LM74610-Q1 [TI]

0.48V 至 42V、零 IQ 汽车理想二极管控制器;
LM74610-Q1
型号: LM74610-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

0.48V 至 42V、零 IQ 汽车理想二极管控制器

控制器 二极管
文件: 总31页 (文件大小:1628K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LM74610-Q1  
ZHCSE83A JULY 2015REVISED OCTOBER 2015  
LM74610-Q1 IQ 反极性保护智能二极管控制器  
1 特性  
2 应用  
1
符合汽车应用要求  
具有符合 AEC-Q100 的下列结果:  
高级驾驶员辅助系统 (ADAS)  
信息娱乐系统  
电动工具(工业)  
传输控制单元 (TCU)  
电池 OR-ing 应用  
超出人体模型 (HBM) 静电放电 (ESD) 分类等级  
2
器件充电器件模型 (CDM) ESD 分类等级 C4B  
最低反向电压:45V  
3 说明  
正极引脚无正电压限制  
LM74610-Q1 是一款控制器器件,可与 N 沟道  
MOSFET 一同用于反极性保护电路。 其设计用于驱动  
外部 MOSFET,串联电源时可模拟理想二极管整流  
器。 该机制的独特优势在于不以接地为参考,因此 Iq  
为零。  
适用于外部 N 沟道金属氧化物半导体场效应晶体管  
(MOSFET) 的电荷泵栅极驱动器  
功耗比肖特基二极管/PFET 解决方案更低  
低反极性泄漏电流  
IQ  
2µs 内快速响应反极性情况  
-40°C 125°C 工作环境温度  
可用于 OR-ing 应用  
LM74610-Q1 控制器为外部 N 沟道 MOSFET 提供栅  
极驱动,并配有快速响应内部比较器,可使 MOSFET  
栅极在反极性情况下放电。 这种快速降压特性有效限  
制了检测到反极性时反向电流的大小和持续时间。 此  
外,该器件设计选用了合适的 TVS 二极管,符合  
CISPR25 5 EMI 规范和汽车类 ISO7637 瞬态要  
求。  
符合 CISPR25 EMI 规范  
选用了合适的瞬态电压抑制器 (TVS) 二极管,满足  
汽车类 ISO7637 瞬态要求  
器件信息(1)  
部件号  
封装  
封装尺寸(标称值)  
LM74610-Q1  
VSSOP (8)  
3.0mm x 5.0mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
智能二极管配置  
Q1  
VIN  
VOUT  
S
D
G
Gate Drive  
Gate Pull Down  
Anode  
Cathode  
LM74610-Q1  
VCAPH  
VCAPL  
Vcap  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNOSCZ1  
 
 
 
 
LM74610-Q1  
ZHCSE83A JULY 2015REVISED OCTOBER 2015  
www.ti.com.cn  
目录  
7.3 Feature Description .................................................. 7  
7.4 Device Functional Modes........................................ 10  
Application and Implementation ........................ 12  
8.1 Application Information............................................ 12  
8.2 Typical Application ................................................. 12  
Power Supply Recommendations...................... 20  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 4  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 7  
7.1 Overview ................................................................... 7  
7.2 Functional Block Diagram ......................................... 7  
8
9
10 Layout................................................................... 21  
10.1 Layout Guidelines ................................................. 21  
10.2 Layout Example .................................................... 22  
11 器件和文档支持 ..................................................... 23  
11.1 社区资源................................................................ 23  
11.2 ....................................................................... 23  
11.3 静电放电警告......................................................... 23  
11.4 Glossary................................................................ 23  
12 机械封装和可订购信息 .......................................... 23  
7
4 修订历史记录  
Changes from Original (July 2015) to Revision A  
Page  
从产品预览改为量产数据 ........................................................................................................................................................ 1  
2
Copyright © 2015, Texas Instruments Incorporated  
 
