emphasized.  
1. Low ESR / ESL capacitors must be connected close to the IC, between VDD and VSS pins and between the  
HB and HS pins to support the high peak currents being drawn from VDD during turn-on of the external  
MOSFET.  
2. To prevent large voltage transients at the drain of the top MOSFET, a low ESR electrolytic capacitor must be  
connected between MOSFET drain and ground (VSS).  
3. In order to avoid large negative transients on the switch node (HS pin), the parasitic inductances in the  
source of top MOSFET and in the drain of the bottom MOSFET (synchronous rectifier) must be minimized.  
4. Grounding Considerations:  
(a) The first priority in designing grounding connections is to confine the high peak currents that charge and  
discharge the MOSFET gate into a minimal physical area. This will decrease the loop inductance and  
minimize noise issues on the gate terminal of the MOSFET. The MOSFETs should be placed as close as  
possible to the gate driver.  
(b)  
The second high current path includes the bootstrap capacitor, the bootstrap diode, the local ground  
referenced bypass capacitor and low-side MOSFET body diode. The bootstrap capacitor is recharged on  
a cycle-by-cycle basis through the bootstrap diode from the ground referenced VDD bypass capacitor.  
The recharging occurs in a short time interval and involves high peak current. Minimizing this loop length  
and area on the circuit board is important to ensure reliable operation.  
A recommended layout pattern for the driver is shown in Figure 21. If possible a single layer placement is  
preferred.  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LM25101A LM25101B LM25101C  
LM25101A, LM25101B, LM25101C  
SNVS859B JULY 2012REVISED APRIL 2013  
www.ti.com  
Recommended Layout for Driver IC and  
Passives  
VDD  
HB  
LO  
VSS  
LI  
SO  
Power  
Pad-8  
HO  
HS  
HI  
Single Layer  
Option  
Multi Layer  
Option  
To Hi-Side FET  
To Low-Side FET  
Figure 21. Recommended Layout Pattern  
Power Dissipation Considerations  
The total IC power dissipation is the sum of the gate driver losses and the bootstrap diode losses. The gate  
driver losses are related to the switching frequency (f), output load capacitance on LO and HO (CL), and supply  
voltage (VDD) and can be roughly calculated as:  
2
PDGATES = 2 • f • CL • VDD  
(1)  
There are some additional losses in the gate drivers due to the internal CMOS stages used to buffer the LO and  
HO outputs. Figure 22 shows the measured gate driver power dissipation versus frequency and load  
capacitance. At higher frequencies and load capacitance values, the power dissipation is dominated by the  
power losses driving the output loads and agrees well with Equation 1. This plot can be used to approximate the  
power losses due to the gate drivers.  
1.000  
C
= 4400 pF  
L
0.100  
0.010  
0.001  
C
= 1000 pF  
L
C
= 0 pF  
L
0.1  
1.0  
10.0  
100.0  
1000.0  
SWITCHING FREQUENCY (kHz)  
Figure 22. Gate Driver Power Dissipation (LO + HO)  
VDD = 12V, Neglecting Diode Losses  
12  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: LM25101A LM25101B LM25101C  
 
 
LM25101A, LM25101B, LM25101C  
www.ti.com  
SNVS859B JULY 2012REVISED APRIL 2013  
The bootstrap diode power loss is the sum of the forward bias power loss that occurs while charging the  
bootstrap capacitor and the reverse bias power loss that occurs during reverse recovery. Since each of these  
events happens once per cycle, the diode power loss is proportional to frequency. Larger capacitive loads  
require more energy to recharge the bootstrap capacitor resulting in more losses. Higher input voltages (VIN) to  
the half bridge result in higher reverse recovery losses. Figure 23 was generated based on calculations and lab  
measurements of the diode recovery time and current under several operating conditions. This can be useful for  
approximating the diode power dissipation.  
The total IC power dissipation can be estimated from the previous plots by summing the gate drive losses with  
the bootstrap diode losses for the intended application.  
0.100  
C
= 4400 pF  
L
C
= 0 pF  
L
0.010  
0.001  
1
10  
100  
1000  
SWITCHING FREQUENCY (kHz)  
Figure 23. Diode Power Dissipation VIN = 50V  
Copyright © 2012–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LM25101A LM25101B LM25101C  
 
