LM74500QDDFRQ1 [TI]

反极性保护控制器 | DDF | 8 | -40 to 125;
LM74500QDDFRQ1
型号: LM74500QDDFRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

反极性保护控制器 | DDF | 8 | -40 to 125

控制器
文件: 总27页 (文件大小:1588K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM74500-Q1  
ZHCSN02 DECEMBER 2020  
LM74500-Q1 反极性保护控制器  
1 特性  
3 说明  
• 具有符AEC-Q100 标准的下列特性  
LM74500-Q1 是一款符合汽车 AEC Q100 标准的控制  
与外N MOSFET 配合工作可作为实现低  
损耗反极性保护的解决方案。3.2V 65V 的宽电源输  
入范围可实现对众多常用直流总线电压例如12V、  
24V 48V 汽车电池系统的控制。3.2V 输入电压支  
持适用于汽车系统中严苛的冷启动要求。该器件可以承  
受并保护负载免受低至 -65V 的负电源电压的影响。  
LM74500-Q1 没有反向电流阻断功能适用于对有可  
能将能量传输回输入电源的负载如汽车车身控制模块  
电机负载进行输入反向极性保护。  
– 器件温度等1:  
40°C +125°C 环境工作温度范围  
– 器HBM ESD 分类等2  
– 器CDM ESD 分类等C4B  
3.2V 65V 输入范围3.9V 启动)  
-65V 输入反向电压额定值  
• 适用于外N MOSFET 的电荷泵  
• 使能引脚特性  
1µA 关断电流EN = 低电平)  
80µA 典型工作静态电流EN = 高电平)  
• 采用额外TVS 二极管符合汽ISO7637 脉冲  
1 瞬态要求  
LM74500-Q1 制器可提供适用于外部 N 道  
MOSFET 的电荷泵栅极驱动器。LM74500-Q1 的高电  
压额定值有助于简化满足 ISO7637 汽车保护测试标准  
的系统设计。当使能引脚处于低电平时控制器关闭,  
消耗大约 1µA 的电流从而在进入睡眠模式时提供低  
系统电流。  
• 采8 SOT-23 2.90mm × 1.60mm  
2 应用  
• 车身电子装置和照明  
• 汽车信息娱乐系- 数字仪表组、音响主机  
• 汽USB 集线器  
器件信息(1)  
封装尺寸标称值)  
器件型号  
封装  
SOT-23 (8)  
LM74500-Q1  
2.90mm × 1.60mm  
• 工业工厂自动- PLC  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
VBAT  
VOUT  
Voltage  
Regulator  
SOURCE  
VCAP  
GATE  
LM74500-Q1  
GND  
EN  
OFF  
ON  
-12V 电源启LM74500-Q1  
LM74500-Q1 典型应用原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNOSDB7  
 
 
 
LM74500-Q1  
ZHCSN02 DECEMBER 2020  
www.ti.com.cn  
Table of Contents  
9 Application and Implementation..................................12  
9.1 Reverse Battery Protection for Automotive Body  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................4  
6.4 Thermal Information ...................................................4  
6.5 Electrical Characteristics ............................................5  
6.6 Switching Characteristics ...........................................6  
7 Typical Characteristics................................................... 7  
8 Detailed Description........................................................9  
8.1 Overview.....................................................................9  
8.2 Functional Block Diagram...........................................9  
8.3 Feature Description.....................................................9  
8.4 Device Functional Modes..........................................11  
Control Module Applications........................................12  
9.2 Reverse Polarity Protection...................................... 14  
9.3 Application Information............................................. 16  
10 Power Supply Recommendations..............................20  
11 Layout...........................................................................20  
11.1 Layout Guidelines................................................... 20  
11.2 Layout Example...................................................... 20  
12 Device and Documentation Support..........................21  
12.1 接收文档更新通知................................................... 21  
12.2 支持资源..................................................................21  
12.3 Trademarks.............................................................21  
12.4 静电放电警告.......................................................... 21  
12.5 术语表..................................................................... 21  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 22  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
December 2020  
*
Initial release.  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LM74500-Q1  
 
LM74500-Q1  
ZHCSN02 DECEMBER 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
N.C  
EN  
1
8
7
N.C  
2
3
4
GND  
N.C  
GATE  
6
5
SOURCE  
VCAP  
5-1. DDF Package 8-Pin SOT-23 LM74500-Q1 Top View  
5-1. LM74500-Q1 Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NO.  
1
NAME  
EN  
I
G
-
Enable pin. Can be connected to SOURCE for always ON operation  
2
GND  
Ground pin  
3
N.C  
No connection  
4
5
6
7
VCAP  
SOURCE  
GATE  
O
I
Charge pump output. Connect to external charge pump capacitor  
Input supply pin to the controller. Connect to the source of the external N-channel MOSFET  
Gate drive output. Connect to gate of the external N-channel MOSFET  
No connection  
O
-
N.C  
8
N.C  
-
No connection  
(1) I = Input, O = Output, G = GND  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LM74500-Q1  
 
