ONET2804T [TI]

28Gbps 4 通道限幅跨阻放大器;
ONET2804T
型号: ONET2804T
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

28Gbps 4 通道限幅跨阻放大器

放大器
文件: 总33页 (文件大小:3948K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ONET2804T  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
ONET2804T 28Gbps 4 通道限幅 TIA  
1 特性  
3 说明  
1
4 通道多速率运行,最高达 28Gbps  
ONET2804T 是一款高增益限幅互阻抗放大器,适用于  
并行光学互连,数据速率最高可达 28Gbps。该器件与  
750μm 间距离光电二极管阵列配合使用,可将光信号  
转换为差分输出电压。由内部电路提供光电二极管反向  
偏置电压并感测提供给各光电二极管的平均光电流。  
10k差分互阻抗  
21GHz 带宽  
1.8μArms 输入引入噪声  
2.9mAPP 输入过载电流  
可编程输出电压  
该器件可配合引脚控制或两线制串口使用,从而实现对  
输出幅值、增益、带宽和输入阈值的控制。  
可调增益和带宽  
用于每个通道的接收信号强度指示器 (RSSI)  
通道间 40dB 隔离(仅限芯片)  
3.3V 单电源  
ONET2804T 具有 21GHz 带宽、10kΩ 增益、  
1.8µArms 输入引入噪声和每通道的接收信号强度指示  
(RSSI)。通道间的 40dB 隔离可降低接收器中的串  
扰。  
每通道 139mW  
引脚控制或 2 线控制  
片上滤波器电容  
该部件需要 3.3V 单电源供电,每个通道的功耗典型值  
139mW,差分输出幅度为 500mVPP。其工作温度  
范围为 –40°C 100°C,采用芯片形式,通道间距为  
750μm。  
工作温度范围 -40°C 100°C  
芯片尺寸:3250μm × 1450μm750μm 通道间距  
2 应用  
要获得完整数据表,请发送邮件至:onet2804t_  
request@ti.com。  
100G 以太网光发射器  
ITU OTL4.4  
器件信息(1)  
具有内部重定时功能的 CFP2CFP4 QSFP28  
模块  
器件型号  
ONET2804T  
封装  
封装尺寸(标称值)  
裸片采用叠片封装  
3250µm × 1450µm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
眼图  
VCC  
330pF  
RSSI  
RRSSI  
GND  
GND  
Photodiode  
FILTER1  
IN1  
0.1F  
0.1F  
OUT1+  
OUT1-  
OUT+  
OUT-  
1 CHANNEL of 4  
FILTER1  
GND  
GND  
GND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSEK1  
 
 
 
 
 
ONET2804T  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 13  
7.5 Register Maps......................................................... 16  
Application and Implementation ........................ 24  
8.1 Application Information............................................ 24  
8.2 Typical Applications ................................................ 24  
Power Supply Recommendations...................... 27  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings ............................................................ 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 DC Electrical Characteristics .................................... 7  
6.5 AC Electrical Characteristics..................................... 7  
6.6 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 11  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagram ....................................... 11  
7.3 Feature Description................................................. 12  
8
9
10 Layout................................................................... 28  
10.1 Layout Guidelines ................................................. 28  
10.2 Layout Example .................................................... 28  
11 器件和文档支持 ..................................................... 31  
11.1 接收文档更新通知 ................................................. 31  
11.2 社区资源................................................................ 31  
11.3 ....................................................................... 31  
11.4 静电放电警告......................................................... 31  
11.5 Glossary................................................................ 31  
12 机械、封装和可订购信息....................................... 31  
7
4 修订历史记录  
Changes from Revision A (April 2015) to Revision B  
Page  
首次公开发布的数据表............................................................................................................................................................ 1  
已添加 接收文档更新通知社区资源............................................................................................................................ 31  
Changes from Original (July 2014) to Revision A  
Page  
说明 中的文字从差分输出幅度为 450mVPP更改为差分输出幅度为 500mVPP”................................................................. 1  
Changed PAD 6, AMPL Description From: "VCC: 450 mVpp differential output swing To: "VCC: 500 mVpp  
differential output swing" in Bond Pad Functions ................................................................................................................... 4  
Changed From: Handling Ratings To: ESD Ratings ............................................................................................................. 6  
Changed the Average Input current MAX value in the Recommended Operating Conditions From: 3 mA to: 2.7 mA ........ 6  
Changed From: VOD = 450 mVPP To: VOD = 500 mVPP in the DC Electrical Characteristics condition statement ................. 7  
Changed From: VOD = 450 mVPP To: VOD = 500 mVPP in the AC Electrical Characteristics condition statement.................. 7  
Changed VOD test conditions in the AC Electrical Characteristics From: 450 mVPP To: VOD = 500 mVPP ............................ 7  
Changed VOD values in the AC Electrical Characteristics , TYP From: 450 To: 500, MAX From: 650 To: 700 mVPP .......... 7  
Changed From: VOD = 450 mVPP To: VOD = 500 mVPP in the Typical Characteristics condition statement........................... 8  
Changed text in Amplitude Adjustment From: "450 mVpp if the pad is tied to VCC" To: "500 mVpp if the pad is tied  
to VCC"................................................................................................................................................................................. 12  
Changed From: [reset = 9h] To: [reset = 0h] in Register 1 (0x01) – Amplitude and Rate for Channel 1 (offset = 1h)  
[reset = 0h]............................................................................................................................................................................ 17  
Changed Table 3, Reset value 9h To: 0h. Moved (default) From 10010 To: 0000 ............................................................. 17  
Changed From: [reset = 9h] To: [reset = 0h] in Register 7 (0x07) – Amplitude and Rate for Channel 2 (offset = 7h)  
[reset = 0h]............................................................................................................................................................................ 18  
Changed Table 9, Reset value 9h To: 0h. Moved (default) From 10010 To: 0000 ............................................................. 18  
Changed From: [reset = 9h] To: [reset = 0h] in Register 13 (0x0D) – Amplitude and Rate for Channel 3 (offset = Dh)  
[reset = 0h]............................................................................................................................................................................ 20  
Changed Table 15, Moved (default) From 10010 To: 0000................................................................................................. 20  
Changed From: [reset = 9h] To: [reset = 0h] in Register 19 (0x13) – Amplitude and Rate for Channel 4 (offset =  
13h ) [reset = 0h] .................................................................................................................................................................. 22  
Changed Table 21, Moved (default) From 10010 To: 0000................................................................................................. 22  
2
Copyright © 2014–2018, Texas Instruments Incorporated  
 
