LM74501QDDFRQ1 [TI]

具有集成 VDS 钳位的汽车类 3.2V 至 65V 反极性保护控制器 | DDF | 8 | -40 to 125;
LM74501QDDFRQ1
型号: LM74501QDDFRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成 VDS 钳位的汽车类 3.2V 至 65V 反极性保护控制器 | DDF | 8 | -40 to 125

控制器
文件: 总24页 (文件大小:1833K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM74501-Q1  
ZHCSOA6A JULY 2021 REVISED FEBRUARY 2022  
LM74501-Q1 TVS 汽车电池反向保护控制器  
1 特性  
3 说明  
• 具有符AEC-Q100 标准的下列特性  
LM74501-Q1 与外部 N 沟道 MOSFET 搭配使用可  
实现低损耗反极性保护解决方案。该器件支持 3.2V 至  
65V 的宽电源电压输入范围。3.2V 输入电压支持特别  
适合对冷启动有严苛要求的汽车系统。该器件可以承受  
并保护负载免受低至 -18V 负电源电压的影响。  
LM74501-Q1 没有反向电流阻断功能适用于对有可  
能将能量传输回输入电源的负载如汽车车身控制模块  
电机负载提供输入反极性保护。  
– 器件温度等1:  
40°C +125°C 环境工作温度范围  
– 器HBM ESD 分类等2  
– 器CDM ESD 分类等C4B  
3.2V 65V 输入范围3.9V 启动)  
• –18V 反向电压额定值  
• 适用于外N MOSFET 的电荷泵  
• 栅极放电计时器无需额外TVS 二极管无  
TVS即可符合汽ISO7637-2 1 瞬态要求  
1µA 关断电流EN = 低电平)  
80µA 典型工作静态电流EN = 高电平)  
20V VDS 钳位EN = 低电平)  
• 集成电池电压监控开(SW)  
LM74501-Q1 制器可提供适用于外部 N 道  
MOSFET 的电荷泵栅极驱动器。LM74501-Q1 具有一  
项独特的集成功能即无需额外的 TVS 二极管无  
TVS即可使系统符合汽车 ISO7637 脉冲 1 瞬态要  
求。LM74501-Q1 具有一个集成开关可通过外部电  
阻分压器来实现电池电压监控。With the enable pin  
low, the controller is off and draws only around 1 µA of  
current, thus offering low system current when put into  
sleep mode.  
2.90mm × 1.60mm 8 SOT-23 封装  
2 应用  
车身电子装置和照明  
车身控制模(BCM)  
雨刮器模块  
汽车信息娱乐系统与仪表组  
数字驾驶舱处理单元  
ADAS 域控制器  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
LM74501-Q1  
SOT-23 (8)  
2.90mm × 1.60mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
High Side Switch  
To  
Load  
VBAT  
VOUT  
COUT  
CIN  
CT  
CVCAP  
SOURCE  
VCAP  
GATE  
DRAIN  
LM74501-Q1  
SW  
EN  
R1  
OFF  
ON  
BATT_MON  
GND  
R2  
TVS 条件下ISO7637-2 1 运行  
提供汽车电池反极性保护LM74501-Q1 典型应用原  
理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNOSD87  
 
 
 
 
LM74501-Q1  
ZHCSOA6A JULY 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................14  
9 Application and Implementation..................................15  
9.1 Application Information............................................. 15  
9.2 Typical Application.................................................... 17  
10 Power Supply Recommendations..............................21  
11 Layout...........................................................................21  
11.1 Layout Guidelines................................................... 21  
11.2 Layout Example...................................................... 21  
12 Device and Documentation Support..........................22  
12.1 Device Support....................................................... 22  
12.2 接收文档更新通知................................................... 22  
12.3 支持资源..................................................................22  
12.4 Trademarks.............................................................22  
12.5 Electrostatic Discharge Caution..............................22  
12.6 术语表..................................................................... 22  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................4  
6.4 Thermal Information ...................................................5  
6.5 Electrical Characteristics ............................................5  
6.6 Switching Characteristics ...........................................6  
6.7 Typical Characteristics................................................7  
7 Parameter Measurement Information............................9  
8 Detailed Description......................................................10  
8.1 Overview...................................................................10  
8.2 Functional Block Diagram.........................................10  
8.3 Feature Description...................................................10  
Information.................................................................... 22  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (July 2021) to Revision A (February 2022)  
Page  
• 将状态从“预告信息”更改为“量产数据”....................................................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LM74501-Q1  
 
