TLC6A598 [TI]

适用于航空电子应用的高功率 8 位相移高可靠性驱动器;
TLC6A598
型号: TLC6A598
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于航空电子应用的高功率 8 位相移高可靠性驱动器

电子 航空 驱动 驱动器
文件: 总33页 (文件大小:2778K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
TLC6A598 电源逻8 位移位寄存器  
1 特性  
3 说明  
• 具有高可靠性和稳健性适合航空电子设备应用  
• 宽工作环境温度范围-55°C +125ºC  
3V 5.5V VCC 范围  
TLC6A598 器件是一款单片、高压、高电流功率 8 位  
移位寄存器专为负载功率要求相对较高的系统例  
LED而设计。  
• 八个电DMOS 晶体管输出通道  
该器件包含内置的输出钳位电压用于提供电感瞬态保  
护。电源驱动器应用包括继电器、螺线管和其他高电流  
或高电压负载。每个开漏 DMOS 晶体管都具有独立的  
斩波限流电路以防止在短路情况下损坏。  
350 mA 持续电流  
1.1A 电流限制能力  
– 输出钳位电压50V  
Rds(on)1Ω典型值)  
– 雪崩能量90mJ最大值)  
• 保护  
此器件包含一个 8 位串入、并出移位寄存器此寄存  
器为一个 8 D 类存储寄存器提供数据。输出为低  
侧、漏极开路 DMOS 晶体管额定输出为 50V连续  
灌电流能力为 350mA。内置负载开路和负载短路诊断  
机制提供增强的安全保护。器件提供循环冗余校验以  
验证移位寄存器中的寄存器值。在读回模式中该器件  
提供 6 CRC 提醒。MCU 可以读回 CRC 提醒并检  
查该提醒是否正确以确定 MCU 与该器件之间的通信  
环路是否良好。  
– 过流保护  
– 开路和短路负载检测  
– 串行接口通信误差检测  
– 热关断保护  
• 针对多级的增强型级联  
• 所有寄存器通过单个输入清零  
• 循环冗余校(CRC)  
• 低功耗  
TLC6A598 额定工作环境温度范围为 -55°C 至  
125°C。  
24 SOIC DW 封装  
2 应用  
器件信息(1)  
• 飞行控制系统  
PLC 控制和功能指示器  
• 仪表组  
封装尺寸标称值)  
器件型号  
TLC6A598  
封装  
SOIC (24)  
15.70 mm x 7.50 mm  
(1) 如需了解所有可用封装请参阅产品说明书末尾的可订购产品  
附录。  
• 继电器或螺线管驱动器  
• 电器显示面板  
LED 指示和照明  
Power  
5
V
Injectors or  
Solenoids  
0.1 μF  
LEDs  
VCC  
G
DRAIN0  
DRAIN1  
DRAIN2  
DRAIN3  
DRAIN4  
DRAIN5  
DRAIN6  
DRAIN7  
SER OUT  
RCK  
SRCK  
SER IN  
SRCLR  
MCU  
Relays  
PGND  
LGND  
典型应用原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLIS187  
 
 
 
 
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................18  
8.5 Register Maps...........................................................18  
9 Application and Implementation..................................22  
9.1 Application Information............................................. 22  
9.2 Typical Application 1................................................. 22  
9.3 Typical Application 2................................................. 24  
9.4 Typical Application 3................................................. 25  
10 Power Supply Recommendations..............................27  
11 Layout...........................................................................27  
11.1 Layout Guidelines................................................... 27  
11.2 Layout Example...................................................... 27  
12 Device and Documentation Support..........................28  
12.1 接收文档更新通知................................................... 28  
12.2 支持资源..................................................................28  
12.3 Trademarks.............................................................28  
12.4 Electrostatic Discharge Caution..............................28  
12.5 术语表..................................................................... 28  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Timing Requirements..................................................6  
6.7 Timing Waveforms...................................................... 7  
6.8 Typical Characteristics................................................9  
7 Parameter Measurement Information..........................10  
8 Detailed Description......................................................12  
8.1 Overview...................................................................12  
8.2 Functional Block Diagram.........................................13  
8.3 Feature Description...................................................14  
Information.................................................................... 28  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (December 2021) to Revision C (March 2022)  
Page  
Updated the ESD level in the ESD Ratings, Overview, and Application Information sections........................... 4  
Changes from Revision A (October 2021) to Revision B (December 2021)  
Page  
• 从数据表中删除了所有与汽车相关的信息...........................................................................................................1  
Changes from Revision * (June 2021) to Revision A (October 2021)  
Page  
• 将状态从“预告信息”更改为“量产数据”....................................................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLC6A598  
 