LM74610-Q1  
www.ti.com.cn  
ZHCSE83A JULY 2015REVISED OCTOBER 2015  
5 Pin Configuration and Functions  
DGK Package  
8-Pin VSSOP  
Top View  
VCAPL  
1
8
Cathode  
Gate Pull Down  
NC  
2
7
6
5
VCAPH  
LM74610-Q1  
3
Gate Drive  
NC  
Anode  
4
Pin Functions  
PIN NO.  
NAME  
DESCRIPTION  
1
2
3
4
5
6
7
8
VcapL  
Charge Pump Output, connect to an external charge pump capacitor  
Connect to the gate of the external MOSFET for fast turn OFF in the case of reverse polarity  
No connect. Leave floating or connect to Anode pin  
Gate Pull Down  
NC  
Anode  
Anode of the diode, connect to source of the external MOSFET  
No connect. Leave floating or connect to gate drive pin  
NC  
Gate Drive  
VcapH  
Gate Drive output, Connect to the Gate of the external MOSFET  
Charge Pump Output, connect to an external charge pump capacitor  
Cathode of the diode, connect to Drain of the external MOSFET  
Cathode  
Copyright © 2015, Texas Instruments Incorporated  
3
LM74610-Q1  
ZHCSE83A JULY 2015REVISED OCTOBER 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
-3  
MAX  
45  
UNIT  
V
(2) (3)  
Cathode to Anode (For a 2ms time duration)  
Cathode to Anode (Continuous)(3)  
VcapH to VcapL  
,
-3  
42  
V
-0.3  
-0.3  
-0.3  
-40  
-40  
-65  
7
V
Anode to VcapL  
3
V
Gate Drive, Gate Pull Down to VcapL  
7
V
(4)  
Ambient Temperature (TA-MAX)  
125  
125  
150  
°C  
°C  
°C  
Case Temperature (TC-MAX)  
Storage temperature range, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) 42V continuous (and 45V transients for 2ms) absmax condition from Cathode to Anode. Suitable to use with TVS SMBJ28A and  
SMBJ14A at the anode.  
(3) Reverse voltage rating only. There is no positive voltage limitation for the LM74610-Q1 Anode terminal.  
(4) The device performance is ensured over this Ambient Temperature range as long the Case Temperature does not exceed the MAX  
value.  
6.2 ESD Ratings  
VALUE  
±4000  
±750  
UNIT  
Human body model (HBM), per AEC Q100-002(2)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge(1)  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) The human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
42  
UNIT  
Cathode To Anode  
V
Ambient Temperature (TA-MAX)  
Case Temperature (TC-MAX)  
-40  
125  
125  
°C  
°C  
6.4 Thermal Information  
LM74610-Q1  
VSSOP 8 PINS  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
181  
73  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
102  
11  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ψJB  
100  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
6.5 Electrical Characteristics  
TA= 25°C unless otherwise noted. Minimum and Maximum limits are specified through test, design, validation or statistical  
correlation. Typical values represent the most likely parametric norm at TA= 25°C and are provided for reference purpose  
only. VAnode-Cathode= 0.55V for all tests.(1)  
(1) Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions under which  
operation of the device is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits  
and associated test conditions, see the table of Electrical Characteristics.  
4
Copyright © 2015, Texas Instruments Incorporated  
LM74610-Q1  
www.ti.com.cn  
ZHCSE83A JULY 2015REVISED OCTOBER 2015  
Electrical Characteristics (continued)  
TA= 25°C unless otherwise noted. Minimum and Maximum limits are specified through test, design, validation or statistical  
correlation. Typical values represent the most likely parametric norm at TA= 25°C and are provided for reference purpose  
only. VAnode-Cathode= 0.55V for all tests.(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VAnode to Cathode  
Vcap Threshold  
Minimum Startup Voltage across External MOSFET VGS = 0V  
External MOSFET's Body Diode  
0.48  
V
Charge Pump Capacitor Drive  
Thresholds  
Vcap Upper Threshold  
Vcap Lower Threshold  
VGate to Anode = 2V  
6.3  
5.15  
9.4  
V
V
IGate up  
Gate Drive Pull up current  
8.9  
µA  
µA  
IGate down  
Gate Drive pull down current  
during forward voltage  
VGate to Anode = 4V  
6.35  
6.8  
IGate pull down  
ICharge Current  
IDischarge Current  
Gate drive pull down current  
when reverse voltage is sensed  
VGate Pull Down = VAnode + 2V  
VAnode to Cathode = 0.55 V  
Vcap = 6.6V  
160  
46  
mA  
µA  
µA  
Charging current for the charge  
pump capacitor  
40  
VCAP Current Consumption to  
power the controller when  
MOSFET is ON  
0.95  
TRecovery  
Time to shut off MOSFET when  
VAnode to Cathode = -20 mV  
2.2  
5(2)  
µs  
voltage is reversed (Equivalent to Cgate = 4 nF  
diode reverse recovery time)  
D
Duty Cycle  
Iload = 3 A, TA = 25°C  
98%  
92%  
60  
Iload = 3 A, TA = 125°C  
VAnode to Cathode = -13.5 V  
ILKG  
Iq  
Reverse Leakage Current  
Quiescent Current to GND  
Current into Anode pin  
110(2)  
µA  
µA  
µA  
0
IAnode  
Current into Anode pin when VAnode -  
Cathode = 0.3V.  
30  
(2) Limit applies over the full Operating Temperature Range TA = -40°C to +125°C.  
30 mV  
VANODE > VCATHODE  
VCATHODE > VANODE  
0 mV  
-20 mV  
tTRECOVERY  
t
VGATE  
0 V  
Figure 1. Gate Shut Down Timing in the Event of Reverse Polarity  
Copyright © 2015, Texas Instruments Incorporated  
5
 
