LM74502HDDFR [TI]

具有负载断开、OVP 和高栅极驱动功能的 3.2V 至 65V 工业 RPP 控制器 | DDF | 8 | -40 to 125;
LM74502HDDFR
型号: LM74502HDDFR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有负载断开、OVP 和高栅极驱动功能的 3.2V 至 65V 工业 RPP 控制器 | DDF | 8 | -40 to 125

栅极驱动 控制器
文件: 总30页 (文件大小:2000K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM74502, LM74502H  
ZHCSO25A DECEMBER 2021 REVISED MAY 2022  
LM74502LM74502H 具有反极性保护和过压保护功能的IQ 高侧开关控制器  
1 特性  
3 说明  
3.2V 65V 输入范围3.9V 启动)  
-65V 输入反向电压额定值  
• 集成电荷泵用于驱动  
LM74502/LM74502H 控制器与外部背对背连接N 沟  
MOSFET 配合工作可实现低损耗反极性保护和负  
载断开的解决方案。该器件也可以配置为具有过压保护  
功能的负载开关用于驱动高侧 MOSFET3.2V 至  
65V 的宽电源输入范围可实现对众多常用直流总线电  
例如12V24V 48V 输入系统的控制。该  
器件可以承受并保护负载免受低至 -65V 的负电源电压  
的影响。LM74502/LM74502H 有反向电流阻断功  
仅适用于进行输入反极性保护。  
– 外部背对N MOSFET  
– 外部高侧开MOSFET  
– 外部反极性保MOSFET  
• 栅极驱动器型号  
LM7450260μA 峰值栅极驱动拉电流能力  
LM74502H11mA 峰值栅极驱动拉电流能力  
2.3A 峰值栅极灌电流能力  
LM74502 控制器为外部 N 沟道 MOSFET 提供电荷泵  
栅极驱动。当使能引脚处于低电平时控制器关闭消  
耗大约 1µA 的电流从而在进入睡眠模式时提供低系  
统电流。LM74502 LM74502H 还具有可编程的过压  
和欠压保护功能可在发生故障时将负载从输入源切  
断。这些器件采用 2.9mm × 1.6mm 8 引脚 DDF 封  
额定工作温度范围40°C +125°C。  
• 使能引脚特性  
45µA 典型工作静态电流EN/UVLO = 高电平)  
1µA 关断电流EN/UVLO = 低电平)  
• 可调节过压和欠压保护  
• –40°C +125°C 环境工作温度范围  
• 采8 SOT-23 2.90mm × 1.60mm  
器件信息(1)  
2 应用  
封装尺寸标称值)  
器件型号  
LM74502  
LM74502H  
封装  
工厂自动化和控PLC 数字输出模块  
工业电机驱动  
工业运输  
SOT-23 (8)  
2.90mm × 1.60mm  
• 电源反极性保护  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
Q1  
VIN  
CIN  
VOUT  
VIN  
VOUT  
COUT  
CIN  
COUT  
SRC  
GATE  
VS  
VS  
GATE  
SRC  
CVCAP  
CVCAP  
R1  
R1  
VCAP  
OV  
LM74502  
VCAP  
OV  
LM74502  
EN / UVLO  
OFF  
EN/UVLO  
ON  
R2  
OFF  
ON  
R2  
GND  
GND  
LM74502 具有过压保护功能的负载开关控制器  
LM74502 典型应用原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNOSDE5  
 
 
 
 
LM74502, LM74502H  
ZHCSO25A DECEMBER 2021 REVISED MAY 2022  
www.ti.com.cn  
Table of Contents  
9 Application and Implementation..................................14  
9.1 Application Information............................................. 14  
9.2 Typical Application.................................................... 14  
9.3 Input Surge Stopper Using LM74502, LM74502H....17  
9.4 Fast Turn-On and Turn-Off High Side Switch  
Driver Using LM74502H..............................................18  
10 Power Supply Recommendations..............................19  
11 Layout...........................................................................20  
11.1 Layout Guidelines................................................... 20  
11.2 Layout Example...................................................... 20  
12 Device and Documentation Support..........................21  
12.1 接收文档更新通知................................................... 21  
12.2 支持资源..................................................................21  
12.3 Trademarks.............................................................21  
12.4 Electrostatic Discharge Caution..............................21  
12.5 术语表..................................................................... 21  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Switching Characteristics............................................6  
6.7 Typical Characteristics................................................7  
7 Parameter Measurement Information............................9  
8 Detailed Description......................................................10  
8.1 Overview...................................................................10  
8.2 Functional Block Diagram.........................................10  
8.3 Feature Description...................................................10  
8.4 Device Functional Modes..........................................13  
Information.................................................................... 22  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (December 2021) to Revision A (May 2022)  
Page  
• 通篇删除LM74502H 的产品预览说明.............................................................................................................1  
• 已更新文档标题...................................................................................................................................................1  
Added LM74502H to the Pin Configuration and Functions section.................................................................... 3  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LM74502 LM74502H  
 
