LM74502HQDDFRQ1 [TI]

汽车类反极性保护控制器,过压保护,栅极驱动强度 11mA | DDF | 8 | -40 to 125;
LM74502HQDDFRQ1
型号: LM74502HQDDFRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类反极性保护控制器,过压保护,栅极驱动强度 11mA | DDF | 8 | -40 to 125

栅极驱动 控制器
文件: 总28页 (文件大小:1901K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM74502-Q1, LM74502H-Q1  
ZHCSNL2A FEBRUARY 2022 REVISED MAY 2022  
LM74502-Q1LM74502H-Q1 具有过压保护功能的汽车类IQ 反极性保护控制  
1 特性  
3 说明  
• 具有符AEC-Q100 标准的下列特性  
LM74502-Q1LM74502H-Q1 是符合汽车 AEC-Q100  
标准的控制器与外部背对背连接的 N 沟道 MOSFET  
配合工作可实现低损耗反极性保护和负载断开解决方  
案。3.2V 65V 的宽电源输入范围可实现对众多常用  
直流总线电压例如12V24V 48V 汽车电池系  
的控制。3.2V 输入电压支持适用于汽车系统中严  
苛的冷启动要求。该器件可以承受并保护负载免受低至  
65V 负电源电压的影响。LM74502-Q1 、  
LM74502H-Q1 没有反向电流阻断功能适用于对有可  
能将能量传输回输入电源的负载如汽车车身控制模块  
电机负载提供输入反极性保护。  
– 器件温度等1:  
40°C +125°C 环境工作温度范围  
– 器HBM ESD 分类等2  
– 器CDM ESD 分类等C4B  
3.2V 65V 输入范围3.9V 启动)  
-65V 输入反向电压额定值  
• 集成电荷泵用于驱动  
– 外部背对N MOSFET  
– 外部高侧开MOSFET  
– 外部反极性保MOSFET  
• 栅极驱动器型号  
LM74502-Q1 制器可提供适用于外部 N 道  
MOSFET 的电荷泵栅极驱动器。LM74502-Q1 的高电  
压额定值有助于简化满足 ISO7637 汽车保护测试标准  
的系统设计。当使能引脚处于低电平时控制器关闭,  
消耗大约 1µA 的电流从而在进入睡眠模式时提供低  
系统电流。LM74502-Q1 具有可编程的过压和欠压保  
护功能可在发生这些故障时将负载从输入源切断。  
LM74502-Q160μA 峰值栅极驱动拉电流能力  
LM74502H-Q111mA 峰值栅极驱动拉电流能  
2A 峰值栅极灌电流能力  
1µA 关断电流EN/UVLO = 低电平)  
45µA 典型工作静态电流EN/UVLO = 高电平)  
• 可调节过压和欠压保护  
• 采用额外TVS 二极管符合汽ISO7637 脉冲  
1 瞬态要求  
器件信息(1)  
封装尺寸标称值)  
器件型号  
封装  
LM74502-Q1  
LM74502H-Q1  
• 采8 SOT-23 2.90mm × 1.60mm  
SOT-23 (8)  
2.90mm × 1.60mm  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
车身电子装置和照明  
汽车信息娱乐系- 数字仪表组、音响主机  
USB 集线器  
Q1  
VBATT  
VOUT  
VIN  
VOUT  
CIN  
CIN  
COUT  
COUT  
SRC  
SRC  
GATE  
VS  
VS  
GATE  
CVCAP  
CVCAP  
R1  
R1  
VCAP  
OV  
VCAP  
OV  
LM74502-Q1  
GND  
LM74502-Q1  
GND  
EN / UVLO  
EN/UVLO  
OFF  
ON  
OFF  
ON  
R2  
R2  
LM74502-Q1 具有过压保护功能的负载开关控制器  
LM74502-Q1 典型应用原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNOSDE0  
 
 
 
 
LM74502-Q1, LM74502H-Q1  
ZHCSNL2A FEBRUARY 2022 REVISED MAY 2022  
www.ti.com.cn  
Table of Contents  
10 Application and Implementation................................15  
10.1 Application Information........................................... 15  
10.2 Typical Application.................................................. 15  
10.3 Surge Stopper Using LM74502-Q1,  
LM74502H-Q1.............................................................20  
10.4 Fast Turn-On and Turn-Off High Side Switch  
Driver Using LM74502H-Q1........................................21  
11 Power Supply Recommendations..............................23  
12 Layout...........................................................................23  
12.1 Layout Guidelines................................................... 23  
12.2 Layout Example...................................................... 23  
13 Device and Documentation Support..........................24  
13.1 接收文档更新通知................................................... 24  
13.2 支持资源..................................................................24  
13.3 Trademarks.............................................................24  
13.4 Electrostatic Discharge Caution..............................24  
13.5 术语表..................................................................... 24  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................6  
7.5 Electrical Characteristics.............................................6  
7.6 Switching Characteristics............................................7  
7.7 Typical Characteristics................................................8  
8 Parameter Measurement Information..........................10  
9 Detailed Description......................................................11  
9.1 Overview................................................................... 11  
9.2 Functional Block Diagram......................................... 11  
9.3 Feature Description...................................................12  
9.4 Device Functional Modes..........................................14  
Information.................................................................... 25  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (February 2022) to Revision A (May 2022)  
Page  
• 将状态从“预告信息”更改为“量产数据”....................................................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LM74502-Q1 LM74502H-Q1  
 
LM74502-Q1, LM74502H-Q1  
ZHCSNL2A FEBRUARY 2022 REVISED MAY 2022  
www.ti.com.cn  
5 Device Comparison Table  
Parameter  
LM74502-Q1  
LM74502H-Q1  
Gate drive strength  
11 mA  
60 μA  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LM74502-Q1 LM74502H-Q1  
 
