LMK1D1204PRHDT [TI]

带引脚控制的 4 通道输出 LVDS 1.8V、2.5V 和 3.3V 缓冲器 | RHD | 28 | -40 to 105;
LMK1D1204PRHDT
型号: LMK1D1204PRHDT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

带引脚控制的 4 通道输出 LVDS 1.8V、2.5V 和 3.3V 缓冲器 | RHD | 28 | -40 to 105

文件: 总32页 (文件大小:1485K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMK1D1204P  
ZHCSP13A SEPTEMBER 2021 REVISED JUNE 2023  
LMK1D1204P 引脚控制OE 低附加抖LVDS 缓冲器  
1 特性  
3 说明  
• 具2 路输入4 路输(2:4) 的高性LVDS 时  
钟缓冲器系列  
• 输出频率最高可2GHz  
• 通过硬件引脚实现启用/禁用独立输出  
• 电源电压1.8V/2.5V/3.3V ± 5%  
• 低附加抖动156.25MHz 下小12kHz 20MHz  
范围内60fs rms 最大值  
LMK1D1204P 时钟缓冲器能够以超小的时钟分配延  
将两个中的任一可选时钟输入IN0 IN1分配  
4 对差分 LVDS 时钟输出OUT0 OUT3。输  
入可以为 LVDSLVPECLLVCMOSHCSL 或  
CML。  
LMK1D1204P 专为驱动 50传输线路而设计。在单端  
模式下驱动输入时对未使用的负输入引脚施加适当的  
偏置电压请参阅9-6IN_SEL 引脚用于选择要  
发送到输出的输入。该器件支持失效防护输入功能。该  
器件还整合了输入迟滞可防止在没有输入信号的情况  
下输出随机振荡。  
– 超低相位本底噪声-164dBc/Hz典型值)  
• 超低传播延迟< 575ps最大值)  
• 输出偏斜20ps最大值)  
• 失效防护输入  
• 通用输入接LVDSLVPECLLVCMOSHCSL  
CML  
LVDS 基准电(VAC_REF) 适用于容性耦合输入  
• 工业温度范围40°C 105°C  
• 可用封装:  
各个 LVDS 差分输出均可通过将对应的 OEx 引脚设置  
为逻辑高电平“1”来实现。如果此引脚设置为逻辑低  
电平“0输出将被禁用呈现高阻态从而降低功  
耗。  
5mm × 5mm 28 VQFN (RHD) 封装  
该器件可在 1.8V2.5V 3.3V 电源环境下工作额  
定温度范围40°C 105°C环境温度。  
2 应用  
封装信息  
电信及网络  
医疗成像  
封装尺寸标称值)  
封装(1)  
器件型号  
(2)  
测试和测量  
无线基础设施  
专业音频、视频和标牌  
LMK1D1204P  
VQFN (28)  
5.00mm × 5.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 封装尺寸× 为标称值并包括引脚如适用。  
ADC CLOCK  
500 MHz  
156.25 MHz  
Oscillator  
LMK1D1204P  
LVDS Buffer  
IN_SEL  
FPGA CLOCK  
0Ex  
应用示例  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNAS830  
 
 
 
 
 
LMK1D1204P  
ZHCSP13A SEPTEMBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
Table of Contents  
9.2 Functional Block Diagram.........................................13  
9.3 Feature Description...................................................14  
9.4 Device Functional Modes..........................................14  
10 Application and Implementation................................17  
10.1 Application Information........................................... 17  
10.2 Typical Application.................................................. 17  
10.3 Power Supply Recommendations...........................20  
10.4 Layout..................................................................... 21  
11 Device and Documentation Support..........................23  
11.1 Documentation Support.......................................... 23  
11.2 支持资源..................................................................23  
11.3 Trademarks............................................................. 23  
11.4 静电放电警告...........................................................23  
11.5 术语表..................................................................... 23  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison.........................................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings........................................ 6  
7.2 ESD Ratings............................................................... 6  
7.3 Recommended Operating Conditions.........................6  
7.4 Thermal Information....................................................7  
7.5 Electrical Characteristics.............................................7  
7.6 Typical Characteristics..............................................10  
8 Parameter Measurement Information.......................... 11  
9 Detailed Description......................................................13  
9.1 Overview...................................................................13  
Information.................................................................... 23  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (September 2021) to Revision A (June 2023)  
Page  
• 更新了数据表格式以LMK1D1208P 数据表版本保持一致...............................................................................1  
• 将表标题从“器件信息”更改为“封装信息”....................................................................................................1  
Added information to the Fail-Safe Input section..............................................................................................14  
Removed the word 'or' in the phrase 'In this example, the PHY, ASIC, FPGA and CPU'.................................18  
Moved the Power Supply Recommendations and Layout section to the Application and Implementation  
section.............................................................................................................................................................. 20  
Changed 0.1 µF (x3) to 0.1 µF (x4) in 10-4 .................................................................................................20  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS830  
2
Submit Document Feedback  
Product Folder Links: LMK1D1204P  
 