LM74501-Q1  
ZHCSOA6A JULY 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
8
GATE  
SOURCE  
VCAP  
DRAIN  
1
2
7
6
N.C  
EN  
3
4
GND  
5
SW  
5-1. DDF Package 8-Pin SOT-23 (LM74501-Q1 Top View)  
5-1. LM74501-Q1 Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NO.  
NAME  
1
GATE  
O
I
Gate drive output. Connect to the gate of the external N-channel MOSFET.  
Connect to the source of the external N-channel MOSFET. This pin also acts as the input  
supply for the device.  
2
3
SOURCE  
VCAP  
O
Charge pump output. Connect to an external charge pump capacitor.  
Voltage sensing disconnect switch terminal. SOURCE and SW are internally connected  
through a switch when EN is high. A resistor ladder from this pin to GND can be used to  
monitor battery voltage. When EN is pulled low, the switch is OFF, disconnecting the resistor  
ladder from the battery line, thereby cutting off the leakage current.  
4
SW  
I
5
6
7
8
GND  
EN  
G
I
Ground pin  
Enable pin. Can be connected to SOURCE for always ON operation.  
No connect. Keep this pin floating.  
N.C  
NA  
I
DRAIN  
Connect to the drain of the external N-channel MOSFET.  
(1) I = Input, O = Output, G = GND  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LM74501-Q1  
 
 
LM74501-Q1  
ZHCSOA6A JULY 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
(VCLAMP 1)  
0.3  
MAX  
UNIT  
V
SOURCE to GND  
65  
EN, SW to GND, V(SOURCE) > 0 V  
65  
V
Input pins  
V(SOURCE)  
V(SOURCE)  
1  
65 + V(SOURCE)  
V
EN to GND, V(SOURCE) 0 V  
SW to GND, V(SOURCE) 0 V  
ISW  
0.3 + V(SOURCE)  
V
10  
15  
mA  
V
GATE to SOURCE  
VCAP to SOURCE  
DRAIN to SOURCE  
0.3  
Output pins  
Output pins  
15  
V
0.3  
VCLAMP  
150  
V
5  
Operating junction temperature(2)  
Storage temperature, Tstg  
°C  
°C  
40  
150  
40  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
HBM ESD classification level 2  
±2000  
V(ESD)  
Electrostatic discharge  
Corner pins (GATE,  
SW, GND, DRAIN)  
V
±750  
±500  
Charged device model (CDM), per AEC Q100-011  
CDM ESD classification level C4B  
Other pins  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
18  
18  
NOM  
MAX  
60  
60  
60  
5
UNIT  
SOURCE to GND  
EN to GND  
Input pins  
V
Input pins  
DRAIN to GND  
SOURCE to DRAIN  
SOURCE  
V
V
Input to output pins  
VCLAMP  
0.1  
µF  
µF  
External capacitance  
VCAP to SOURCE  
0.1  
External MOSFET maximum  
VGS rating  
GATE to SOURCE  
15  
V
TJ  
Operating junction temperature range(2)  
150  
°C  
40  
(1) Recommended Operating Conditions are conditions under which the device is intended to be functional. For specifications and test  
conditions, see Electrical Characteristics.  
(2) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LM74501-Q1  
 
 
 
 
 
 
 
 
 
LM74501-Q1  
ZHCSOA6A JULY 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
6.4 Thermal Information  
DDF (SOT)  
UNIT  
8 PINS  
THERMAL METRIC(1)  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
133.8  
72.6  
54.5  
4.6  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
54.2  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
TJ = 40°C to +125°C; typical values at TJ = 25°C, V(SOURCE) = 12 V, CIN = C(VCAP) = COUT = 0.1 µF, V(EN) = 3.3 V, over  
operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VSOURCE SUPPLY VOLTAGE  
VCLAMP  
VDS clamp voltage  
V(EN) = 0 V  
19  
4
24  
60  
V
V
V(SOURCE)  
Operating input voltage  
VSOURCE POR rising threshold  
VSOURCE POR falling threshold  
3.9  
V
V(SOURCE POR)  
2.2  
2.8  
3.1  
V
V(SOURCE POR(Hys)) VSOURCE POR hysteresis  
0.44  
0.67  
1.5  
V
I(SHDN)  
Shutdown supply current  
V(EN) = 0 V  
0.9  
80  
µA  
µA  
I(Q)  
Operating quiescent current  
130  
ENABLE INPUT  
V(EN_IL)  
Enable input low threshold  
Enable input high threshold  
Enable hysteresis  
0.5  
1.06  
0.52  
0.9  
2
1.22  
2.6  
1.35  
5
V
V(EN_IH)  
V(EN_Hys)  
I(EN)  
V
Enable sink current  
V(EN) = 12 V  
3
µA  
GATE DRIVE  
Enable (low to high)  
I(GATE)  
Peak source current  
3
11  
30  
mA  
V
(GATE) V(SOURCE) = 5 V  
V(EN) = 0 V,  
(GATE) V(SOURCE) = 100 mV  
RDSON  
discharge switch RDSON  
24  
36  
46  
kΩ  
V
SW  
Battery sensing disconnect switch  
resistance  
R(SW)  
10  
19.5  
4 V < V(SOURCE) 60 V  
CHARGE PUMP  
Charge pump source current (charge  
pump on)  
162  
300  
5
600  
10  
µA  
µA  
V
V
V
(VCAP) VSOURCE = 7 V  
(VCAP) VSOURCE = 14 V  
I(VCAP)  
Charge pump sink current (charge  
pump off)  
Charge pump voltage at V(SOURCE)  
3.2 V  
=
8
I
(VCAP) 30 µA  
Charge pump turn-on voltage  
Charge pump turn-off voltage  
10.3  
11  
11.6  
12.4  
13  
V
V
V(VCAP)  
V(SOURCE)  
13.9  
Charge pump enable comparator  
hysteresis  
0.4  
0.8  
1.2  
V
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LM74501-Q1  
 