LM74502-Q1, LM74502H-Q1  
ZHCSNL2A FEBRUARY 2022 REVISED MAY 2022  
www.ti.com.cn  
6 Pin Configuration and Functions  
EN/UVLO  
SRC  
OV  
8
1
2
GND  
7
6
GATE  
VS  
N.C  
3
4
5
VCAP  
6-1. DDF Package 8-Pin SOT-23 LM74502-Q1, LM74502H-Q1 Top View  
6-1. LM74502-Q1, LM74502H-Q1 Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NO.  
NAME  
EN/UVLO input. Connect to VS pin for always ON operation. Can be driven externally from a  
micro controller I/O. Pulling this pin low below V(ENF) makes the device enter into low Iq  
shutdown mode. For UVLO, connect an external resistor ladder from input supply to EN/  
UVLO to GND.  
1
EN/UVLO  
I
2
3
4
GND  
N.C  
G
Ground pin  
No connection  
VCAP  
O
Charge pump output. Connect to external charge pump capacitor.  
Input power supply pin to the controller. Connect a 100-nF capacitor across VS and GND  
pins.  
5
6
VS  
I
GATE  
O
Gate drive output. Connect to gate of the external N-channel MOSFET.  
Adjustable overvoltage threshold input. Connect a resistor ladder across input and output.  
When the voltage at OV pin exceeds the overvoltage cutoff threshold, then the GATE is  
pulled low. GATE turns ON when the OV pin voltage goes below the OV protection falling  
threshold.  
7
8
OV  
I
I
Connect OV pin to GND if OV feature is not used.  
Source pin. Connect to common source point of external back-to-back connected N-channel  
MOSFETs or the source pin of the high side switch MOSFET.  
SRC  
(1) I = Input, O = Output, G = GND  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LM74502-Q1 LM74502H-Q1  
 
 
LM74502-Q1, LM74502H-Q1  
ZHCSNL2A FEBRUARY 2022 REVISED MAY 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
65  
0.3  
V(VS)  
MAX  
65  
UNIT  
V
VS to GND  
EN/UVLO, OV to GND, V(VS) > 0 V  
Input Pins  
65  
V
(65 + V(VS)  
)
EN/UVLO, OV, V(VS) 0 V  
(V(VS) + 0.3)  
V
V
SRC to GND, V(VS) 0 V  
Input Pins  
SRC to GND, V(VS) > 0 V  
GATE to SRC  
V(VS)  
15  
(70 V(VS)  
)
0
0.3  
40  
40  
V
Output Pins  
VCAP to VS  
15  
V
Operating junction temperature(2)  
Storage temperature, Tstg  
150  
150  
°C  
°C  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
±2000  
Corner pins (EN, VCAP, SRC,  
VS)  
V(ESD)  
Electrostatic discharge  
±750  
±500  
V
Charged device model (CDM),  
per AEC Q100-011  
Other pins  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
60  
60  
22  
NOM  
MAX  
60  
UNIT  
VS to GND  
Input Pins  
V
EN/UVLO, OV, SRC to GND  
60  
VS  
nF  
µF  
External  
capacitance  
VCAP to VS  
0.1  
External  
MOSFET max GATE to SRC  
VGS rating  
15  
V
TJ  
Operating junction temperature range(2)  
150  
°C  
40  
(1) Recommended Operating Conditions are conditions under which the device is intended to be functional. For specifications and test  
conditions, see electrical characteristics  
(2) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LM74502-Q1 LM74502H-Q1  
 
 
 
 
 
 
 
 
 
LM74502-Q1, LM74502H-Q1  
ZHCSNL2A FEBRUARY 2022 REVISED MAY 2022  
www.ti.com.cn  
7.4 Thermal Information  
LM74502-Q1  
LM74502H-Q1  
THERMAL METRIC(1)  
UNIT  
DDF (SOT)  
8 PINS  
133.8  
72.6  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
54.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
4.6  
54.2  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
7.5 Electrical Characteristics  
TJ = 40°C to +125°C; typical values at TJ = 25°C, V(VS) = 12 V, C(VCAP) = 0.1 µF, V(EN/UVLO) = 3.3 V, over operating free-air  
temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VS SUPPLY VOLTAGE  
V(VS)  
Operating input voltage  
VS POR Rising threshold  
VS POR Falling threshold  
VS POR Hysteresis  
4
60  
3.9  
3.1  
0.67  
1.5  
65  
V
V
V (VS_POR)  
2.2  
2.8  
V
V(VS POR(Hys))  
I(SHDN)  
0.44  
V
Shutdown Supply Current  
Operating Quiescent Current  
V(EN/UVLO) = 0 V  
0.9  
45  
µA  
µA  
I(Q)  
IGND  
I(S) leakage current during input  
reverse polarity  
I(REV)  
100  
150  
µA  
0 V V(VS) 65 V  
ENABLE INPUT  
V(EN_UVLOF)  
Enable/UVLO falling threshold  
Enable/UVLO rising threshold  
1.027  
1.16  
1.14  
1.24  
1.235  
1.32  
V
V
V(EN_UVLOR)  
Enable threshold voltage for low IQ  
shutdown  
V(ENF)  
0.32  
38  
0.64  
0.94  
V(EN_Hys)  
I(EN)  
Enable Hysteresis  
Enable sink current  
90  
3
132  
5
mV  
µA  
V(EN/UVLO) = 12 V  
GATE DRIVE  
I(GATE)  
Peak source current  
Peak source current  
40  
3
60  
11  
77  
µA  
V
V
(GATE) V(SRC) = 5 V  
mA  
(GATE) V(SRC) = 5 V, LM74502H-Q1  
I(GATE)  
EN/UVLO= High to Low  
(GATE) V(SRC) = 5 V  
Peak sink current  
2370  
mA  
V
EN/UVLO = High to Low  
RDSON  
discharge switch RDSON  
0.4  
2
V
(GATE) V(SRC) = 100 mV  
CHARGE PUMP  
Charge Pump source current (Charge  
pump on)  
162  
300  
5
600  
10  
µA  
µA  
V
V
(VCAP) V(S) = 7 V  
(VCAP) V(S) = 14 V  
I(VCAP)  
Charge Pump sink current (Charge  
pump off)  
Charge pump voltage at V(S) = 3.2 V  
Charge pump turn-on voltage  
Charge pump turn-off voltage  
8
10.3  
11  
V
V
V
V(VCAP) V(VS)  
V(VCAP) V(VS)  
V(VCAP) V(VS)  
I(VCAP) 30 µA  
11.6  
12.4  
13  
13.9  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LM74502-Q1 LM74502H-Q1  
 
 
 