ONET2804T  
www.ti.com.cn  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
Changed the Output voltage From: 450 mVPP to: 500 mvPP in Table 28 ............................................................................. 24  
Changed text in Detailed Design Procedure From: "450 mVPP level by bonding AMPL" To: "500 mVPP level by  
bonding AMPL"..................................................................................................................................................................... 25  
Copyright © 2014–2018, Texas Instruments Incorporated  
3
ONET2804T  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
www.ti.com.cn  
5 Pin Configuration and Functions  
Bond Pad Assignment of ONET2804T  
76 75 74 73 72 71 70 69 68 67 66 65 64  
59  
56  
53 52  
51 50 49 48  
55 54  
63 62 61  
60  
58 57  
47  
VCCO1  
VCCO2  
VCCI2  
1
2
3
4
5
6
46  
45  
44  
43  
42  
41  
VCCO4  
VCCO3  
VCCI3  
VCC14  
NC  
VCCI1  
I2CENA  
AMPL  
TRSH  
CHANNEL 1  
CHANNEL 2  
CHANNEL 4  
CHANNEL 3  
7
8
40  
39  
SCL  
SDA  
RATE  
GAIN  
RSSI1  
RSSI2  
RSSI4  
RSSI3  
9
38  
37  
10  
19 20 21  
23 24  
28 29 30 31 32  
36  
11 12 13 14 15 16 17 18  
22  
25 26 27  
33 34 35  
Bond Pad Functions  
PAD  
SYMBOL  
TYPE  
DESCRIPTION  
3-state input for amplitude control of all 4 channels.  
VCC: 500 mVpp differential output swing  
Open: 300 mVpp differential output swing (default)  
GND: 250 mVpp differential output swing.  
6
AMPL  
Digital input  
2-wire interface address programming pin. Leave this pad open for a default address of  
0001100. Grounding this pad changes the 2nd address bit to a 1 (0001110).  
53  
54  
ADR1  
Digital input  
Digital input  
2-wire interface address programming pin. Leave this pad open for a default address of  
0001100. Grounding this pad changes the 1st address bit to a 1 (0001101).  
ADR0  
12, 14, 19, 21,  
26, 28, 33, 35  
FILTERx  
Analog output Bias voltage for photodiode cathode. These pads are biased to VCC - 100 mV.  
3-state input for gain control of all 4 channels.  
VCC: Minimum transimpedance  
Open: Default transimpedance  
8
GAIN  
Digital input  
GND: Medium transimpedance  
11, 15, 18, 22,  
25, 29, 32, 36,  
47, 48, 51, 52,  
55, 56, 59, 60,  
63, 64, 67, 68,  
71, 72, 75, 76  
Circuit ground. All GND pads are connected on die. Bonding all pads is recommended,  
except for 11, 15, 18, 22, 25,29,32, and 36.  
GND  
Supply  
2-wire control option. Leave the pad unconnected for pad control of the IC. Two-wire  
Digital input  
5
I2CENA  
control can be enabled by applying a high signal to the pad.  
13, 20, 27, 34 INx  
Analog input  
No Connect  
Data input to TIAx (connect to photodiode anode).  
16, 17, 23, 24,  
30, 31, 42, 61, NC  
62, 69  
Do not connect  
Used to reset the 2-wire state machine and registers. Leave open for normal operation and  
set low to reset the 2-wire interface.  
70  
NRESET  
Digital input  
49, 57, 65, 73 OUTx–  
Analog output Inverted CML data output for channel x. On-chip 50 Ω back-terminated to VCC.  
4
Copyright © 2014–2018, Texas Instruments Incorporated  
ONET2804T  
www.ti.com.cn  
PAD  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
Bond Pad Functions (continued)  
SYMBOL  
TYPE  
DESCRIPTION  
50, 58, 66, 74 OUTx+  
Analog output Non-inverted CML data output for channel x. On-chip 50 Ω back-terminated to VCC.  
3-state input for bandwidth control of all 4 channels.  
VCC: Increase the bandwidth  
Open: 21 GHz bandwidth (default)  
GND: reduce the bandwidth  
7
RATE  
Digital input  
Indicates the strength of the received signal (RSSI) for channel x if the photo diode is  
biased from FILTERx. The analog output current is proportional to the input data  
9, 10, 37, 38 RSSIx  
Analog output amplitude. Connect to an external resistor to ground (GND). For proper operation, ensure  
that the voltage at the RSSI pad does not exceed VCC - 0.65 V. If the RSSI feature is not  
used these pads should be left open.  
40  
39  
SCL  
SDA  
Digital input  
2-wire interface serial clock input. Includes a 10 kΩ pull-up resistor to VCC.  
Digital –in/out 2-wire interface serial data input. Includes a 10 kΩ pull-up resistor to VCC  
.
3-state input for threshold control.  
VCC: Crossing point shifted down  
Open: No threshold adjustment (default)  
41  
TRSH  
Digital input  
GND: Crossing point shifted up  
1, 2, 45, 46  
3, 4, 43, 44  
VCCOx  
VCCIx  
Supply  
Supply  
2.97 V – 3.47 V supply voltage for AGCx and CMLx amplifiers.  
2.97 V – 3.47 V supply voltage for input TIAx stage.  
Copyright © 2014–2018, Texas Instruments Incorporated  
5
ONET2804T  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Supply voltage(1)  
Voltage(1)  
VCCIx, VCCOx  
–0.3  
4
V
FILTERx, OUTx+, OUTx–, RSSIx, SCL, SDA, I2CENA, AMPL, RATE,  
GAIN, TRSH, ADR1, ADR0 and NRESET  
–0.3  
4
V
INx  
–0.7  
–8  
5
8
mA  
mA  
mA  
°C  
Average Input current  
FILTERx  
Continuous current at outputs OUTx+, OUTx–  
Maximum junction temperature, TJ  
Storage temperature, Tstg  
–8  
8
125  
150  
–65  
°C  
(1) All voltage values are with respect to network ground terminal.  
6.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC  
JS-001  
All pins except input INx  
Pin INx  
Electrostatic  
discharge  
(1)  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
TYP  
MAX  
3.47  
2.7  
UNIT  
V
VCC  
Supply voltage  
2.97  
3.3  
I(INx)  
Average Input current  
mA  
°C  
nH  
pF  
V
TA  
Operating backside die temperature  
Wire-bond inductance at pins FILTERx and INx  
Photodiode Capacitance  
–40  
100  
L(FILTER), L(IN)  
0.3  
0.1  
C(PD)  
VIH  
Digital input high voltage  
Digital input low voltage  
3-state input high voltage  
3-state input low voltage  
SDA, SCL  
SDA, SCL  
2
VIL  
0.8  
0.4  
V
VCC - 0.4  
V
V
6
Copyright © 2014–2018, Texas Instruments Incorporated  
ONET2804T  
www.ti.com.cn  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
6.4 DC Electrical Characteristics  
Over recommended operating conditions with VOD = 500 mVPP unless otherwise noted. Typical values are at VCC = 3.3 V and  
TA = 25°C  
PARAMETER  
Supply voltage  
TEST CONDITIONS  
MIN  
TYP  
3.3  
42  
MAX  
3.47  
57(1)  
60(1)  
198  
UNIT  
VCC  
ICC  
2.97  
V
Per channel, 30 μAPP input, maximum 85°C  
Per channel, 30 μAPP input, maximum 100°C  
Per channel, 30 μAPP input, maximum 85°C  
Per channel, 30 μAPP input, maximum 100°C  
Supply current  
mA  
139  
P(RX)  
Receiver power dissipation  
mW  
208  
VIN  
Input bias voltage  
0.75  
40  
0.85  
50  
0.98  
60  
V
Ω
ROUT  
Output resistance  
Single-ended to VCC  
V(FILTER)  
A(RSSI_IB)  
Photodiode bias voltage(2)  
2.8  
0.49  
0
3.2  
0.5  
V
RSSI gain  
Resistive load to GND(3)  
0.54  
2.5  
A/A  
µA  
RSSI output offset current (no light)  
(1) Including RSSI current  
(2) Regulated voltage typically 100mV lower than VCC  
.
(3) The RSSI output is a current output, which requires a resistive load to ground (GND). The voltage gain can be adjusted for the intended  
application by choosing the external resistor; however, for proper operation, ensure that the voltage at RSSI does not exceed  
VCC-0.65V.  
6.5 AC Electrical Characteristics  
Over recommended operating conditions with VOD = 500 mVPP unless otherwise noted. Typical values are at VCC = 3.3 V and  
TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
7
TYP  
10  
MAX  
UNIT  
kΩ  
Z21  
Small signal transimpedance  
–3dB bandwidth  
25 μAPP input signal  
25 μAPP input signal(1)  
f(3dB-H)  
f(3dB-L)  
iN(IN)  
18.5  
21  
GHz  
kHz  
μA  
Low frequency –3dB bandwidth  
Input referred RMS noise  
30  
100  
2.5  
CPD = 0.1 pF, 28 GHz BT4 filter(2)  
1.8  
35 µApp < iIN < 250 µApp  
(27.95 Gbps, PRBS9 pattern)  
2
2
4
250 µApp < iIN < 500 µApp  
(27.95 Gbps, PRBS9 pattern)  
DJ  
Deterministic jitter  
pspp  
500 µApp < iIN < 2900 µApp  
(27.95 Gbps, PRBS9 pattern)  
VOD  
PSRR  
Differential output voltage  
Crosstalk  
500 mVPP setting  
Between adjacent channels, up to 20 GHz(3)  
250  
500  
–40  
1
700  
mVPP  
dB  
RSSI response time  
Power supply rejection ratio  
μs  
F < 10 MHz(4)  
–15  
dB  
(1) The small signal bandwidth is specified over process corners, temperature, and supply voltage variation. The assumed photodiode  
capacitance is 0.1pF and the bond-wire inductance is 0.3nH. The small signal bandwidth strongly depends on environmental parasitics.  
Careful attention to layout parasitics and external components is necessary to achieve optimal performance.  
(2) Input referred RMS noise is (RMS output noise)/ (gain at 100 MHz).  
(3) Die only, no wire bonds  
(4) PSRR is the differential output amplitude divided by the voltage ripple on the supply. No input current at IN.  
Copyright © 2014–2018, Texas Instruments Incorporated  
7
ONET2804T  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
www.ti.com.cn  
6.6 Typical Characteristics  
Typical operating condition is at VCC = 3.3 V, TA = 25°C and VOD = 500 mVpp (unless otherwise noted).  
14  
12  
10  
8
12000  
10000  
8000  
6000  
4000  
2000  
0
6
4
2
0
0
200  
400  
600  
800  
1000  
-40  
-20  
0
20  
40  
60  
80  
100  
Input Current (mA)  
Ambient Temperature (èC)  
D001  
D002  
Figure 1. Transimpedance vs Input Current  
Figure 2. Small Signal Transimpedance vs Ambient  
Temperature  
6
28  
24  
20  
16  
12  
8
3
0
-3  
-6  
-9  
-12  
-15  
-18  
-21  
4
0
0.01  
0.1  
1
10  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Frequency (GHz)  
Ambient Temperature (èC)  
D004  
D003  
Figure 3. Gain vs Frequency  
(Test Fixture loss De-embedded)  
Figure 4. Small Signal Bandwidth vs Ambient Temperature  
(Test Fixture loss De-embedded)  
500  
10  
450  
400  
350  
300  
250  
200  
150  
100  
50  
8
6
4
2
0
0
0
100  
200  
300  
400  
500  
0
400  
800  
1200  
1600  
2000  
2400  
2800  
Input Current (mA)  
Input Current (mA)  
D005  
D006  
Figure 5. Output Voltage vs Input Current  
Figure 6. Deterministic Jitter vs Input Current  
8
Copyright © 2014–2018, Texas Instruments Incorporated  
ONET2804T  
www.ti.com.cn  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
Typical Characteristics (continued)  
Typical operating condition is at VCC = 3.3 V, TA = 25°C and VOD = 500 mVpp (unless otherwise noted).  
600  
500  
400  
300  
200  
100  
0
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
-40  
-20  
0
20  
40  
60  
80  
100  
0
500  
1000  
1500  
2000  
2500  
Ambient Temperature (èC)  
Input Current (mA)  
D007  
D008  
Figure 7. Input Referred Noise vs Temperature  
Figure 8. Power vs Input Current  
1500  
1250  
1000  
750  
500  
250  
0
0
250 500 750 1000 1250 1500 1750 2000 2250 2500  
Average Input Current (mA)  
D001  
Figure 9. RSSI Output Current vs Average Input Current  
Copyright © 2014–2018, Texas Instruments Incorporated  
9
ONET2804T  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
Typical operating condition is at VCC = 3.3 V, TA = 25°C and VOD = 500 mVpp (unless otherwise noted).  
27.95 GBPS  
27.95 GBPS  
Figure 10. Output Eye-Diagram, 30 µAP-P Input Current  
Figure 11. Output Eye-Diagram, 500 µAP-P Input Current  
27.95 GBPS  
27.95 GBPS  
Figure 12. Output Eye-Diagram, 1.5 mAP-P Input Current  
Figure 13. Output Eye-Diagram, 2.5 mAP-P Input Current  
10  
Copyright © 2014–2018, Texas Instruments Incorporated  
ONET2804T  
www.ti.com.cn  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
7 Detailed Description  
7.1 Overview  
A simplified block diagram of one channel of the ONET2804T is shown in Functional Block Diagram.  
The ONET2804T consists of the signal path, supply filters, a control block for DC input bias, automatic gain  
control (AGC) and received signal strength indication (RSSI), an analog reference block and a 2-wire serial  
interface and control logic block.  
The signal path consists of a transimpedance amplifier stage, a voltage amplifier, and a CML output buffer. The  
on-chip filter circuit provides a filtered VCC for the PIN photodiode and for the transimpedance amplifier. The  
RSSI provides the bias for the TIA stage and the control for the AGC.  
The DC input bias circuit and automatic gain control use internal low pass filters to cancel the DC current on the  
input and to adjust the transimpedance amplifier gain. Furthermore, circuitry is provided to monitor the received  
signal strength.  
The output amplitude, gain, bandwidth and input threshold can be globally controlled through pin settings or each  
channel can be individually controlled through the 2-wire interface.  
7.2 Functional Block Diagram  
VCCO1  
To Output Stages  
To TIA Stages  
1 Channel of 4  
VCCI1  
GND  
FILTER1  
AGC and RSSI  
Detection  
RSSI1  
VCC  
RF  
Voltage Amplifier  
with Selectable  
Bandwidth  
50  
50ꢀ  
OUT1+  
OUT1-  
IN1  
Gain Stage  
CML Output  
Buffer  
TIA  
DC Offset  
Cancellation  
VCC  
10kꢀ  
10kꢀ  
8 Bit Register  
Settings  
BW/AMP  
Gain/Thres  
Settings  
Settings  
SDA  
SCL  
SDA  
SCL  
8 Bit Register  
8 Bit Register  
8 Bit Register  
8 Bit Register  
I2CENA  
I2CENA  
NRESET  
ADR0  
NRESET  
ADR0  
2-Wire Control  
Individual Channel Control  
ADR1  
ADR1  
AMPL  
RATE  
GAIN  
TRSH  
AMPL  
RATE  
GAIN  
TRSH  
Pin Control  
Global for all 4 Channels  
Band-Gap, Analog  
References  
Power-On  
Reset  
2-Wire Interface and Control Logic  
Copyright © 2014–2018, Texas Instruments Incorporated  
11  
 