 
 
 
LM74501-Q1  
ZHCSOA6A JULY 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to +125°C; typical values at TJ = 25°C, V(SOURCE) = 12 V, CIN = C(VCAP) = COUT = 0.1 µF, V(EN) = 3.3 V, over  
operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
V
(VCAP) V(SOURCE) UV release at  
VSOURCE VDRAIN = 100 mV  
5.7  
6.5  
7.5  
6.2  
V
V
rising edge  
V(VCAP UVLO)  
V
(VCAP) V(SOURCE) UV threshold at  
VSOURCE VDRAIN = 100 mV  
5.05  
5.4  
falling edge  
DRAIN  
V(SOURCE) = V(EN) = 14 V, V(DRAIN)  
0 V  
=
I(DRAIN)  
DRAIN sink current  
4
µA  
6.6 Switching Characteristics  
TJ = 40°C to +125°C; typical values at TJ = 25°C, V(SOURCE) = 12 V, CIN = C(VCAP) = COUT = 0.1 µF, V(EN) = 3.3 V, over  
operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
110 µs  
Enable (low to high) to gate turn-on  
delay  
ENTDLY  
V(VCAP) > V(VCAP UVLOR)  
75  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LM74501-Q1  
 
LM74501-Q1  
ZHCSOA6A JULY 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
6.7 Typical Characteristics  
3.9  
3.6  
3.3  
3
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
–40C  
25C  
85C  
125C  
150C  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
–40C  
25C  
85C  
125C  
150C  
0
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
VSOURCE (V)  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
VSOURCE (V)  
6-2. Operating Quiescent Current vs Supply Voltage  
6-1. Shutdown Supply Current vs Supply Voltage  
325  
300  
275  
250  
225  
500  
–40C  
25C  
450  
400  
350  
300  
250  
200  
150  
100  
85C  
125C  
150C  
200  
175  
150  
125  
100  
75  
–40C  
25C  
85C  
125C  
150C  
3
4
5
6
7
8
9
10  
11  
12  
0
2
4
6
8
10  
12  
VSOURCE (V)  
VCAP (V)  
6-3. Charge Pump Current vs Supply Voltage at VCAP = 6 V  
6-4. Charge Pump V-I Characteristics at VSOURCE > = 12 V  
225  
2.5  
–40C  
EN Rising Threshold  
EN Falling Threshold  
200  
25C  
85C  
2
1.5  
1
175  
125C  
150C  
150  
125  
100  
75  
50  
25  
0
0.5  
0
-40  
0
40  
80  
120  
160  
0
1
2
3
4
5
6
7
8
9
Free-Air Temperature (C)  
VCAP (V)  
6-6. Enable Threshold vs Temperature  
6-5. Charge Pump V-I Characteristics at VSOURCE = 3.2 V  
90  
13.5  
13.2  
12.9  
12.6  
12.3  
12  
VCAP ON  
VCAP OFF  
80  
70  
60  
50  
40  
11.7  
11.4  
-40  
0
40  
80  
120  
160  
-40  
0
40  
80  
120  
160  
Free-Air Temperature (C)  
Free-Air Temperature (C)  
6-8. Charge Pump ON/OFF Threshold vs Temperature  
6-7. Enable to Gate Turn On Delay vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LM74501-Q1  
 
LM74501-Q1  
ZHCSOA6A JULY 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
3.1  
3
VSOURCE PORR  
VSOURCE PORF  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Free-Air Temperature (C)  
6-10. VSOURCE POR Threshold vs Temperature  
6-9. Charge Pump UVLO Threshold vs Temperature  
24.8  
31  
24  
23.2  
22.4  
21.6  
20.8  
20  
30  
29  
28  
27  
26  
-40  
0
40  
80  
120  
160  
-40  
0
40  
80  
120  
160  
Free-Air Temperature (C)  
Free-Air Temperature (C)  
6-11. VDSCLAMP Threshold vs Temperature  
6-12. Gate Discharge Resistor vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LM74501-Q1  
LM74501-Q1  
ZHCSOA6A JULY 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
3.3 V  
VEN  
0 V  
VGATE  
90%  
VGATE – VSOURCE  
0 V  
tENTDLY  
t
7-1. Timing Waveforms  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LM74501-Q1  
 