LM74502-Q1, LM74502H-Q1  
ZHCSNL2A FEBRUARY 2022 REVISED MAY 2022  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
TJ = 40°C to +125°C; typical values at TJ = 25°C, V(VS) = 12 V, C(VCAP) = 0.1 µF, V(EN/UVLO) = 3.3 V, over operating free-air  
temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Charge Pump Enable comparator  
Hysteresis  
0.45  
0.8  
1.25  
7.5  
V
V
V
V
(VCAP) V(VS)  
V(VCAP UVLO)  
V(VCAP UVLO)  
V
(VCAP) V(VS) UV release at rising  
5.7  
6.5  
5.4  
edge  
V
(VCAP) V(VS) UV threshold at falling  
5.05  
6.2  
edge  
OVERVOLTAGE PROTECTION  
V(OVR)  
V(OVF)  
V(OV_Hys)  
I(OV)  
Overvoltage threshold input, rising  
1.165  
1.063  
1.25  
1.143  
100  
1.333  
1.222  
V
V
Overvoltage threshold input, falling  
OV Hysteresis  
mV  
nA  
OV Input leakage current  
0 V < V(OV) < 5 V  
12  
50  
110  
7.6 Switching Characteristics  
TJ = 40°C to +125°C; typical values at TJ = 25°C, V(VS) = 12 V, CIN = C(VCAP) = COUT = 0.1 µF, V(EN/UVLO) = 3.3 V, over  
operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
V(VCAP) > V(VCAP UVLOR), V(EN/UVLO) step  
from (0 V to > V(EN_UVLOR) ) , V(GATE-  
SRC) > 5 V, C(GATE-SRC) = 4.7  
nF, LM74502H-Q1  
ENTDLY  
EN high to Gate Turn-on delay  
75  
110  
µs  
tEN_OFF(deg)_G  
V
(EN/UVLO) to V(GATE-SRC) < 1 V,  
GATE Turn-off delay during EN/UVLO  
GATE Turn-off delay during OV  
2
µs  
µs  
C(GATE-SRC) = 4.7 nF  
ATE  
tOVP_OFF(deg)_  
V
(OV) to V(GATE-SRC) < 1 V, C(GATE-  
0.6  
1
SRC) = 4.7 nF  
GATE  
V
(OV) to V(GATE-SRC) > 5 V, C(GATE-  
tOVP_ON(deg)_G  
GATE Turn-on delay during OV  
5
10  
µs  
SRC) = 4.7 nF  
LM74502H-Q1,  
ATE  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LM74502-Q1 LM74502H-Q1  
 
LM74502-Q1, LM74502H-Q1  
ZHCSNL2A FEBRUARY 2022 REVISED MAY 2022  
www.ti.com.cn  
7.7 Typical Characteristics  
7
420  
390  
360  
330  
300  
270  
240  
210  
180  
150  
120  
90  
–40C  
25C  
85C  
125C  
150C  
5.6  
4.2  
2.8  
1.4  
0
–40C  
25C  
85C  
125C  
150C  
60  
30  
0
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
VS (V)  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
VS (V)  
7-2. Operating Quiescent Current vs Supply Voltage  
7-1. Shutdown Supply Current vs Supply Voltage  
390  
360  
330  
300  
270  
240  
210  
550  
–40C  
500  
450  
400  
350  
300  
250  
200  
150  
100  
25C  
85C  
125C  
150C  
–40C  
25C  
180  
150  
120  
90  
85C  
125C  
150C  
60  
3
4
5
6
7
8
9
10  
11  
12  
0
2
4
6
8
10  
12  
VS (V)  
VCAP (V)  
7-3. Charge Pump Current vs Supply Voltage at VCAP = 6 V  
7-4. Charge Pump V-I Characteristics at VS > = 12 V  
240  
1.35  
Enable/UVLO rising  
Enable/UVLO falling  
–40C  
220  
25C  
85C  
125C  
150C  
200  
180  
160  
140  
120  
100  
80  
1.28  
1.21  
1.14  
1.07  
1
60  
40  
20  
-40  
0
40  
80  
120  
160  
0
1
2
3
4
5
6
7
8
9
Free-Air Temperature (C)  
VCAP (V)  
7-6. EN/UVLO Rising and Falling threshold vs Temperature  
7-5. Charge Pump V-I Characteristics at VS = 3.2 V  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LM74502-Q1 LM74502H-Q1  
 
LM74502-Q1, LM74502H-Q1  
ZHCSNL2A FEBRUARY 2022 REVISED MAY 2022  
www.ti.com.cn  
7.7 Typical Characteristics (continued)  
85  
14  
13.4  
12.8  
12.2  
11.6  
11  
VCAP ON  
VCAP OFF  
80  
75  
70  
65  
60  
-40  
0
40  
80  
120  
160  
-40  
0
40  
80  
120  
160  
Free-Air Temperature (C)  
Free-Air Temperature (C)  
7-8. Charge Pump ON and OFF Threshold vs Temperature  
7-7. Enable to Gate Delay vs Temperature  
(LM74502H-Q1)  
7.4  
3.2  
VCAP UVLOR  
VCAP UVLOF  
VS PORR  
VS PORF  
7
6.6  
6.2  
5.8  
5.4  
5
3
2.8  
2.6  
2.4  
2.2  
-40  
0
40  
80  
120  
160  
-40  
0
40  
80  
120  
160  
Free-Air Temperature (C)  
Free-Air Temperature (C)  
7-9. Charge Pump UVLO Threshold vs Temperature  
7-10. VS POR Threshold vs Temperature  
1.4  
6
5
4
3
2
1
0
OV Rising  
OV Falling  
1.32  
1.24  
1.16  
1.08  
1
GATE OFF  
GATE ON  
-40  
0
40  
80  
120  
160  
-40  
0
40  
80  
120  
160  
Free-Air Temperature (C)  
Free-Air Temperature (C)  
7-11. OV Comparator Threshold vs Temperature  
7-12. OV to GATE Delay vs Temperature (LM74502H-Q1)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LM74502-Q1 LM74502H-Q1  
LM74502-Q1, LM74502H-Q1  
ZHCSNL2A FEBRUARY 2022 REVISED MAY 2022  
www.ti.com.cn  
8 Parameter Measurement Information  
3.3 V  
VEN/UVLOF  
0.1 V  
VENF  
0 V  
0 V  
12.4 V  
12.4 V  
90%  
1 V  
0 V  
0 V  
ttUVLO_OFF(deg)GATE  
t
tENTDLY  
t
0.1 V  
VOVF  
0.1 V  
+
VOVR  
0 V  
0 V  
12.4 V  
12.4 V  
5 V  
1 V  
0 V  
0 V  
ttOVP_OFF(deg)GATE  
t
ttOVP_ON(deg)GATEt  
8-1. Timing Waveforms  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LM74502-Q1 LM74502H-Q1  
 