 
LM74500-Q1  
ZHCSN02 DECEMBER 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
65  
MAX  
65  
UNIT  
V
SOURCE to GND  
Input Pins  
EN to GND, V(SOURCE) > 0 V  
EN to GND, V(SOURCE) 0 V  
GATE to SOURCE  
65  
V
0.3  
V(SOURCE)  
0.3  
(65 + V(SOURCE)  
)
V
15  
15  
V
Output Pins  
VCAP to SOURCE  
V
0.3  
Operating junction temperature(2)  
Storage temperature, Tstg  
150  
150  
°C  
°C  
40  
40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
±2000  
Corner pins (EN, VCAP,  
SOURCE, NC)  
V(ESD)  
Electrostatic discharge  
±750  
±500  
V
Charged device model (CDM),  
per AEC Q100-011  
Other pins  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
60  
60  
22  
NOM  
MAX  
60  
UNIT  
SOURCE to GND  
EN to GND  
Input Pins  
V
60  
SOURCE  
nF  
µF  
External  
capacitance  
VCAP to SOURCE  
0.1  
External  
MOSFET max GATE to SOURCE  
VGS rating  
15  
V
TJ  
Operating junction temperature range(2)  
150  
°C  
40  
(1) Recommended Operating Conditions are conditions under which the device is intended to be functional. For specifications and test  
conditions, see electrical characteristics  
(2) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
6.4 Thermal Information  
LM74500-Q1  
THERMAL METRIC(1)  
DDF (SOT)  
8 PINS  
133.8  
72.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
54.5  
4.6  
ΨJT  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LM74500-Q1  
 
 
 
 
 
 
 
 
 
 
LM74500-Q1  
ZHCSN02 DECEMBER 2020  
www.ti.com.cn  
6.4 Thermal Information (continued)  
LM74500-Q1  
DDF (SOT)  
8 PINS  
THERMAL METRIC(1)  
UNIT  
Junction-to-board characterization parameter  
54.2  
°C/W  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
TJ = 40°C to +125°C; typical values at TJ = 25°C, V(SOURCE) = 12 V, C(VCAP) = 0.1 µF, V(EN) = 3.3 V, over operating free-air  
temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VSOURCE SUPPLY VOLTAGE  
V(SOURCE)  
Operating input voltage  
4
60  
3.9  
V
V
VSOURCE POR Rising threshold  
VSOURCE POR Falling threshold  
V(SOURCE POR)  
2.2  
2.8  
3.1  
V
V(SOURCE POR(Hys)) VSOURCE POR Hysteresis  
0.44  
0.67  
1.5  
V
I(SHDN)  
Shutdown Supply Current  
V(EN) = 0 V  
0.9  
80  
µA  
µA  
I(Q)  
Operating Quiescent Current  
130  
ENABLE INPUT  
V(EN_IL)  
Enable input low threshold  
Enable input high threshold  
Enable Hysteresis  
0.5  
1.06  
0.52  
0.9  
2
1.22  
2.6  
1.35  
5
V
V(EN_IH)  
V(EN_Hys)  
I(EN)  
V
Enable sink current  
V(EN) = 12 V  
3
µA  
GATE DRIVE  
Peak source current  
Peak sink current  
3
11  
mA  
mA  
V
(GATE) V(SOURCE) = 5 V  
EN= High to Low  
(GATE) V(SOURCE) = 5 V  
EN = High to Low  
I(GATE)  
2370  
V
RDSON  
discharge switch RDSON  
0.4  
2
V
(GATE) V(SOURCE) = 100 mV  
CHARGE PUMP  
Charge Pump source current (Charge  
pump on)  
162  
300  
5
600  
10  
µA  
µA  
V
V
V
(VCAP) V(SOURCE) = 7 V  
(VCAP) V(SOURCE) = 14 V  
I(VCAP)  
Charge Pump sink current (Charge  
pump off)  
Charge pump voltage at V(SOURCE)  
3.2 V  
=
V(VCAP)  
V(SOURCE)  
8
10.3  
11  
I
(VCAP) 30 µA  
V(VCAP)  
V(SOURCE)  
Charge pump turn on voltage  
Charge pump turn off voltage  
11.6  
12.4  
0.8  
13  
13.9  
1.2  
V
V(VCAP)  
V(SOURCE)  
V
Charge Pump Enable comparator  
Hysteresis  
V(VCAP)  
V(SOURCE)  
0.4  
V
V
(VCAP) V(SOURCE) UV release at  
V(VCAP UVLO)  
5.7  
6.5  
7.5  
V
rising edge  
V
(VCAP) V(SOURCE) UV threshold at  
V(VCAP UVLO)  
5.05  
5.4  
6.2  
V
falling edge  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LM74500-Q1  
 