LM74502, LM74502H  
ZHCSO25A DECEMBER 2021 REVISED MAY 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
EN/UVLO  
SRC  
OV  
8
1
2
GND  
7
6
GATE  
VS  
N.C  
3
4
5
VCAP  
5-1. DDF Package 8-Pin SOT-23 LM74502, LM74502H Top View  
5-1. LM74502, LM74502H Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NO.  
NAME  
EN/UVLO Input. Connect to VS pin for always ON operation. Can be driven externally from a  
micro controller I/O. Pulling the pin low below V(ENF) makes the device enter into low Iq  
shutdown mode. For UVLO, connect an external resistor ladder from input supply to EN/  
UVLO to ground.  
1
EN/UVLO  
I
2
3
4
GND  
N.C  
G
Ground pin  
No connection  
VCAP  
O
Charge pump output. Connect to external charge pump capacitor.  
Input power supply pin to the controller. Connect a 100-nF capacitor across VS and GND  
pins.  
5
6
VS  
I
GATE  
O
Gate drive output. Connect to gate of the external N-channel MOSFET.  
Adjustable overvoltage threshold input. Connect a resistor ladder from input supply to OV  
pin to ground. When the voltage at OV pin exceeds the overvoltage cutoff threshold then the  
GATE is pulled low. GATE turns ON when the OV pin voltage goes below the OVP falling  
threshold. Connect OV pin to ground when OV feature is not used.  
7
8
OV  
I
I
Source pin. Connect to common source point of external back-to-back connected N-channel  
MOSFETs or the source pin of the high side switch MOSFET.  
SRC  
(1) I = Input, O = Output, G = GND  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LM74502 LM74502H  
 
 
 
LM74502, LM74502H  
ZHCSO25A DECEMBER 2021 REVISED MAY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
65  
0.3  
V(VS)  
MAX  
65  
UNIT  
V
VS to GND  
EN/UVLO, OV to GND, V(VS) > 0 V  
65  
V
Input Pins  
(65 + V(VS))  
EN/UVLO, OV, V(VS) 0 V  
SRC to GND, V(VS) 0 V  
SRC to GND, V(VS) > 0 V  
GATE to SRC  
(V(VS) + 0.3)  
V
V
V(VS)  
15  
(70 V(VS)  
)
0
0.3  
40  
40  
V
Output Pins  
VCAP to VS  
15  
V
Operating junction temperature(2)  
Storage temperature, Tstg  
150  
150  
°C  
°C  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002,  
all pins(2)  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
60  
60  
22  
NOM  
MAX  
60  
UNIT  
VS to GND  
Input Pins  
V
EN/UVLO, OV, SRC to GND  
60  
VS  
nF  
µF  
External  
capacitance  
VCAP to VS  
0.1  
External  
MOSFET max GATE to SRC  
VGS rating  
15  
V
TJ  
Operating junction temperature range(2)  
150  
°C  
40  
(1) Recommended Operating Conditions are conditions under which the device is intended to be functional. For specifications and test  
conditions, see electrical characteristics  
(2) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LM74502 LM74502H  
 
 
 
 
 
 
 
 
 
 
LM74502, LM74502H  
ZHCSO25A DECEMBER 2021 REVISED MAY 2022  
www.ti.com.cn  
6.4 Thermal Information  
LM74502  
LM74502H  
THERMAL METRIC(1)  
UNIT  
DDF (SOT)  
8 PINS  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
133.8  
72.6  
54.5  
4.6  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
54.2  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
TJ = 40°C to +125°C; typical values at TJ = 25°C, V(VS) = 12 V, C(VCAP) = 0.1 µF, V(EN/UVLO) = 3.3 V, over operating free-air  
temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VS SUPPLY VOLTAGE  
V(VS)  
Operating input voltage  
VS POR Rising threshold  
VS POR Falling threshold  
VS POR Hysteresis  
4
60  
3.9  
3.1  
0.67  
1.5  
65  
V
V
V (VS_POR)  
2.2  
2.8  
V
V(VS POR(Hys))  
I(SHDN)  
0.44  
V
Shutdown Supply Current  
Operating Quiescent Current  
V(EN/UVLO) = 0 V  
0.9  
45  
µA  
µA  
I(Q)  
IGND  
VS pin leakage current during input  
reverse polarity  
I(REV)  
100  
150  
µA  
0 V V(VS) 65 V  
ENABLE INPUT  
V(EN_UVLOF)  
Enable/UVLO falling threshold  
Enable/UVLO rising threshold  
1.027  
1.16  
1.14  
1.24  
1.235  
1.32  
V
V
V(EN_UVLOR)  
Enable threshold voltage for low IQ  
shutdown  
V(ENF)  
0.32  
38  
0.64  
0.94  
V(EN_Hys)  
I(EN/UVLO)  
GATE DRIVE  
I(GATE)  
Enable Hysteresis  
Enable sink current  
90  
3
132  
5
mV  
µA  
V(EN/UVLO) = 12 V  
Peak source current  
Peak source current  
40  
3
60  
11  
77  
µA  
V
V
(GATE) V(SRC) = 5 V  
mA  
(GATE) V(SRC) = 5 V, LM74502H  
I(GATE)  
EN= High to Low  
(GATE) V(SRC) = 5 V  
Peak sink current  
2370  
mA  
V
EN = High to Low  
RDSON  
discharge switch RDSON  
0.4  
2
V
(GATE) V(SRC) = 100 mV  
CHARGE PUMP  
Charge Pump source current (Charge  
pump on)  
162  
300  
5
600  
10  
µA  
µA  
V
V
(VCAP) V(VS) = 7 V  
(VCAP) V(VS) = 14 V  
I(VCAP)  
Charge Pump sink current (Charge  
pump off)  
Charge pump voltage at V(VS) = 3.2 V  
Charge pump turn on voltage  
Charge pump turn off voltage  
8
10.3  
11  
V
V
V
V(VCAP) V(VS)  
V(VCAP) V(VS)  
V(VCAP) V(VS)  
I(VCAP) 30 µA  
11.6  
12.4  
13  
13.9  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LM74502 LM74502H  
 