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
(TOP VIEW)  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
1
2
DRAIN1  
DRAIN2  
DRAIN3  
SRCLR  
G
DRAIN0  
SER IN  
VCC  
3
4
5
PGND  
PGND  
PGND  
PGND  
PGND  
RCK  
6
PGND  
7
PGND  
8
PGND  
9
LGND  
SRCK  
DRAIN4  
DRAIN5  
10  
11  
12  
SER OUT  
DRAIN7  
DRAIN6  
5-1. DW Package 24-Pin SOIC Top View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Shift register clear, active-low. The storage register transfers data to the output buffer when SRCLR is  
high. Driving SRCLR low clears all the registers in the device.  
SRCLR  
3
I
DRAIN0  
DRAIN1  
DRAIN2  
DRAIN3  
DRAIN4  
DRAIN5  
DRAIN6  
DRAIN7  
23  
24  
1
O
O
O
O
O
O
O
O
Open-drain output  
Open-drain output  
Open-drain output  
Open-drain output  
Open-drain output  
Open-drain output  
Open-drain output  
Open-drain output  
2
11  
12  
13  
14  
Output enable, active-low. Channel enable and disable input pin. Having G low enables all drain  
channels according to the output-latch register content. When high, all channels are off.  
G
4
I
5, 6, 7, 8, 17,  
18, 19, 20  
Power ground, the ground reference pin for the device. This pin must connect to the ground plane on  
the PCB.  
PGND  
LGND  
Signal ground, the ground reference pin for the device. This pin must connect to the ground plane on  
the PCB.  
16  
Register clock. The data in each shift register stage transfers to the storage register at the rising edge  
of RCK.  
RCK  
9
I
I
SER IN  
22  
15  
Serial data input. Data on SER IN loads into the internal register on each rising edge of SRCK.  
Serial data output of the 8-bit serial shift register. The purpose of this pin is to cascade several devices  
on the serial bus.  
SER OUT  
O
Serial clock input. On each rising SRCK edge, data transfers from SER IN to the internal serial shift  
registers.  
SRCK  
VCC  
10  
21  
I
I
Power supply pin for the device. TI recommends adding a 0.1-μF ceramic capacitor close to the pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLC6A598  
 
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VCC  
VI  
Supply voltage  
7
V
0.3  
logic input voltage, CLR, EN, G1, G2, RCK, SER IN,  
SRCK  
7
V
0.3  
0.3  
VDS  
ISD  
ISD  
Power DMOS Drain-source voltage  
65  
1
V
A
A
Continuous source-to-drain diode anode current  
Pulsed source-to-drain diode anode current  
2
Pulsed drain current, each output, all outputs on, TA  
= 25°C  
ID  
ID  
1.1  
A
Continuous drain current, each output, all outputs  
on, TA = 25°C  
350  
mA  
ID  
Peak drain current single output, TA = 25°C  
Single-pulse avalanche energy, TA = 25°C  
Avalanche current, TA = 25°C  
1.1  
90  
A
EAS  
IAS  
mJ  
mA  
°C  
°C  
500  
150  
150  
Operating junction temperature, TJ  
Storage temperature, Tstg  
55  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001(1)  
±7000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/  
JEDEC JS-002(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP155 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
5.5  
UNIT  
V
VCC  
I(nom)  
VIH  
Supply voltage  
3
Nominal output current  
High-level input voltage  
Low-level input voltage  
350  
mA  
V
2.4  
VIL  
0.7  
0.6  
V
Pulsed drain output current, TA = 25°C, VCC  
5 V  
=
ID  
A
1.8  
55  
TA  
Operating ambient temperature  
125  
°C  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLC6A598  
 