 
LM74500-Q1  
ZHCSN02 DECEMBER 2020  
www.ti.com.cn  
6.6 Switching Characteristics  
TJ = 40°C to +125°C; typical values at TJ = 25°C, V(SOURCE) = 12 V, CIN = C(VCAP) = COUT = 0.1 µF, V(EN) = 3.3 V, over  
operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
110 µs  
Enable (low to high) to Gate Turn On  
delay  
ENTDLY  
V(VCAP) > V(VCAP UVLOR)  
75  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LM74500-Q1  
 
LM74500-Q1  
ZHCSN02 DECEMBER 2020  
www.ti.com.cn  
7 Typical Characteristics  
3.6  
3.3  
3
700  
630  
560  
490  
420  
350  
280  
210  
140  
70  
-40  
25  
85  
125  
150  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
-40  
25  
85  
125  
150  
0
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
VSOURCE (V)  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
VSOURCE (V)  
7450  
7450  
7-1. Shutdown Supply Current vs Supply Voltage  
325  
7-2. Operating Quiescent Current vs Supply Voltage  
500  
-40  
25  
85  
125  
150  
300  
275  
250  
225  
200  
175  
150  
125  
100  
75  
450  
400  
350  
300  
250  
200  
150  
100  
-40  
25  
85  
125  
150  
3
4
5
6
7
VSOURCE (V)  
8
9
10  
11  
12  
0
2
4
6
VCAP (V)  
8
10  
12  
CPI_  
VCAP  
7-4. Charge Pump V-I Characteristics at VSOURCE > = 12 V  
7-3. Charge Pump Current vs Supply Voltage at VCAP = 6 V  
220  
200  
2.5  
-40  
25  
Enable Rising Threshold (V)  
Enable Falling Threshold (V)  
85  
125  
150  
180  
2.1  
1.7  
1.3  
0.9  
0.5  
160  
140  
120  
100  
80  
60  
40  
20  
0
1
2
3
4
VCAP (V)  
5
6
7
8
9
-40  
0
40  
80  
120  
160  
Free-Air Temperature (èC)  
VCAP  
EN_R  
7-5. Charge Pump V-I Characteristics at VSOURCE = 3.2 V  
7-6. Enable Rising and Falling threshold vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LM74500-Q1  
 
LM74500-Q1  
ZHCSN02 DECEMBER 2020  
www.ti.com.cn  
7 Typical Characteristics (continued)  
90  
13.4  
13.1  
12.8  
12.5  
12.2  
11.9  
11.6  
75  
60  
45  
30  
VCAP ON  
VCAP OFF  
ENTDLY ON  
ENTDLY OFF  
15  
0
-40  
0
40  
80  
120  
160  
-40  
0
40  
80  
120  
160  
Free-Air Temperature (èC)  
Free-Air Temperature (èC)  
ENTD  
VCAP  
7-7. Enable to Gate Delay vs Temperature  
7-8. Charge Pump ON/OFF Threshold vs Temperature  
7
6.6  
6.2  
5.8  
5.4  
5
3.1  
3.05  
3
2.95  
2.9  
2.85  
2.8  
2.75  
2.7  
2.65  
2.6  
2.55  
2.5  
2.45  
2.4  
VSOURCE PORR  
VSOURCE PORF  
VCAP UVLOR  
VCAP UVLOF  
2.35  
2.3  
-40  
0
40  
80  
120  
160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Free-Air Temperature (èC)  
Free-Air Temperature (èC)  
VCAP  
VANO  
7-9. Charge Pump UVLO Threshold vs Temperature  
7-10. VSOURCE POR Threshold vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LM74500-Q1  
LM74500-Q1  
ZHCSN02 DECEMBER 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The LM74500-Q1 controller has all the features necessary to implement an efficient and fast reverse polarity  
protection circuit. This easy to use reverse polarity protection controller is paired with an external N-channel  
MOSFET to replace other reverse polarity schemes such as a P-channel MOSFET. An internal charge pump is  
used to drive the external N-Channel MOSFET to a maximum gate drive voltage of approximately 15 V. An  
enable pin, EN is available to place the LM74500-Q1 in shutdown mode disabling the N-Channel MOSFET and  
minimizing the quiescent current.  
8.2 Functional Block Diagram  
SOURCE  
GATE  
VCAP  
Bias Rails  
VSOURCE  
ENGATE  
VSOURCE  
VCAP_UV  
VSOURCE  
GATE DRIVER  
ENABLE  
LOGIC  
VCAP_UV  
VSOURCE  
VSOURCE  
Charge Pump  
Enable Logic  
Charge  
Pump  
REVERSE  
PROTECTION  
LOGIC  
VCAP  
VCAP_UV  
ENABLE LOGIC  
VCAP  
VCAP  
EN  
GND  
8.3 Feature Description  
8.3.1 Input Voltage  
The SOURCE pin is used to power the LM74500-Q1's internal circuitry, typically drawing 80 µA when enabled  
and 1 µA when disabled. If the SOURCE pin voltage is greater than the POR Rising threshold, then LM74500-  
Q1 operates in either shutdown mode or conduction mode in accordance with the EN pin voltage. The voltage  
from SOURCE to GND is designed to vary from 65 V to 65 V, allowing the LM74500-Q1 to withstand negative  
voltage transients.  
8.3.2 Charge Pump  
The charge pump supplies the voltage necessary to drive the external N-channel MOSFET. An external charge  
pump capacitor is placed between VCAP and SOURCE pin to provide energy to turn on the external MOSFET.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LM74500-Q1  
 