 
LM74610-Q1  
ZHCSE83A JULY 2015REVISED OCTOBER 2015  
www.ti.com.cn  
6.6 Typical Characteristics  
300  
0.465  
0.46  
V_Reverse = 13.5 V  
V_Reverse = 37 V  
250  
200  
150  
100  
50  
0.455  
0.45  
0.445  
0.44  
0.435  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
D001  
D002  
Figure 2. Reverse Leakage at Negative Voltages  
Figure 3. Anode to Cathode Startup Voltage  
3.25  
3
6.5  
6.25  
6
VCAP H  
VCAP L  
2.75  
2.5  
2.25  
2
5.75  
5.5  
5.25  
5
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
Temperature (èC)  
D009  
D003  
Figure 4. Reverse Recovery Time (TRecovery  
)
Figure 5. VcapH and VcapL Voltage Threshold  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
80  
60  
40  
20  
0
-40èC  
25èC  
85èC  
125èC  
-40èC  
25èC  
85èC  
125èC  
-20  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Current (A)  
1
0
1
2
3
4
5
6
7
8
9
10  
Current (A)  
D005  
D004  
Figure 6. Duty Cycle of the Output Voltage at Startup  
Figure 7. Duty Cycle of the Output Voltage  
6
Copyright © 2015, Texas Instruments Incorporated  
LM74610-Q1  
www.ti.com.cn  
ZHCSE83A JULY 2015REVISED OCTOBER 2015  
7 Detailed Description  
7.1 Overview  
Most systems in automotive or industrial applications require fast response reverse polarity protection at the input  
stage. Schottky diodes or PFETs are typically used in most power systems to protect the load in case of negative  
polarity. The disadvantage of using diodes is high voltage drop during forward conduction, which reduces the  
available voltage and increases the associated power losses. PFET solutions are inefficient for high load current  
and low input voltage. These situations often occur during start-stop or cold crank. The other disadvantages of  
PFET include higher Iq and higher system cost. Using an N-Channel MOSFET with a controller IC can be a  
highly effective and more efficient substitute in reverse polarity protection circuitry. The ON state forward voltage  
loss in a MOSFET depends upon the RDSON of the MOSFET. The power losses become substantially lower than  
the Schottky diode for the equivalent current. This solution has a small increase in complexity; however it  
eliminates the need for diode heatsinks or a large thermal copper area in PCB layout for high power applications,  
that a diode would need.  
The LM74610-Q1 is a zero Iq controller that is combined with an external N-channel MOSFET to replace a diode  
or PFET reverse polarity solution in power systems. The voltage across the MOSFET source and drain is  
constantly monitored by the LM74610-Q1 Anode and Cathode pins. An internal charge pump is used to provide  
the GATE drive for the external MOSFET. The forward conduction is through the MOSFET 98% of the time. The  
forward conduction is through the MOSFET body diode for 2% of time when energy is stored in an external  
charge pump capacitor Vcap Figure 9. This stored energy is used to drive the gate of MOSFET. The voltage  
drop depends on the RDSONof a particular MOSFET in use, which is significantly smaller than a PFET. The  
LM74610-Q1 has no ground reference which makes it identical to a diode.  
7.2 Functional Block Diagram  
Input  
Output  
S
D
G
ANODE  
GATE DRIVE GATE PULL DOWN  
CATHODE  
VCAP  
L
LOGIC  
Reverse Batt  
Shut Off  
VCAP  
H
Charge  
Pump  
7.3 Feature Description  
7.3.1 During T0  
When power is initially applied, the load current (ID) will flow through the body diode of the MOSFET and produce  
a voltage drop (Vf) during T0 in Figure 8. This forward voltage drop (Vf) across the body diode of the MOSFET is  
used to charge up the charge pump capacitor Vcap. During this time, the charge pump capacitor Vcap is  
charged to a higher threshold of 6.3V (typical).  
Copyright © 2015, Texas Instruments Incorporated  
7
LM74610-Q1  
ZHCSE83A JULY 2015REVISED OCTOBER 2015  
www.ti.com.cn  
Feature Description (continued)  
VOUT  
Body Diode Voltage Drop  
T0  
tT1t  
FET is ON  
VGS  
FET is OFF  
0 V  
Figure 8. Output Voltage and VGSOperation at 1A Output Current  
7.3.2 During T1  
Once the voltage on the capacitor reaches a higher voltage level of 6.3V (typical), the charge pump is disabled  
and the MOSFET turns ON. The energy stored in the capacitor is used to provide the gate drive for the MOSFET  
(T1 in Figure 8). When the MOSFET is ON, it provides a low resistive path for the drain current to flow and  
minimizes the power dissipation associated with forward conduction. The power losses during the MOSFET ON  
state depend primarily on the RDSON of the selected MOSFET and load current. At time when the capacitor  
voltage reaches its lower threshold VcapL 5.15V (typical), the MOSFET gate turns OFF. The drain current ID will  
then begin to flow through the body diode of the MOSFET, causing the MOSFET body diode voltage drop to  
appear across Anode and Cathode pins. The charge pump circuitry is re-activated and begins charging the Vcap.  
The LM74610-Q1 operation keeps the MOSFET ON at approximately 98% duty cycle (typical) regardless of the  
external charge pump capacitor value. This is the key factor to minimizing the power losses. The forward voltage  
drop during this time is limited by the RDSON of the MOSFET.  
7.3.3 Pin Operation  
7.3.3.1 Anode and Cathode Pins  
The LM74610-Q1 Anode and Cathode pins are connected to the source and drain of the external MOSFET. The  
current into the Anode pin is 30 µA (typical). When power is initially applied, the load current flows through the  
body diode of the external MOSFET, the voltage across Anode and Cathode pins is equal to the forward diode  
drop (Vf). The minimum value of Vf required to enable the charge pump circuitry is 0.48V. Once the MOSFET is  
turned ON, the Anode and Cathode pins constantly sense the voltage difference across the MOSFET to  
determine the magnitude and polarity of the voltage across it. When the MOSFET is on, the voltage difference  
across Anode and Cathode pins depends on the RDSON and load current. If voltage difference across source and  
drain of the external MOSFET becomes negative, this is sensed as a fault condition by Anode and Cathode pins  
and gate is turned off by Gate Pull Down pin as shown in Figure 1. The reverse voltage threshold across Anode  
and Cathode to detect the fault condition is -20 mV. The consistent sensing of voltage polarity across the  
MOSFET enables the LM74610-Q1 to provide a fast response to the power source failure and limit the amount  
and duration of the reverse current flow.  
7.3.3.2 VcapH and VcapL Pins  
VcapH and VcapL are high and low voltage thresholds respectively that the LM74610-Q1 uses to detect when to  
turn the charge pump circuitry ON and OFF. The capacitor charging and discharging time can be correlated to  
the duty cycle of the MOSFET gate. Figure 9 shows the voltage behavior across the Vcap. During the time  
period T0, the capacitor is storing energy from the charge pump. The MOSFET is turned off and current flow is  
only through the body diode during this time period. The conduction though body diode of the MOSFET is for a  
8
Copyright © 2015, Texas Instruments Incorporated  
 