 
 
 
 
 
 
 
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
6.4 Thermal Information  
TLC6A598  
THERMAL METRIC(1)  
DW (SOIC-24)  
24 PINS  
55.5  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
29.5  
30.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
7.3  
30.0  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DRAIN0 to DRAIN7 Drain-to-source  
voltage  
V(BR)DSX  
VSD  
ID = 1 mA  
50  
65  
V
Source-to-drain forward  
voltage  
IF = 350 mA  
0.9  
1.1  
V
V
High-level output voltage  
SER OUT  
4.9  
4.5  
4.99  
4.69  
IOH = 20 µA  
IOH = 4 mA  
IOH = 20 µA  
IOH = 4 mA  
VI = 5 V  
VOH  
Low-level output voltage  
SER OUT  
0.02  
0.4  
1
VOL  
V
IIH  
IIL  
High-level input current  
Low-level input current  
µA  
µA  
VI = 0 V  
1  
Output current at which chopping  
starts  
IO(chop)  
TA = 25°C  
0.6  
0.8  
180  
300  
1.1  
300  
500  
600  
A
VCC = 5 V, All outputs off, no clock  
signal  
ICC  
Logic supply current  
µA  
VCC = 5 V, All outputs on, no clock  
signal  
fSRCK = 5 MHz, CL = 30 pF, all outputs  
on  
ICC(FRQ)  
I(nom)  
Logic supply current at frequency  
Nominal current  
360  
350  
µA  
VDS(on) = 0.5 V, TC = 85°C  
VDS = 40 V, TA = 25°C  
VDS = 40 V, TA = 125°C  
mA  
1
1
IDSX  
Off-state drain current  
µA  
VCC = 5 V, ID = 350 mA  
Single channel on, TA = 25°C  
Rds(on)  
Rds(on)  
Rds(on)  
Rds(on)  
Static drain-source on-state resistance  
Static drain-source on-state resistance  
Static drain-source on-state resistance  
Static drain-source on-state resistance  
1
1.1  
1.5  
1.6  
15  
1.5  
1.6  
2.2  
2.3  
25  
Ω
Ω
VCC = 3.3 V, ID=350 mA  
Single channel on, TA = 25°C  
VCC = 5 V, ID = 150 mA  
Single channel on, TA = 125°C  
Ω
VCC = 3.3 V, ID = 150 mA  
Single channel on, TA = 125°C  
Ω
Load open and short detection  
threshold  
8.5  
mA  
I(O_S_th)  
Load open and short detection  
threshold hysteresis  
5.7  
mA  
°C  
I(O_S_hys)  
TSHUTDOWN  
Thermal shutdown threshold  
150  
175  
200  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLC6A598  
 
 
 
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
THYS  
Thermal shutdown hysteresis  
18  
°C  
6.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
Propagation delay time from G to output, low-to-high  
level  
tPLH  
tPHL  
30  
ns  
Propagation delay time from G to output, high-to-low  
level  
22  
ns  
tr  
tf  
Rise time, drain output  
Fall time, drain output  
25  
35  
ns  
ns  
Propagation delay time, SRCK falling edge to  
SEROUT change  
tpd  
10  
ns  
tor  
SEROUT rise time (10% to 90%)  
SEROUT fall time (90% to 10%)  
Serial clock frequency  
3
2
ns  
ns  
tof  
fSRCK  
10  
MHz  
ns  
tSRCK_WH  
SRCK pulse duration, high  
30  
30  
10  
10  
20  
tSRCK_WL  
SRCK pulse duration, low  
ns  
tsu  
th  
Setup time, SER IN high before SRCK rise  
Hold time, SER IN high after SRCK rise  
SER IN pulse duration  
ns  
ns  
tw  
ta  
ns  
Reverse-recovery-current rise time  
Reverse-recovery time  
80  
ns  
trr  
td  
100  
ns  
Last SRCK rise to RCK rise  
200  
ns  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLC6A598  
 