ONET2804T  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Signal Path  
The first stage of the signal path is a transimpedance amplifier which converts the photodiode current into a  
voltage. If the input signal current exceeds a certain value, the transimpedance gain is reduced by means of a  
nonlinear AGC circuit to limit the signal amplitude.  
The second stage is a limiting voltage amplifier that provides additional limiting gain and converts the single  
ended input voltage into a differential data signal. The output stage provides CML outputs with an on-chip 50Ω  
back-termination to VCC  
.
The TIA has adjustable gain, amplitude, bandwidth and input threshold and they can be globally controlled  
through pad settings or each channel can be individually controlled through the 2-wire interface. The default  
mode of operation is pad control where the state (OPEN, HI or LO) of the AMPL, BW, GAIN and TRSH pads  
sets the respective parameter. To enable 2-wire control, the I2CENA pad should be set HIGH and the  
functionality of each channel can be controlled individually through the 2-wire interface.  
7.3.2 Gain Adjustment  
The gain of all TIAs can be adjusted using the GAIN pad (pad 8) in pad control mode. The gain is set to default if  
the pad is left open. The gain is reduced approximately 4 dB if the pad is tied to ground, and reduced  
approximately 8 dB if the pad is tied to VCC. In 2-wire control mode, the gain of each channel can be adjusted  
from minimum to default. The gain is controlled with the GAIN[0..1] bits in registers 2, 8, 14 and 20 respectively  
for channels 1, 2, 3 and 4.  
7.3.3 Amplitude Adjustment  
The output amplifier of all buffers can be adjusted using the AMPL pad (pad 6) in pad control mode. The  
amplitude is set to 300 mVpp differential if the pad is left open, 250 mVpp if the pad is tied to ground and 500  
mVpp if the pad is tied to VCC (recommended mode of operation). In 2-wire control mode, the amplitude of each  
channel can be adjusted from 0mVpp to 600 mVpp. The amplitude is controlled with the AMPL[0..3] bits in  
registers 1, 7, 13 and 19 respectively for channels 1, 2, 3 and 4.  
7.3.4 Rate Select  
The small signal bandwidth can be adjusted using the RATE pad (pad 7) in pad control mode. The bandwidth is  
typically 21 GHz if the pad is left open. The bandwidth is reduced approximately 0.4 GHz if the pad is tied to  
ground, and increased by approximately 0.4 GHz if the pad is tied to VCC. In 2-wire control mode, the bandwidth  
of each channel can be adjusted up or down using the register settings RATE[0..3] in registers 1, 7, 13 and 19  
respectively for channels 1, 2, 3 and 4.  
7.3.5 Threshold Adjustment  
The TIAs have DC offset cancellation to maintain a 50% crossing point; however, the crossing point can be  
adjusted using the TRSH pad (pad 41) in pad control mode. No threshold adjustment is applied if the pad is left  
open. The crossing point is shifted up approximately 12% if the pad is tied to ground, and it is shifted down  
approximately 12% if the pad is tied to VCC. In 2-wire control mode, the crossing point can be adjusted up or  
down using register settings TH[0..3] in registers 2, 8, 14 and 20 for channels 1, 2, 3 and 4.  
7.3.6 Filter Circuitry  
The FILTER pins provide a regulated and filtered VCC for a PIN photodiode bias. The supply voltages for the  
transimpedance amplifier have on-chip capacitors but it is recommended to use external filter capacitors as well  
for best performance. The input stage has a separate VCC supply (VCCI) which is not connected on chip to the  
supply of the limiting and CML stages (VCCO).  
7.3.7 AGC and RSSI  
The voltage drop across the regulated photodiode FET is monitored by the bias and RSSI control circuit block in  
the case where a PIN diode is biased using the FILTER pins.  
If the DC input current exceeds a certain level then it is partially cancelled by means of a controlled current  
source. This keeps the transimpedance amplifier stage within sufficient operating limits for optimum performance.  
12  
Copyright © 2014–2018, Texas Instruments Incorporated  
ONET2804T  
www.ti.com.cn  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
Feature Description (continued)  
The automatic gain control circuitry adjusts the voltage gain of the AGC amplifier to ensure limiting behavior of  
the complete amplifier.  
Finally this circuit block senses the current through the FILTER FET and generates a mirrored current that is  
proportional to the input signal strength. The mirrored currents are available at the RSSI outputs and can be sunk  
to ground (GND) using an external resistor. For proper operation, ensure that the voltage at the RSSI pad does  
not exceed VCC - 0.65 V.  
7.4 Device Functional Modes  
The device has two functional modes of operation: pad control mode and 2-wire interface control mode.  
7.4.1 Pad Control  
The default mode of operation is pad control and it is recommended that the amplitude be increased to the  
500 mVpp setting by bonding AMPL (pad 6) to VCC. If further adjustment is desired as described above, then  
the control pads RATE (pad 7), GAIN (pad 8) and TRSH (pad 41) and can be bonded to either ground or VCC.  
7.4.2 2-Wire Interface Control  
To enable 2-wire interface control I2CENA (pad 5) must be bonded to VCC. In this mode of operation pad control  
is not functional and all control is initiated through the 2-wire interface as described in the 2-Wire Interface and  
Control Logic section.  
7.4.3 2-Wire Interface and Control Logic  
The ONET2804T uses a 2-wire serial interface for digital control. For example, the two circuit inputs, SDA and  
SCK, are driven by the serial data and serial clock from a microcontroller. Both inputs include 10 kΩ pull-up  
resistors to VCC. For driving these inputs, an open drain output is recommended. The 2-wire interface allows  
write access to the internal memory map to modify control registers and read access to read out control and  
status signals. The ONET2804T is a slave device only which means that it cannot initiate a transmission itself; it  
always relies on the availability of the SCK signal for the duration of the transmission. The master device  
provides the clock signal as well as the START and STOP commands. It is recommended that the device be  
used on a bus with only one master. The protocol for a data transmission is as follows:  
1. START command  
2. 7 bit slave address (0001100) followed by an eighth bit which is the data direction bit (R/W). A zero indicates  
a WRITE and a 1 indicates a READ.  
3. 8 bit register address  
4. 8 bit register data word  
5. STOP command  
Regarding timing, the ONET2804T is I2C compatible. The typical timing is shown in Figure 14 and a complete  
data transfer is shown in Figure 15. Parameters for Figure 14 are defined in Table 1.  
7.4.4 Bus Idle  
Both SDA and SCK lines remain HIGH  
7.4.5 Start Data Transfer  
A change in the state of the SDA line, from HIGH to LOW, while the SCK line is HIGH, defines a START  
condition (S). Each data transfer is initiated with a START condition.  
7.4.6 Stop Data Transfer  
A change in the state of the SDA line from LOW to HIGH while the SCK line is HIGH defines a STOP condition  
(P). Each data transfer is terminated with a STOP condition; however, if the master still wishes to communicate  
on the bus, it can generate a repeated START condition and address another slave without first generating a  
STOP condition.  
Copyright © 2014–2018, Texas Instruments Incorporated  
13  
 