LMK1D1204P  
ZHCSP13A SEPTEMBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
5 Device Comparison  
5-1. Device Comparison  
DEVICE  
OUTPUT  
DEVICE  
TYPE  
FEATURES  
SWING  
PACKAGE  
BODY SIZE  
350 mV  
500 mV  
Global output enable and swing  
control via pin control  
LMK1D2108  
Dual 1:8  
VQFN (48)  
7.00 mm × 7.00 mm  
350 mV  
500 mV  
350 mV  
500 mV  
350 mV  
500 mV  
350 mV  
500 mV  
350 mV  
500 mV  
350 mV  
500 mV  
350 mV  
500 mV  
Global output enable and swing  
control via pin control  
LMK1D2106  
LMK1D2104  
LMK1D2102  
LMK1D1216  
LMK1D1212  
LMK1D1208P  
Dual 1:6  
Dual 1:4  
Dual 1:2  
2:16  
VQFN (40)  
VQFN (28)  
VQFN (16)  
VQFN (48)  
VQFN (40)  
VQGN (40)  
6.00 mm × 6.00 mm  
5.00 mm × 5.00 mm  
3.00 mm × 3.00 mm  
7.00 mm × 7.00 mm  
6.00 mm × 6.00 mm  
6.00 mm × 6.00 mm  
Global output enable and swing  
control via pin control  
Global output enable and swing  
control via pin control  
Global output enable control via  
pin control  
Global output enable control via  
pin control  
2:12  
Individual output enable control via  
pin control  
2:8  
Individual output enable control via  
I2C  
LMK1D1208I  
LMK1D1208  
LMK1D1204P  
LMK1D1204  
2:8  
2:8  
2:4  
2:4  
VQFN (40)  
VQFN (28)  
VQGN (28)  
VQFN (16)  
6.00 mm × 6.00 mm  
5.00 mm × 5.00 mm  
5.00 mm × 5.00 mm  
3.00 mm × 3.00 mm  
Global output enable control via  
pin control  
350 mV  
350 mV  
350 mV  
Individual output enable control via  
pin control  
Global output enable control via  
pin control  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LMK1D1204P  
English Data Sheet: SNAS830  
 
LMK1D1204P  
ZHCSP13A SEPTEMBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
6 Pin Configuration and Functions  
OUT2_P  
OUT2_N  
OE2  
22  
14  
13  
12  
11  
10  
9
GND  
OE0  
NC  
V
23  
24  
25  
26  
27  
28  
DAP  
NC  
AC_REF0  
OUT3_P  
OUT3_N  
IN0_N  
IN0_P  
V
8
V
DD  
DD  
Not to scale  
6-1. LMK1D1204P: RHD Package 28-Pin VQFN Top View  
6-1. Pin Functions  
NAME  
NO.  
TYPE(1)  
DESCRIPTION  
DIFFERENTIAL/SINGLE-ENDED CLOCK INPUT  
IN0_P  
9
10  
5
I
I
Primary: Differential input pair or single-ended input  
Secondary: Differential input pair or single-ended input.  
IN0_N  
IN1_P  
Note that INP0, INN0 are used indistinguishably with IN0_P, IN0_N.  
IN1_N  
6
INPUT SELECT  
Input Selection with an internal 500-kΩpullup and 320-kΩpulldown,  
selects input port. See 9-1.  
IN_SEL  
2
I
OUTPUT ENABLE  
Output Enable for channel 0  
OE0  
OE1  
OE2  
OE3  
13  
19  
24  
3
I
I
I
I
HIGH (default): Enable output channel 0  
LOW: Disable output channel 0 in Hi-Z state  
Output Enable for channel 1  
HIGH (default): Enable output channel 1  
LOW: Disable output channel 1 in Hi-Z state  
Output Enable for channel 2  
HIGH (default): Enable output channel 2  
LOW: Disable output channel 2 in Hi-Z state  
Output Enable for channel 3  
HIGH (default): Enable output channel 3  
LOW: Disable output channel 3 in Hi-Z state  
BIAS VOLTAGE OUTPUT  
VAC_REF0  
11  
7
Bias voltage output for capacitive-coupled inputs. If used, TI recommends  
using a 0.1-µF capacitor to GND on this pin.  
O
O
VAC_REF1  
DIFFERENTIAL CLOCK OUTPUT  
OUT0_P  
16  
17  
Differential LVDS output pair number 0  
OUT0_N  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LMK1D1204P  
English Data Sheet: SNAS830  
 