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
6.7 Timing Waveforms  
6-1 shows the resistive-load test circuit and voltage waveforms. One can see from 6-1 that with G held low  
and SRCLR held high, the status of each drain changes on the rising edge of the register clock, indicating the  
transfer of data to the output buffers at that time.  
7
4
3
0
6
5
2
1
5 V  
SRCK  
G
0 V  
5 V  
5 V  
24 V  
0 V  
5 V  
VCC  
DUT  
SER IN  
ID  
SRCLR  
SRCK  
SER IN  
RCK  
0 V  
RL = 68  
5 V  
Output  
RCK  
MCU  
0 V  
DRAIN  
PGND  
5 V  
SRCLR  
CL = 30 pF  
(see Note A)  
G
0 V  
LGND  
24 V  
0.5 V  
24 V  
0.5 V  
DRAIN1,2,5,6  
DRAIN0,3,4,7  
TEST CIRCUIT  
VOLTAGE WAVEFORMs  
A. CL includes probe and jig capacitance.  
6-1. Resistive Load Operation  
6-2 shows the SER IN to SER OUT waveform. The output signal appears on the falling edge of the shift  
register clock (SRCK) because there is a phase inverter at SER OUT (see the Functional Block Diagram). As a  
result, it takes seven and a half periods of SRCK for data to transfer from SER IN to SER OUT.  
8
3
7
6
5
4
2
1
SRCK  
SER IN  
1
0
CLR  
SER OUT  
6-2. SER IN to SER OUT Waveform  
6-3 shows the test circuit, switching times, and voltage waveforms.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLC6A598  
 
 
 
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
5 V  
5 V  
24 V  
G
50%  
50%  
0 V  
tPLH  
tPHL  
VCC  
24 V  
ID  
SRCLR  
SRCK  
SER IN  
RCK  
RL = 68  
90%  
tr  
SWITCHING TIMES  
90%  
tf  
DUT  
Output  
10%  
10%  
0.5 V  
Output  
MCU  
DRAIN  
PGND  
CL = 30 pF  
(see Note A)  
5 V  
0 V  
G
50%  
SRCK  
LGND  
tsu  
th  
50%  
5 V  
0 V  
TEST CIRCUIT  
SER IN  
50%  
tw  
INPUT SETUP AND HOLD WAVEFORMS  
5 V  
0 V  
50%  
tpd  
50%  
tpd  
SRCK  
5 V  
0 V  
SER OUT  
50%  
50%  
SER OUT PROPAGATION DELAY WAVEFORM  
A. CL includes probe and jig capacitance.  
6-3. Switching Times and Voltage Waveforms  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLC6A598  
 