ONET2804T  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
www.ti.com.cn  
Device Functional Modes (continued)  
7.4.7 Data Transfer  
Only one data byte can be transferred between a START and a STOP condition. The receiver acknowledges the  
transfer of data.  
7.4.8 Acknowledge  
Each receiving device, when addressed, is obliged to generate an acknowledge bit. The transmitter releases the  
SDA line and a device that acknowledges must pull down the SDA line during the acknowledge clock pulse in  
such a way that the SDA line is stable LOW during the HIGH period of the acknowledge clock pulse. Setup and  
hold times must be taken into account. When a slave-receiver does not acknowledge the slave address, the data  
line must be left HIGH by the slave. The master can then generate a STOP condition to abort the transfer. If the  
slave-receiver does acknowledge the slave address but some time later in the transfer cannot receive any more  
data bytes, the master must abort the transfer. This is indicated by the slave generating the not acknowledge on  
the first byte to follow. The slave leaves the data line HIGH and the master generates the STOP condition.  
SDA  
tR  
tF  
tHDSTA  
tBUF  
tLOW  
tHIGH  
SCK  
P
S
S
P
tHDSTA  
tHDDAT  
tSUDAT  
tSUSTA  
tSUSTO  
Figure 14. I2C Timing Diagram  
Table 1. Timing Diagram Definitions  
MIN  
MAX  
UNIT  
kHz  
µs  
fSCK  
tBUF  
SCK clock frequency  
400  
Bus free time between START and STOP conditions  
1.3  
0.6  
Hold time after repeated START condition. After this period,  
the first clock pulse is generated  
tHDSTA  
µs  
tLOW  
tHIGH  
tSUSTA  
tHDDAT  
tSUDAT  
tR  
Low period of the SCK clock  
High period of the SCK clock  
Setup time for a repeated START condition  
Data HOLD time  
1.3  
0.6  
0.6  
0
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
Data setup time  
100  
Rise time of both SDA and SCK signals  
Fall time of both SDA and SCK signals  
Setup time for STOP condition  
300  
300  
tF  
tSUSTO  
0.6  
14  
Copyright © 2014–2018, Texas Instruments Incorporated  
ONET2804T  
www.ti.com.cn  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
Write Sequence  
1
1
1
8
1
8
1
1
7
S
Slave Address  
Wr  
A
Register Address  
A
Data Byte  
A
P
Read Sequence  
1
1
1
8
1
1
1
1
8
1
1
7
7
S
Slave Address  
Wr  
A
Register Address  
A
S
Slave Address  
Rd  
A
Data Byte  
N
P
Legend  
S
Start Condition  
Write Bit (bit value = 0)  
Read Bit (bit value = 1)  
Acknowledge  
Wr  
Rd  
A
Not Acknowledge  
Stop Condition  
N
P
Figure 15. Data Transfer  
Copyright © 2014–2018, Texas Instruments Incorporated  
15  
ONET2804T  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
www.ti.com.cn  
7.5 Register Maps  
The register mapping for register addresses 0 (0x00) through 15 (0x0F) are shown in Table 2 through Table 27.  
Figure 16 through Figure 41 describes the circuit functionality based on the register settings.  
7.5.1 Register 0 (0x00) – Control Settings (offset = 0h) [reset = 0h]  
Figure 16. Register 0 (0x00) – Control Settings  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RESET  
PD  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
PWRITE  
Table 2. Register 0 (0x00) – Control Settings Field Descriptions  
Bit  
Field  
Type Reset Description  
7
RESET  
W
0h  
Reset registers bit  
1 = Resets all registers to default values  
0 = Normal operation  
6
PD  
R/W  
0h  
Power down bit  
1 = Power down all channels (ICC 4 mA)  
0 = Normal operation  
5
4
3
2
1
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
PWRITE  
R/W  
0h  
Parallel write mode bit  
1 = Parallel write enabled (write register value to all channels)  
0 = Serial write  
16  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
 