LM74501-Q1  
ZHCSOA6A JULY 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The LM74501-Q1 controller has all the features necessary to implement an efficient and fast reverse polarity  
protection circuit. This easy-to-use reverse polarity protection controller is paired with an external N-channel  
MOSFET to replace other reverse polarity protection schemes such as a P-channel MOSFET. An internal charge  
pump is used to drive the external N-Channel MOSFET with a typical gate drive voltage of 12 V. The Gate  
Discharge Timer feature of the device enables meeting automotive ISO7637 pulse 1 transient requirements  
without an additional TVS Diode (TVS less) under certain load conditions. The LM74501-Q1 has integrated  
switch (SW), which enables input battery voltage monitoring by connecting an external resistor divider from the  
SW pin to GND. An enable pin, EN, is available to place the LM74501-Q1 in shutdown mode, disabling the N-  
Channel MOSFET and minimizing the quiescent current.  
8.2 Functional Block Diagram  
VOUT  
VBATT  
DRAIN  
GATE  
SOURCE  
VCAP  
CP  
VCAP  
VS  
SW  
Internal  
Rails  
EN  
VCAP_UV  
R1  
R2  
Gate Driver and  
Gate Discharge  
Timer Control  
BATT_MON  
VCAP  
VS  
Charge  
Pump  
Enable  
Logic  
VDS Clamp  
+
EN  
EN  
VS  
2 V  
0.9 V  
VS  
Reverse  
Protection Logic  
LM74501-Q1  
GND  
8.3 Feature Description  
8.3.1 Input Voltage  
The SOURCE pin is used to power the internal circuitry of the LM74501-Q1, typically drawing 80 µA when  
enabled and 1 µA when disabled. If the SOURCE pin voltage is greater than the POR rising threshold, the  
LM74501-Q1 operates in either shutdown mode or conduction mode in accordance with the EN pin voltage. The  
LM74501-Q1 can withstand input reverse voltage up to 18 V.  
8.3.2 Charge Pump  
The charge pump supplies the voltage necessary to drive the external N-channel MOSFET. An external charge  
pump capacitor is placed between VCAP and SOURCE pins to provide energy to turn on the external MOSFET.  
In order for the charge pump to supply current to the external capacitor, the EN pin voltage must be above the  
specified input high threshold, V(EN_IH). When enabled, the charge pump sources a charging current of 300 µA  
(typical). If EN pins is pulled low, then the charge pump remains disabled. To ensure that the external MOSFET  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LM74501-Q1  
 
 
 
 
 
LM74501-Q1  
ZHCSOA6A JULY 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
can be driven above its specified threshold voltage, the VCAP-to-SOURCE voltage must be above the  
undervoltage lockout threshold, typically 6.5 V, before the internal gate driver is enabled. Use 方程式 1 to  
calculate the initial gate driver enable delay.  
T
(DRV_EN) = 75 µs + C(VCAP) × V(VCAP_UVLOR)  
300 µA  
(1)  
where  
C(VCAP) is the charge pump capacitance connected across SOURCE and VCAP pins.  
V(VCAP_UVLOR) is 6.5 V (typical).  
To remove any chatter on the gate drive, approximately 800 mV of hysteresis is added to the VCAP  
undervoltage lockout. The charge pump remains enabled until the VCAP-to-SOURCE voltage reaches 12.4 V  
(typical), at which point the charge pump is disabled decreasing the current draw on the SOURCE pin. The  
charge pump remains disabled until the VCAP-to-SOURCE voltage is below to 11.6 V (typical), at which point  
the charge pump is enabled. The voltage between VCAP and SOURCE continues to charge and discharge  
between 11.6 V and 12.4 V as shown in 8-1. By enabling and disabling the charge pump, the operating  
quiescent current of the LM74501-Q1 is reduced. When the charge pump is disabled, it sinks 5 µA (typical).  
TDRV_EN  
TON  
TOFF  
VIN  
VSOURCE  
0 V  
VEN  
12.4 V  
11.6 V  
VCAP-VSOURCE  
6.5 V  
V(VCAP UVLOR)  
GATE DRIVER  
ENABLE  
8-1. Charge Pump Operation  
8.3.3 Enable  
The LM74501-Q1 has an enable pin, EN. The enable pin allows for the gate driver to be either enabled or  
disabled by an external signal. If the EN pin voltage is greater than the rising threshold, the gate driver and  
charge pump operates as described in Gate Driver and Charge Pump sections. If the enable pin voltage is less  
than the input low threshold, the charge pump and gate driver are disabled placing the LM74501-Q1 in shutdown  
mode. The EN pin can withstand a voltage as large as 65 V and as low as 18 V. This feature allows for the EN  
pin to be connected directly to the SOURCE pin if enable functionality is not needed. In conditions where EN is  
left floating, the internal sink current of 1 μA pulls the EN pin low and disables the device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LM74501-Q1  
 