 
LM25101A, LM25101B, LM25101C  
SNVS859B JULY 2012REVISED APRIL 2013  
www.ti.com  
REVISION HISTORY  
Changes from Original (March 2013) to Revision A  
Page  
Changed layout of National Data Sheet to TI format .......................................................................................................... 13  
14  
Submit Documentation Feedback  
Copyright © 2012–2013, Texas Instruments Incorporated  
Product Folder Links: LM25101A LM25101B LM25101C  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Jun-2013  
PACKAGING INFORMATION  
Orderable Device  
LM25101AM/NOPB  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
ACTIVE  
SOIC  
D
8
8
95  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
SN  
Level-1-260C-UNLIM  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
L25101  
AM  
LM25101AMR/NOPB  
LM25101AMRX/NOPB  
LM25101AMX/NOPB  
LM25101ASD-1/NOPB  
LM25101ASD/NOPB  
LM25101ASDX-1/NOPB  
LM25101ASDX/NOPB  
LM25101BMA/NOPB  
LM25101BMAX/NOPB  
LM25101BSD/NOPB  
LM25101BSDX/NOPB  
LM25101CMA/NOPB  
LM25101CMAX/NOPB  
LM25101CMY/NOPB  
LM25101CMYE/NOPB  
LM25101CMYX/NOPB  
ACTIVE SO PowerPAD  
ACTIVE SO PowerPAD  
DDA  
DDA  
D
95  
Green (RoHS  
& no Sb/Br)  
L25101  
AMR  
8
2500  
2500  
1000  
1000  
4500  
4500  
95  
Green (RoHS  
& no Sb/Br)  
L25101  
AMR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
WSON  
WSON  
WSON  
WSON  
SOIC  
8
Green (RoHS  
& no Sb/Br)  
L25101  
AM  
NGT  
DPR  
NGT  
DPR  
D
8
Green (RoHS  
& no Sb/Br)  
25101A1  
25101A  
25101A1  
25101A  
10  
8
Green (RoHS  
& no Sb/Br)  
SN  
Green (RoHS  
& no Sb/Br)  
SN  
10  
8
Green (RoHS  
& no Sb/Br)  
SN  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
SN  
L25101  
BMA  
SOIC  
D
8
2500  
1000  
4500  
95  
Green (RoHS  
& no Sb/Br)  
L25101  
BMA  
WSON  
WSON  
SOIC  
DPR  
DPR  
D
10  
10  
8
Green (RoHS  
& no Sb/Br)  
25101B  
Green (RoHS  
& no Sb/Br)  
SN  
25101B  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
L25101  
CMA  
SOIC  
D
8
2500  
1000  
250  
Green (RoHS  
& no Sb/Br)  
L25101  
CMA  
MSOP-  
PowerPAD  
DGN  
DGN  
DGN  
8
Green (RoHS  
& no Sb/Br)  
CMYN  
CMYN  
CMYN  
MSOP-  
PowerPAD  
8
Green (RoHS  
& no Sb/Br)  
MSOP-  
8
3500  
Green (RoHS  
& no Sb/Br)  
PowerPAD  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Jun-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
LM25101CSD/NOPB  
LM25101CSDX/NOPB  
ACTIVE  
WSON  
WSON  
DPR  
10  
10  
1000  
Green (RoHS  
& no Sb/Br)  
SN  
SN  
Level-1-260C-UNLIM  
25101C  
25101C  
ACTIVE  
DPR  
4500  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
-40 to 125  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Jun-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM25101AMRX/NOPB  
SO  
Power  
PAD  
DDA  
8
2500  
330.0  
12.4  
6.5  
5.4  
2.0  
8.0  
12.0  
Q1  
LM25101AMX/NOPB  
LM25101ASD-1/NOPB  
LM25101ASD/NOPB  
SOIC  
WSON  
WSON  
D
8
8
2500  
1000  
1000  
4500  
4500  
2500  
1000  
4500  
2500  
1000  
330.0  
178.0  
178.0  
330.0  
330.0  
330.0  
178.0  
330.0  
330.0  
178.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
6.5  
4.3  
4.3  
4.3  
4.3  
6.5  
4.3  
4.3  
6.5  
5.3  
5.4  
4.3  
4.3  
4.3  
4.3  
5.4  
4.3  
4.3  
5.4  
3.4  
2.0  
1.3  
1.3  
1.3  
1.3  
2.0  
1.3  
1.3  
2.0  
1.4  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
NGT  
DPR  
NGT  
DPR  
D
10  
8
LM25101ASDX-1/NOPB WSON  
LM25101ASDX/NOPB  
LM25101BMAX/NOPB  
LM25101BSD/NOPB  
LM25101BSDX/NOPB  
LM25101CMAX/NOPB  
LM25101CMY/NOPB  
WSON  
SOIC  
10  
8
WSON  
WSON  
SOIC  
DPR  
DPR  
D
10  
10  
8
MSOP-  
Power  
PAD  
DGN  
8
LM25101CMYE/NOPB  
LM25101CMYX/NOPB  
MSOP-  
Power  
PAD  
DGN  
DGN  
8
8
250  
178.0  
330.0  
12.4  
12.4  
5.3  
5.3  
3.4  
3.4  
1.4  
1.4  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
MSOP-  
Power  
3500  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Jun-2013  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
PAD  
LM25101CSD/NOPB  
LM25101CSDX/NOPB  
WSON  
WSON  
DPR  
DPR  
10  
10  
1000  
4500  
178.0  
330.0  
12.4  
12.4  
4.3  
4.3  
4.3  
4.3  
1.3  
1.3  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM25101AMRX/NOPB  
LM25101AMX/NOPB  
LM25101ASD-1/NOPB  
LM25101ASD/NOPB  
LM25101ASDX-1/NOPB  
LM25101ASDX/NOPB  
LM25101BMAX/NOPB  
LM25101BSD/NOPB  
LM25101BSDX/NOPB  
LM25101CMAX/NOPB  
LM25101CMY/NOPB  
SO PowerPAD  
SOIC  
DDA  
D
8
8
2500  
2500  
1000  
1000  
4500  
4500  
2500  
1000  
4500  
2500  
1000  
250  
367.0  
349.0  
210.0  
210.0  
367.0  
367.0  
349.0  
210.0  
367.0  
349.0  
210.0  
210.0  
367.0  
210.0  
367.0  
337.0  
185.0  
185.0  
367.0  
367.0  
337.0  
185.0  
367.0  
337.0  
185.0  
185.0  
367.0  
185.0  
35.0  
45.0  
35.0  
35.0  
35.0  
35.0  
45.0  
35.0  
35.0  
45.0  
35.0  
35.0  
35.0  
35.0  
WSON  
NGT  
DPR  
NGT  
DPR  
D
8
WSON  
10  
8
WSON  
WSON  
10  
8
SOIC  
WSON  
DPR  
DPR  
D
10  
10  
8
WSON  
SOIC  
MSOP-PowerPAD  
DGN  
DGN  
DGN  
DPR  
8
LM25101CMYE/NOPB MSOP-PowerPAD  
LM25101CMYX/NOPB MSOP-PowerPAD  
8
8
3500  
1000  
LM25101CSD/NOPB  
WSON  
10  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Jun-2013  
Device  
LM25101CSDX/NOPB  
Package Type Package Drawing Pins  
WSON DPR 10  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
4500  
Pack Materials-Page 3  
MECHANICAL DATA  
DGN0008A  
MUY08A (Rev A)  
BOTTOM VIEW  
www.ti.com  
MECHANICAL DATA  
DDA0008B  
MRA08B (Rev B)  
www.ti.com  
MECHANICAL DATA  
NGT0008A  
SDC08A (Rev A)  
www.ti.com  
MECHANICAL DATA  
DPR0010A  
SDC10A (Rev A)  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