ONET2804T  
www.ti.com.cn  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
7.5.2 Register 1 (0x01) – Amplitude and Rate for Channel 1 (offset = 1h) [reset = 0h]  
Figure 17. Register 1 (0x01) – Amplitude and Rate for Channel 1  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RATE3  
RATE2  
RATE1  
RATE0  
AMP3  
AMP2  
AMP1  
AMP0  
Table 3. Register 1 (0x01) – Amplitude and Rate for Channel 1 Field Descriptions  
Bit  
Field  
Type Reset Description  
7
6
5
4
RATE3  
RATE2  
RATE1  
RATE0  
R/W  
0h  
Rate adjustments bits for channel 1  
0000 – 21 GHz (default)  
0111 – BW decrease of approximately 0.4 GHz  
1111 – BW increase of approximately 0.4 GHz  
R/W  
0h  
Amplitude adjustment bits for channel 1  
0000 – 0mVpp (default) 1000 – 250mVpp  
0001 – 50mVpp  
0010 – 100mVpp  
0011 – 150mVpp  
0100 – 200mVpp  
0101 – 250mVpp  
0110 – 300mVpp  
0111 – 350mVpp  
1001 – 300mVpp  
1010 – 350mVpp  
1011 – 400mVpp  
1100 – 450mVpp  
1101 – 500mVpp  
1110 – 550mVpp  
1111 – 600mVpp  
3
2
1
0
AMP3  
AMP2  
AMP1  
AMP0  
7.5.3 Register 2 (0x02) Mapping – Threshold and Gain for Channel 1 (offset = 2h) [reset = 0h]  
Figure 18. Register 2 (0x02) – Threshold and Gain for Channel 1  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PD  
DIS  
GAIN1  
GAIN0  
TH3  
TH2  
TH1  
TH0  
Table 4. Register 2 (0x02) – Threshold and Gain for Channel 1  
Bit  
Field  
Type Reset Description  
7
PD  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Power down bit for channel 1  
1 = Power down channel 1  
0 = Normal operation  
6
DIS  
Disable output buffer for channel 1  
1 = Disable channel 1 output buffer  
0 = Normal operation  
Gain adjustment bits for channel 1  
5
4
GAIN1  
GAIN0  
00 – default  
01 – NA  
10 – medium (–4 dB)  
11 – minimum (–8 dB)  
R/W  
0h  
Threshold adjustment bits for channel 1  
Minimum positive shift for 0001  
Maximum positive shift for 0111  
Zero shift for 0000 or 1000  
3
2
1
0
TH3  
TH2  
TH1  
TH0  
Minimum negative shift for 1001  
Maximum negative shift for 1111  
7.5.4 Register 3 (0x03) – Reserved  
Figure 19. Register 3 (0x03) – Reserved  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Table 5. Register 3 (0x03) – Reserved Field Descriptions  
Bit  
0-7  
Field  
Type Reset Description  
Reserved  
Copyright © 2014–2018, Texas Instruments Incorporated  
17  
ONET2804T  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
www.ti.com.cn  
7.5.5 Register 4 (0x04) – Reserved  
Figure 20. Register 4 (0x04) – Reserved  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Table 6. Register 4 (0x04) – Reserved Field Descriptions  
Bit  
0-7  
Field  
Type Reset Description  
Reserved  
7.5.6 Register 5 (0x05) – Reserved  
Figure 21. Register 5 (0x05) – Reserved  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Table 7. Register 5 (0x05) – Reserved Field Descriptions  
Bit  
0-7  
Field  
Type Reset Description  
Reserved  
7.5.7 Register 6 (0x06) – Reserved  
Figure 22. Register 6 (0x06) – Reserved  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Table 8. Register 6 (0x06) – Reserved Field Descriptions  
Bit  
0-7  
Field  
Type Reset Description  
Reserved  
7.5.8 Register 7 (0x07) – Amplitude and Rate for Channel 2 (offset = 7h) [reset = 0h]  
Figure 23. Register 7 (0x07) – Amplitude and Rate for Channel 2  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RATE3  
RATE2  
RATE1  
RATE0  
AMP3  
AMP2  
AMP1  
AMP0  
Table 9. Register 7 (0x07) – Amplitude and Rate for Channel 2 Field Descriptions  
Bit  
Field  
Type Reset Description  
7
6
5
4
RATE3  
RATE2  
RATE1  
RATE0  
R/W  
0h  
Rate adjustments bits for channel 2  
0000 – 21 GHz (default)  
0111 – BW decrease of approximately 0.4 GHz  
1111 – BW increase of approximately 0.4 GHz  
R/W  
0h  
Amplitude adjustment bits for channel 2  
0000 – 0mVpp (default)  
0001 – 50mVpp  
1000 – 250mVpp  
1001 – 300mVpp  
1010 – 350mVpp  
1011 – 400mVpp  
1100 – 450mVpp  
1101 – 500mVpp  
1110 – 550mVpp  
1111 – 600mVpp  
3
2
1
0
AMP3  
AMP2  
AMP1  
AMP0  
0010 – 100mVpp  
0011 – 150mVpp  
0100 – 200mVpp  
0101 – 250mVpp  
0110 – 300mVpp  
0111 – 350mVpp  
18  
Copyright © 2014–2018, Texas Instruments Incorporated  
ONET2804T  
www.ti.com.cn  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
7.5.9 Register 8 (0x08) Mapping – Threshold and Gain for Channel 1 (offset = 8h) [reset = 0h]  
Figure 24. Register 8 (0x08) – Threshold and Gain for Channel 2  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PD  
DIS  
GAIN1  
GAIN0  
TH3  
TH2  
TH1  
TH0  
Table 10. Register 8 (0x08) – Threshold and Gain for Channel 2  
Bit  
Field  
Type Reset Description  
7
PD  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Power down bit for channel 2  
1 = Power down channel 2  
0 = Normal operation  
6
DIS  
Disable output buffer for channel 2  
1 = Disable channel 2 output buffer  
0 = Normal operation  
Gain adjustment bits for channel 2  
5
4
GAIN1  
GAIN0  
00 – default  
01 – NA  
10 – medium (–4 dB)  
11 – minimum (–8 dB)  
R/W  
0h  
Threshold adjustment bits for channel 2  
Minimum positive shift for 0001  
Maximum positive shift for 0111  
Zero shift for 0000 or 1000  
3
2
1
0
TH3  
TH2  
TH1  
TH0  
Minimum negative shift for 1001  
Maximum negative shift for 1111  
7.5.10 Register 9 (0x09) – Reserved  
Figure 25. Register 9 (0x09) – Reserved  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Table 11. Register 9 (0x09) – Reserved Field Descriptions  
Bit  
0-7  
Field  
Type Reset Description  
Reserved  
7.5.11 Register 10 (0x0A) – Reserved  
Figure 26. Register 10 (0x0A) – Reserved  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Table 12. Register 10 (0x0A) – Reserved Field Descriptions  
Bit  
0-7  
Field  
Type Reset Description  
Reserved  
7.5.12 Register 11 (0x0B) – Reserved  
Figure 27. Register 11 (0x0B) – Reserved  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Table 13. Register 11 (0x0B) – Reserved Field Descriptions  
Bit  
0-7  
Field  
Type Reset Description  
Reserved  
Copyright © 2014–2018, Texas Instruments Incorporated  
19  
ONET2804T  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
www.ti.com.cn  
7.5.13 Register 12 (0x0C) – Reserved  
Figure 28. Register 12 (0x0C) – Reserved  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Table 14. Register 12 (0x0C) – Reserved Field Descriptions  
Bit  
0-7  
Field  
Type Reset Description  
Reserved  
7.5.14 Register 13 (0x0D) – Amplitude and Rate for Channel 3 (offset = Dh) [reset = 0h]  
Figure 29. Register 13 (0x0D) – Amplitude and Rate for Channel 3  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RATE3  
RATE2  
RATE1  
RATE0  
AMP3  
AMP2  
AMP1  
AMP0  
Table 15. Register 13 (0x0D) – Amplitude and Rate for Channel 3 Field Descriptions  
Bit  
Field  
Type Reset Description  
7
6
5
4
RATE3  
RATE2  
RATE1  
RATE0  
R/W  
0h  
Rate adjustments bits for channel 3  
0000 – 21 GHz (default)  
0111 – BW decrease of approximately 0.4 GHz  
1111 – BW increase of approximately 0.4 GHz  
R/W  
0h  
Amplitude adjustment bits for channel 3  
0000 – 0mVpp (default)  
0001 – 50mVpp  
1000 – 250mVpp  
1001 – 300mVpp  
1010 – 350mVpp  
1011 – 400mVpp  
1100 – 450mVpp  
1101 – 500mVpp  
1110 – 550mVpp  
1111 – 600mVpp  
3
2
1
0
AMP3  
AMP2  
AMP1  
AMP0  
0010 – 100mVpp  
0011 – 150mVpp  
0100 – 200mVpp  
0101 – 250mVpp  
0110 – 300mVpp  
0111 – 350mVpp  
7.5.15 Register 14 (0x0E) Mapping – Threshold and Gain for Channel 3 (offset = Eh) [reset = 0h]  
Figure 30. Register 14 (0x0E) – Threshold and Gain for Channel 3  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PD  
DIS  
GAIN1  
GAIN0  
TH3  
TH2  
TH1  
TH0  
Table 16. Register 14 (0x0E) – Threshold and Gain for Channel 3  
Bit  
Field  
Type Reset Description  
7
PD  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Power down bit for channel 3  
1 = Power down channel 3  
0 = Normal operation  
6
DIS  
Disable output buffer for channel 3  
1 = Disable channel 3 output buffer  
0 = Normal operation  
Gain adjustment bits for channel 3  
5
4
GAIN1  
GAIN0  
00 – default  
01 – NA  
10 – medium (–4 dB)  
11 – minimum (–8 dB)  
TH3  
TH2  
TH1  
TH0  
R/W  
0h  
Threshold adjustment bits for channel 3  
Minimum positive shift for 0001  
Maximum positive shift for 0111  
Zero shift for 0000 or 1000  
Minimum negative shift for 1001  
Maximum negative shift for 1111  
3
2
1
0
20  
Copyright © 2014–2018, Texas Instruments Incorporated  
ONET2804T  
www.ti.com.cn  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
7.5.16 Register 15 (0x0F) – Reserved  
Figure 31. Register 15 (0x0F) – Reserved  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Table 17. Register 15 (0x0F) – Reserved Field Descriptions  
Bit  
0-7  
Field  
Type Reset Description  
Reserved  
7.5.17 Register 16 (0x10) – Reserved  
Figure 32. Register 16 (0x10) – Reserved  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Table 18. Register 16 (0x10) – Reserved Field Descriptions  
Bit  
0-7  
Field  
Type Reset Description  
Reserved  
7.5.18 Register 17 (0x11) – Reserved  
Figure 33. Register 17 (0x11) – Reserved  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Table 19. Register 17 (0x11) – Reserved Field Descriptions  
Bit  
0-7  
Field  
Type Reset Description  
Reserved  
7.5.19 Register 18 (0x12) – Reserved  
Figure 34. Register 18 (0x12) – Reserved  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Table 20. Register 18 (0x12) – Reserved Field Descriptions  
Bit  
0-7  
Field  
Type Reset Description  
Reserved  
Copyright © 2014–2018, Texas Instruments Incorporated  
21  
ONET2804T  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
www.ti.com.cn  
7.5.20 Register 19 (0x13) – Amplitude and Rate for Channel 4 (offset = 13h ) [reset = 0h]  
Figure 35. Register 19 (0x13) – Amplitude and Rate for Channel 4  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RATE3  
RATE2  
RATE1  
RATE0  
AMP3  
AMP2  
AMP1  
AMP0  
Table 21. Register 19 (0x13) – Amplitude and Rate for Channel 4 Field Descriptions  
Bit  
Field  
Type Reset Description  
7
6
5
4
RATE3  
RATE2  
RATE1  
RATE0  
R/W  
0h  
Rate adjustments bits for channel 4  
0000 – 21 GHz (default)  
0111 – BW decrease of approximately 0.4 GHz  
1111 – BW increase of approximately 0.4 GHz  
R/W  
0h  
Amplitude adjustment bits for channel 4  
0000 – 0mVpp (default) 1000 – 250mVpp  
0001 – 50mVpp  
0010 – 100mVpp  
0011 – 150mVpp  
0100 – 200mVpp  
0101 – 250mVpp  
0110 – 300mVpp  
0111 – 350mVpp  
1001 – 300mVpp  
1010 – 350mVpp  
1011 – 400mVpp  
1100 – 450mVpp  
1101 – 500mVpp  
1110 – 550mVpp  
1111 – 600mVpp  
3
2
1
0
AMP3  
AMP2  
AMP1  
AMP0  
7.5.21 Register 20 (0x14) Mapping – Threshold and Gain for Channel 4 (offset =14h) [reset = 0h]  
Figure 36. Register 20 (0x14) – Threshold and Gain for Channel 4  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PD  
DIS  
GAIN1  
GAIN0  
TH3  
TH2  
TH1  
TH0  
Table 22. Register 20 (0x14) – Threshold and Gain for Channel 4  
Bit  
Field  
Type Reset Description  
7
PD  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Power down bit for channel 4  
1 = Power down channel 4  
0 = Normal operation  
6
DIS  
Disable output buffer for channel 4  
1 = Disable channel 4 output buffer  
0 = Normal operation  
Gain adjustment bits for channel 4  
5
4
GAIN1  
GAIN0  
00 – default  
01 – NA  
10 – medium (–4 dB)  
11 – minimum (–8 dB)  
TH3  
TH2  
TH1  
TH0  
R/W  
0h  
Threshold adjustment bits for channel 4  
Minimum positive shift for 0001  
Maximum positive shift for 0111  
Zero shift for 0000 or 1000  
Minimum negative shift for 1001  
Maximum negative shift for 1111  
3
2
1
0
7.5.22 Register 21 (0x15) – Reserved  
Figure 37. Register 21 (0x15) – Reserved  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Table 23. Register 21 (0x15) – Reserved Field Descriptions  
Bit  
0-7  
Field  
Type Reset Description  
Reserved  
22  
Copyright © 2014–2018, Texas Instruments Incorporated  
ONET2804T  
www.ti.com.cn  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
7.5.23 Register 22 (0x10) – Reserved  
Figure 38. Register 21 (0x10) – Reserved  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Table 24. Register 21 (0x10) – Reserved Field Descriptions  
Bit  
0-7  
Field  
Type Reset Description  
Reserved  
7.5.24 Register 23 (0x17) – Reserved  
Figure 39. Register 23 (0x17) – Reserved  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Table 25. Register 23 (0x17) – Reserved Field Descriptions  
Bit  
0-7  
Field  
Type Reset Description  
Reserved  
7.5.25 Register 24 (0x18) – Reserved  
Figure 40. Register 24 (0x18) – Reserved  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Table 26. Register 24 (0x18) – Reserved Field Descriptions  
Bit  
0-7  
Field  
Type Reset Description  
Reserved  
7.5.26 Register 25 (0x19) – Reserved  
Figure 41. Register 25 (0x19) – Reserved  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Table 27. Register 25 (0x19) – Reserved Field Descriptions  
Bit  
0-7  
Field  
Type Reset Description  
Reserved  
Copyright © 2014–2018, Texas Instruments Incorporated  
23  
ONET2804T  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
www.ti.com.cn  
8 Application and Implementation  
8.1 Application Information  
Figure 42 shows the ONET2804T being used in a 4 x 25 Gbps fiber optic receiver with pin control and Figure 45  
shows the device being used with 2-wire control. The ONET2804T converts the electrical current generated by  
the PIN photodiode into a differential output voltage. The FILTER inputs provide a DC bias voltage for the PIN  
that is low pass filtered. Because the voltage drop across the photodiode FET is sensed and used by the bias  
circuit, the photodiode must be connected to the FILTER pads for the bias to function correctly.  
The RSSI outputs are used to mirror the photodiode output current and can be connected via resistors to GND.  
The voltage gain can be adjusted for the intended application by choosing the external resistor; however, for  
proper operation of the ONET2804T, ensure that the voltage at RSSI never exceeds VCC - 0.65 V. If the RSSI  
outputs are not used while operating with internal PD bias they should be left open.  
The OUT+ and OUT– pins are internally terminated by 50 Ω pull-up resisters to VCC. The outputs must be AC  
coupled, for example by using 0.1 µF capacitors, to the succeeding device.  
8.2 Typical Applications  
8.2.1 Typical Application, Pad Control  
VCC  
VCC  
AMPL  
RATE  
TRSH  
CHANNEL 1  
CHANNEL 2  
CHANNEL 4  
CHANNEL 3  
GAIN  
RSSI4  
RSSI3  
RSSI1  
RSSI2  
Substrate  
750m Pitch  
Photodiode Array  
Figure 42. Basic Application Circuit with Pad Control  
8.2.1.1 Design Requirements  
Table 28. Design Parameters  
PARAMETER  
Input voltage  
Output voltage  
VALUE  
3.3 V  
500 mVPP  
24  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
 