LMK1D1204P  
ZHCSP13A SEPTEMBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Functions (continued)  
NAME  
NO.  
20  
21  
22  
23  
26  
27  
TYPE(1)  
DESCRIPTION  
OUT1_P  
OUT1_N  
OUT2_P  
OUT2_N  
OUT3_P  
OUT3_N  
SUPPLY VOLTAGE  
VDD  
O
Differential LVDS output pair number 1  
O
O
Differential LVDS output pair number 2  
Differential LVDS output pair number 3  
8, 15, 28  
1, 14  
P
Device power supply (1.8 V, 2.5 V, or 3.3 V)  
Ground  
GROUND  
GND  
G
MISC  
DAP  
GND  
NC  
Die Attach Pad. Connect to the printed circuit board (PCB) ground plane for  
heat dissipation.  
DAP  
NC  
4, 12, 18, 25  
No Connection. Leave floating  
(1) G = Ground, I = Input, O = Output, P = Power  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LMK1D1204P  
English Data Sheet: SNAS830  
 
LMK1D1204P  
ZHCSP13A SEPTEMBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
20  
50  
MAX  
3.6  
UNIT  
V
VDD  
VIN  
VO  
IIN  
Supply voltage  
Input voltage  
3.6  
V
Output voltage  
VDD + 0.3  
20  
V
Input current  
mA  
mA  
°C  
°C  
IO  
Continuous output current  
Junction temperature  
Storage temperature (2)  
50  
TJ  
135  
Tstg  
150  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) Device unpowered  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±3000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/  
JEDEC JS-002, all pins(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.135  
2.375  
1.71  
NOM  
3.3  
MAX  
3.465  
2.625  
1.89  
UNIT  
3.3-V supply  
VDD  
Core supply voltage  
Supply voltage ramp  
2.5-V supply  
2.5  
V
1.8-V supply  
1.8  
Supply  
Ramp  
Requires monotonic ramp (10-90% of  
0.1  
20  
ms  
VDD  
)
TA  
TJ  
Operating free-air temperature  
Operating junction temperature  
105  
135  
°C  
°C  
40  
40  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS830  
6
Submit Document Feedback  
Product Folder Links: LMK1D1204P  
 
 
 
 
 
 
 
 
LMK1D1204P  
ZHCSP13A SEPTEMBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
7.4 Thermal Information  
LMK1D1204P  
THERMAL METRIC(1)  
RHD (VQFN)  
28 PINS  
38.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
32.1  
18.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1
ΨJT  
18.7  
ΨJB  
RθJC(bot)  
8.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
VDD = 1.8 V ± 5 %, 40°C TA 105°C. Typical values are at VDD = 1.8 V, 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY CHARACTERISTICS  
All-outputs enabled and  
unterminated, f = 0 Hz (1)  
IDDSTAT  
IDD100M  
LMK1D1204P  
LMK1D1204P  
50  
60  
mA  
mA  
All-outputs enabled, RL = 100 Ω, f  
=100 MHz  
72  
INPUT CHARACTERISTICS (Applies to VDD = 1.8 V ± 5%, 2.5 V ± 5% and 3.3 V ± 5%)  
VdI3  
VIH  
3-state input  
Open  
0.4 × VCC  
V
V
Minimum input voltage for a  
logical "1" state  
Input high voltage  
0.7 × VCC  
VCC + 0.3  
0.3 × VCC  
30  
Maximum input voltage for a  
logical "0" state  
VIL  
IIH  
Input low voltage  
Input high current  
V
0.3  
VDD can be 1.8V/2.5V/3.3V with  
VIH = VDD  
µA  
µA  
VDD can be 1.8V/2.5V/3.3V with  
VIH = VDD  
IIL  
Input low current  
30  
Rpull-up(EN)  
Input pullup resistor  
500  
320  
kΩ  
kΩ  
Rpull-down(EN) Input pulldown resistor  
SINGLE-ENDED LVCMOS/LVTTL CLOCK INPUT (Applies to VDD = 1.8 V ± 5%, 2.5 V ± 5% and 3.3 V ± 5%)  
fIN  
Input frequency  
Clock input  
DC  
0.4  
250  
MHz  
V
Assumes a square wave input  
with two levels  
VIN_S-E  
Single-ended Input Voltage Swing  
3.465  
Input Slew Rate (20% to 80% of the  
amplitude)  
dVIN/dt  
0.05  
V/ns  
IIH  
Input high current  
Input low current  
Input capacitance  
VDD = 3.465 V, VIH = 3.465 V  
VDD = 3.465 V, VIL = 0 V  
at 25°C  
50  
µA  
µA  
pF  
IIL  
30  
CIN_SE  
3.5  
DIFFERENTIAL CLOCK INPUT (Applies to VDD = 1.8 V ± 5%, 2.5 V ± 5% and 3.3 V ± 5%)  
fIN  
Input frequency  
Clock input  
2
2.4  
2.4  
GHz  
VPP  
VICM = 1 V (VDD = 1.8 V)  
VICM = 1.25 V (VDD = 2.5 V/3.3 V)  
0.3  
0.3  
Differential input voltage peak-to-peak  
{2*(VINP-VINN)}  
VIN,DIFF(p-p)  
VIN,DIFF(P-P) > 0.4 V (VDD = 1.8  
V/2.5/3.3 V)  
VICM  
Input common mode voltage  
0.25  
2.3  
V
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LMK1D1204P  
English Data Sheet: SNAS830  
 