 
 
 
 
LM74500-Q1  
ZHCSN02 DECEMBER 2020  
www.ti.com.cn  
In order for the charge pump to supply current to the external capacitor the EN pin voltage must be above the  
specified input high threshold, V(EN_IH). When enabled the charge pump sources a charging current of 300 µA  
typically. If EN pins is pulled low, then the charge pump remains disabled. To ensure that the external MOSFET  
can be driven above its specified threshold voltage, the VCAP to SOURCE voltage must be above the  
undervoltage lockout threshold, typically 6.5 V, before the internal gate driver is enabled. Use 方程式 1 to  
calculate the initial gate driver enable delay.  
V
(VCAP _UVLOR)  
T DRV _EN = 75ms + C(VCAP)  
x
(
)
300mA  
(1)  
where  
C(VCAP) is the charge pump capacitance connected across SOURCE and VCAP pins  
V(VCAP_UVLOR) = 6.5 V (typical)  
To remove any chatter on the gate drive approximately 800 mV of hysteresis is added to the VCAP undervoltage  
lockout. The charge pump remains enabled until the VCAP to SOURCE voltage reaches 12.4 V, typically, at  
which point the charge pump is disabled decreasing the current draw on the SOURCE pin. The charge pump  
remains disabled until the VCAP to SOURCE voltage is below to 11.6 V typically at which point the charge pump  
is enabled. The voltage between VCAP and SOURCE continue to charge and discharge between 11.6 V and  
12.4 V as shown in 8-1. By enabling and disabling the charge pump, the operating quiescent current of the  
LM74500-Q1 is reduced. When the charge pump is disabled it sinks 5-µA typical.  
TDRV_EN  
TON  
TOFF  
VIN  
VSOURCE  
0V  
VEN  
12.4 V  
11.6 V  
VCAP-VSOURCE  
6.5 V  
V(VCAP UVLOR)  
GATE DRIVER  
ENABLE  
8-1. Charge Pump Operation  
8.3.3 Gate Driver  
The gate driver is used to control the external N-Channel MOSFET by setting the appropriate GATE to SOURCE  
voltage .  
Before the gate driver is enabled following three conditions must be achieved:  
The EN pin voltage must be greater than the specified input high voltage.  
The VCAP to SOURCE voltage must be greater than the undervoltage lockout voltage.  
The SOURCE voltage must be greater than VSOURCE POR Rising threshold.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LM74500-Q1  
 
 
 
LM74500-Q1  
ZHCSN02 DECEMBER 2020  
www.ti.com.cn  
If the above conditions are not achieved, then the GATE pin is internally connected to the SOURCE pin, assuring  
that the external MOSFET is disabled. Once these conditions are achieved the gate driver operates in the  
conduction mode enhancing the external MOSFET completely.  
8.3.4 Enable  
The LM74500-Q1 has an enable pin, EN. The enable pin allows for the gate driver to be either enabled or  
disabled by an external signal. If the EN pin voltage is greater than the rising threshold, the gate driver and  
charge pump operates as described in Gate Driver and Charge Pump sections. If the enable pin voltage is less  
than the input low threshold, the charge pump and gate driver are disabled placing the LM74500-Q1 in shutdown  
mode. The EN pin can withstand a voltage as large as 65 V and as low as 65 V. This allows for the EN pin to  
be connected directly to the SOURCE pin if enable functionality is not needed. In conditions where EN is left  
floating, the internal sink current of 3 uA pulls EN pin low and disables the device.  
8.4 Device Functional Modes  
8.4.1 Shutdown Mode  
The LM74500-Q1 enters shutdown mode when the EN pin voltage is below the specified input low threshold  
V(EN_IL). Both the gate driver and the charge pump are disabled in shutdown mode. During shutdown mode the  
LM74500-Q1 enters low IQ operation with the SOURCE pin only sinking 1 µA. When the LM74500-Q1 is in  
shutdown mode, forward current flow through the external MOSFET is not interrupted but is conducted through  
the MOSFET's body diode.  
8.4.2 Conduction Mode  
For the LM74500-Q1 to operate in conduction mode the gate driver must be enabled as described in the Gate  
Driver section. If these conditions are achieved the GATE pin is internally connected to the VCAP pin resulting in  
the GATE to SOURCE voltage being approximately the same as the VCAP to SOURCE voltage. By connecting  
VCAP to GATE the external MOSFET's RDS(ON) is minimized reducing the power loss of the external MOSFET  
when forward currents are large.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LM74500-Q1  
 