LM74610-Q1  
www.ti.com.cn  
ZHCSE83A JULY 2015REVISED OCTOBER 2015  
Feature Description (continued)  
very small period of time (2% typical) which rules out the chances of overheating the MOSFET, regardless of the  
output current. Once the capacitor voltage reaches its high threshold, the MOSFET is turned off and charge  
pump circuity is deactivated until the Vcap reaches its low voltage threshold (T1). The voltage difference between  
Vcap high and low threshold is typically 1.15V. The LM74610-Q1 charge pump has 46µA charging capability with  
5-8MHz frequency.  
VCAP  
H
1.1 V  
VCAP  
L
VOUT  
Body Diode Voltage Drop  
T0  
tT1t  
Figure 9. Vcap Charging and Discarding by the Charge Pump  
The Vcap current consumption is 1 µA (typical) to drive the gate. The MOSFET OFF time (T0) and ON time (T1)  
can be calculated using the following expression  
dV  
DT = C  
dI  
(1)  
Where:  
C = Vcap Capacitance  
dV = 1.15V  
dI = 46 µA for charging  
dI = 0.95 µA for discharging  
Note: Temperature dependence of these parameters – The duty cycle is dependent on temperature since the  
capacitance variation over temperature has a direct correlation to the MOSFET OFF and ON periods and the  
frequency. If the capacitor varies 20% the periods and the frequency will also vary by 20% so it is recommended  
to use a quality X7R/COG cap and not to place the cap in close proximity to high temperature devices. The  
variation of the capacitor does not have a thermal impact in the application as the duty cycle does not change.  
7.3.3.3 Gate Drive Pin  
When the charge pump capacitor is charged to the high voltage level of 6.3V (typ), the Gate Drive pin provides a  
6.8µA (typ) of drive current. When the charge pump capacitor reaches its lower voltage threshold of 5.15V (typ),  
Gate is pulled down to the Anode voltage (Vin). When Anode voltage goes negative, the Gate voltage is pulled  
down to Anode voltage with 160mA pull down current.  
7.3.3.4 Gate Pull Down Pin  
The Gate Pull Down pin is connected to the Gate Drive pin in a typical application circuit. When the controller  
detects negative polarity, possibly due to failure of the input supply or voltage ripple, the Pull-Down quickly  
discharges the MOSFET gate through a discharge transistor. This fast pull down react/s regardless of the Vcap  
charge level. If the input supply abruptly fails, as would happen if the supply gets shorted to ground, a reverse  
current will temporarily flow through the MOSFET. This reverse current can be due to parallel connected supplies  
and load capacitance and is dependent upon the RDSON of the MOSFET. When the negative voltage across the  
Anode and Cathode pins due to reverse current reaches -20mV (typical), the LM74610-Q1 immediately reacts  
Copyright © 2015, Texas Instruments Incorporated  
9
 
LM74610-Q1  
ZHCSE83A JULY 2015REVISED OCTOBER 2015  
www.ti.com.cn  
Feature Description (continued)  
and discharges the MOSFET gate capacitance as shown in Figure 10 . A MOSFET with 5nF of effective gate  
capacitance can be turned off by the LM74610-Q1 within 2µs (typical). The fast turnoff time minimizes the  
reverse current flow from MOSFET drain by opening the circuit. The reverse leakage current does not exceed  
110µA for a constant 13.5V reverse voltage across Anode and Cathode pins. The reverse leakage current for a  
Schottky diode is 15mA under the same voltage and temperature conditions.  
Figure 10. Gate Pull Down in the Event of Reverse Polarity  
7.4 Device Functional Modes  
The LM74610-Q1 operates in two modes:  
Body Diode Conduction Mode  
The LM74610-Q1 solution works like a conventional diode during this time with higher forward voltage drop.  
The power dissipation during this time can be given as:  
PDissipation = V  
ì I  
(
ForwardDrop
) (
 
Drain Current  
)
(2)  
However, the current only flows through the body diode while the MOSFET gate is being charged to VGS(TH)  
This conduction is only for 2% duty cycle, therefore it does not cause any thermal issues.  
.
Cì(VcapH- VcapL)  
Body Diode ON Time =  
ICharge Current  
(3)  
The MOSFET Conduction Mode  
The MOSFET is turned on during this time and current flow is only through the MOSFET. The forward voltage  
drop and power losses are limited by the RDSON of the specific MOSFET used in the solution. The LM74610-  
Q1 solution output is comprised of the MOSFET conduction mode for 98% of its duty cycle. This time period  
is given by the following expression:  
Cì(VcapH - VcapL)  
MOSFET ON Time =  
IDischarge Current  
(4)  
7.4.1 Duty Cycle Calculation  
The LM74610-Q1 has an operating duty cycle of 98% at 25 C̊ and >90% at 125 C̊ . The duty cycle doesn’t  
depend on the Vcap capacitance value. However, the variation in capacitance value over temperature has direct  
correlation to the switching frequency between the MOSFET and body diode. If the capacitance value decreases,  
the charging and discharging time will also decrease, causing more frequent switching between body diode and  
the MOSFET condition. The following expression can be used to calculate the duty cycle of the LM74610-Q1:  
10  
Copyright © 2015, Texas Instruments Incorporated  
 
LM74610-Q1  
www.ti.com.cn  
ZHCSE83A JULY 2015REVISED OCTOBER 2015  
Device Functional Modes (continued)  
(MOSFET ON Time)  
(MOSFET ON Time + Body Diode ON Time)  
Duty Cycle (%) =  
ì100  
(5)  
Copyright © 2015, Texas Instruments Incorporated  
11  
 