 
 
LMK1D1204P  
ZHCSP13A SEPTEMBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
VDD = 1.8 V ± 5 %, 40°C TA 105°C. Typical values are at VDD = 1.8 V, 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDD = 3.465 V, VINP = 2.4 V, VINN  
= 1.2 V  
IIH  
Input high current  
30  
µA  
VDD = 3.465 V, VINP = 0 V, VINN  
1.2 V  
=
IIL  
Input low current  
µA  
pF  
30  
CIN_S-E  
Input capacitance (Single-ended)  
at 25°C  
3.5  
LVDS DC OUTPUT CHARACTERISTICS  
Differential output voltage magnitude |  
VOUTP - VOUTN  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω
|VOD|  
250  
350  
450  
15  
mV  
mV  
|
Change in differential output voltage  
magnitude. Per output, defined as the  
difference between VOD in logic hi/lo  
states.  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω
ΔVOD  
15  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω(VDD = 1.8 V)  
1
1.2  
Steady-state common mode output  
voltage  
VOC(SS)  
V
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω(VDD = 2.5 V/3.3 V)  
1.1  
1.375  
Change in steady-state common mode  
output voltage. Per output, defined as the  
difference in VOC in logic hi/lo states.  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω
15  
mV  
ΔVOC(SS)  
15  
LVDS AC OUTPUT CHARACTERISTICS  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω, fOUT = 491.52 MHz  
Vring  
Output overshoot and undershoot  
0.1  
VOD  
0.1  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω
VOS  
Output AC common mode  
50  
100  
12  
mVpp  
mA  
IOS  
Short-circuit output current (differential)  
VOUTP = VOUTN  
12  
24  
Short-circuit output current (common-  
mode)  
IOS(cm)  
VOUTP = VOUTN = 0  
24  
mA  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
tPD  
Propagation delay  
Output skew  
0.3  
0.575  
20  
ns  
ps  
Ω(2)  
Skew between outputs with the  
same load conditions  
tSK, O  
Skew between outputs on  
different parts subjected to the  
same operating conditions with  
the same input and output  
loading.  
tSK, PP  
Part-to-part skew  
250  
20  
ps  
ps  
50% duty cycle input, crossing  
tSK, P  
Pulse skew  
point-to-crossing-point distortion  
20  
(4)  
fIN = 156.25 MHz with 50% duty-  
cycle, Input slew rate = 1.5V/ns,  
Integration range = 12 kHz 20  
tRJIT(ADD)  
Random additive Jitter (rms)  
50  
60 fs, RMS  
MHz, with output load RLOAD  
=
100 Ω  
PN1kHz  
PN10kHz  
PN100kHz  
PN1MHz  
PNfloor  
143  
152  
157  
160  
164  
Phase Noise for a carrier frequency of  
156.25 MHz with 50% duty-cycle, Input  
slew rate = 1.5V/ns with output load  
RLOAD = 100 Ω  
Phase noise  
dBc/Hz  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS830  
8
Submit Document Feedback  
Product Folder Links: LMK1D1204P  
LMK1D1204P  
ZHCSP13A SEPTEMBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
VDD = 1.8 V ± 5 %, 40°C TA 105°C. Typical values are at VDD = 1.8 V, 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fIN = 156.25 MHz. The difference  
in power level at fIN when the  
selected clock is active and the  
unselected clock is static versus  
when the selected clock is inactive  
and the unselected clock is active.  
MUXISO  
Mux Isolation  
80  
dB  
ODC  
Output duty cycle  
With 50% duty cycle input  
45  
55  
300  
%
ps  
V
tR/tF  
Output rise and fall time  
Reference output voltage  
20% to 80% with RLOAD = 100 Ω  
VDD = 2.5 V, ILOAD = 100 µA  
VAC_REF  
0.9  
1.25  
1.375  
POWER SUPPLY NOISE REJECTION (PSNR) VDD = 2.5 V/ 3.3 V  
10 kHz, 100 mVpp ripple injected  
70  
50  
on VDD  
Power Supply Noise Rejection (fcarrier  
156.25 MHz)  
=
PSNR  
dBc  
1 MHz, 100 mVpp ripple injected  
on VDD  
(1) A typical 4-mA current reduction per disabled output can be expected.  
(2) Measured between single-ended/differential input crossing point to the differential output crossing point.  
(3) Defined as the magnitude of the time difference between the high-to-low and low-to-high propagation delay times at an output.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LMK1D1204P  
English Data Sheet: SNAS830  
 
 
 