 
 
LM74502, LM74502H  
ZHCSO25A DECEMBER 2021 REVISED MAY 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to +125°C; typical values at TJ = 25°C, V(VS) = 12 V, C(VCAP) = 0.1 µF, V(EN/UVLO) = 3.3 V, over operating free-air  
temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Charge Pump Enable comparator  
Hysteresis  
0.45  
0.8  
1.25  
7.5  
V
V
V
V
(VCAP) V(VS)  
V(VCAP UVLO)  
V(VCAP UVLO)  
V
(VCAP) V(S) UV release at rising  
5.7  
6.5  
5.4  
edge  
V
(VCAP) V(S) UV threshold at falling  
5.05  
6.2  
edge  
OVERVOLTAGE PROTECTION  
V(OVR)  
V(OVF)  
V(OV_Hys)  
I(OV)  
Overvoltage threshold input, rising  
1.165  
1.063  
1.25  
1.143  
100  
1.333  
1.222  
V
V
Overvoltage threshold input, falling  
OV Hysteresis  
mV  
nA  
OV Input leakage current  
0 V < V(OV) < 5 V  
12  
50  
110  
6.6 Switching Characteristics  
TJ = 40°C to +125°C; typical values at TJ = 25°C, V(VS) = 12 V, CIN = C(VCAP) = COUT = 0.1 µF, V(EN/UVLO) = 3.3 V, over  
operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
V(VCAP) > V(VCAP UVLOR), V(EN/UVLO)  
>
ENTDLY  
EN high to Gate Turn On delay  
V(EN_UVLOR) to V(GATE-SRC) > 5 V, C(GATE-  
SRC) = 4.7 nF LM74502H  
75  
110  
µs  
tUVLO_OFF(deg  
V
(EN/UVLO) to V(GATE-SRC) < 1 V,  
GATE Turnoff delay during EN/UVLO  
GATE Turnoff delay during OV  
2
µs  
µs  
C(GATE-SRC) = 4.7 nF  
)_GATE  
tOVP_OFF(deg)_  
V
(OV) to V(GATE-SRC) < 1 V, C(GATE-  
0.6  
1
SRC) = 4.7 nF  
GATE  
V
(OV) to V(GATE-SRC) > 5 V, C(GATE-  
tOVP_ON(deg)_G  
GATE Turnon delay during OV  
5
10  
µs  
SRC) = 4.7 nF  
LM74502H  
ATE  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LM74502 LM74502H  
 
LM74502, LM74502H  
ZHCSO25A DECEMBER 2021 REVISED MAY 2022  
www.ti.com.cn  
6.7 Typical Characteristics  
7
420  
390  
360  
330  
300  
270  
240  
210  
180  
150  
120  
90  
–40C  
25C  
85C  
125C  
150C  
5.6  
4.2  
2.8  
1.4  
0
–40C  
25C  
85C  
125C  
150C  
60  
30  
0
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
VS (V)  
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
VS (V)  
6-2. Operating Quiescent Current vs Supply Voltage  
6-1. Shutdown Supply Current vs Supply Voltage  
390  
360  
330  
300  
270  
240  
210  
550  
–40C  
500  
450  
400  
350  
300  
250  
200  
150  
100  
25C  
85C  
125C  
150C  
–40C  
25C  
180  
150  
120  
90  
85C  
125C  
150C  
60  
3
4
5
6
7
8
9
10  
11  
12  
0
2
4
6
8
10  
12  
VS (V)  
VCAP (V)  
6-3. Charge Pump Current vs Supply Voltage at VCAP = 6 V  
6-4. Charge Pump V-I Characteristics at VS > = 12 V  
240  
1.35  
Enable/UVLO rising  
Enable/UVLO falling  
–40C  
220  
25C  
85C  
125C  
150C  
200  
180  
160  
140  
120  
100  
80  
1.28  
1.21  
1.14  
1.07  
1
60  
40  
20  
-40  
0
40  
80  
120  
160  
0
1
2
3
4
5
6
7
8
9
Free-Air Temperature (C)  
VCAP (V)  
6-6. EN/UVLO Rising and Falling threshold vs Temperature  
6-5. Charge Pump V-I Characteristics at VS = 3.2 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LM74502 LM74502H  
 