LM74500-Q1  
ZHCSN02 DECEMBER 2020  
www.ti.com.cn  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Reverse Battery Protection for Automotive Body Control Module Applications  
Reverse-battery protection activates when battery terminals are incorrectly connected during jump start, vehicle  
maintenance or service because a connection error can damage the components in ECUs if they are not rated to  
handle reverse polarity. An N-channel MOSFET (N-FET) based reverse polarity protection solutions are  
becoming obivious choice over discrete reverse-battery protection solutions like Schottky diodes and P-channel  
field-effect transistors (P-FETs) due to their better power and thermal efficiency and the comparitively smaller  
space they consume on a printed circuit board. Based on the application needs, reverse polarity protection  
solutions can be divided into two main categories  
Applications which need both input reverse polarity protection and reverse current blocking  
Applications which need only input reverse polarity protection and does not need reverse current blocking  
9-1 provides an overview of these two reverse polarity protection solution categories. Typically for applications  
where output loads are DC/DC converters, voltage regulator followed by MCU/processors (Logic paths), input  
reverse polarity protection and reverse current blocking feature is required. For reverse polarity protection  
solution of the logic path ideal diode controllers such as LM74700-Q1 is a suitable device.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LM74500-Q1  
 
 
LM74500-Q1  
ZHCSN02 DECEMBER 2020  
www.ti.com.cn  
For the applications such as Body Control Module (BCM) load driving paths, input reverse polarity protection is  
required but reverse current blocking is not a must have feature. For reverse polarity protection solution of the  
BCM load driving paths, reverse polarity potection controllers such as LM74500-Q1 is a suitable device.  
Load Driving Path  
ñ
ñ
Reverse Polarity Protection: Required  
Revere Current Blocking: Not Required  
Wiper/Washer  
Relays  
LM74500-Q1  
Horn/Alarm  
VBAT  
Linear  
Regulator  
DC/DC  
Converters  
LM74700-Q1  
Voltage  
Supervisors  
Logic Path  
ñ
ñ
Reverse Polarity Protection: Required  
Revere Current Blocking: Required  
9-1. Typical Block Diagram for Automotive BCM Reverse Battery Protection Solution  
For certain applications such as body control module load driving paths where output loads are inductive in  
nature such as wiper motor, door control module, it is required that reverse polarity protection device should  
provide protection against incorrect input polarity. However, it should not block reverse current from loads back  
to the battery. This is mainly required to avoid voltage overshoot which is caused when inductive loads are  
turned off. If reverse polarity protection device blocks the reverse current then there could be voltage overshoot  
caused due to inductive kick back or motor regenrative action and can damage parallel loads connected on the  
output of reverse polarity protection device. For certain specific loads such as wiper motor, a voltage overshoot  
is seen due to transformer effect when wiper motor speed is changed from fast speed to slow speed. LM74500-  
Q1 is designed to provide protection against input reverse polarity for such applications where reverse current  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LM74500-Q1  
 
LM74500-Q1  
ZHCSN02 DECEMBER 2020  
www.ti.com.cn  
blocking is not reuiqred. 9-2 shows typical application circuit of reverse polarity protection of body control  
module load driving paths.  
Reverse current  
blocking is not  
preferred  
Wiper/  
Washer  
Q1  
Door module  
Relays  
CIN  
COUT  
GATE  
LM74500  
GND  
VBAT  
Input  
TVS  
EN  
SOURCE  
VCAP  
Lighting  
Modules  
Input reverse polarity  
protection is required  
VCAP  
9-2. Typical Block Diagram of Reverse Battery Protection for Body Control Module Load Driving Path  
9.2 Reverse Polarity Protection  
P-FET based reverse polarity protection is a very commonly used scheme in industrial and automotive  
applications to achieve low insertion loss protection solution. A low loss reverse polarity protection solution can  
be realised using LM74500-Q1 with an external N-FET to replace P-FET based solution. LM74500-Q1 based  
reverse polarity protection solution offers better cold crank performance (low VIN operation) and smaller solution  
size compared to P-FET based solution. 9-3 compares the performance benefits of LM74500-Q1 +N-FET  
over traditional P-FET based reverse polarity protection solution. As shown in 9-3, for a given power level  
LM74500-Q1+N-FET solution can be three times smaller than a similar power rated P-FET solution. Also as P-  
FET is self biased by simply pulling it's gate pin low and thus P-FET shows poorer cold crank performance (low  
VIN operation) compared to LM74500-Q1. During severe cold crank where battery voltage falls below 4 V, P-FET  
series resistance increase drastically as shown in 9-3. This leads to higher voltage drop across the P-FET.  
Also with higher gate to source threshold (VT) this can sometimes lead to system reset due to turning off of the  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LM74500-Q1  
 