LMK1D1204P  
ZHCSP13A SEPTEMBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
7.6 Typical Characteristics  
7-1 captures the variation of the LMK1D1204P current consumption with input frequency and supply voltage. 7-2 shows  
the variation of the differential output voltage (VOD) swept across frequency.  
90  
85  
80  
75  
70  
65  
VDD = 1.8 V, TA = -40  
VDD = 1.8 V, TA = 25  
VDD = 1.8 V,TA = 105  
VDD = 2.5 V, TA = -40  
VDD = 2.5 V, TA = 25  
VDD = 2.5 V,TA = 105  
VDD = 3.3 V, TA = -40  
VDD = 3.3 V, TA = 25  
VDD = 3.3 V,TA =105  
60  
55  
0
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000  
Frequency (MHz)  
7-1. LMK1D1204P Current Consumption vs Frequency  
380  
370  
360  
350  
340  
330  
320  
310  
300  
290  
280  
270  
260  
250  
240  
VDD = 1.8 V, TA = -40  
VDD = 1.8 V, TA = 25  
VDD = 1.8 V, Ta = 105  
VDD = 2.5 V, TA = -40  
VDD = 2.5 V, TA = 25  
VDD = 2.5 V, TA = 105  
VDD = 3.3 V, TA = -40  
VDD = 3.3 V, TA = 25  
VDD = 3.3 V, TA = 105  
100  
200  
300  
400  
500  
600 700 800 9001000  
2000  
Frequency (MHz)  
7-2. LMK1D1204P VOD vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS830  
10  
Submit Document Feedback  
Product Folder Links: LMK1D1204P  
 
 
 
LMK1D1204P  
ZHCSP13A SEPTEMBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
8 Parameter Measurement Information  
Oscilloscope  
100 W  
LVDS  
8-1. LVDS Output DC Configuration During Device Test  
Phase Noise/  
Spectrum Analyzer  
LMK1D1204P  
Balun  
100 Ω  
8-2. LVDS Output AC Configuration During Device Test  
V
IH  
V
th  
IN  
V
IL  
IN  
V
th  
8-3. DC-Coupled LVCMOS Input During Device Test  
V
OUTNx  
OUTPx  
OH  
V
OD  
V
OL  
80%  
V
(= 2 x V  
)
OD  
20%  
0 V  
OUT,DIFF,PP  
t
r
t
f
8-4. Output Voltage and Rise/Fall Time  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LMK1D1204P  
English Data Sheet: SNAS830  
 
LMK1D1204P  
ZHCSP13A SEPTEMBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
INNx  
INPx  
t
t
t
PLH0  
PHL0  
PHL1  
OUTN0  
OUTP0  
t
PLH1  
OUTN1  
OUTP1  
t
t
PLH2  
PHL2  
OUTN2  
OUTP2  
t
t
PHL7  
PLH7  
OUTN7  
OUTP7  
A. Output skew is calculated as the greater of the following: the difference between the fastest and the slowest tPLHn or the difference  
between the fastest and the slowest tPHLn (n = 0, 1, 2, ..7)  
B. Part to part skew is calculated as the greater of the following: the difference between the fastest and the slowest tPLHn or the difference  
between the fastest and the slowest tPHLn across multiple devices (n = 0, 1, 2, ..7)  
8-5. Output Skew and Part-to-Part Skew  
V
ring  
OUTNx  
V
OD  
0 V Differential  
OUTPx  
8-6. Output Overshoot and Undershoot  
V
OS  
GND  
8-7. Output AC Common Mode  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS830  
12  
Submit Document Feedback  
Product Folder Links: LMK1D1204P  
LMK1D1204P  
ZHCSP13A SEPTEMBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The LMK1D1204P LVDS drivers use CMOS transistors to control the output current. Therefore, proper biasing  
and termination are required to ensure correct operation of the device and to maximize signal integrity.  
The proper LVDS termination for signal integrity over two 50-Ω lines is 100 Ω between the outputs on the  
receiver end. Either DC-coupled termination or AC-coupled termination can be used for LVDS outputs. TI  
recommends placing a termination resistor close to the receiver. If the receiver is internally biased to a voltage  
different than the output common-mode voltage of the LMK1D1204P, AC coupling must be used. If the LVDS  
receiver has internal 100-Ωtermination, external termination must be omitted.  
9.2 Functional Block Diagram  
VDD  
1.8 to 3.3 V  
OE0  
OUT0  
LVDS  
OE1  
Reference  
Generator  
VAC_REF  
OE1  
IN0  
IN1  
LVDS  
OUT1  
IN_MUX  
VDD  
OE2  
Rpull-up  
IN_SEL  
OE2  
LVDS  
OUT2  
Rpull-down  
OE3  
OUT3  
LVDS  
GND  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LMK1D1204P  
English Data Sheet: SNAS830  
 
 
 