LM74502-Q1, LM74502H-Q1  
ZHCSNL2A FEBRUARY 2022 REVISED MAY 2022  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The LM74502-Q1, LM74502H-Q1 controller has all the features necessary to implement an efficient and fast  
reverse polarity protection circuit with load disconnect function. This easy to use reverse polarity protection  
controller is paired with an external back-to-back connected N-channel MOSFETs to replace other reverse  
polarity schemes such as a P-channel MOSFETs. The wide input supply of 4 V to 65 V allows protection and  
control of 12-V and 24-V automotive battery powered ECUs. The device can withstand and protect the loads  
from negative supply voltages down to 65 V. An integrated charge pump drives external back-to-back  
connected N-channel MOSFETs with gate drive voltage of approximately 12.4 V to realize reverse polarity  
protection and load disconnect function in case of overvoltage and undervoltage event. LM74502-Q1 with it's  
typical gate drive strength of 60 μA provides smooth start-up with inherent inrush current control due to its lower  
gate drive strength. LM74502H-Q1 with it's 11-mA typical peak gate drive strength is suitable for applications  
which need faster turn on such as load switch applications. LM74502-Q1 features an adjustable overvoltage  
cutoff protection feature using a programming resistor divider to OV terminal. LM74502-Q1 features enable  
control. With the enable pin low during the standby mode, both the external MOSFETs and controller is off and  
draws a very low 1 μA of current.  
9.2 Functional Block Diagram  
VIN  
VOUT  
GATE  
SRC  
VS  
VCAP  
CP  
VS  
Gate  
Driver  
VCAP  
Internal  
Rails  
Charge  
Pump  
Enable  
Logic  
Gate Drive  
Enable  
Logic  
VS  
UVLOb EN  
OV  
OV  
+
EN  
1.25 V  
1.14 V  
EN/UVLO  
+
1 V  
VS  
0.3 V  
+
UVLOb  
1.25 V  
1.14 V  
Reverse  
Protection Logic  
LM74502-Q1  
LM74502H-Q1  
GND  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LM74502-Q1 LM74502H-Q1  
 
 
 
LM74502-Q1, LM74502H-Q1  
ZHCSNL2A FEBRUARY 2022 REVISED MAY 2022  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Input Voltage (VS)  
The VS pin is used to power the LM74502-Q1's internal circuitry, typically drawing 45 µA when enabled and 1 µA  
when disabled. If the VS pin voltage is greater than the POR Rising threshold, then LM74502-Q1 operates in  
either shutdown mode or conduction mode in accordance with the EN/UVLO pin voltage. The voltage from VS to  
GND is designed to vary from 65 V to 65 V, allowing the LM74502-Q1 to withstand negative voltage transients.  
9.3.2 Charge Pump (VCAP)  
The charge pump supplies the voltage necessary to drive the external N-channel MOSFET. An external charge  
pump capacitor is placed between VCAP and VS pin to provide energy to turn on the external MOSFET. For the  
charge pump to supply current to the external capacitor the EN/UVLO pin, voltage must be above the specified  
input high threshold, V(EN_IH). When enabled the charge pump sources a charging current of 300-µA typically. If  
EN/UVLO pins is pulled low, then the charge pump remains disabled. To ensure that the external MOSFET can  
be driven above its specified threshold voltage, the VCAP to VS voltage must be above the undervoltage lockout  
threshold, typically 6.5 V, before the internal gate driver is enabled. Use 方程式 1 to calculate the initial gate  
driver enable delay.  
T
(DRV_EN) = 75 µs + C(VCAP) × V(VCAP_UVLOR)  
300 µA  
(1)  
where  
C(VCAP) is the charge pump capacitance connected across VS and VCAP pins  
V(VCAP_UVLOR) = 6.5 V (typical)  
To remove any chatter on the gate drive approximately 800 mV of hysteresis is added to the VCAP undervoltage  
lockout. The charge pump remains enabled until the VCAP to VS voltage reaches 12.4 V, typically, at which  
point the charge pump is disabled decreasing the current draw on the VS pin. The charge pump remains  
disabled until the VCAP to VS voltage is below to 11.6 V typically at which point the charge pump is enabled.  
The voltage between VCAP and VS continue to charge and discharge between 11.6 V and 12.4 V as shown in  
9-1. By enabling and disabling the charge pump, the operating quiescent current of the LM74502-Q1 is  
reduced. When the charge pump is disabled it sinks 5-µA typical.  
TDRV_EN  
TON  
TOFF  
VIN  
VS  
0 V  
VEN  
12.4 V  
11.6 V  
VCAP-VS  
6.5 V  
V(VCAP UVLOR)  
GATE DRIVER  
(GATE to SRC)  
ENABLE  
9-1. Charge Pump Operation  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LM74502-Q1 LM74502H-Q1  
 
 
 