 
LM74500-Q1  
ZHCSN02 DECEMBER 2020  
www.ti.com.cn  
P-FET. On the other side LM74500-Q1 has excellent severe cold crank performance. LM74500-Q1 keeps  
external FET completely enhanced even when input voltage falls to 3.2 V during severe cold crank operation.  
Parameter  
P-FET  
LM74500-Q1 + N-FET  
VOUT  
COUT  
VBATT  
VOUT  
COUT  
VBATT  
TVS  
CIN  
TVS  
Typical Application  
Diagram  
CIN  
SOURCE  
VCAP  
GATE  
D1  
CVCAP  
LM74500-Q1  
GND  
R1  
EN  
Solution Size  
(Load current >6A)  
12mm x 11.7mm  
(140mm2)  
7mm x 5.3mm  
(37.1mm2)  
Better cold crank performance compared to PFET  
based solution. External N-FET remains fully enhanced  
even if input voltage falls to 3.2V.  
Low VIN / Cold-Crank  
Performance  
9-3. Performance Comparison of P-FET and LM74500-Q1 Based Reverse Polarity Protection Solution  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LM74500-Q1  
 
LM74500-Q1  
ZHCSN02 DECEMBER 2020  
www.ti.com.cn  
9.3 Application Information  
The LM74500-Q1 is used with N-Channel MOSFET controller in a typical reverse polarity protection application.  
The schematic for the 12-V battery protection application is shown in 9-4 where the LM74500-Q1 is used to  
drive the MOSFET Q1 in series with a battery. The TVS is not required for the LM74500-Q1 to operate, but they  
are used to clamp the positive and negative voltage surges. The output capacitor COUT is recommended to  
protect the immediate output voltage collapse as a result of line disturbance.  
9.3.1 Typical Application  
Q1  
Voltage  
Regulator  
COUT  
CIN  
VBAT  
GATE  
LM74500  
GND  
EN  
TVS  
SOURCE  
VCAP  
VCAP  
9-4. Typical Application Circuit  
9.3.1.1 Design Requirements  
A design example, with system design parameters listed in 9-1 is presented.  
9-1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
12-V Battery, 12-V Nominal with 3.2-V Cold Crank and 35-V Load  
Dump  
Input voltage range  
Output voltage  
Output current range  
3.2 V during Cold Crank to 35-V Load Dump  
3-A Nominal, 5-A Maximum  
Output capacitance  
220-µF Typical Output Capacitance  
ISO 7637-2 and ISO 16750-2  
Automotive EMC Compliance  
9.3.1.2 Detailed Design Procedure  
9.3.1.2.1 Design Considerations  
Input operating voltage range, including cold crank and load dump conditions  
Nominal load current and maximum load current  
9.3.1.2.2 MOSFET Selection  
The important MOSFET electrical parameters are the maximum continuous drain current ID, the maximum drain-  
to-source voltage VDS(MAX), the maximum source current through body diode and the drain-to-source On  
resistance RDSON  
.
The maximum continuous drain current, ID, rating must exceed the maximum continuous load current. The  
maximum drain-to-source voltage, VDS(MAX), must be high enough to withstand the highest differential voltage  
seen in the application. This would include any anticipated fault conditions. It is recommended to use MOSFETs  
with voltage rating up to 60-V maximum with the LM74500-Q1 because SOURCE pin maximum voltage rating is  
65-V. The maximum VGS LM74500-Q1 can drive is 13 V, so a MOSFET with 15-V minimum VGS rating should be  
selected. If a MOSFET with VGS rating < 15 V is selected, a zener diode can be used to clamp VGS to safe level.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LM74500-Q1  
 
 
 