LM74502, LM74502H  
ZHCSO25A DECEMBER 2021 REVISED MAY 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
85  
14  
13.4  
12.8  
12.2  
11.6  
11  
VCAP ON  
VCAP OFF  
80  
75  
70  
65  
60  
-40  
0
40  
80  
120  
160  
-40  
0
40  
80  
120  
160  
Free-Air Temperature (C)  
Free-Air Temperature (C)  
6-8. Charge Pump ON and OFF Threshold vs Temperature  
6-7. Enable to Gate Delay vs Temperature  
(LM74502H-Q1)  
7.4  
3.2  
VCAP UVLOR  
VCAP UVLOF  
VS PORR  
VS PORF  
7
6.6  
6.2  
5.8  
5.4  
5
3
2.8  
2.6  
2.4  
2.2  
-40  
0
40  
80  
120  
160  
-40  
0
40  
80  
120  
160  
Free-Air Temperature (C)  
Free-Air Temperature (C)  
6-9. Charge Pump UVLO Threshold vs Temperature  
6-10. VS POR Threshold vs Temperature  
1.4  
6
5
4
3
2
1
0
OV Rising  
OV Falling  
1.32  
1.24  
1.16  
1.08  
1
GATE OFF  
GATE ON  
-40  
0
40  
80  
120  
160  
-40  
0
40  
80  
120  
160  
Free-Air Temperature (C)  
Free-Air Temperature (C)  
6-11. OV Comparator Threshold vs Temperature  
6-12. OV to GATE Delay vs Temperature (LM74502H-Q1)  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LM74502 LM74502H  
LM74502, LM74502H  
ZHCSO25A DECEMBER 2021 REVISED MAY 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
3.3 V  
VEN/UVLOF  
0.1 V  
VENF  
0 V  
0 V  
12.4 V  
12.4 V  
90%  
1 V  
0 V  
0 V  
ttUVLO_OFF(deg)GATE  
t
tENTDLY  
t
0.1 V  
VOVF  
0.1 V  
+
VOVR  
0 V  
0 V  
12.4 V  
12.4 V  
5 V  
1 V  
0 V  
0 V  
ttOVP_OFF(deg)GATE  
t
ttOVP_ON(deg)GATEt  
7-1. Timing Waveforms  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LM74502 LM74502H  
 
LM74502, LM74502H  
ZHCSO25A DECEMBER 2021 REVISED MAY 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The LM74502 and LM74502H controller has all the features necessary to implement an efficient and fast reverse  
polarity protection circuit with load disconnect feature. This easy to use reverse polarity protection controller is  
paired with an external back-to-back connected N-channel MOSFETs to replace other reverse polarity schemes  
such as a P-channel MOSFETs. The wide input supply range of 4 V to 65 V allows protection and control of 12-V  
and 24-V input supply systems. The device can withstand and protect the loads from negative supply voltages  
down to 65 V. An integrated charge pump drives external back-to-back connected N-channel MOSFETs with  
gate drive voltage of approximately 13 V. LM74502 with its 60-μA peak gate drive strength is suitable for  
applications that needs inherent inrush current control. LM74502H with its fast gate drive strength of 11-mA peak  
is suitable for applications which need fast turn-on and turn-off of external MOSFET switch. LM74502 features  
an adjustable overvoltage protection using the OV pin. with the enable pin low during the standby mode, both  
the external MOSFETs and controller is off and draws a very low shutdown current of 1 μA.  
8.2 Functional Block Diagram  
VIN  
VOUT  
GATE  
SRC  
VS  
VCAP  
CP  
VS  
Gate  
Driver  
VCAP  
Internal  
Rails  
Charge  
Pump  
Enable  
Logic  
Gate Drive  
Enable  
Logic  
VS  
UVLOb EN  
OV  
OV  
+
EN  
1.25 V  
1.14 V  
EN/UVLO  
+
1 V  
VS  
0.3 V  
+
UVLOb  
1.25 V  
1.14 V  
Reverse  
Protection Logic  
LM74502  
LM74502H  
GND  
8.3 Feature Description  
8.3.1 Input Voltage  
The VS pin is used to power the LM74502's internal circuitry, typically drawing 45 µA when enabled and 1 µA  
when disabled. If the VS pin voltage is greater than the POR Rising threshold, then LM74502 operates in either  
shutdown mode or conduction mode in accordance with the EN/UVLO pin voltage. The voltage from VS to GND  
is designed to vary from 65 V to 65 V, allowing the LM74502 to withstand negative voltage transients.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LM74502 LM74502H  
 
 
 
 
LM74502, LM74502H  
ZHCSO25A DECEMBER 2021 REVISED MAY 2022  
www.ti.com.cn  
8.3.2 Charge Pump (VCAP)  
The charge pump supplies the voltage necessary to drive the external N-channel MOSFET. An external charge  
pump capacitor is placed between VCAP and VS pin to provide energy to turn on the external MOSFET. For the  
charge pump to supply current to the external capacitor the EN/UVLO pin voltage must be above the specified  
input high threshold, V(EN_IH). When enabled the charge pump sources a charging current of 300 µA typically. If  
EN/UVLO pins is pulled low, then the charge pump remains disabled. To ensure that the external MOSFET can  
be driven above its specified threshold voltage, the VCAP to VS voltage must be above the undervoltage lockout  
threshold, typically 6.5 V, before the internal gate driver is enabled. Use 方程1 to calculate the initial gate  
driver enable delay.  
T
(DRV_EN) = 75 µs + C(VCAP) × V(VCAP_UVLOR)  
300 µA  
(1)  
where  
C(VCAP) is the charge pump capacitance connected across VS and VCAP pins  
V(VCAP_UVLOR) = 6.5 V (typical)  
To remove any chatter on the gate drive approximately 800 mV of hysteresis is added to the VCAP undervoltage  
lockout. The charge pump remains enabled until the VCAP to VS voltage reaches 12.4 V, typically, at which  
point the charge pump is disabled decreasing the current draw on the VS pin. The charge pump remains  
disabled until the VCAP to VS voltage is below to 11.6 V typically at which point the charge pump is enabled.  
The voltage between VCAP and VS continue to charge and discharge between 11.6 V and 12.4 V as shown in  
8-1. By enabling and disabling the charge pump, the operating quiescent current of the LM74502 is reduced.  
When the charge pump is disabled it sinks 5-µA typical.  
TDRV_EN  
TON  
TOFF  
VIN  
VS  
0 V  
VEN  
12.4 V  
11.6 V  
VCAP-VS  
6.5 V  
V(VCAP UVLOR)  
GATE DRIVER  
(GATE to SRC)  
ENABLE  
8-1. Charge Pump Operation  
8.3.3 Gate Driver (GATE, SRC)  
The gate driver is used to control the external N-Channel MOSFET by setting the appropriate GATE to SRC  
voltage.  
Before the gate driver is enabled, the following three conditions must be achieved:  
The EN/UVLO pin voltage must be greater than the specified input high voltage.  
The VCAP to VS voltage must be greater than the undervoltage lockout voltage.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LM74502 LM74502H  
 