LMK1D1204P  
ZHCSP13A SEPTEMBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
9.3 Feature Description  
The LMK1D1204P is a low additive jitter LVDS fan-out buffer that can generate up to four copies of two  
selectable LVPECL, LVDS, HCSL, CML, or LVCMOS inputs. The LMK1D1204P can accept reference clock  
frequencies up to 2 GHz while providing low output skew.  
9.3.1 Fail-Safe Input  
The LMK1D120x family of devices is designed to support fail-safe input operation feature. This feature allows the  
user to drive the device inputs before VDD is applied without damaging the device. Refer to Specifications for  
more information on the maximum input supported by the device. The user should note that incorporating the  
fail-safe inputs also results in a slight increase in clock input pin capacitance. The device also incorporates an  
input hysteresis which prevents random oscillation in absence of an input signal. Furthermore, this feature allows  
the input pins to be left open.  
9.4 Device Functional Modes  
The two inputs of the LMK1D1204P are internally muxed together and can be selected through the control pin  
(see 9-1). Unused inputs can be left floating to reduce overall component cost. Both AC- and DC-coupling  
schemes can be used with the LMK1D1204P to provide greater system flexibility.  
9-1. Input Selection Table  
IN_SEL  
ACTIVE CLOCK INPUT  
IN0_P, IN0_N  
IN1_P, IN1_N  
None (1)  
0
1
Open  
(1) The input buffers are disabled and the state of the outputs are  
dependent on the state of OEx (see 9-2). If OEx = 0, the  
corresponding output will be disabled in Hi-Z state, whereas if  
OEx = 1 (default), the corresponding output will be logic low.  
The outputs of the LMK1D1204P can be individually enabled or disabled using the OEx hardware pins (see 表  
9-2). The disabled state of the outputs is Hi-Z (high impedance) as this reduces the power consumption and also  
prevents back-biasing of the devices connected to these outputs.  
Unused outputs should be disabled to eliminate the need for a termination resistor. In the case of enabled  
unused outputs, TI recommends a 100-Ωtermination for optimal performance.  
9-2. Output Control  
OEx  
0
CLOCK OUTPUTS  
OUTPx, OUTNx disabled in Hi-Z  
state  
1 (default)  
OUTPx, OUTNx enabled  
9.4.1 LVDS Output Termination  
TI recommends that unused outputs are terminated differentially with a 100-Ωresistor for optimum performance,  
although unterminated outputs are also okay but will result in slight degradation in performance (Output AC  
common-mode VOS) in the outputs being used.  
The LMK1D1204P can be connected to LVDS receiver inputs with DC and AC coupling as shown in 9-1 and  
9-2, respectively.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS830  
14  
Submit Document Feedback  
Product Folder Links: LMK1D1204P  
 
 
 
 
 
 
 
LMK1D1204P  
ZHCSP13A SEPTEMBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
100 W  
LVDS  
LMK1D120xP  
Z = 50 W  
9-1. Output DC Termination  
100 nF  
100 W  
LVDS  
LMK1D120xP  
Z = 50 W  
100 nF  
9-2. Output AC Termination (With the Receiver Internally Biased)  
9.4.2 Input Termination  
The LMK1D1204P inputs can be interfaced with LVDS, LVPECL, HCSL, or LVCMOS drivers.  
LVDS drivers can be connected to LMK1D1204P inputs with DC and AC coupling as shown 9-3 and 9-4,  
respectively.  
100 W  
LVDS  
LMK1D120xP  
Z = 50 W  
9-3. LVDS Clock Driver Connected to LMK1D1204P Input (DC-Coupled)  
100 nF  
LVDS  
LMK1D120xP  
Z = 50 W  
100 nF  
50 W  
50 W  
V
AC_REF  
9-4. LVDS Clock Driver Connected to LMK1D1204P Input (AC-Coupled)  
9-5 shows how to connect LVPECL inputs to the LMK1D1204P. The series resistors are required to reduce  
the LVPECL signal swing if the signal swing is >1.6 VPP  
.
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LMK1D1204P  
English Data Sheet: SNAS830  
 
 
 
 
 
LMK1D1204P  
ZHCSP13A SEPTEMBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
75 W  
100 nF  
LMK1D120xP  
LVPECL  
Z = 50 W  
100 nF  
50 W  
75 W  
150 W  
150 W  
50 W  
V
AC_REF  
9-5. LVPECL Clock Driver Connected to LMK1D1204P Input  
9-6 shows how to couple a LVCMOS clock input to the LMK1D1204P directly.  
R
S
LVCMOS  
(1.8/2.5/3.3 V)  
LMK1D120XP  
V
V
+
2
V
=
IH  
IL  
th  
9-6. 1.8-V, 2.5-V, or 3.3-V LVCMOS Clock Driver Connected to LMK1D1204P Input  
For unused input, TI recommends grounding both input pins (INP, INN) using 1-kΩresistors.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS830  
16  
Submit Document Feedback  
Product Folder Links: LMK1D1204P  
 
 
LMK1D1204P  
ZHCSP13A SEPTEMBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
10 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
10.1 Application Information  
The LMK1D1204P is a low additive jitter universal to LVDS fan-out buffer with two selectable inputs and pin  
controlled output enables. The small package size, low output skew, low propagation delay and low additive jitter  
of this device is designed for applications that require high-performance clock distribution as well as for low-  
power and space-constraint applications.  
10.2 Typical Application  
1.8 V / 2.5 V / 3.3 V  
PHY  
PRIREF_P  
156.25 MHz LVDS  
From Backplane  
100  
PRIREF_N  
50  
50  
VAC_REF  
ASIC  
100  
156.25 MHz LVCMOS  
Oscillator  
SECREF_P  
FPGA  
100  
2.5 V  
1k  
SECREF_N  
CPU  
1k  
100  
10-1. Fan-Out Buffer for Line Card Application  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LMK1D1204P  
English Data Sheet: SNAS830  
 