 
LM74501-Q1  
ZHCSOA6A JULY 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
8.3.4 Gate Driver  
The gate driver is used to control the external N-Channel MOSFET by setting the appropriate GATE-to-SOURCE  
voltage.  
Before the gate driver is enabled, the following three conditions must be achieved:  
The EN pin voltage must be greater than the specified input high voltage.  
The VCAP to SOURCE voltage must be greater than the undervoltage lockout voltage.  
The SOURCE voltage must be greater than the VSOURCE POR rising threshold.  
If the above conditions are not achieved, then the GATE pin is internally connected to the SOURCE pin, assuring  
that the external MOSFET is disabled. After these conditions are achieved, the gate driver operates in the full  
conduction mode.  
8.3.5 SW (Battery Voltage Monitoring)  
The LM74501-Q1 has an SW pin to enable battery voltage monitoring in automotive systems. When the device  
is enabled, an internal switch connects the SW pin to SOURCE. This connection enables monitoring battery  
voltage using an external resistor divider connected from SW pin to GND. When LM74501-Q1 is put in shutdown  
mode by pulling down the EN pin to ground, an internal switch between SW and SOURCE pin is disconnected.  
This disconnection ensures there is no quiescent current drawn by the resistor ladder when system is put into  
low power shutdown mode. When not used, the SW pin can be left floating.  
VBAT  
SOURCE  
SW  
EN  
R1  
BATT_MON  
R2  
8-2. LM74501-Q1 SW Functionality  
8.3.6 Gate Discharge Timer  
The LM74501-Q1 has a unique gate discharge timer feature, which enables TVS less reverse polarity protection  
solution in case of ISO7637-2 pulse 1 event. An additional capacitor (CT) across external N-FET's GATE to  
SOURCE terminal keeps external N-FET on for specific time window even when input voltage falls below VPORF  
threshold of SOURCE pin or when the EN pin is pulled low. This gate discharge feature allows reverse current  
back to input source by keeping external MOSFET on for extended time duration set by gate discharge timer  
capacitor (CT) and enables automotive systems to meet TVS less ISO 7637-2 pulse 1 operation. Use 方程2 to  
calculate the typical gate discharge time.  
tD = [RD × (CT + Ciss) × ln (VT / VGATE)]  
(2)  
Where  
RD is the LM74501-Q1 internal GATE discharge resistor (typically 30 kΩ).  
Ciss is the external MOSFET input capacitance.  
CT is the timer capacitor connected between GATE and SOURCE of an external MOSFET.  
VT is the gate-to-source threshold voltage of an external MOSFET.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LM74501-Q1  
 
 
 
LM74501-Q1  
ZHCSOA6A JULY 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
VGATE is the nominal GATE pin voltage of LM74501-Q1 (12.4-V typical).  
External FET remains ON  
during ISO7637-2 pulse 1  
ISO7637-2 pulse 1  
VOUT  
VF  
+
13.5 V  
VIN  
VIN  
0 V  
CT  
CIN  
COUT  
–VISO  
H-Bridge  
driving motor load  
SOURCE  
GATE  
DRAIN  
VCAP  
SW  
13.5 V  
VOUT  
VF  
+
0 V  
LM74501-Q1  
GND  
–(2 × VF)  
EN  
R1  
R2  
OFF  
ON  
BATT_MON  
High Side Switch  
Induc ve  
Load  
Current direction during ISO7637-2 pulse 1  
Transient event  
8-3. Typical Application Scenario During ISO7637-2 Pulse 1 Events  
8-3 shows equivalent the LM74501-Q1 circuit operation during an ISO7637-2 pulse 1 event. Note that reverse  
current flows back to the input source from output loads such as a high-side switch followed by schottky diode or  
MOSFET H-bridge driving motor load. Thus, to achieve TVS less operation during ISO7637-2 pulse 1 events,  
output loads must be capable of withstanding the peak reverse current during ISO7637-2 pulse 1 event.  
8-4 shows the TVS-less ISO7637-2 pulse 1 performance of the LM74501-Q1 with output loads capable of  
handling reverse current during an ISO7637-2 pulse 1 event, similar to loads configuration shown in 8-4.  
8-4. TVS Less Operation During ISO7637-2 Pulse 1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LM74501-Q1  
 