LM74610-Q1  
ZHCSE83A JULY 2015REVISED OCTOBER 2015  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LM74610-Q1 is used with N-Channel MOSFET controller in a typical reverse polarity protection application.  
This device is connected to the N-Channel MOSFET as shown in Figure 11 . The schematic for the typical  
application is shown in Figure 12 where the LM74610-Q1 is used in series with a battery to drive the MOSFET  
Q1. The TVS+ and TVS- are not required for the LM74610-Q1. However, they are typically used to clamp the  
positive and negative voltage surges respectively. The output capacitor Cout is recommended to protect the  
immediate output voltage collapse as a result of line disturbance.  
8.2 Typical Application  
Anode  
Cathode  
Voltage  
Vout  
Regulator  
TVS+  
TVS-  
Cout  
Vbatt  
LM74610-Q1  
Vcap  
Figure 11. Typical System Application  
Q1  
ANODE  
CATHODE  
2.2 µF  
VCAP  
TVS+  
TVS-  
Cout  
1
2
3
4
8
VCAPL  
CATHODE  
Vout  
Voltage Regulator  
VBatt  
GATE PULL DOWN  
NC  
7
6
5
VCAPH  
Cin  
100 pf  
GATE DRIVE  
NC  
ANODE  
LM74610QDGKRQ1  
GND  
Figure 12. Typical Application Schematic  
12  
Copyright © 2015, Texas Instruments Incorporated  
 