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
6.8 Typical Characteristics  
0.4  
0.75  
0.72  
0.69  
0.66  
0.63  
0.6  
0.57  
0.54  
0.51  
0.48  
0.45  
0.42  
0.39  
0.36  
0.33  
0.3  
VCC = 3.3 V, TA = –55°C  
VCC = 3.3 V, TA = 25 °C  
VCC = 3.3 V, TA = 125 °C  
VCC = 5 V, TA = –55°C  
VCC = 5 V, TA = 25 °C  
VCC = 5 V, TA = 125 °C  
0.375  
0.35  
0.325  
0.3  
VCC = 3.3 V, TA = 25°C  
VCC = 3.3 V, TA = 100°C  
VCC = 3.3 V, TA = 125°C  
VCC = 5 V, TA = 25°C  
VCC = 5 V, TA = 100°C  
VCC = 5 V, TA = 125°C  
0.275  
0.25  
0.225  
0.1  
0.2 0.3  
0.5 0.7  
1
2
3
4
5 6 7 8 10  
1
1.5  
2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8  
f - Frequency - MHz  
N - Number of Outputs Conducting Simultaneously  
D1 - SLIS187.grf  
D2 - SLIS187.grf  
6-4. Supply Current vs Frequency  
6-5. Maximum Continuous Drain Current of  
Each Output vs Number of Outputs Conducting  
Simultaneously  
DRAIN-SOURCE ON-STATE RESISTANCE vs DRAIN CURRENT  
DRAIN-SOURCE ON-STATE RESISTANCE vs DRAIN CURRENT  
1.9  
1.8  
TA = –55°C  
TA = –40°C  
TA = –55°C  
TA = –40°C  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
1.6  
1.4  
1.2  
1
TA = 25°C  
TA = 125°C  
Current limit  
TA = 25°C  
TA = 125°C  
Current limit  
0.9  
0.8  
0.7  
0.8  
0.6  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
1.1  
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
ID - Drain Current - A  
ID - Drain Current - A  
D3 - SLIS187.grf  
D4 - SLIS187.grf  
VCC = 3.3 V, TA = 25 °C  
VCC = 5 V, TA = 25 °C  
6-6. Static Drain-to-Source On-State Resistance 6-7. Static Drain-to-Source On-State Resistance  
vs Drain Current vs Drain Current  
1.8  
1.6  
1.4  
1.2  
1
TA = –55°C  
TA = –40°C  
TA = 25°C  
TA = 125°C  
0.8  
0.6  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
VCC - Logic Supply Voltage - V  
D5 - SLIS187.grf  
All channels on, IDS = 350 mA  
6-8. Static Drain-to-Source On-State Resistance vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLC6A598  
 
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
7-1 shows the resistive-load test circuit and voltage waveforms. One can see from 7-1 that with G held low  
and SRCLR held high, the status of each drain changes on the rising edge of the register clock, indicating the  
transfer of data to the output buffers at that time.  
7
4
3
0
6
5
2
1
5 V  
SRCK  
G
0 V  
5 V  
5 V  
24 V  
0 V  
5 V  
VCC  
DUT  
SER IN  
ID  
SRCLR  
SRCK  
SER IN  
RCK  
0 V  
RL = 68 Ω  
5 V  
Output  
RCK  
MCU  
0 V  
DRAIN  
PGND  
5 V  
SRCLR  
CL = 30 pF  
(see Note A)  
G
0 V  
LGND  
24 V  
0.5 V  
24 V  
0.5 V  
DRAIN1,2,5,6  
DRAIN0,3,4,7  
TEST CIRCUIT  
VOLTAGE WAVEFORMs  
A. CL includes probe and jig capacitance.  
7-1. Resistive-Load Test Circuit and Voltage Waveforms  
7-2 shows the reverse recovery current test circuit and waveforms of source to drain diode.  
TP K  
Circuit  
Under  
Test  
2500 μF  
250 V  
0.35 A  
(di/dt = 14 A/us)  
24 V  
L = 1 mH  
IF  
0
IF  
(see note B)  
TP A  
25% of IRM  
t3  
t2  
t1  
RG  
IRM  
(see note C)  
VGG  
(see note A)  
50  
ta  
trr  
TEST CIRCUIT  
VOLTAGE WAVEFORMs  
7-2. Reverse Recovery Current Test Circuit and Waveforms of Source to Drain Diode  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLC6A598  
 
 
 