LM25101CMY/NOPB

LM25101A/B/C 3A, 2A, and 1A 80V Half-Bridge Gate Drivers
TI

LM25101CMYE/NOPB

LM25101A/B/C 3A, 2A, and 1A 80V Half-Bridge Gate Drivers
TI

LM25101CMYX/NOPB

LM25101A/B/C 3A, 2A, and 1A 80V Half-Bridge Gate Drivers
TI

LM25101CSD/NOPB

LM25101A/B/C 3A, 2A, and 1A 80V Half-Bridge Gate Drivers
TI

LM25101CSDX/NOPB

LM25101A/B/C 3A, 2A, and 1A 80V Half-Bridge Gate Drivers
TI

LM25115

Secondary Side Post Regulator Controller
NSC

LM25115

LM25115 Secondary Side Post Regulator Controller
TI

LM25115A

Secondary Side Post Regulator/DC-DC Converter with Power-Up/Power-Down Tracking
NSC

LM25115A

LM25115A Secondary Side Post Regulator/DC-DC Converter with Power-Up/Power-Down Tracking
TI

LM25115AMT

Secondary Side Post Regulator/DC-DC Converter with Power-Up/Power-Down Tracking
NSC

LM25115AMT/NOPB

LM25115A Secondary Side Post Regulator/DC-DC Converter with Power-Up/Power-Down Tracking
TI

LM25115AMTX

Secondary Side Post Regulator/DC-DC Converter with Power-Up/Power-Down Tracking
NSC