 
LM74610-Q1  
www.ti.com.cn  
ZHCSE83A JULY 2015REVISED OCTOBER 2015  
Typical Application (continued)  
8.2.1 Design Requirements  
For this design example, use the parameters listed in Table 1 as the input parameters  
Table 1. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
EXAMPLE VALUE  
Max VDS of the MOSFET  
Max VDS of the MOSFET  
-45V  
Output Voltage  
Maximum Negative Voltage  
Output Current Range  
Maximum drain current  
ΔVo = ± 5%  
Transient Response, 3A Load Step  
8.2.2 Detailed Design Procedure  
To begin the design process, determine the following:  
8.2.2.1 Design Considerations  
Input voltage range  
Output current range  
Body Diode forward voltage drop for the selected MOSFET  
MOSFET Gate threshold voltage  
8.2.2.2 Startup Voltage  
The LM74610-Q1 will not initiate the charge pump operation if a closed loop system is in standby mode or the  
drain current is smaller than 1mA (typical). This is due to a minimum body diode voltage requirement of the  
LM74610-Q1 controller. If the drain current is too small to produce a minimum voltage drop of 0.48V at 25 ͦC, the  
charge pump circuitry will remain off and the MOSFET will act just like a diode. It is very important to know the  
body diode voltage parameter of a MOSFET before implementing it into the Smart Diode solution. Some N-  
channels MOSFETs have very low body diode voltage at higher temperature. This makes their drain current  
requirement higher to achieve 0.48V across the body diode in order to initiate the LM74610-Q1 controller at  
higher temperatures.  
8.2.2.3 Capacitor Selection  
A ceramic capacitor should be placed between VcapL and VcapH. The capacitor acts as a holding tank to power  
up the control circuitry when the MOSFET is on.  
When the MOSFET is off, this capacitor is charged up to higher voltage threshold of ~6.3V. Once this voltage is  
reached, the Gate Drive of LM74610-Q1 will provide drive for the external MOSFET. When the MOSFET is ON,  
the voltage across its body diode is collapsed because the forward conduction is through the MOSFET. During  
this time, the capacitor acts as a supply for the Gate Drive to keep the MOSFET ON.  
The capacitor voltage will gradually decay when the MOSFET is ON. Once the capacitor voltage reaches a lower  
voltage threshold of 5.15V, the MOSFET is turned off and the capacitor gets recharged again for the next cycle.  
A capacitor value of 220nF to 4.7uF with X7R/COG characteristic and 16V rating or higher is recommended for  
this application. A higher value capacitor sets longer MOSFET ON time and OFF time; however, the duty cycle  
remains at ~98% for MOSFET ON time irrespective of capacitor value.  
If the Vcap value is 2.2µF, the MOSFET ON time and OFF time can be calculated using Equation 1 :  
MOSFET ON Time = (2.2µF x 1.15V)/0.95µA = 2.66 seconds  
Body Diode ON Time = (2.2µF x 1.15V)/46µA = 55 miliseconds  
(6)  
(7)  
The duty cycle can be calculated using Equation 5 :  
Duty Cycle % = 2.66sec / (2.66sec + 0.055sec) = 98%  
(8)  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
LM74610-Q1  
ZHCSE83A JULY 2015REVISED OCTOBER 2015  
www.ti.com.cn  
8.2.2.4 MOSFET Selection  
The important MOSFET electrical parameters are the maximum continuous Drain current ID, the maximum drain-  
to-source voltage VDS(MAX), the gate-to-source threshold voltage VGS(TH) and the drain-to-source On resistance  
RDSON. The maximum continuous drain current, ID, rating must exceed the maximum continuous load current.  
The rating for the maximum current through the body diode, IS, is typically rated the same as, or slightly higher  
than the drain current, but body diode current only flows for a small period while the MOSFET gate is being  
charged to VGS(TH).The LM74610-Q1 can provide up to 5V VGS to drive the external MOSFET, therefore the VGS  
threshold of the selected MOSFET must be 3V.  
The voltage across the MOSFET's body diode must be higher than 0.48V at low current. The body diode voltage  
for MOFETS typically decreases as the ambient temperature increases. This will increase the source current  
requirement to achieve the minimum body diode drain-to-source voltage for the charge pump to initiate. The  
maximum drain-to-source voltage, VDS(MAX), must be high enough to withstand the highest differential voltage  
seen in the application. This would include any anticipated fault conditions. Although there are no positive VDS  
limitation. However, it is recommended to use MOSFETS with voltage rating up to 45V for automotive  
applications, since the LM74610-Q1 has a reverse voltage limit of -45V. Table 2 shows the examples of  
recommended MOSFETs to be used with the LM74610-Q1.  
8.2.3 Application Curves  
VIN (5 V/DIV)  
VOUT (5 V/DIV)  
VIN (5 V/DIV)  
VOUT (5 V/DIV)  
Gate Drive (5 V/DIV)  
Gate Drive (5 V/DIV)  
Time (50 ms/DIV)  
Time (50 ms/DIV)  
Figure 14. Shutdown Relative to VIN  
Figure 13. Startup Relative to VIN  
VIN (10 V/DIV, 12 V to -20 V)  
VIN (10 V/DIV, 12 V to -20 V, 60 Hz)  
VOUT (10 V/DIV, 12 V to 0 V)  
Gate Drive (10 V/DIV)  
VOUT (10 V/DIV, 12 V to 0 V)  
Gate Drive (10 V/DIV)  
Time (100 µs/DIV)  
Time (10 ms/DIV)  
Figure 15. Response to Revere polarity  
Figure 16. Response to a 60Hz AC Input  
14  
Copyright © 2015, Texas Instruments Incorporated  
LM74610-Q1  
www.ti.com.cn  
ZHCSE83A JULY 2015REVISED OCTOBER 2015  
VIN (10 V/DIV, 12 V to -20 V)  
TVS Clamping at -20 V  
VOUT (5 V/DIV)  
0 V  
Figure 17. ISO Pulse 1 Test Setup  
Time (1 ms/DIV)  
Figure 18. Response to ISO 1 Pulse  
8.2.4 Selection of TVS Diodes in Automotive Reverse Polarity Applications  
TVS diodes can be used in automotive systems for protection against transients. There are 2 types of TVS  
diode, one that offers bi-directional clamping and one that is uni-directional. In the application circuit show in  
Figure 11, 2 unidirectional TVS diodes are used. TVS + does the clamping for positive pulses as seen in load  
dump and TVS- does the clamping for negative pulses such as seen in the ISO specs.  
There are two important specs to be aware of: breakdown voltage and clamping voltage. Breakdown voltage is  
the voltage at which the TVS diode goes into avalanche similar to a zener diode and is specified at a low current  
value typ 1mA. Clamping voltage is the voltage the TVS diode clamps to in high current pulse situations.  
In the case of an ISO 7637-2 pulse 1, the voltages go to -150V with a generator impedance of 10Ω. This  
translates to 15A flowing through the TVS - and the voltage across the TVS would be close to its clamping  
voltage. A rule of thumb with TVS diode voltage selection is that the breakdown voltage should be higher than  
worst case steady state voltages seen in the system. TVS diodes are meant to clamp pulses and not meant for  
steady state voltages.  
The value of the TVS + is selected such that the breakdown voltage of the TVS is higher than 24V which is a  
commonly used battery for jump start. LM74610-Q1 does not have a positive voltage limit so the selection of the  
voltage rating of TVS + is determined by the max voltage tolerated by the downstream electronics. If the  
downstream parts can withstand at least 37V (suppressed load dump) then there is no need to use the TVS+. In  
this case it can be replaced with a diode as seen in Figure 19. A 1A diode with a 30A surge current rating and at  
least 40V reverse voltage rating is recommended. In case positive clamping voltage is desired then  
SMBJ24A/SMBJ26A is recommended for TVS + as seen in Figure 11.  
Anode  
Cathode  
Voltage  
Vout  
Regulator  
TVS-  
Cout  
Vbatt  
LM74610-Q1  
Vcap  
Diode  
Figure 19. Typical Application without Positive Voltage Clamping  
The value of the TVS – is selected such that 2 criteria are met. The breakdown voltage of the TVS should be  
higher than the max reverse battery voltage which is typically 15V. The second criterion is that the abs max  
rating for reverse voltage of the LM74610 is not exceeded (-45V).  
Copyright © 2015, Texas Instruments Incorporated  
15  
 