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
备注  
A. The VGG amplitude and RG are adjusted for di/dt = 14 A/μs. A VGG double-pulse train is used to  
set IF = 0.35 A, where t1 = 10 μs, t2 = 7 μs, and t3 = 3 μs.  
备注  
B. The DRAIN terminal under test is connected to the TP K test point. All other terminals are  
connected together and connected to the TP A test point.  
备注  
C. IRM = maximum recovery current.  
7-3 shows the single pulse avalanche energy test circuit and waveforms.  
tw  
tav  
5 V  
5 V  
36 V  
Input  
VCC  
DUT  
6
0 V  
SRCLR  
SRCK  
SER IN  
RCK  
ID  
IAS = 500 mA  
300 mH  
ID  
MCU  
DRAIN  
PGND  
VDS  
V(BR)DSX = 50 V  
MIN  
G
VDS  
LGND  
TEST CIRCUIT  
VOLTAGE AND CURRENT WAVEFORMS  
7-3. Single Pulse Avalanche Energy Test Circuit and Waveforms  
备注  
A. The MCU has the following characteristics: tr 10 ns, tf 10 ns, ZO = 50 Ω.  
备注  
B. Input pulse duration, tw, is increased until peak current IAS = 500 mA.  
Energy test level is defined as EAS = (IAS × V(BR)DSX × tav) / 2 = 90 mJ.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLC6A598  
 
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TLC6A598 device is a monolithic, high-voltage, high-current 8-bit shift register designed to drive relatively  
high load power such as LEDs. The device contains a built-in voltage clamp on the outputs for inductive  
transient protection, so it can also drive relays, solenoids, and other low-current or high-voltage loads.  
This device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. Data  
transfers through both the shift and storage registers on the rising edge of the shift register clock (SRCK) and the  
register clock (RCK) respectively. The storage register transfers data to the output buffer when shift register clear  
(CLR) is high. When CLR is low, all registers in the device are cleared. When output enable (G) is held high, all  
data in the output buffers is held low and all drain outputs are off. When G is held low, data from the storage  
register transfers to the output buffers. When data in the output buffers is low, the DMOS transistor outputs are  
off. When data is high, the DMOS transistor outputs have sink-current capability.  
The serial output (SER OUT) is clocked out of the device on the falling edge of SRCK to provide additional hold  
time for cascaded applications. This action provides improved performance for applications where clock signals  
can be skewed, devices are not located near one another, or the system must tolerate electromagnetic  
interference.  
Outputs are low-side, open-drain DMOS transistors with output ratings of 50-V and 350-mA continuous sink-  
current capability. The current limit decreases as the junction temperature increases for additional device  
protection. The device also provides up to 7000 V of ESD protection when tested using the human body model  
and the 1500 V machine model.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLC6A598  
 
 
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
8.2 Functional Block Diagram  
G
RCK  
DRAIN0  
DRAIN1  
DRAIN2  
DRAIN3  
DRAIN4  
DRAIN5  
DRAIN6  
DRAIN7  
D
D
SER IN  
SRCK  
SRCLR  
C1  
C1  
CLR  
CLR  
D
D
C1  
CLR  
C1  
CLR  
D
D
C1  
CLR  
C1  
CLR  
D
D
C1  
CLR  
C1  
CLR  
D
D
C1  
CLR  
C1  
CLR  
D
D
C1  
CLR  
C1  
CLR  
D
D
C1  
CLR  
C1  
CLR  
D
D
C1  
CLR  
C1  
CLR  
PGND  
D
C1  
CLR  
SER OUT  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLC6A598  
 
 
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Serial-In Interface  
The TLC6A598 device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage  
register. Data transfer through the shift and storage registers is on the rising edge of the shift register clock  
(SRCK) and the register clock (RCK), respectively. The storage register transfers data to the output buffer when  
shift-register clear (SRCLR) is high.  
8.3.2 Clear Registers  
A logic low on the SRCLR pin clears all registers in the device. TI suggests clearing the device during power up  
or initialization.  
8.3.3 Output Channels  
DRAIN0DRAIN7. These pins can survive up to 50-V LED supply voltage.  
8.3.4 Register Clock  
RCK is the storage-register clock. Data in the storage register appears at the output whenever the output enable  
(G) input signal is high.  
8.3.5 Cascade Through SER OUT  
By connecting the SER OUT pin to the SER IN input of the next device on the serial bus in cascade, the data  
transfers to the next device on the falling edge of SRCK. This connection can improve the cascade application  
reliability, as it can avoid the issue that the second device receives SRCK and data input on the same rising  
edge of SRCK.  
8.3.6 Output Control  
Holding the output enable (pin G) high holds all data in the output buffers low, and all drain outputs are off.  
Holding G low makes data from the storage register transferred to the output buffers. When data in the output  
buffers is low, the DMOS transistor outputs are off. When data is high, the DMOS transistor outputs are capable  
of sinking current. This pin also can be used for global PWM dimming.  
8.3.7 Clamping Structure  
When switching off inductive loads, the potential at pin OUT rises to VDS(CL) potential, because the inductance  
intends to continue driving the current. The clamping voltage is necessary to prevent destruction of the device.  
See 8-1 for the clamping circuit principle. Nevertheless, the maximum allowed load inductance is limited.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLC6A598  
 