 
 
 
LM74502, LM74502H  
ZHCSO25A DECEMBER 2021 REVISED MAY 2022  
www.ti.com.cn  
The VS voltage must be greater than VS POR rising threshold.  
If the above conditions are not achieved, then the GATE pin is internally connected to the SRC pin, assuring that  
the external MOSFET is disabled. After these conditions are achieved, the gate driver operates in the conduction  
mode enhancing the external MOSFET completely.  
The controller offers two gate drive variants. LM74502 with typical peak gate drive strength of 60 μA is suitable  
to achieve smooth start-up with inherent inrush current control due to its lower gate drive strength.  
LM74502H with its 11 -mA typical peak gate drive strength is suitable for applications which need faster turn on  
such as load switch applications.  
LM74502, LM74502H SRC pin is capable of handling negative voltage which also makes it suitable for load  
disconnect switch applications with loads which are inductive in nature.  
8.3.3.1 Inrush Current Control  
An external circuit as shown in 8-2 can be added on the GATE pin of the LM74502 to have additional inrush  
current control for the applications which have large capacitive loads.  
Q1  
RG  
Cdvdt  
GATE  
SRC  
LM74502  
8-2. Inrush Current Limiting Using LM74502  
The CdVdT capacitor is required for slowing down the GATE voltage ramp during power up for inrush current  
limiting. Use 方程2 to calculate CdVdT capacitance value.  
C
dvdt = IGATE × COUT  
IINRUSH  
(2)  
where IGATE is 60 μA (typical), IINRUSH is the inrush current and COUT is the output load capacitance. An extra  
resistor, RG, in series with the CdVdT capacitor acts as an isolation resistor between Cdvdt and gate of the  
MOSFET.  
The inrush current control scheme shown in 8-2 is not applicable to LM74502H as its gate drive is optimized  
for fast turn-on load switch applications.  
8.3.4 Enable (EN/UVLO)  
The LM74502 has an enable pin, EN/UVLO. The enable pin allows for the gate driver to be either enabled or  
disabled by an external signal. If the EN/UVLO pin voltage is greater than the rising threshold, the gate driver  
and charge pump operates as described in the Gate Driver (GATE, SRC) and Charge Pump (VCAP) sections. If  
the enable pin voltage is less than the input low threshold, the charge pump and gate driver are disabled placing  
the LM74502 in shutdown mode. The EN/UVLO pin can withstand a voltage as large as 65 V and as low as 65  
V. This feature allows for the EN/UVLO pin to be connected directly to the VS pin if enable functionality is not  
needed. In conditions where EN/UVLO is left floating, the internal sink current of 3 uA pulls EN/UVLO pin low  
and disables the device.  
An external resistor divider connected from input to EN/UVLO to ground can be used to implement the input  
Undervoltage Lockout (UVLO) functionality in the system. When EN/UVLO pin voltage is lower than UVLO  
comparator falling threshold (VEN/UVLOR) but higher than enable falling threshold (VENF), the device disables gate  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LM74502 LM74502H  
 
 
LM74502, LM74502H  
ZHCSO25A DECEMBER 2021 REVISED MAY 2022  
www.ti.com.cn  
drive voltage, however, charge pump is kept on. This action ensures quick recovery of gate drive when UVLO  
condition is removed. If UVLO functionality is not required, connect EN/UVLO pin to VS.  
8.3.5 Overvoltage Protection (OV)  
LM74502 provides programmable overvoltage protection feature with OV pin. A resistor divider can be  
connected from input source to OV pin to ground in order to set overvoltage threshold. An internal comparator  
compares the input voltage against fixed reference (1.25 V) and disables the gate drive as soon as OV pin  
voltage goes above the OV comparator reference. When the resistor divider is referred from input supply side,  
device is configured for overvoltage cutoff functionality. When the resistor divider is referred from output side  
(VOUT), the device is configured for overvoltage clamp functionality.  
When OV pin voltage goes above OV comparator VOVR threshold (1.25-V typical), the device disables gate  
drive, however, charge pump remains active. When OV pin voltage falls below VOVF threshold (1.14-V typical),  
the gate is quickly turned on as charge pump is kept on and the device does not go through the device start-up  
process. When OV pin is not used, it can be connected to ground.  
8.4 Device Functional Modes  
8.4.1 Shutdown Mode  
The LM74502 enters shutdown mode when the EN/UVLO pin voltage is below the specified input low threshold  
V(ENF). Both the gate driver and the charge pump are disabled in shutdown mode. During shutdown mode the  
LM74502 enters low IQ operation with the VS pin only sinking 1 µA of current.  
8.4.2 Conduction Mode  
For the LM74502 to operate in conduction mode the gate driver must be enabled as described in the Gate Driver  
(GATE, SRC) section. If these conditions are achieved the GATE pin is  
Internally driven through 60-μA current source in case of LM74502  
Internally connected to the VCAP for fast turn-on of external FET in case of LM74502H  
LM74502, LM74502H gate drive is disabled when OV pin voltage is above VOVR threshold or EN/UVLO pin  
voltage is lower than VEN/UVLOF threshold.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LM74502 LM74502H  
 