LM74610-Q1  
ZHCSE83A JULY 2015REVISED OCTOBER 2015  
www.ti.com.cn  
In case of reverse voltage pulses such as in ISO specs, the LM74610 turns the MOSFET off. When the MOSFET  
turns off the voltage seen by the LM74610, Anode to Cathode is - (clamping voltage of TVS- (plus) the output  
capacitor voltage). If the max voltage on output capacitors is 16V, then the clamping voltage of the TVS- should  
not exceed, 45V – 16V = 29V.  
SMBJ14A/SMBJ15A/SMBJ16A TVS diodes can be used for TVS-. The breakdown voltage of SMBJ14A is 15.6V  
and SMBJ16A is 17.8V. This meets criteria one. The clamping voltage of SMBJ14A is 23.2V and SMBJ16A is  
26V. This meets the second criteria.  
Bi-directional TVS diodes are not recommended due to their symmetrical clamping specs. SMBJ24CA has a  
breakdown voltage of 26.7V and a clamping voltage of 38.9V. The breakdown voltage meets the criteria for being  
higher than 24V. However the clamping voltage is 38.9V. The high clamping voltage is not an issue for the  
positive pulses however for a negative ISO pulse, the abs max of the LM74610 can be violated. Voltage across  
Anode to Cathode in this case is –(38.9V + 16V) = -54.9V which violates abs max rating of -45V.  
As far as power levels for TVS diodes the ‘B’ in the SMBJ stands for 600W peak power levels. This is sufficient  
for ISO 7637-2 pulses and suppressed load dump case (ISO-16750-2 pulse B). For unsuppressed load dumps  
(ISO-16750-2 pulse A) higher power TVS diodes such as SMCJ or SMDJ may be required.  
8.2.5 OR-ing Application Configuration  
Basic redundant power architecture comprises of two or more voltage or power supply sources driving a single  
load. In its simplest form, the OR-ing solution for redundant power supplies consists of Schottky OR-ing diodes  
that protect the system against an input power supply fault condition. A diode OR-ing device provides effective  
and low cost solution with few components. However, the diodes forward voltage drops affects the efficiency of  
the system permanently, since each diode in an OR-ing application spends most of its time in forward conduction  
mode. These power losses increase the requirements for thermal management and allocated board space.  
The LM74610-Q1 ICs combined with external N-Channel MOSFETs can be used to in OR-ing Solution as shown  
in Figure 20 . The source to drain voltage VDS for each MOSFET is monitors by the Anode and Cathode pins of  
the LM74610-Q1. The forward conduction is through MOSFETs 98% of the time which avoids the diode forward  
voltage drop. The body diode of each MOSFET only conducts the remaining 2% of the time to allow the charge  
pump capacitor to be fully charged.  
This is essential for an OR-ing device to fast detect the reverse current and instantly pull-down the MOSFET  
gate to block the reverse current flow. An effective OR-ing solution needs to be extremely fast to limit the reverse  
current amount and duration. The LM74610-Q1 devices in OR-ing configuration constantly sense the voltage  
difference between Anode and Cathode pins, which are the voltage levels at the power sources (PS1, PS2) and  
the common load point respectively. When either of the power sources operates at lower voltage, the LM74610-  
Q1 detects a negative polarity and shuts down the Gate Drive through a fast Pull-Down within 2μsec (typical).  
16  
Copyright © 2015, Texas Instruments Incorporated  
LM74610-Q1  
www.ti.com.cn  
ZHCSE83A JULY 2015REVISED OCTOBER 2015  
+
PS1  
Anode  
Gate Drive  
Pull Down  
Cathode  
œ
LM74610-Q1  
CLOAD  
RLOAD  
VCAPH  
VCAP  
L
Vcap  
+
PS2  
Anode  
Gate Drive  
Pull Down  
Cathode  
œ
LM74610-Q1  
VCAPH  
VCAPL  
Vcap  
Figure 20. Typical OR-ing Application  
If one of the power supplies fails in LM74610-Q1 OR-ing controller application, the output remains uninterrupted.  
This behavior is similar to diode OR-ing. Figure 21  
Copyright © 2015, Texas Instruments Incorporated  
17  
LM74610-Q1  
ZHCSE83A JULY 2015REVISED OCTOBER 2015  
www.ti.com.cn  
VOUT (5 V/DIV, 12 V)  
VIN 1 (5 V/DIV, 12 V)  
VIN 2 (5 V/DIV, 12 V to 0 V)  
Time (1 s/DIV)  
Figure 21. LM74610-Q1 OR-ing waveform  
8.2.6 Design Requirements  
NOTE  
Startup voltage is the voltage drop is needed for the controller to turn ON. It directly  
influences the Minimum output current at which the MOSFET turns ON.  
Table 2. Recommended MOSFET Examples(1)  
Voltage Drain  
Vgs  
Threshold(  
V)  
Rdson m@  
Diode voltage @ 2A at  
125C/175C  
Part No  
(V)  
Current at  
Package; Footprint  
Qual  
4.5V  
Current 25C  
CSD17313Q2  
Q1  
30  
5
26  
1.8  
0.65  
SON; 2 x 2  
Auto  
SQJ886EP  
SQ4184EY  
Si4122DY  
40  
40  
40  
40  
40  
60  
29  
5.5  
5.6  
6
2.5  
2.5  
2.5  
2.5  
2.5  
0.5  
0.5  
0.5  
0.6  
0.5  
PowerPAK SO-8L; 5 x 6  
SO-8; 5 x 6  
Auto  
Auto  
Auto  
Auto  
Auto  
23.5  
12  
SO-8; 5 x 6  
RS1G120MN  
RS1G300GN  
20.7  
2.5  
HSOP8; 5 x 6  
HSOP8; 5 x 6  
30  
CSD18501Q5  
A
40  
22  
3.3  
2.3  
0.53  
SON; 5 x 6  
Industrial  
SQD40N06-  
14L  
60  
60  
60  
40  
12  
23  
17  
31  
2.5  
2.5  
2.2  
0.5  
TO-252; 6 x 10  
SO-8; 5 x 6  
SON;5 x 6  
Auto  
SQ4850EY  
0.55  
0.53  
Auto  
CSD18532Q5  
B
3.3  
Industrial  
IPG20N04S4  
L-07A  
40  
60  
40  
20  
45  
50  
7.2  
5.7  
7.3  
2.2  
3.3  
2.2  
0.48  
0.55  
0.50  
PG-TDSON-8-10; 5 x 6  
PG-TO263-3; 10 x 15  
PG-TO252-3-313; 6 x10  
Auto  
Auto  
Auto  
IPB057N06N  
IPD50N04S4  
L
(1) The LM74610-Q1 solution is not limited to the MOSFETs included in this table. It only shows examples of compatible MOSFETs.  
18  
Copyright © 2015, Texas Instruments Incorporated  
LM74610-Q1  
www.ti.com.cn  
Part No  
ZHCSE83A JULY 2015REVISED OCTOBER 2015  
Table 2. Recommended MOSFET Examples(1) (continued)  
Voltage Drain  
Vgs  
Threshold(  
V)  
Rdson m@  
Diode voltage @ 2A at  
125C/175C  
(V)  
Current at  
Package; Footprint  
Qual  
4.5V  
Current 25C  
BUK9Y3R5-  
40E  
LFPAK56; Power-SO8  
(SOT669); 5 x 6  
40  
60  
100  
7
3.8  
30  
2.1  
3
0.48  
0.55  
Auto  
IRF7478PbF-  
1
SO-8; 5 x 6  
Industrial  
SQJ422EP  
IRL1004  
40  
40  
40  
75  
4.3  
6.5  
2.2  
2.5  
1
0.50  
0.60  
0.65  
PowerPAK SO-8L; 5 x 6  
TO-220AB  
Auto  
Auto  
Auto  
130  
112  
AUIRL7736  
3
DirectFET®; 5 x 6  
Table 3. Recommended TVS Combination to meet ISO7637 Specifications (Note 4)  
TVS +  
TVS-  
SMA6T33AY  
SMA6T30AY  
SMA6T28AY  
SMBJ14A/ SMA6T15AY  
SMBJ14A/ SMA6T15AY  
SMBJ14A/ SMA6T15AY  
Copyright © 2015, Texas Instruments Incorporated  
19  
 