ONET2804T  
www.ti.com.cn  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
8.2.1.2 Detailed Design Procedure  
The ONET2804T is designed to be used in conjunction with a 750 μm pitch photodiode array or individual  
photodiodes and assembled into a receiver optical sub-assembly (ROSA). The TIA will typically be mounted on a  
ceramic substrate with etched connections for VCC, RSSI and 100 Ω differential transmission lines for the output  
voltage. The photodiode converts the optical input signal into a current that is supplied to the TIA through wire  
bonds. The TIA then converts the input current into a voltage and further amplifies the signal. It is recommended  
to set the output amplitude to the 500 mVPP level by bonding AMPL (pad 6) to VCC.  
The ROSA is typically mounted on a printed circuit board (PCB) with 100 Ω differential transmission lines and RF  
connectors such as GPPO or 2.4 mm SMA. When measuring the output from the ROSA mounted on the PCB,  
the frequency dependent loss of the transmission lines will impact the frequency response. The loss can be de-  
embedded from the measurement to determine the actual frequency response at the output of the ROSA.  
Figure 43 shows a typical frequency response without the loss de-embedded and Figure 44 shows a typical  
frequency response with the loss de-embedded.  
8.2.1.3 Application Curves  
6
3
6
3
0
0
-3  
-3  
-6  
-6  
-9  
-9  
-12  
-15  
-18  
-21  
-12  
-15  
-18  
-21  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Frequency (GHz)  
Frequency (GHz)  
C014  
C014  
Figure 43. Gain vs Frequency (Without De-embedding)  
Figure 44. Gain vs Frequency (With De-embedding)  
Copyright © 2014–2018, Texas Instruments Incorporated  
25  
 