LM74502, LM74502H  
ZHCSO25A DECEMBER 2021 REVISED MAY 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The LM74502 is used with back-to-back connected N-Channel MOSFETs in a typical reverse polarity protection  
with load disconnect application. The schematic for the 12-V input supply reverse polarity protection is shown in  
9-1, where the LM74502 is used to drive the back-to-back connected MOSFETs Q1 and Q2 in series with a  
12-V supply.  
9.2 Typical Application  
Q1  
Q2  
VOUT  
VIN  
12 V  
CIN  
0.1 µF  
COUT  
220 µF  
SRC  
GATE  
VS  
VCAP  
220 nF  
R1  
100 k  
VCAP  
OV  
LM74502  
EN / UVLO  
OFF  
ON  
R2  
GND  
3.5 k  
9-1. Typical Application Circuit  
9.2.1 Design Requirements  
A design example, with system design parameters listed in 9-1 is presented.  
9-1. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
Overvoltage protection  
Output current  
EXAMPLE VALUE  
12-V nominal  
37 V  
5-A full load  
Output capacitance  
220-µF typical output capacitance  
9.2.2 Detailed Design Procedure  
9.2.2.1 Design Considerations  
Input operating voltage range (including overvoltage protection)  
Maximum load current  
9.2.2.2 MOSFET Selection  
The important MOSFET electrical parameters are the maximum continuous drain current ID, the maximum drain-  
to-source voltage VDS(MAX), the maximum gate-to-source voltage VGS(MAX) and the drain-to-source On resistance  
RDSON  
.
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LM74502 LM74502H  
 
 
 
 
 
LM74502, LM74502H  
ZHCSO25A DECEMBER 2021 REVISED MAY 2022  
www.ti.com.cn  
The maximum continuous drain current, ID, rating must exceed the maximum continuous load current. The  
maximum drain-to-source voltage, VDS(MAX), must be high enough to withstand the highest differential voltage  
seen in the application. This requirement would include any anticipated fault conditions. The maximum VGS  
LM74502 can drive is 13.9 V, so a MOSFET with 15-V minimum VGS rating must be selected. If a MOSFET with  
VGS rating < 15 V is selected, a zener diode can be used between GATE to SRC pin to clamp VGS to safe level.  
To reduce the MOSFET conduction losses, lowest possible RDS(ON) is preferred. Selecting a MOSFET with  
RDS(ON) that gives VDS drop 20 mV to 50 mV provides good trade off in terms of power dissipation and cost.  
Thermal resistance of the MOSFET must be considered against the expected maximum power dissipation in the  
MOSFET to ensure that the junction temperature (TJ) is well controlled.  
9.2.2.3 Overvoltage Protection  
Resistors R1 and R2 connected in series is used to program the overvoltage threshold. Connecting R1 to VIN  
provides overvoltage cutoff and switching the connection to VOUT provides overvoltage clamp response. The  
resistor values required for setting the overvoltage threshold VOV to 37 V are calculated by solving 方程3  
R2 × VOV  
VOVR  
=
R1 + R2  
(3)  
For minimizing the input current drawn from the supply through resistors R1 and R2, it is recommended to use  
higher value of resistance. Using high value resistors adds error in the calculations because the current through  
the resistors at higher value becomes comparable to the leakage current into the OV pin. Select (R1 + R2) such  
that current through resistors is around 100 times higher than the leakage through OV pin. Based on the device  
electrical characteristics, VOVR is 1.25 V , Select (R1) = 100 kΩand R2 = 3.5 kΩas a standard resistor value to  
set overvoltage cutoff of 37 V.  
9.2.2.4 Charge Pump VCAP, Input and Output Capacitance  
Minimum required capacitance for charge pump VCAP and input and output capacitance are:  
CVCAP: minimum recommended value of VCAP (µF) 10 × Effective CISS(MOSFET) (µF), 0.22 μF is selected  
CIN: typical input capacitor of 0.1 µF  
COUT: typical output capacitor 220 µF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LM74502 LM74502H  
 