LM74500-Q1  
ZHCSN02 DECEMBER 2020  
www.ti.com.cn  
During startup, inrush current flows through the body diode to charge the bulk hold-up capacitors at the output.  
The maximum source current through the body diode must be higher than the inrush current that can be seen in  
the application.  
To reduce the MOSFET conduction losses, lowest possible RDS(ON) is preferred.  
Based on the design requirements, preferred MOSFET ratings are:  
60-V VDS(MAX) and ±20-V VGS(MAX)  
DMT6007LFG MOSFET from Diodes Inc. is selected to meet this 12-V reverse battery protection design  
requirements and it is rated at:  
60-V VDS(MAX) and ±20-V VGS(MAX)  
RDS(ON) 6.5-mΩtypical and 8.5-mΩmaximum rated at 4.5-V VGS to ensure lower power dissipationa cross  
the FET  
Thermal resistance of the MOSFET should be considered against the expected maximum power dissipation in  
the MOSFET to ensure that the junction temperature (TJ) is well controlled.  
9.3.1.2.3 Charge Pump VCAP, Input and Output Capacitance  
Minimum required capacitance for charge pump VCAP and input/output capacitance are:  
VCAP: Minimum 0.1 µF is required; recommended value of VCAP (µF) 10 x CISS(MOSFET) (µF)  
CIN: Typical input capacitor of 0.1 µF  
COUT: Typical output capacitor 220 µF  
9.3.1.3 Selection of TVS Diodes for 12-V Battery Protection Applications  
TVS diodes are used in automotive systems for protection against transients. In the 12-V battery protection  
application circuit shown in 9-5, a bi-directional TVS diode is used to protect from positive and negative  
transient voltages that occur during normal operation of the car and these transient voltage levels and pulses are  
specified in ISO 7637-2 and ISO 16750-2 standards.  
The two important specifications of the TVS are breakdown voltage and clamping voltage. Breakdown voltage is  
the voltage at which the TVS diode goes into avalanche similar to a zener diode and is specified at a low current  
value typical 1 mA and the breakdown voltage should be higher than worst case steady state voltages seen in  
the system. The breakdown voltage of the TVS+ should be higher than 24-V jump start voltage and 35-V  
suppressed load dump voltage and less than the maximum input voltage rating of LM74500-Q1 (65 V). The  
breakdown voltage of TVS- should be higher than maximum reverse battery voltage 16 V, so that the TVS- is  
not damaged due to long time exposure to reverse connected battery.  
Clamping voltage is the voltage the TVS diode clamps in high current pulse situations and this voltage is much  
higher than the breakdown voltage. TVS diodes are meant to clamp transient pulses and should not interfere  
with steady state operation. In the case of an ISO 7637-2 pulse 1, the input voltage goes up to 150 V with a  
generator impedance of 10 Ω. This translates to 15 A flowing through the TVS - and the voltage across the TVS  
would be close to its clamping voltage.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LM74500-Q1  
LM74500-Q1  
ZHCSN02 DECEMBER 2020  
www.ti.com.cn  
Q1  
Voltage  
Regulator  
CIN  
0.1uF  
COUT  
220uF  
VBAT  
GATE  
LM74500  
GND  
EN  
TVS  
SMBJ33CA  
SOURCE  
VCAP  
0.1uF  
VCAP  
9-5. Typical 12-V Battery Protection with Single Bi-Directional TVS  
The next criterion is that the absolute minimum rating of source voltage of the LM74500-Q1 (65 V) and the  
maximum VDS rating MOSFET are not exceeded. In the design example, 60-V rated MOSFET is chosen.  
SMBJ series of TVS' are rated up to 600-W peak pulse power levels. This is sufficient for ISO 7637-2 pulses and  
suppressed load dump (ISO-16750-2 pulse B).  
9.3.1.4 Selection of TVS Diodes and MOSFET for 24-V Battery Protection Applications  
Typical 24-V battery protection application circuit shown in 9-6 uses two uni-directional TVS diodes to protect  
from positive and negative transient voltages.  
Q1  
Voltage  
Regulator  
TVS+  
CIN  
0.1uF  
COUT  
220uF  
SMBJ58A  
VBAT  
GATE  
LM74500  
GND  
EN  
SOURCE  
TVS-  
SMBJ26A  
VCAP  
0.1uF  
VCAP  
9-6. Typical 24-V Battery Protection with Two Uni-Directional TVS  
The breakdown voltage of the TVS+ should be higher than 48-V jump start voltage, less than the absolute  
maximum ratings of source and enable pin of LM74500-Q1 (65 V) and should withstand 65-V suppressed load  
dump. The breakdown voltage of TVS- should be lower than maximum reverse battery voltage 32 V, so that  
the TVS- is not damaged due to long time exposure to reverse connected battery.  
During ISO 7637-2 pulse 1, the input voltage goes up to 600 V with a generator impedance of 50 Ω. Single bi-  
directional TVS cannot be used for 24-V battery protection because breakdown voltage for TVS+ 48V,  
maximum negative clamping voltage is ≤ –65 V . Two uni-directional TVS connected back-back needs to be  
used at the input. For positive side TVS+, SMBJ58A with the breakdown voltage of 64.4 V (minimum), 67.8  
(typical) is recommended. For the negative side TVS-, SMBJ26A with breakdown voltage close to 32 V (to  
withstand maximum reverse battery voltage 32 V) and maximum clamping voltage of 42 V is recommended.  
For 24-V battery protection, a 75-V rated MOSFET is recommended to be used along with SMBJ26A and  
SMBJ58A connected back-back at the input.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LM74500-Q1  
 