LM74610-Q1  
ZHCSE83A JULY 2015REVISED OCTOBER 2015  
www.ti.com.cn  
9 Power Supply Recommendations  
While testing the LM74610-Q1 solution, it is important to use low impedance power supply which allows current  
sinking. If the power supply does not allow current sinking, it would prevent the current flow in the reverse  
direction in the event of reverse polarity. The MOSFET gate won't get pulled down immediately due to the  
absence of reverse current flow.  
20  
Copyright © 2015, Texas Instruments Incorporated  
LM74610-Q1  
www.ti.com.cn  
ZHCSE83A JULY 2015REVISED OCTOBER 2015  
10 Layout  
10.1 Layout Guidelines  
The VIN terminal is recommended to have a low-ESR ceramic bypass-capacitor. The typical recommended  
bypass capacitance is a 10-μF ceramic capacitor with a X5R or X7R dielectric.  
The VIN terminal must be tied to the source of the MOSFET using a thick trace or polygon.  
The Anode pin of the LM74610-Q1 is connected to the Source of the MOSFET for sensing.  
The Cathode pin of the LM74610-Q1 is connected to the drain of the MOSFET for sensing.  
The high current path of for this solution is through the MOSFET, therefor it is important to use thick traces for  
source and drain of the MOSFET.  
The charge pump capacitor Vcap must be kept away from the MOSFET to lower the thermal effects on the  
capacitance value.  
The Gate Drive and Gate pull down pins of the LM74610-Q1 must be connected to the MOSFET gate without  
using vias.  
Obtaining acceptable performance with alternate layout schemes is possible, however this layout has been  
shown to produce good results and is intended as a guideline.  
版权 © 2015, Texas Instruments Incorporated  
21  
LM74610-Q1  
ZHCSE83A JULY 2015REVISED OCTOBER 2015  
www.ti.com.cn  
10.2 Layout Example  
Figure 22. Layout Example  
22  
版权 © 2015, Texas Instruments Incorporated  
LM74610-Q1  
www.ti.com.cn  
ZHCSE83A JULY 2015REVISED OCTOBER 2015  
11 器件和文档支持  
11.1 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.2 商标  
E2E is a trademark of Texas Instruments.  
11.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
23  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2015, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM74610QDGKRQ1  
LM74610QDGKTQ1  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
ZDSK  
ZDSK  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM74610QDGKRQ1  
LM74610QDGKTQ1  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500  
250  
330.0  
178.0  
12.4  
13.4  
5.3  
5.3  
3.4  
3.4  
1.4  
1.4  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM74610QDGKRQ1  
LM74610QDGKTQ1  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500  
250  
366.0  
213.0  
364.0  
191.0  
50.0  
50.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

LM74610QDGKRQ1

0.48V 至 42V、零 IQ 汽车理想二极管控制器 | DGK | 8 | -40 to 125
TI

LM74610QDGKTQ1

0.48V 至 42V、零 IQ 汽车理想二极管控制器 | DGK | 8 | -40 to 125
TI

LM74670-Q1

具有 70uA 栅极驱动器的 0.48V 至 42V、零 IQ 汽车理想二极管整流器控制器
TI

LM74670QDGKRQ1

具有 70uA 栅极驱动器的 0.48V 至 42V、零 IQ 汽车理想二极管整流器控制器 | DGK | 8 | -40 to 125
TI

LM74670QDGKTQ1

具有 70uA 栅极驱动器的 0.48V 至 42V、零 IQ 汽车理想二极管整流器控制器 | DGK | 8 | -40 to 125
TI

LM747

Dual Operational Amplifier
NSC

LM747

双路、44V、1.5MHz 运算放大器
TI

LM747 MD8

Military-grade, dual, 44-V, 1.5-MHz operational amplifier | Y | 0 | -55 to 125
TI

LM747 MWC

双路、44V、1.5MHz 运算放大器 | YS | 0 | -40 to 85
TI

LM74700-EP

增强型低 IQ 理想二极管控制器
TI

LM74700-Q1

3.2V 至 65V、80uA IQ 汽车理想二极管控制器
TI

LM74700-Q1_V01

LM74700-Q1 Low IQ Reverse Battery Protection Ideal Diode Controller
TI