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
L
RL  
DRAINx  
IL  
VDScl  
Rpulldown  
RSENSE  
PGND  
LGND  
8-1. Output Clamp Implementation  
During demagnetization of inductive loads, energy has to be dissipated in the TLC6A598. This energy can be  
calculated with 方程1:  
V
− V  
R
R
× I  
bat  
DS CL  
L
L
L
E = V  
×
× ln 1 −  
+ I  
×
(1)  
(2)  
DS CL  
L
V
− V  
I
L
bat  
DS CL  
L
The 方程2 simplifies under the assumption of RL = 0:  
V
1
2
2
bat  
E = × L × I × 1 −  
L
V
− V  
bat  
DS CL  
The thermal design of the component limits the maximum energy, which is converted into heat.  
8.3.8 Protection Functions  
8.3.8.1 Overcurrent Protection  
When any output is in on status (the corresponding Data Register bit is set to 1), if the output current  
through the MOS is sensed to be larger than IOK, it enters chopping mode as below.  
8-2 illustrates the output current characteristics of the device energizing a load having initially low, increasing  
resistance, For example, an incandescent lamp. In region 1, chopping occurs and the peak current is limited to  
IO(chop). In region 2, output current is continuous. The same characteristics occur in reverse order when the  
device energizes a load having an initially high, decreasing resistance.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLC6A598  
 
 
 
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
OUTPUT CURRENT  
vs  
REGION 1 CURRENT  
WAVEFORM  
TIME FOR INCREASING LOAD  
RESISTANCE  
1.5  
1.25  
1
Iok  
0.75  
0.5  
0.25  
0
0
t1  
t1  
t2  
t1  
t2  
t1: 40 us  
t2: 2.5 ms  
Region1  
Region2  
Time  
Time  
8-2. Chopping-Mode Characteristics  
备注  
Region 1 duty cycle is approximately 2%.  
8.3.8.2 Output Detection  
When any output is in on status (the corresponding Data Register bit is set to 1), if the current goes through  
any output is sensed to be lower than IOS_th mA, then an open load condition or short to ground fault is reported  
to the fault register while the output does not close automatically.  
For the inductive load, during the on status of any output, TI recommends to read the fault regs two times.  
Because the inductive load leads to error detection results and it needs ignore the first time readout results  
during the set up process of the output current, TI recommends to read the fault regs again after the current  
through the load is stable.  
8.3.8.3 Serial Communication Error  
The device provides a cyclic redundancy check to verify register values in the shift registers. In read back mode,  
the device provides 6 bits of the CRC remainder. The MCU can read back the CRC remainder and check if the  
remainder is correct to determine whether the communication loop between MCU and device is good. Shift-  
Register Communication-Fault Detection gives a detailed description of the CRC check.  
8.3.8.4 Thermal Shutdown  
The device implements an internal thermal shutdown to protect itself if the junction temperature exceeds 175°C  
(typical). The thermal shutdown forces the device to have an open state when the junction temperature exceeds  
the thermal trip threshold. After the junction temperature decreases below 160°C (typical), the device begins to  
operate again.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLC6A598  
 