 
LM74501-Q1  
ZHCSOA6A JULY 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
The other short duration transient events such as ISO7637-2 pulse 2A, 3A, or 3B usually get filtered out by input  
and output capacitors and do not affect the system performance.  
For the loads that cannot handle peak reverse current during an ISO 7637-2 pulse 1 transient event but can  
handle negative voltage for a short duration, a schottky diode capable of handling peak reverse current can be  
placed from output to ground to clamp the output voltage to negative forward voltage drop of the Schottky diode  
(VF).  
8.4 Device Functional Modes  
8.4.1 Shutdown Mode  
The LM74501-Q1 enters shutdown mode when the EN pin voltage is below the specified input low threshold  
V(EN_IL). Both the gate driver and the charge pump are disabled in shutdown mode. During shutdown mode, the  
LM74501-Q1 enters low IQ operation with the SOURCE pin only sinking 1 µA. When the LM74501-Q1 is in  
shutdown mode, forward current flowing through the external MOSFET is not interrupted but is conducted  
through the body diode of the MOSFET.  
8.4.2 Full Conduction Mode  
For the LM74501-Q1 to operate in full conduction mode the gate driver must be enabled as described in the  
Gate Driver section. If these conditions are achieved, the GATE pin is internally connected to the VCAP pin,  
resulting in the GATE to SOURCE voltage being approximately the same as the VCAP to SOURCE voltage. By  
connecting VCAP to GATE, the external MOSFET is fully enhanced reducing the power loss of the external  
MOSFET.  
8.4.3 VDS Clamp  
The LM74501-Q1 has an integrated VDS clamp feature that turns on an external MOSFET whenever voltage  
difference between DRIAN and SOURCE exceeds VDS clamp threshold (20 V typical) when enable pin is pulled  
low. This use case scenario is specially true when the LM74501-Q1 is used to drive inductive loads and  
overshoot can happen at the DRAIN pin due to regenerative action of the motor load. Also, if the gate discharge  
timer designed to keep external MOSFET on during an ISO7637-2 pulse 1 event expires within stipulated time  
window due to component level tolerances, the LM74501-Q1 VDS clamp feature provides second level of  
protection to keep maximum voltage across FET to 20 V.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LM74501-Q1  
 
LM74501-Q1  
ZHCSOA6A JULY 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The LM74501-Q1 is used with an N-Channel MOSFET controller in a typical reverse polarity protection  
application. The schematic for the 12-V battery protection application is shown in 9-2 where the LM74501-Q1  
is used to drive a MOSFET Q1 in series with a battery. The LM74501-Q1 enables TVS-less operation with its  
integrated gate discharge timer feature.  
9.1.1 Reverse Battery Protection  
P-FET based reverse polarity protection is a very commonly used scheme in automotive applications to achieve  
low insertion loss protection solution. A low loss reverse polarity protection solution can be realized using the  
LM74501-Q1 with an external N-FET to replace P-FET based solution. The LM74501-Q1-based reverse polarity  
protection solution offers input TVS-less performance during ISO7637-2 pulse 1 event, better cold crank  
performance (low VIN operation) and smaller solution size compared to P-FET based solution. 9-1 compares  
the performance benefits of LM74501-Q1 + N-FET over a traditional P-FET based reverse polarity protection  
solution.  
As shown in 9-1, a given power level LM74501-Q1 + N-FET solution can be 50% smaller than a similar  
power rated P-FET solution.  
The second advantage that the LM74501-Q1 offers over a traditional P-FET is TVS-less operation for the  
body control module load driving paths where reverse current blocking is not a must-have feature and output  
loads are capable of handling negative voltage and reverse current for a short duration of the time.  
As PFET is self biased by simply pulling its gate pin low, P-FET shows poorer cold crank performance (low  
VIN operation) compared to the LM74501-Q1. During severe cold crank where battery voltage falls below 4 V,  
P-FET series resistance increases drastically as shown in 9-1. This increase leads to higher voltage drop  
across the PFET. Also, with a higher gate-to-source threshold (VT), this can sometimes lead to system reset  
due to turning off of the P-FET. On the other side, the LM74501-Q1 has excellent severe cold crank  
performance. The LM74501-Q1 keeps the external FET completely enhanced even when input voltage falls  
to 3.2 V during severe cold crank operation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LM74501-Q1  
 