 
 
 
LMK1D1204P  
ZHCSP13A SEPTEMBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
10.2.1 Design Requirements  
The LMK1D1204P shown in 10-1 is configured to select two inputs: a 156.25-MHz LVDS clock from the  
backplane, or a secondary 156.25-MHz, LVCMOS, 2.5-V oscillator. The LVDS clock is AC-coupled and biased  
using the integrated reference voltage generator. A resistor divider is used to set the threshold voltage correctly  
for the LVCMOS clock. 0.1-µF capacitors are used to reduce noise on both VAC_REF and SECREF_N. Either  
input signal can be then fanned out to desired devices, as shown. The configuration example is driving 4 LVDS  
receivers in a line card application with the following properties:  
The PHY device is capable of DC coupling with an LVDS driver such as the LMK1D1204P. This PHY device  
features internal termination so no additional components are required for proper operation.  
The ASIC LVDS receiver features internal termination and operates at the same common-mode voltage as  
the LMK1D1204P. Again, no additional components are required.  
The FPGA requires external AC coupling, but has internal termination. 0.1-µF capacitors are placed to  
provide AC coupling. Similarly, the CPU is internally terminated, and requires only external AC-coupling  
capacitors.  
The unused outputs of the LMK1D1204P can be disabled using the corresponding OEx pin. This results in a  
lower power consumption.  
10.2.2 Detailed Design Procedure  
See Input Termination for proper input terminations, dependent on single-ended or differential inputs.  
See LVDS Output Termination for output termination schemes depending on the receiver application.  
Unused outputs can be disabled using the corresponding OEx pin setting according to 9-2. Disabling the  
outputs also eliminates requirement of termination resistors.  
In this example, the PHY, ASIC, FPGA and CPU require different schemes. Power supply filtering and bypassing  
is critical for low-noise applications.  
See Power Supply Recommendations for recommended filtering techniques. A reference layout is provided in  
Low-Additive Jitter, Four LVDS Outputs Clock Buffer Evaluation Board user's guide (SCAU043).  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS830  
18  
Submit Document Feedback  
Product Folder Links: LMK1D1204P  
 
LMK1D1204P  
ZHCSP13A SEPTEMBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
10.2.3 Application Curves  
This section shows the low additive noise for the LMK1D1204P. The low noise 156.25-MHz source with 24-fs  
RMS jitter shown in 10-2 drives the LMK1D1204P, resulting in 46.4-fs RMS when integrated from 12 kHz to  
20 MHz (see 10-3). The resultant additive jitter is 39.7-fs RMS for this configuration.  
Note: Reference signal is a low-noise Rhode and Schwarz SMA100B  
10-2. LMK1D1204P Reference Phase Noise, 156.25 MHz, 24-fs RMS (12 kHz to 20 MHz)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LMK1D1204P  
English Data Sheet: SNAS830  
 
LMK1D1204P  
ZHCSP13A SEPTEMBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
10-3. LMK1D1204P Output Phase Noise, 156.25 MHz, 46.4-fs RMS (12 kHz to 20 MHz)  
10.3 Power Supply Recommendations  
High-performance clock buffers are sensitive to noise on the power supply, which can dramatically increase the  
additive jitter of the buffer. Thus, it is essential to reduce noise from the system power supply, especially when  
jitter or phase noise is critical to applications.  
Filter capacitors are used to eliminate the low-frequency noise from the power supply, where the bypass  
capacitors provide the low impedance path for high-frequency noise and guard the power-supply system against  
the induced fluctuations. These bypass capacitors also provide instantaneous current surges as required by the  
device and must have low equivalent series resistance (ESR). To properly use the bypass capacitors, they must  
be placed close to the power-supply pins and laid out with short loops to minimize inductance. TI recommends  
adding as many high-frequency (for example, 0.1-µF) bypass capacitors as there are supply pins in the package.  
TI recommends, but does not require, inserting a ferrite bead between the board power supply and the chip  
power supply that isolates the high-frequency switching noises generated by the clock driver. These ferrite beads  
prevent the switching noise from leaking into the board supply. Choose an appropriate ferrite bead with low DC  
resistance because it is imperative to provide adequate isolation between the board supply and the chip supply,  
as well as to maintain a voltage at the supply pins that is greater than the minimum voltage required for proper  
operation.  
10-4 shows this recommended power-supply decoupling method.  
Board  
Supply  
Chip  
Supply  
Ferrite Bead  
1 μF  
0.1 μF (x4)  
10 μF  
GND  
GND  
GND  
10-4. Power Supply Decoupling  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS830  
20  
Submit Document Feedback  
Product Folder Links: LMK1D1204P  
 