 
LM74500-Q1  
ZHCSN02 DECEMBER 2020  
www.ti.com.cn  
9.3.1.5 Application Curves  
9-7. ISO 7637-2 Pulse 1  
Time (2 ms/DIV)  
9-8. Response to ISO 7637-2 Pulse 1  
Time (20 ms/DIV)  
Time (20ms/DIV)  
9-9. Startup with 3-A Load  
9-10. Startup with 5-A Load  
Time (200 ms/DIV)  
9-11. Startup with Input Reverse Voltage (12 V)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LM74500-Q1  
LM74500-Q1  
ZHCSN02 DECEMBER 2020  
www.ti.com.cn  
10 Power Supply Recommendations  
The LM74500-Q1 reverse polarity protection controller is designed for the supply voltage range of 3.2 V ≤  
SOURCE 65 V. If the input supply is located more than a few inches from the device, an input ceramic bypass  
V
capacitor higher than 22 nF is recommended. To prevent LM74500-Q1 and surrounding components from  
damage under the conditions of a direct output short circuit, it is necessary to use a power supply having over  
load and short circuit protection.  
11 Layout  
11.1 Layout Guidelines  
Connect SOURCE and GATE pins of LM74500-Q1 close to the MOSFET's SOURCE and GATE pins.  
The high current path of for this solution is through the MOSFET, therefore it is important to use thick traces  
for source and drain of the MOSFET to minimize resistive losses.  
The charge pump capacitor across VCAP and SOURCE pins must be kept away from the MOSFET to lower  
the thermal effects on the capacitance value.  
The Gate pin of the LM74500-Q1 must be connected to the MOSFET gate with short trace. Avoid excessively  
thin and long running trace to the Gate Drive.  
11.2 Layout Example  
MOSFET DRAIN  
Signal Via  
Power Via  
Top layer  
MOSFET SOURCE  
VOUT  
VIN  
COUT  
CIN  
CVCAP  
GND PLANE  
11-1. Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LM74500-Q1  
 
 
 
 
LM74500-Q1  
ZHCSN02 DECEMBER 2020  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.4 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LM74500-Q1  
 
 
 
 
 
 
LM74500-Q1  
ZHCSN02 DECEMBER 2020  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LM74500-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Feb-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM74500QDDFRQ1  
ACTIVE SOT-23-THIN  
DDF  
8
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
745F  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
DDF0008A  
SOT-23 - 1.1 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC SMALL OUTLINE  
C
2.95  
2.65  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
6X 0.65  
8
1
2.95  
2.85  
NOTE 3  
2X  
1.95  
4
5
0.38  
0.22  
8X  
0.1  
C A B  
1.65  
1.55  
B
1.1 MAX  
0.20  
0.08  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.1  
0.0  
0 - 8  
0.6  
0.3  
DETAIL A  
TYPICAL  
4222047/C 10/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
1
8
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(R0.05)  
TYP  
(2.6)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222047/C 10/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
(R0.05) TYP  
8
1
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4222047/C 10/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LM74501-Q1

具有集成 VDS 钳位的汽车类 3.2V 至 65V 反极性保护控制器
TI

LM74501QDDFRQ1

具有集成 VDS 钳位的汽车类 3.2V 至 65V 反极性保护控制器 | DDF | 8 | -40 to 125
TI

LM74502

具有负载断开和高栅极驱动功能的 3.2V 至 65V 工业 RPP 控制器
TI

LM74502-Q1

汽车类反极性保护控制器,过压保护,栅极驱动强度 60μA
TI

LM74502DDFR

具有负载断开和高栅极驱动功能的 3.2V 至 65V 工业 RPP 控制器 | DDF | 8 | -40 to 125
TI

LM74502H

具有负载断开、OVP 和高栅极驱动功能的 3.2V 至 65V 工业 RPP 控制器
TI

LM74502H-Q1

汽车类反极性保护控制器,过压保护,栅极驱动强度 11mA
TI

LM74502HDDFR

具有负载断开、OVP 和高栅极驱动功能的 3.2V 至 65V 工业 RPP 控制器 | DDF | 8 | -40 to 125
TI

LM74502HQDDFRQ1

汽车类反极性保护控制器,过压保护,栅极驱动强度 11mA | DDF | 8 | -40 to 125
TI

LM74502QDDFRQ1

汽车类反极性保护控制器,过压保护,栅极驱动强度 60μA | DDF | 8 | -40 to 125
TI

LM74610-Q1

0.48V 至 42V、零 IQ 汽车理想二极管控制器
TI

LM74610QDGKRQ1

0.48V 至 42V、零 IQ 汽车理想二极管控制器 | DGK | 8 | -40 to 125
TI