 
LM74502, LM74502H  
ZHCSO25A DECEMBER 2021 REVISED MAY 2022  
www.ti.com.cn  
9.2.3 Application Curves  
Time (4 ms/DIV)  
Time (10 ms/DIV)  
9-3. Start-up with No Load  
9-2. Start-up with Reverse Voltage 12 V)  
Time (4 ms/DIV)  
Time (2 ms/DIV)  
9-4. Start-up with 5-A Load  
9-5. Start-up with EN Control  
Time (10 ms/DIV)  
Time (4 ms/DIV)  
9-7. Overvoltage Recovery  
9-6. Overvoltage Cutoff Response (37 V)  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LM74502 LM74502H  
LM74502, LM74502H  
ZHCSO25A DECEMBER 2021 REVISED MAY 2022  
www.ti.com.cn  
9.3 Input Surge Stopper Using LM74502, LM74502H  
Many industrial applications need to comply with input overvoltage transients and surge events specified by  
standards such as IEC61000-4-x. LM74502, LM74502H can be configured as input surge stopper to provide  
overvoltage along with input reverse supply protection.  
Q1  
200 V  
Q2  
60 V  
VIN  
VOUT  
24-V Nominal  
200-V Transient  
R1  
10 k  
CIN  
0.1 µF  
COUT  
220 µF  
VOUT  
(OV Clamp)  
R2  
100 k  
VIN  
OV cut-off  
SRC  
VS  
GATE  
OV  
DZ  
R3  
3.5 k  
CVS  
1 µF  
60 V  
VCAP  
CVCAP  
220 nF  
LM74502  
GND  
EN/UVLO  
OFF  
ON  
9-8. Typical Surge Stopper Application for 24-V Powered Systems  
As shown in 9-8 MOSFET Q1 is used to turn off or clamp output voltage to acceptable safe level and protect  
the MOSFET Q2 and LM74502 from input transient. Note that only the VS pin is exposed to input transient  
through a resistor, R1. A 60-V rated zener diode is used to clamp and protect the VS pin within recommended  
operating condition. Rest of the circuit is not exposed to higher voltage as the MOSFET Q1 can either be turned  
off completely or output voltage clamped to safe level.  
9.3.1 VS Capacitance, Resistor R1 and Zener Clamp (DZ)  
Minimum of 1 µF CVS capacitance is required. During input overvoltage transient, resistor R1 and zener diode DZ  
are used to protect VS pin from exceeding the maximum ratings by clamping VVS to 60 V. Choosing R1 = 10 kΩ,  
the peak power dissipated in zener diode DZ can be calculated using 方程4.  
PDZ = VDZ × (VIN(MAX) – VDZ)  
R1  
(4)  
Where VDZ is the breakdown voltage of zener diode. Select the zener diode which can handle peak power  
requirement.  
Peak power dissipated in resistor R1 can be calculated using 方程5.  
PR1 = (VIN(MAX) – VDZ)2  
R1  
(5)  
Select a resistor package which can handle peak power and maximum DC voltage.  
9.3.2 Overvoltage Protection  
For the overvoltage setting, refer to the resistor selection procedure described in Overvoltage Protection. Select  
(R2) = 100 kΩand R3 = 3.5 kΩas a standard resistor value to set overvoltage cutoff of 37 V.  
9.3.3 MOSFET Selection  
The VDS rating of the MOSFET Q1 must be minimum VIN(max) for designs with output overvoltage cutoff where  
output can reach 0 V with higher loads. For designs with output overvoltage clamp, MOSFET VDS rating must  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LM74502 LM74502H  
 
 
 
 
LM74502, LM74502H  
ZHCSO25A DECEMBER 2021 REVISED MAY 2022  
www.ti.com.cn  
be (VIN(max) VOUT_CLAMP). The VGS rating is based on GATE-SRC maximum voltage of 15 V. TI recommends  
a 20-V VGS rated MOSFET. Power dissipation on MOSFET Q1 on a design where output is clamped is critical  
and SOA characteristics of the MOSFET must be considered with sufficient design margin for reliable operation.  
An additional zener diode from GATE to SRC can be needed to protect the external FET in case output is  
expected to drop to the level where it can exceed external FET VGS(max) rating.  
9-9. 200-V Surge Stopper with Overvoltage Cutoff Using LM74502  
9.4 Fast Turn-On and Turn-Off High Side Switch Driver Using LM74502H  
In applications such as industrial motor drives and safety power line communication digital output modules, N-  
Channel MOSFET based high side switch is very commonly used to disconnect the loads from supply line in  
case of faults such as overvoltage event . LM74502, LM74502H can be used to drive external MOSFET to  
realize simple high side switch with overvoltage protection. 9-10 shows a typical application circuit where  
LM74502H is used to drive external MOSFET Q1 as a main power path connect and disconnect switch. A  
resistor divider from input to OV pin to ground can be used the set the overvoltage threshold.  
If VOUT node (SRC pin) of the device is expected to drop in case of events such as overcurrent or short-circuit  
on load side then additional zener diode is required across gate and source pin of external MOSFET to protect it  
from exceeding it's maximum VGS rating.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LM74502 LM74502H  
 
LM74502, LM74502H  
ZHCSO25A DECEMBER 2021 REVISED MAY 2022  
www.ti.com.cn  
Q1  
VOUT  
VIN  
High Side  
Switch  
LOAD3  
LOAD2  
LOAD3  
COUT  
CIN  
Low Side  
Switch  
VS  
GATE  
SRC  
CVCAP  
VIN  
R1  
OV pin used for  
overvoltage  
protection  
VCAP  
OV  
LM74502H  
GND  
DC/DC  
Converter  
R2  
EN/UVLO  
OFF  
ON  
OFF  
ON  
OV pin used as logic input for  
fast turn ON/OFF of FET Q1  
9-10. Fast Turn-ON and OFF High Side Switch Using LM74502H  
Many industrial safety applications require fast switching off of MOSFET to verify proper functioning of the high  
side disconnect switch for diagnostic purpose. LM74502H OV pin can be used as control input to realize fast  
turn-on and turn-off load switch functionality. with OV pin pulled above VOVR threshold of (1.25-V typical),  
LM74502H turns off the external MOSFET (with Ciss = 4.7 nF) within 1 μs typically. When OV pin is pulled low,  
LM74502H with its peak gate drive strength of 11 mA turns on external MOSFET with turn on speed of 7-μs  
typical. 9-11 shows LM74502H GATE to SRC response when OV pin is used as logic input for turning  
external MOSFET on and off.  
9-11. Fast Turn-On and Turn-Off High Side Switch Driver Using LM74502H  
10 Power Supply Recommendations  
The LM74502, LM74502H reverse polarity protection controller is designed for the supply voltage range of 3.2 V  
VS 65 V. If the input supply is located more than a few inches from the device, TI recommends an input  
ceramic bypass capacitor higher than 0.1 μF. Based on system requirements, a higher input bypass capacitor  
may be needed with LM74502H to avoid supply glitch in case of high inrush current start-up event. To prevent  
LM74502 and surrounding components from damage under the conditions of a direct output short circuit, use a  
power supply having overload and short-circuit protection.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LM74502 LM74502H  
 