 
LM74502-Q1, LM74502H-Q1  
ZHCSNL2A FEBRUARY 2022 REVISED MAY 2022  
www.ti.com.cn  
9.3.3 Gate Driver (GATE an SRC)  
The gate driver is used to control the external N-Channel MOSFET by setting the appropriate GATE to SRC  
voltage.  
Before the gate driver is enabled following three conditions must be achieved:  
The EN/UVLO pin voltage must be greater than the specified input high voltage.  
The VCAP to VS voltage must be greater than the undervoltage lockout voltage.  
The VS voltage must be greater than VS POR Rising threshold.  
If the above conditions are not achieved, then the GATE pin is internally connected to the SRC pin, assuring that  
the external MOSFET is disabled. After these conditions are achieved the gate driver operates in the conduction  
mode enhancing the external MOSFET completely.  
The controller offers two gate drive variants. LM74502-Q1 with typical peak gate drive strength of 60 μA is  
suitable to achieve smooth start-up with inherent inrush current control due to its lower gate drive strength.  
LM74502H-Q1 with its 11-mA typical peak gate drive strength is suitable for applications which need faster turn-  
on such as load switch applications.  
LM74502-Q1, LM74502H-Q1 SRC pin is capable of handling negative voltage which also makes it suitable for  
load disconnect switch applications with loads which are inductive in nature.  
9.3.3.1 Inrush Current Control  
An external circuit as shown in 9-2 can be added on the GATE pin of the LM74502-Q1 to have additional  
inrush current control for the applications which have large capacitive loads.  
Q1  
RG  
Cdvdt  
GATE  
SRC  
LM74502-Q1  
9-2. Inrush Current Limiting Using LM74502-Q1  
The CdVdT capacitor is required for slowing down the GATE voltage ramp during power up for inrush current  
limiting. Use 方程2 to calculate CdVdT capacitance value.  
C
dvdt = IGATE × COUT  
IINRUSH  
(2)  
where IGATE is 60 μA (typical), IINRUSH is the inrush current and COUT is the output load capacitance. An extra  
resistor, RG, in series with the CdVdT capacitor acts as an isolation resistor between Cdvdt and gate of the  
MOSFET.  
The inrush current control scheme shown in 9-2 is not applicable to LM74502H-Q1 as its gate drive is  
optimized for fast turn-on load switch applications.  
9.3.4 Enable and Undervoltage Lockout (EN/UVLO)  
The LM74502-Q1 has an enable pin, EN/UVLO. The enable pin allows for the gate driver to be either enabled or  
disabled by an external signal. If the EN/UVLO pin voltage is greater than the rising threshold, the gate driver  
and charge pump operates as described in Gate Driver and Charge Pump sections. If the enable pin voltage is  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LM74502-Q1 LM74502H-Q1  
 
 
 
LM74502-Q1, LM74502H-Q1  
ZHCSNL2A FEBRUARY 2022 REVISED MAY 2022  
www.ti.com.cn  
less than the input low threshold, the charge pump and gate driver are disabled placing the LM74502-Q1 in  
shutdown mode. The EN/UVLO pin can withstand a voltage as large as 65 V and as low as 65 V. This feature  
allows for the EN/UVLO pin to be connected directly to the VS pin if enable functionality is not needed. In  
conditions where EN/UVLO is left floating, the internal sink current of 3 uA pulls EN/UVLO pin low and disables  
the device.  
An external resistor divider connected from input to EN/UVLO to ground can be used to implement the input  
Undervoltage Lockout (UVLO) functionality. When EN/UVLO pin voltage is lower than UVLO comparator falling  
threshold (VEN/UVLOR) but higher than enable falling threshold (VENF), the device disables gate drive voltage,  
however, charge pump is kept on. This action ensures quick recovery of gate drive when UVLO condition is  
removed. If UVLO functionality is not required, connect EN/UVLO pin to VS.  
9.3.5 Overvoltage Protection (OV)  
LM74502-Q1 provides programmable overvoltage protection feature with OV pin. A resistor divider can be  
connected from input source to OV pin to ground to set overvoltage threshold. An internal comparator compares  
the input voltage against fixed reference (1.25 V) and disables the gate drive as soon as OV pin voltage goes  
above the OV comparator reference. When the resistor divider is referred from input supply side, the device is  
configured for overvoltage cutoff functionality. When the resistor divider is referred from output side (VOUT), the  
device is configured for overvoltage clamp functionality.  
When OV pin voltage goes above OV comparator VOVR threshold (1.25-V typical), the device disables gate  
drive, however, charge pump remains active. When OV pin voltage falls below VOVF threshold (1.14-V typical),  
the gate is quickly turned on as charge pump is kept on and the device does not go through the device start-up  
process. When OV pin is not used, it can be connected to ground.  
9.4 Device Functional Modes  
9.4.1 Shutdown Mode  
The LM74502-Q1 enters shutdown mode when the EN/UVLO pin voltage is below the specified input low  
threshold V(EN_IL). Both the gate driver and the charge pump are disabled in shutdown mode. During shutdown  
mode the LM74502-Q1 enters low IQ operation with the VS pin only sinking 1 µA.  
9.4.2 Conduction Mode  
For the LM74502-Q1, LM74502H-Q1 to operate in conduction mode the gate driver must be enabled as  
described in the Gate Driver (GATE an SRC) section. If these conditions are achieved the GATE pin is  
Internally driven through 60-μA current source in case of LM74502-Q1  
Internally connected to the VCAP for fast turn-on of external FET in case of LM74502H-Q1  
LM74502-Q1, LM74502H-Q1 gate drive is disabled when OV pin voltage is above VOVR threshold or EN/UVLO  
pin voltage is lower than VEN/UVLOF threshold.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LM74502-Q1 LM74502H-Q1  
 
LM74502-Q1, LM74502H-Q1  
ZHCSNL2A FEBRUARY 2022 REVISED MAY 2022  
www.ti.com.cn  
10 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
10.1 Application Information  
The LM74502-Q1 is used with N-Channel MOSFET controller in a typical reverse polarity protection application.  
The schematic for the 12-V battery protection application is shown in 10-1 where the LM74502-Q1 is used to  
drive back-to-back connected MOSFETs Q1 and Q2 in series with a battery to realize reverse polarity protection  
and load disconnect solution. The TVS is not required for the LM74502-Q1 to operate, but they are used to  
clamp the positive and negative voltage surges. TI recommends the output capacitor COUT to protect the  
immediate output voltage collapse as a result of line disturbance.  
10.2 Typical Application  
Q1  
Q2  
VOUT  
VBATT  
12 V  
CIN  
0.1 µF  
COUT  
220 µF  
SMBJ33CA  
SRC  
GATE  
VS  
CVCAP  
220 nF  
R1  
100 k  
VCAP  
OV  
LM74502-Q1  
EN / UVLO  
OFF  
ON  
R2  
3.5 kΩ  
GND  
10-1. Typical Application Circuit  
10.2.1 Design Requirements  
10-1 list design examples with system design parameters.  
10-1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
12-V battery, 12-V nominal with 3.2-V cold crank and 35-V load  
dump  
Input voltage range  
Output voltage  
Output current range  
Output capacitance  
3.2 V during cold crank to 35-V load dump  
3-A nominal, 5-A maximum  
220-µF typical output capacitance  
Overvoltage Protection  
37-V typical  
Automotive EMC compliance  
ISO 7637-2 and ISO 16750-2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LM74502-Q1 LM74502H-Q1  
 