 
LM74501-Q1  
ZHCSOA6A JULY 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
Parameter  
P-channel MOSFET  
LM74501-Q1 + N-channel MOSFET  
Q1  
CT  
VOUT  
COUT  
VBATT  
CIN  
Q1  
VOUT  
COUT  
VBATT  
Typical Application  
Diagram  
CIN  
TVS  
D1  
SOURCE  
VCAP  
DRAIN  
EN  
GATE  
D2  
CVCAP  
LM74501-Q1  
GND  
R1  
SW  
LM74501 + NFET (Q1) +  
CCVCAP + CT  
PFET (Q1) +TVS (D1) +  
Zener (D2) + Resistor  
(R1)  
Solution Size  
(Load current > 6 A)  
6.3 mm × 8 mm  
(50.4 mm2)  
12.3 mm × 8.5 mm  
(104.5 mm2)  
TVS Less solution with  
50% reduction in size  
Low VIN / Cold-Crank  
Performance  
Better cold crank performance compared to  
PFET based solution. External N-FET  
remains fully enhanced even if input voltage  
falls to 3.2 V.  
VT  
9-1. PFET vs LM74501-Q1 Reverse Polarity Protection Solution Comparison  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LM74501-Q1  
 
LM74501-Q1  
ZHCSOA6A JULY 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.2 Typical Application  
High Side Switch  
VBAT  
VOUT  
To  
Load  
COUT  
47 µF  
CIN  
CT  
0.1 µF  
CVCAP  
22 nF  
220 nF  
SOURCE  
GATE  
DRAIN  
VCAP  
SW  
LM74501-Q1  
GND  
R1  
91 k  
EN  
OFF  
ON  
BATT_MON  
R2  
9.1 kΩ  
9-2. Typical Application Circuit  
9.2.1 Design Requirements  
A design example, with system design parameters, is presented in 9-1.  
9-1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
12-V battery, 12-V nominal with 3.2-V cold crank, and 35-V load  
dump  
Input voltage range  
Output voltage  
Output current range  
Output capacitance  
3.2-V during cold crank to 35-V load dump  
3-A nominal, 5-A maximum  
47-µF typical holdup capacitance  
ISO 7637-2 and ISO 16750-2  
Automotive EMC compliance  
9.2.2 Detailed Design Procedure  
9.2.2.1 Design Considerations  
Input operating voltage range, including cold crank and load dump conditions  
Nominal load current and maximum load current  
9.2.2.2 MOSFET Selection  
The important MOSFET electrical parameters are the maximum continuous drain current, ID, the maximum  
drain-to-source voltage, VDS(MAX), the maximum source current through body diode, and the drain-to-source on  
resistance, RDSON  
.
The maximum continuous drain current, ID, rating must exceed the maximum continuous load current. The  
maximum drain-to-source voltage, VDS(MAX), must be high enough to withstand the highest differential voltage  
seen in the application. This would include any anticipated fault conditions. As the LM74501-Q1 has an  
integrated VDS clamp control with threshold of 20 V (typical), MOSFETs with voltage rating of 40 V can be used  
with the LM74501-Q1. The maximum GATE pin voltage of the LM74501-Q1 can drive is 13.9 V, so a MOSFET  
with 15-V minimum VGS must be selected. If a MOSFET with < 15-V VGS rating is selected, a Zener diode can  
be used to clamp VGS to safe level. During start-up, inrush current flows through the body diode to charge the  
bulk holdup capacitors at the output. The maximum source current through the body diode must be higher than  
the inrush current that can be seen in the application.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LM74501-Q1  
 
 
 