 
 
LM74502, LM74502H  
ZHCSO25A DECEMBER 2021 REVISED MAY 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Place the input capacitor CIN of 0.1-μF minimum close to VS pin to ground. This typically helps with better  
EMI performance.  
Connect GATE and SRC pin of LM74502, LM74502H close to the MOSFET's GATE and SOURCE pin.  
Use thick traces for source and drain of the MOSFET to minimize resistive losses because the high current  
path of for this solution is through the MOSFET.  
The charge pump capacitor across VCAP and VS pin must be kept away from the MOSFET to lower the  
thermal effects on the capacitance value.  
The GATE pin of the LM74502, LM74502H must be connected to the MOSFET gate with short trace. Avoid  
excessively thin and long running trace to the Gate Drive.  
11.2 Layout Example  
Bo om Layer  
Signal Via  
VOUT  
Q2  
G
S
S
S
COUT  
LM74502  
8
SRC  
OV  
1
EN/UVLO  
GND  
Q1  
VIN  
2
7
6
5
D
D
D
D
N.C  
3
4
GATE  
VS  
VCAP  
CIN  
CVCAP  
GND  
GND  
11-1. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LM74502 LM74502H  
 
 
 
LM74502, LM74502H  
ZHCSO25A DECEMBER 2021 REVISED MAY 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LM74502 LM74502H  
 
 
 
 
 
 
LM74502, LM74502H  
ZHCSO25A DECEMBER 2021 REVISED MAY 2022  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LM74502 LM74502H  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-May-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM74502DDFR  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDF  
DDF  
8
8
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
LM502  
L502H  
Samples  
Samples  
LM74502HDDFR  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-May-2022  
OTHER QUALIFIED VERSIONS OF LM74502, LM74502H :  
Automotive : LM74502-Q1, LM74502H-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM74502DDFR  
SOT-23-  
THIN  
DDF  
DDF  
8
8
3000  
3000  
180.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
LM74502HDDFR  
SOT-23-  
THIN  
180.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM74502DDFR  
SOT-23-THIN  
SOT-23-THIN  
DDF  
DDF  
8
8
3000  
3000  
210.0  
210.0  
185.0  
185.0  
35.0  
35.0  
LM74502HDDFR  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DDF0008A  
SOT-23 - 1.1 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC SMALL OUTLINE  
C
2.95  
2.65  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
6X 0.65  
8
1
2.95  
2.85  
NOTE 3  
2X  
1.95  
4
5
0.38  
0.22  
8X  
0.1  
C A B  
1.65  
1.55  
B
1.1 MAX  
0.20  
0.08  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.1  
0.0  
0 - 8  
0.6  
0.3  
DETAIL A  
TYPICAL  
4222047/C 10/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
1
8
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(R0.05)  
TYP  
(2.6)  
LAND PATTERN EXAMPLE  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222047/C 10/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDF0008A  
SOT-23 - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
8X (1.05)  
SYMM  
(R0.05) TYP  
8
1
8X (0.45)  
SYMM  
6X (0.65)  
5
4
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4222047/C 10/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LM74502HQDDFRQ1

汽车类反极性保护控制器,过压保护,栅极驱动强度 11mA | DDF | 8 | -40 to 125
TI

LM74502QDDFRQ1

汽车类反极性保护控制器,过压保护,栅极驱动强度 60μA | DDF | 8 | -40 to 125
TI

LM74610-Q1

0.48V 至 42V、零 IQ 汽车理想二极管控制器
TI

LM74610QDGKRQ1

0.48V 至 42V、零 IQ 汽车理想二极管控制器 | DGK | 8 | -40 to 125
TI

LM74610QDGKTQ1

0.48V 至 42V、零 IQ 汽车理想二极管控制器 | DGK | 8 | -40 to 125
TI

LM74670-Q1

具有 70uA 栅极驱动器的 0.48V 至 42V、零 IQ 汽车理想二极管整流器控制器
TI

LM74670QDGKRQ1

具有 70uA 栅极驱动器的 0.48V 至 42V、零 IQ 汽车理想二极管整流器控制器 | DGK | 8 | -40 to 125
TI

LM74670QDGKTQ1

具有 70uA 栅极驱动器的 0.48V 至 42V、零 IQ 汽车理想二极管整流器控制器 | DGK | 8 | -40 to 125
TI

LM747

Dual Operational Amplifier
NSC

LM747

双路、44V、1.5MHz 运算放大器
TI

LM747 MD8

Military-grade, dual, 44-V, 1.5-MHz operational amplifier | Y | 0 | -55 to 125
TI

LM747 MWC

双路、44V、1.5MHz 运算放大器 | YS | 0 | -40 to 85
TI