 
 
 
 
LM74502-Q1, LM74502H-Q1  
ZHCSNL2A FEBRUARY 2022 REVISED MAY 2022  
www.ti.com.cn  
10.2.2 Detailed Design Procedure  
10.2.2.1 Design Considerations  
Input operating voltage range, including overvoltage conditions  
Nominal load current and maximum load current  
10.2.2.2 MOSFET Selection  
The important MOSFET electrical parameters are the maximum continuous drain current, ID, the maximum  
drain-to-source voltage, VDS(MAX), the maximum source current through body diode, and the drain-to-source On  
resistance, RDSON  
.
The maximum continuous drain current, ID, rating must exceed the maximum continuous load current. The  
maximum drain-to-source voltage, VDS(MAX), must be high enough to withstand the highest differential voltage  
seen in the application. This requirement includes any anticipated fault conditions. TI recommends to use  
MOSFETs with voltage rating up to 60-V maximum with the LM74502-Q1 because SOURCE pin maximum  
voltage rating is 65 V. The maximum VGS LM74502-Q1 can drive is 13.9 V, so a MOSFET with 15-V minimum  
VGS rating must be selected. If a MOSFET with VGS rating < 15 V is selected, a Zener diode can be used to  
clamp VGS to safe level.  
To reduce the MOSFET conduction losses, lowest possible RDS(ON) is preferred. Selecting a MOSFET with  
RDS(ON) that gives VDS drop 20 mV to 50 mV at full load provides good trade off in terms of power dissipation  
and cost.  
Thermal resistance of the MOSFET must be considered against the expected maximum power dissipation in the  
MOSFET to ensure that the junction temperature (TJ) is well controlled.  
10.2.2.3 Overvoltage Protection  
Resistors R1 and R2 connected in series is used to program the overvoltage threshold. Connecting R1 to VIN  
provides overvoltage cutoff and switching the connection to VOUT provides overvoltage clamp response. The  
resistor values required for setting the overvoltage threshold VOV to 37 V are calculated by solving 方程3  
R2 × VOV  
VOVR  
=
R1 + R2  
(3)  
For minimizing the input current drawn from the supply through resistors R1 and R2, TI recommends to use  
higher value of resistance. Using high value resistors adds error in the calculations because the current through  
the resistors at higher value becomes comparable to the leakage current into the OV pin. Select (R1 + R2) such  
that current through resistors is around 100 times higher than the leakage through OV pin. Based on the device  
electrical characteristics, VOVR is 1.25 V, select (R1) = 100 kΩand R2 = 3.5 kΩas a standard resistor value to  
set overvoltage cutoff of 37 V.  
Based on application use case, overvoltage threshold can be set at the lower voltage as it enables lower rated  
downstream components, thus providing solution size and lower cost benefit.  
10.2.2.4 Charge Pump VCAP, Input and Output Capacitance  
Minimum required capacitance for charge pump VCAP and input and output capacitance are:  
VCAP: Minimum recommended value of VCAP (µF) 10 × CISS(MOSFET_effective) (µF),  
CVCAP of 0.22 µF is selected  
CIN: Typical input capacitor of 0.1 µF  
COUT: Typical output capacitor 220 µF  
10.2.3 Selection of TVS Diodes for 12-V Battery Protection Applications  
TVS diodes are used in automotive systems for protection against transients. In the 12-V battery protection  
application circuit shown in 10-1, a bi-directional TVS diode is used to protect from positive and negative  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LM74502-Q1 LM74502H-Q1  
 
 
LM74502-Q1, LM74502H-Q1  
ZHCSNL2A FEBRUARY 2022 REVISED MAY 2022  
www.ti.com.cn  
transient voltages that occur during normal operation of the car and these transient voltage levels and pulses are  
specified in ISO 7637-2 and ISO 16750-2 standards.  
The two important specifications of the TVS are breakdown voltage and clamping voltage. Breakdown voltage is  
the voltage at which the TVS diode goes into avalanche similar to a Zener diode and is specified at a low current  
value typical 1 mA and the breakdown voltage must be higher than worst case steady state voltages seen in the  
system. The breakdown voltage of the TVS+ must be higher than 24-V jump start voltage and 35-V suppressed  
load dump voltage and less than the maximum input voltage rating of LM74502-Q1 (65 V). The breakdown  
voltage of TVSmust be higher than maximum reverse battery voltage 16 V, so that the TVSis not  
damaged due to long time exposure to reverse connected battery.  
Clamping voltage is the voltage the TVS diode clamps in high current pulse situations and this voltage is much  
higher than the breakdown voltage. TVS diodes are meant to clamp transient pulses and must not interfere with  
steady state operation. In the case of an ISO 7637-2 pulse 1, the input voltage goes up to 150 V with a  
generator impedance of 10 Ω. This action translates to 15 A flowing through the TVSand the voltage across  
the TVS is close to its clamping voltage.  
The next criterion is that the absolute minimum rating of source voltage of the LM74502-Q1 (65 V) and the  
maximum VDS rating MOSFET are not exceeded. In the design example, 60-V rated MOSFET is chosen.  
SMBJ series of TVS' are rated up to 600-W peak pulse power levels. This rating is sufficient for ISO 7637-2  
pulses and suppressed load dump (ISO-16750-2 pulse B).  
10.2.4 Selection of TVS Diodes and MOSFET for 24-V Battery Protection Applications  
Typical 24-V battery protection application circuit shown in 10-2 uses two uni-directional TVS diodes to protect  
from positive and negative transient voltages.  
Q1  
Q2  
VOUT  
VBATT  
24 V  
CIN  
0.1 µF  
COUT  
220 µF  
TVS+  
SMBJ58A  
SRC  
GATE  
VS  
CVCAP  
220 nF  
R1  
TVS-  
SMBJ26A  
VCAP  
OV  
LM74502-Q1  
EN / UVLO  
OFF  
ON  
R2  
GND  
10-2. Typical 24-V Battery Protection with Two Uni-Directional TVS  
The breakdown voltage of the TVS+ must be higher than 48-V jump start voltage, less than the absolute  
maximum ratings of source and enable pin of LM74502-Q1 (65 V) and must withstand 65-V suppressed load  
dump. The breakdown voltage of TVSmust be lower than maximum reverse battery voltage 32 V, so that  
the TVSis not damaged due to long time exposure to reverse connected battery.  
During ISO 7637-2 pulse 1, the input voltage goes up to 600 V with a generator impedance of 50 Ω. Single bi-  
directional TVS cannot be used for 24-V battery protection because breakdown voltage for TVS+ 48 V,  
maximum negative clamping voltage is ≤ –65 V . Two uni-directional TVS connected back-to-back must be  
used at the input. For positive side TVS+, TI recommends SMBJ58A with the breakdown voltage of 64.4 V  
(minimum), 67.8 (typical). For the negative side TVS, TI recommends SMBJ26A with breakdown voltage close  
to 32 V (to withstand maximum reverse battery voltage 32 V) and maximum clamping voltage of 42 V.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LM74502-Q1 LM74502H-Q1  
 