LM74501-Q1  
ZHCSOA6A JULY 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
To reduce the MOSFET conduction losses, the lowest possible RDS(ON) is preferred. Selecting a MOSFET with  
forward voltage drop of < 50 mV is a good starting point and gives good trade off between power dissipation and  
cost.  
The BUK7Y3R0-40H MOSFET is selected to meet this 12-V reverse battery protection design requirements and  
it is rated at:  
40-V VDS(MAX) and ±20-V VGS(MAX)  
RDS(ON) 2.55 mΩ(typical) and 3-mΩmaximum rated at 10-V VGS  
Thermal resistance of the MOSFET must be considered against the expected maximum power dissipation in the  
MOSFET to ensure that the junction temperature (TJ) is well controlled.  
9.2.2.3 Gate Discharge Timer Capacitor Selection (CT)  
A gate discharge timer decides the time duration for which external MOSFET is kept on after the LM74501-Q1  
fall below its PoR threshold (VPORF) or when EN pin is pulled low. A ISO7637-2 pulse 1 transient lasts for  
typically 2 ms. At the end of 2-ms ISO7637-2 pulse 1, amplitude has already fallen to 10% of its peak value.  
Assuming a ISO7637-2 pulse 1 transient with amplitude of 150 V, at the end of 2 ms, the voltage seen by the  
LM74501-Q1 is around 15 V. With a VDS rating of external MOSFET of 40 V, the gate discharge timer  
capacitor, CT, can be selected such that external FET remains on for less than 2 ms. A CT timer capacitor value  
of 22 nF is selected for the given MOSFET as per Equation 2.  
9.2.2.4 Charge Pump VCAP, Input and Output Capacitance  
Minimum required capacitance for charge pump VCAP and input and output capacitance are:  
VCAP: minimum recommended value of VCAP (µF) 10 × (CISS(MOSFET) + CT) µF  
CIN: minimum 100 nF of input capacitance  
COUT: typical 10 µF to 47 µF of output capacitance  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LM74501-Q1  
LM74501-Q1  
ZHCSOA6A JULY 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.2.3 Application Curves  
9-3. ISO 7637-2 Pulse 1  
Time (1 ms/DIV)  
9-4. Response to ISO 7637-2 Pulse 1  
Time (120 ms/DIV)  
Time (40 μs/DIV)  
9-6. Response to ISO7637-2 Pulse 2B  
9-5. Response to ISO7637-2 Pulse 2A  
Time (10 ms/DIV)  
Time (40 ms/DIV)  
9-8. Start-up with No Load  
9-7. Response to ISO16750-2 Pulse 5B  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LM74501-Q1  
LM74501-Q1  
ZHCSOA6A JULY 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
Time (20 ms/DIV)  
Time (10 ms/DIV)  
9-10. Input Reverse Polarity Hot Plug  
9-9. Start-up with 5-A Load  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LM74501-Q1  
LM74501-Q1  
ZHCSOA6A JULY 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
The LM74501-Q1 controller is designed for the supply voltage range of 3.2 V VSOURCE 65 V. If the input  
supply is located more than a few inches from the device, TI recommends an input ceramic bypass capacitor  
higher than 100 nF placed close to SOURCE pin to GND. To prevent Lthe M74501-Q1 and surrounding  
components from damage under the conditions of a direct output short circuit, use a power supply having  
overload and short-circuit protection.  
11 Layout  
11.1 Layout Guidelines  
Connect SOURCE, GATE, and DRAIN pins of LM74501-Q1 close to the MOSFET's SOURCE, GATE, and  
DRAIN pins.  
Use thick traces for source and drain of the MOSFET to minimize resistive losses because the high current  
path of for this solution is through the MOSFET.  
Place the input capacitor close to the SOURCE pin to Ground (GND) to minimize long ground loop.  
Keep the charge pump capacitor across VCAP and SOURCE pins away from the MOSFET to lower the  
thermal effects on the capacitance value.  
Avoid excessively thin and long trace for the gate pin connection. The Gate pin of the LM74501-Q1 must be  
connected to the MOSFET gate with short trace.  
Use of series gate resistor (typical 10 Ω) can help with better EMI performance.  
11.2 Layout Example  
Power Via  
Top layer  
S
S
S
VOUT  
G
VIN  
CT  
8
7
6
DRAIN  
N.C  
GATE  
1
2
SOURCE  
CVCAP  
3
4
EN  
VCAP  
SW  
COUT  
CIN  
GND  
5
BATT_MON  
R1  
R2  
GND PLANE  
11-1. LM74501-Q1 Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LM74501-Q1  
 
 
 
 
LM74501-Q1  
ZHCSOA6A JULY 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LM74501-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM74501QDDFRQ1  
ACTIVE SOT-23-THIN  
DDF  
8
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
L7501  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LM74502

具有负载断开和高栅极驱动功能的 3.2V 至 65V 工业 RPP 控制器
TI

LM74502-Q1

汽车类反极性保护控制器,过压保护,栅极驱动强度 60μA
TI

LM74502DDFR

具有负载断开和高栅极驱动功能的 3.2V 至 65V 工业 RPP 控制器 | DDF | 8 | -40 to 125
TI

LM74502H

具有负载断开、OVP 和高栅极驱动功能的 3.2V 至 65V 工业 RPP 控制器
TI

LM74502H-Q1

汽车类反极性保护控制器,过压保护,栅极驱动强度 11mA
TI

LM74502HDDFR

具有负载断开、OVP 和高栅极驱动功能的 3.2V 至 65V 工业 RPP 控制器 | DDF | 8 | -40 to 125
TI

LM74502HQDDFRQ1

汽车类反极性保护控制器,过压保护,栅极驱动强度 11mA | DDF | 8 | -40 to 125
TI

LM74502QDDFRQ1

汽车类反极性保护控制器,过压保护,栅极驱动强度 60μA | DDF | 8 | -40 to 125
TI

LM74610-Q1

0.48V 至 42V、零 IQ 汽车理想二极管控制器
TI

LM74610QDGKRQ1

0.48V 至 42V、零 IQ 汽车理想二极管控制器 | DGK | 8 | -40 to 125
TI

LM74610QDGKTQ1

0.48V 至 42V、零 IQ 汽车理想二极管控制器 | DGK | 8 | -40 to 125
TI

LM74670-Q1

具有 70uA 栅极驱动器的 0.48V 至 42V、零 IQ 汽车理想二极管整流器控制器
TI