 
 
LMK1D1204P  
ZHCSP13A SEPTEMBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
10.4 Layout  
10.4.1 Layout Guidelines  
For reliability and performance reasons, the die temperature must be limited to a maximum of 135°C.  
The device package has an exposed pad that provides the primary heat removal path to the PCB. To maximize  
the heat dissipation from the package, a thermal landing pattern including multiple vias to a ground plane must  
be incorporated into the PCB within the footprint of the package. The thermal pad must be soldered down to  
ensure adequate heat conduction to of the package. 10-5 and 10-6 show the recommended land and via  
patterns for the 28-pin LMK1D1204P device.  
10.4.2 Layout Examples  
10-5. Recommended PCB Layout, Top Layer  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LMK1D1204P  
English Data Sheet: SNAS830  
 
 
LMK1D1204P  
ZHCSP13A SEPTEMBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
10-6. Recommended PCB Layout, GND Layer  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS830  
22  
Submit Document Feedback  
Product Folder Links: LMK1D1204P  
 
LMK1D1204P  
ZHCSP13A SEPTEMBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Low-Additive Jitter, Four LVDS Outputs Clock Buffer Evaluation Board user's guide  
Texas Instruments, Power Consumption of LVPECL and LVDS Analog Design Journal  
Texas Instruments, Using Thermal Calculation Tools for Analog Components application note  
11.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.4 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LMK1D1204P  
English Data Sheet: SNAS830  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMK1D1204PRHDR  
LMK1D1204PRHDT  
ACTIVE  
VQFN  
VQFN  
RHD  
28  
28  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 105  
-40 to 105  
LMK1D  
1204P  
Samples  
Samples  
ACTIVE  
RHD  
NIPDAU  
LMK1D  
1204P  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Apr-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMK1D1204PRHDR  
LMK1D1204PRHDT  
VQFN  
VQFN  
RHD  
RHD  
28  
28  
3000  
250  
330.0  
180.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMK1D1204PRHDR  
LMK1D1204PRHDT  
VQFN  
VQFN  
RHD  
RHD  
28  
28  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RHD0028B  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.15  
4.85  
A
B
PIN 1 INDEX AREA  
5.15  
4.85  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
3.15 0.1  
2X 3  
SYMM  
(0.2) TYP  
8
14  
EXPOSED  
THERMAL PAD  
15  
7
SYMM  
29  
2X 3  
3.15 0.1  
24X 0.5  
1
21  
PIN 1 ID  
0.30  
0.18  
28X  
22  
28  
0.1  
C A B  
0.65  
0.45  
28X  
0.05  
4226146/A 08/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHD0028B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.15)  
SYMM  
28  
SEE SOLDER MASK  
DETAIL  
22  
28X (0.75)  
28X (0.24)  
24X (0.5)  
21  
1
29  
SYMM  
(4.65)  
(1.325)  
(R0.05) TYP  
7
15  
(
0.2) TYP  
VIA  
8
14  
(1.325)  
(4.65)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4226146/A 08/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHD0028B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.785) TYP  
22  
28  
28X (0.75)  
28X (0.24)  
21  
1
24X (0.5)  
(0.785) TYP  
(4.65)  
29  
SYMM  
(R0.05) TYP  
4X (1.37)  
7
15  
14  
8
4X (1.37)  
SYMM  
(4.65)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
EXPOSED PAD 29  
76% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4226146/A 08/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LMK1D1204RGTR

LMK1D120x Low Additive Jitter LVDS Buffer
TI

LMK1D1204RGTT

LMK1D120x Low Additive Jitter LVDS Buffer
TI

LMK1D1208

LMK1D120x Low Additive Jitter LVDS Buffer
TI

LMK1D1208I

具有 I²C 的 8 通道输出 1.8V、2.5V 和 3.3V LVDS 缓冲器
TI

LMK1D1208IRHAR

具有 I²C 的 8 通道输出 1.8V、2.5V 和 3.3V LVDS 缓冲器 | RHA | 40 | -40 to 105
TI

LMK1D1208IRHAT

具有 I²C 的 8 通道输出 1.8V、2.5V 和 3.3V LVDS 缓冲器 | RHA | 40 | -40 to 105
TI

LMK1D1208P

带引脚控制的 8 通道输出 1.8V、2.5V 和 3.3V LVDS 缓冲器
TI

LMK1D1208PRHAR

带引脚控制的 8 通道输出 1.8V、2.5V 和 3.3V LVDS 缓冲器 | RHA | 40 | -40 to 105
TI

LMK1D1208PRHAT

带引脚控制的 8 通道输出 1.8V、2.5V 和 3.3V LVDS 缓冲器 | RHA | 40 | -40 to 105
TI

LMK1D1208RHDR

LMK1D120x Low Additive Jitter LVDS Buffer
TI

LMK1D1208RHDT

LMK1D120x Low Additive Jitter LVDS Buffer
TI

LMK1D120X

LMK1D120x Low Additive Jitter LVDS Buffer
TI