LM74502-Q1, LM74502H-Q1  
ZHCSNL2A FEBRUARY 2022 REVISED MAY 2022  
www.ti.com.cn  
For 24-V battery protection, TI recommends a 75-V rated MOSFET to be used along with SMBJ26A and  
SMBJ58A connected back-to-back at the input.  
10.2.5 Application Curves  
10-3. ISO 7637-2 Pulse 1  
Time (2.5 ms/DIV)  
10-4. Response to ISO 7637-2 Pulse 1 (150 V)  
Time (4 ms/DIV)  
Time (40 ms/DIV)  
10-6. Start-up with No Load  
10-5. Start-up with Input Reverse Voltage (12  
V)  
Time (20 ms/DIV)  
Time (4 ms/DIV)  
10-8. Overvoltage Cutoff Response (37 V)  
10-7. Start-up with 5-A Load  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LM74502-Q1 LM74502H-Q1  
LM74502-Q1, LM74502H-Q1  
ZHCSNL2A FEBRUARY 2022 REVISED MAY 2022  
www.ti.com.cn  
Time (20 ms/DIV)  
Time (10 ms/DIV)  
10-10. Overvoltage Clamp Response  
10-9. Overvoltage Recovery  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LM74502-Q1 LM74502H-Q1  
LM74502-Q1, LM74502H-Q1  
ZHCSNL2A FEBRUARY 2022 REVISED MAY 2022  
www.ti.com.cn  
10.3 Surge Stopper Using LM74502-Q1, LM74502H-Q1  
Many automotive applications are designed to comply with unsuppressed load dump transients specified by  
ISO16750-2 Pulse 5A. LM74502, LM74502H can be configured as input surge stopper to provide overvoltage  
along with input reverse supply protection and protect the downstream loads in case of unsuppressed load dump  
event.  
Q1  
200 V  
Q2  
60 V  
24-V VBATT  
200-V Unsuppressed  
Load Dump  
VOUT  
R1  
10 k  
CIN  
0.1 µF  
COUT  
220 µF  
VOUT  
(OV Clamp)  
R2  
100 k  
VIN  
OV cut-off  
SRC  
VS  
GATE  
OV  
DZ  
R3  
3.5 k  
CVS  
1 µF  
60 V  
VCAP  
CVCAP  
220 nF  
LM74502-Q1  
GND  
EN/UVLO  
OFF  
ON  
10-11. Typical Surge Stopper Application for 24-V Powered Systems  
As shown in 10-11, MOSFET Q1 is used to turn off or clamp output voltage to acceptable safe level and  
protect the MOSFET Q2 and LM74502 from input transient. Note that only the VS pin is exposed to input  
transient through a resistor, R1. A 60-V rated Zener diode is used to clamp and protect the VS pin within  
recommended operating condition. Th rest of the circuit is not exposed to higher voltage as the MOSFET Q1 can  
either be turned off completely or output voltage clamped to safe level.  
10.3.1 VS Capacitance, Resistor R1 and Zener Clamp (DZ)  
A minimum of 1-µF CVS capacitance is required. During input overvoltage transient, resistor R1 and Zener diode,  
DZ, are used to protect VS pin from exceeding the maximum ratings by clamping VVS to 60 V. Choosing R1 = 10  
kΩ, the peak power dissipated in Zener diode DZ can be calculated using 方程4 .  
PDZ = VDZ × (VIN(MAX) – VDZ)  
R1  
(4)  
Where VDZ is the breakdown voltage of Zener diode. Select the Zener diode that can handle peak power  
requirement.  
Peak power dissipated in resistor R1 can be calculated using 方程5.  
PR1 = (VIN(MAX) – VDZ)2  
R1  
(5)  
Select a resistor package which can handle peak power and maximum DC voltage.  
10.3.2 Overvoltage Protection  
For the overvoltage setting, refer to the resistor selection procedure described in Overvoltage Protection. Select  
(R2) = 100 kΩand R3 = 3.5 kΩas a standard resistor value to set overvoltage cutoff of 37 V.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LM74502-Q1 LM74502H-Q1  
 
 
 
 
LM74502-Q1, LM74502H-Q1  
ZHCSNL2A FEBRUARY 2022 REVISED MAY 2022  
www.ti.com.cn  
10.3.3 MOSFET Selection  
The VDS rating of the MOSFET Q1 must be minimum VIN(max) for designs with output overvoltage cutoff where  
output can reach 0 V with higher loads. For designs with output overvoltage clamp, MOSFET VDS rating must  
be (VIN(max) VOUT_CLAMP). The VGS rating is based on GATE-SRC maximum voltage of 15 V. TI recommends  
a 20-V VGS rated MOSFET. Power dissipation on MOSFET Q1 on a design where output is clamped is critical  
and SOA characteristics of the MOSFET must be considered with sufficient design margin for reliable operation.  
An additional Zener diode from GATE to SRC can be needed to protect the external FET in case output is  
expected to drop to the level where it can exceed external FET VGS(max) rating.  
10-12. 200-V Surge Stopper with Overvoltage Cutoff Using LM74502-Q1  
10.4 Fast Turn-On and Turn-Off High Side Switch Driver Using LM74502H-Q1  
In automotive load driving applications N-Channel MOSFET based high side switch is very commonly used to  
disconnect the loads from supply line in case of faults such as overvoltage event . LM74502-Q1, LM74502H-Q1  
can be used to drive external MOSFET to realize simple high side switch with overvoltage protection. 10-13  
shows a typical application circuit where LM74502H-Q1 is used to drive external MOSFET Q1 as a main power  
path connect and disconnect switch. A resistor divider from input to OV pin to ground can be used the set the  
overvoltage threshold.  
If VOUT node (SRC pin) of the device is expected to drop in case of events such as overcurrent or short-circuit  
on load side then additional Zener diode is required across gate and source pin of external MOSFET to protect it  
from exceeding its maximum VGS rating.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LM74502-Q1 LM74502H-Q1  
 