ONET2804T  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
www.ti.com.cn  
8.2.2 Typical Application, 2-Wire Control  
VCC  
VCC  
CHANNEL 1  
CHANNEL 2  
CHANNEL 4  
CHANNEL 3  
SCL  
SDA  
RSSI4  
RSSI3  
RSSI1  
RSSI2  
Substrate  
750m Pitch  
Photodiode Array  
Figure 45. Basic Application Circuit with 2-Wire Control  
8.2.2.1 Design Requirements  
Refer to Typical Application, Pad Control for the Design Requirements.  
8.2.2.2 Detailed Design Procedure  
Refer to Typical Application, Pad Control for the Detailed Design Procedure.  
8.2.2.3 Application Curves  
Refer to Typical Application, Pad Control for the Application Curves.  
26  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
ONET2804T  
www.ti.com.cn  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
9 Power Supply Recommendations  
The ONET2804T is designed to operate from an input supply voltage range between 2.97 V and 3.47 V. There  
are a total of 8 power supply pads that must be connected for proper operation. VCCI1-4 are used to supply  
power to the input transimpedance amplifier stages and VCCO1-4 are used to supply power to the voltage  
amplifiers and output buffers. Each amplifier is powered up separately but there are some common internal  
connections for support circuitry such as the 2-wire interface. Therefore, if only one channel is being evaluated,  
all 8 supply pads must be connected. It is recommended to use two single layer ceramic (SLC) capacitors in the  
range of 270 pF to 680 pF for power supply decoupling. VCCI1, VCCI2, VCCO1 and VCCO2 should be bonded  
to one capacitor and VCCI3, VCCI4, VCCO3 and VCCO4 should be bonded to the other capacitor. Refer to  
Figure 42 and Figure 45 for reference.  
Copyright © 2014–2018, Texas Instruments Incorporated  
27  
ONET2804T  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Careful attention to assembly parasitics and external components is necessary to achieve optimal performance.  
Minimize the total capacitance on the IN pad by using a low capacitance photodiode (100fF) and paying  
attention to stray capacitances. Place the photodiode close to the ONET2804T die and keep the wire bond  
inductance in the range of 300 to 400pH.  
Use identical termination and symmetrical transmission lines at the AC coupled differential output pins OUT+  
and OUT–.  
Use short bond wire connections for the supply terminals VCCIx, VCCOx and GND. Supply voltage filtering is  
provided on chip but filtering may be improved by using an additional external capacitor.  
The die has backside metal and conductive epoxy must be used to attach the die to ground.  
10.2 Layout Example  
The IC dimensions are shown in Figure 46, and the pad locations are provided in Table 29. The device is  
designed for wire bonding not flip chip.  
76 75  
74 73 72 71  
62 61  
59  
56  
53 52  
51 50 49  
55 54  
48  
47  
70 69 68 67 66 65 64  
63  
60  
58 57  
1
2
3
4
5
6
46  
45  
44  
43  
42  
41  
CHANNEL 1  
CHANNEL 2  
CHANNEL 4  
CHANNEL 3  
7
8
40  
39  
9
38  
37  
10  
19 20  
23 24  
30 31 32  
11 12 13 14 15 16 17 18  
21 22  
26 27 28 29  
33 34 35 36  
25  
x
3250m  
Figure 46. Chip Dimensions and Pad Locations  
Die Thickness: 203 ± 13 μm  
Pad Dimensions: 105 μm x 65 μm  
Die Size: 3250 μm ±40µm x 1450 μm ±40µm  
28  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
ONET2804T  
www.ti.com.cn  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
Layout Example (continued)  
Table 29. Bond Pad Co-ordinates  
COORDINATES  
PAD  
(Referenced to Pad 1)  
SYMBOL  
VCCO1  
TYPE  
DESCRIPTION  
x (µm)  
0
y (µm)  
0
1
Supply  
3.3V supply voltage  
3.3V supply voltage  
3.3V supply voltage  
3.3V supply voltage  
I2C Enable  
2
0
–94  
VCCO2  
VCCI2  
VCCI1  
I2CENA  
AMPL  
RATE  
GAIN  
RSSI1  
RSSI2  
GND  
Supply  
3
0
–188  
Supply  
4
0
–282  
Supply  
5
0
–376  
Digital input  
Digital input  
Digital input  
Digital input  
Analog output  
Analog output  
Supply  
6
0
–470  
Amplitude control  
Rate selection  
7
0
–580  
8
0
–704  
Gain control  
9
0
–814  
Receive signal strength indicator for channel 1  
Receive signal strength indicator for channel 2  
Circuit ground  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
0
–908  
180  
290  
400  
510  
620  
720  
829  
929  
1039  
1149  
1259  
1369  
1469  
1580  
1680  
1790  
1900  
2010  
2120  
2239  
2329  
2429  
2539  
2649  
2759  
2869  
3051  
3051  
3051  
3051  
3051  
3051  
3051  
3051  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–908  
FILTER1  
IN1  
Analog output  
Analog input  
Analog output  
Supply  
Bias voltage for photodiode 1  
TIA input for channel 1  
Bias voltage for photodiode 1  
Circuit ground  
FILTER1  
GND  
NC  
No connect  
No connect  
Supply  
Do not connect  
NC  
Do not connect  
GND  
Circuit ground  
FILTER2  
IN2  
Analog output  
Analog input  
Analog output  
Supply  
Bias voltage for photodiode 2  
TIA input for channel 2  
Bias voltage for photodiode 2  
Circuit ground  
FILTER2  
GND  
NC  
No connect  
No connect  
Supply  
Do not connect  
NC  
Do not connect  
GND  
Circuit ground  
FILTER3  
IN3  
Analog output  
Analog input  
Analog output  
Supply  
Bias voltage for photodiode 3  
TIA input for channel 3  
Bias voltage for photodiode 3  
Circuit ground  
FILTER3  
GND  
NC  
No connect  
No connect  
Supply  
Do not connect  
NC  
Do not connect  
GND  
Circuit ground  
FILTER4  
IN4  
Analog output  
Analog input  
Analog output  
Supply  
Bias voltage for photodiode 4  
TIA input for channel 4  
Bias voltage for photodiode 4  
Circuit ground  
FILTER4  
GND  
RSSI3  
RSSI4  
SDA  
Analog output  
Analog output  
Digital in/out  
Digital input  
Digital input  
No connect  
Supply  
Receive signal strength indicator for channel 3  
Receive signal strength indicator for channel 4  
2-wire data  
–814  
–704  
–579  
SCL  
2-wire clock  
–470  
TRSH  
NC  
Input threshold control (cross-point)  
Do not connect  
–376  
–282  
VCCI4  
VCCI3  
3.3V supply voltage  
–188  
Supply  
3.3V supply voltage  
Copyright © 2014–2018, Texas Instruments Incorporated  
29  
ONET2804T  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
www.ti.com.cn  
Layout Example (continued)  
Table 29. Bond Pad Co-ordinates (continued)  
COORDINATES  
(Referenced to Pad 1)  
PAD  
SYMBOL  
TYPE  
DESCRIPTION  
x (µm)  
3051  
3051  
2888  
2799  
2699  
2599  
2499  
2410  
2322  
2228  
2139  
2050  
1950  
1850  
1750  
1661  
1572  
1477  
1388  
1299  
1199  
1099  
999  
y (µm)  
–94  
0
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
VCCO3  
Supply  
Supply  
Supply  
Supply  
3.3V supply voltage  
3.3V supply voltage  
Circuit ground  
VCCO4  
GND  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
GND  
Circuit ground  
OUT4–  
OUT4+  
GND  
Analog output  
Analog output  
Supply  
Inverted data output for channel 4  
Non-inverted data output for channel 4  
Circuit ground  
GND  
Supply  
Circuit ground  
ADR1  
ADR0  
GND  
Digital input  
Digital input  
Supply  
2-wire address bit 1 control  
2-wire address bit 0 control  
Circuit ground  
GND  
Supply  
Circuit ground  
OUT3-  
OUT3+  
GND  
Analog output  
Analog output  
Supply  
Inverted data output for channel 3  
Non-inverted data output for channel 3  
Circuit ground  
GND  
Supply  
Circuit ground  
NC  
No connect  
No connect  
Supply  
Do not connect  
NC  
Do not connect  
GND  
Circuit ground  
GND  
Supply  
Circuit ground  
OUT2–  
OUT2+  
GND  
Analog output  
Analog output  
Supply  
Inverted data output for channel 2  
Non-inverted data output for channel 2  
Circuit ground  
910  
GND  
Supply  
Circuit ground  
821  
NC  
No connect  
Digital input  
Supply  
Do not connect  
728  
NRESET  
GND  
2-wire negative reset  
Circuit ground  
639  
550  
GND  
Supply  
Circuit ground  
450  
OUT1–  
OUT1+  
GND  
Analog output  
Analog output  
Supply  
Inverted data output for channel 1  
Non-inverted data output for channel 1  
Circuit ground  
350  
250  
161  
GND  
Supply  
Circuit ground  
30  
版权 © 2014–2018, Texas Instruments Incorporated  
ONET2804T  
www.ti.com.cn  
ZHCSCY8B JULY 2014REVISED MARCH 2018  
11 器件和文档支持  
11.1 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。请单击右上角的提醒我 进行注册,即可  
每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,也  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请参阅左侧的导航栏。  
版权 © 2014–2018, Texas Instruments Incorporated  
31  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Mar-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ONET2804TY  
ACTIVE  
DIESALE  
Y
0
675  
TBD  
Call TI  
Call TI  
-40 to 100  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