LM74502-Q1, LM74502H-Q1  
ZHCSNL2A FEBRUARY 2022 REVISED MAY 2022  
www.ti.com.cn  
Q1  
VOUT  
High Side  
Switch  
VIN  
LOAD3  
LOAD2  
LOAD3  
COUT  
10 µF  
CIN  
4.7 µF  
Low Side  
Switch  
VS  
GATE  
SRC  
CVCAP  
470 nF  
VIN  
R1  
OV pin used for  
overvoltage  
protection  
VCAP  
OV  
LM74502H-Q1  
GND  
DC/DC  
Converter  
R2  
EN/UVLO  
OFF  
ON  
OFF  
ON  
OV pin used as logic input for  
fast turn ON/OFF of FET Q1  
10-13. Fast Turn-ON and OFF High Side Switch Using LM74502H-Q1  
Many safety applications require fast switching off of the MOSFET in case of fault events such as overvoltage or  
overcurrent fault. Some of the load driving path applications also require PWM operation of high side switch.  
LM74502H-Q1 OV pin can be used as control input to realize fast turn-on and turn-off load switch functionality.  
With OV pin pulled above VOVR threshold of (1.25-V typical), LM74502H-Q1 turns off the external MOSFET (with  
Ciss = 4.7 nF) within 1 μs typically. When OV pin is pulled low, LM74502H-Q1 with its peak gate drive strength  
of 11 mA turns on external MOSFET with turn-on speed of 7-μs typical. 10-14 shows LM74502H-Q1 GATE  
to SRC response when OV pin is toggled with ON/OFF logic input.  
10-14. Fast Turn-On and Turn-Off High Side Switch Driver Using LM74502H-Q1  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LM74502-Q1 LM74502H-Q1  
 
 
LM74502-Q1, LM74502H-Q1  
ZHCSNL2A FEBRUARY 2022 REVISED MAY 2022  
www.ti.com.cn  
11 Power Supply Recommendations  
The LM74502-Q1, LM74502H-Q1 reverse polarity protection controller is designed for the supply voltage range  
of 3.2 V VS 65 V. If the input supply is located more than a few inches from the device, TI recommends an  
input ceramic bypass capacitor higher than 0.1 μF. Based on system requirements, a higher input bypass  
capacitor can be needed with LM74502H-Q1 to avoid supply glitch in case of high inrush current start-up event.  
To prevent LM74502-Q1 and surrounding components from damage under the conditions of a direct output short  
circuit, use a power supply having overload and short-circuit protection.  
12 Layout  
12.1 Layout Guidelines  
Connect GATE and SRC pin of LM74502-Q1 close to the MOSFET's gate and source pin.  
Use thick traces for source and drain of the MOSFET to minimize resistive losses because the high current  
path of for this solution is through the MOSFET.  
Keep the charge pump capacitor across VCAP and VS pin away from the MOSFET to lower the thermal  
effects on the capacitance value.  
Connect the GATE pin of the LM74502-Q1 to the MOSFET gate with short trace. Avoid excessively thin and  
long running trace to the Gate Drive.  
12.2 Layout Example  
Bo om Layer  
Signal Via  
VOUT  
Q2  
G
S
S
S
COUT  
LM74502-Q1  
8
SRC  
OV  
1
EN  
GND  
N.C  
Q1  
VIN  
2
7
6
5
D
D
D
D
3
4
GATE  
VS  
VCAP  
TVS  
CIN  
CVCAP  
GND  
GND  
12-1. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LM74502-Q1 LM74502H-Q1  
 
 
 
 
LM74502-Q1, LM74502H-Q1  
ZHCSNL2A FEBRUARY 2022 REVISED MAY 2022  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
13.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LM74502-Q1 LM74502H-Q1  
 
 
 
 
 
 
LM74502-Q1, LM74502H-Q1  
ZHCSNL2A FEBRUARY 2022 REVISED MAY 2022  
www.ti.com.cn  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LM74502-Q1 LM74502H-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM74502HQDDFRQ1  
LM74502QDDFRQ1  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDF  
DDF  
8
8
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
502HQ  
L502Q  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Oct-2022  
OTHER QUALIFIED VERSIONS OF LM74502-Q1, LM74502H-Q1 :  
Catalog : LM74502, LM74502H  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LM74502QDDFRQ1

汽车类反极性保护控制器,过压保护,栅极驱动强度 60μA | DDF | 8 | -40 to 125
TI

LM74610-Q1

0.48V 至 42V、零 IQ 汽车理想二极管控制器
TI

LM74610QDGKRQ1

0.48V 至 42V、零 IQ 汽车理想二极管控制器 | DGK | 8 | -40 to 125
TI

LM74610QDGKTQ1

0.48V 至 42V、零 IQ 汽车理想二极管控制器 | DGK | 8 | -40 to 125
TI

LM74670-Q1

具有 70uA 栅极驱动器的 0.48V 至 42V、零 IQ 汽车理想二极管整流器控制器
TI

LM74670QDGKRQ1

具有 70uA 栅极驱动器的 0.48V 至 42V、零 IQ 汽车理想二极管整流器控制器 | DGK | 8 | -40 to 125
TI

LM74670QDGKTQ1

具有 70uA 栅极驱动器的 0.48V 至 42V、零 IQ 汽车理想二极管整流器控制器 | DGK | 8 | -40 to 125
TI

LM747

Dual Operational Amplifier
NSC

LM747

双路、44V、1.5MHz 运算放大器
TI

LM747 MD8

Military-grade, dual, 44-V, 1.5-MHz operational amplifier | Y | 0 | -55 to 125
TI

LM747 MWC

双路、44V、1.5MHz 运算放大器 | YS | 0 | -40 to 85
TI

LM74700-EP

增强型低 IQ 理想二极管控制器
TI