ONET2804TLP

具有 RSSI 的 28Gbps 低功耗 4 通道限幅跨阻放大器
TI

ONET2804TLPY

具有 RSSI 的 28Gbps 低功耗 4 通道限幅跨阻放大器 | Y | 0 | -40 to 100
TI

ONET2804TY

28Gbps 4 通道限幅跨阻放大器 | Y | 0 | -40 to 100
TI

ONET3301PA

155-MBPS TO 3.3-GBPS LIMITING AMPLIFIER
TI

ONET3301PARGT

155-MBPS TO 3.3-GBPS LIMITING AMPLIFIER
TI

ONET3301PARGTR

155-MBPS TO 3.3-GBPS LIMITING AMPLIFIER
TI

ONET3301PARGTRG4

ATM/SONET/SDH SUPPORT CIRCUIT, PQCC16, 3 X 3 MM, 0.50 MM PITCH, GREEN, PLASTIC, QFN-16
TI

ONET3301PARGTT

暂无描述
TI

ONET3301PARGTTG4

ATM/SONET/SDH SUPPORT CIRCUIT, PQCC16, 3 X 3 MM, 0.50 MM PITCH, PLASTIC, QFN-16
TI

ONET4201LD

155-Mbps to 4.25-Gbps LASER DRIVER
TI

ONET4201LDRGER

155-Mbps to 4.25-Gbps LASER DRIVER
TI

ONET4201LDRGERG4

155-Mbps to 4.25-Gbps LASER DRIVER
TI