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
8.3.9 Interface  
8.3.9.1 Register Write  
The TLC6A598 device has a 8-bit configuration register. Data transfers through the shift registers on the rising  
edge of SRCK and latches into the storage registers on the rising edge of RCK. The data bits control 8 open-  
drain outputs independently.  
RCK  
SRCK  
1
2
3
4
5
6
7
8
SER IN  
SER OUT  
OUTPUT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
OLD  
OUTPUTS  
NEW  
OUTPUTS  
Register Writes Timing Diagram  
8-3. Register Write Timing Diagram  
8.3.9.2 Register Read  
The fault information loads to shift registers on the rising edge of RCK and can be read out on SER OUT. 8-4  
shows on the rising edge of the RCK signal, the MSB data "DRAIN7_OCP" appears on the SER OUT pin. On  
each falling edge of SRCK signal, there is 1 bit of data shifted out on the SER OUT pin. There is a total of 24 bits  
in the fault information registers. REgister Maps describes the details.  
RCK  
SRCK  
D23_N-1  
D23_N  
SER IN  
D22_N-1  
D0_N-1  
D0_N  
D23_N-2  
D23_N-1  
D0_N-2  
D0_N-1  
D0_N-3  
D0_N-2  
D0_0  
D0_1  
D23_N-3  
D23_N-2  
D23_0  
D23_1  
SER OUT  
D22_N  
D23_0  
D0_0  
Device N Fault Info  
Device N-1 Fault Info  
Device N-2 Fault Info  
Fault Read back Timing Diagram  
Device 1 Fault Info  
Device 0 Fault Info  
8-4. Register Read Timing Diagram  
8.3.9.3 Shift-Register Communication-Fault Detection  
The TLC6A598 device provides a cyclic redundancy check to verify register values in the shift registers. In read  
back mode, the TLC6A598 device provides 6 bits of the CRC remainder. The MCU can read back the CRC  
remainder and check if the remainder is correct. The CRC checksum provides a read back method to verify shift  
register values without altering them.  
Input  
CRC  
Bit3  
CRC  
Bit2  
CRC  
Bit1  
CRC  
Bit0  
CRC  
Bit5  
CRC  
Bit4  
8-5. CRC Check Block Diagram  
The TLC6A598 device also checks the configuration register for faulty commands. The TLC6A598 configuration  
register consists of 8 bits. To generate the CRC checksum, the device first shifts left 6 bits and appends 0s, then  
bit-wise exclusive-ORs the 14 data bits with the polynomial to get the checksum.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLC6A598  
 
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
For example, if the configuration data is 0xFF and the polynomial is 0x43 (7b1000011), the CRC checksum is  
0x0D (6b00 1101).  
The MCU can read back the CRC checksum and append it to the LSB of 8 bits, and then the 14 bits of data  
becomes 0x3FCD. Performing the bit-wise exclusive-OR operation with the polynomial must lead to a residual of  
0.  
8.4 Device Functional Modes  
8.4.1 Operation With VCC < 3 V  
This device works normally within the range 3 V VCC 5.5 V. When the operating voltage is lower than 3 V,  
correct behavior of the device, including communication interface and current capability, is not assured.  
8.4.2 Operation With 5.5 V VCC 7 V  
The device works normally in this voltage range, but reliability issues can occur if the device works for a long  
time in this voltage range.  
8.5 Register Maps  
8-1. Register Map  
CONFIGURATION REGISTER  
Field name  
Default value  
Bit  
DRAIN7  
DRAIN6  
DRAIN5  
DRAIN4  
DRAIN3  
DRAIN2  
DRAIN1  
DRAIN0  
0h  
7
0h  
6
0h  
5
0h  
4
0h  
3
0h  
2
0h  
1
0h  
0
FAULT READBACK REGISTER  
21 20 19  
Bit  
23  
22  
18  
17  
16  
Field name  
DRAIN7_OC DRAIN6_OC DRAIN5_OC DRAIN4_OC DRAIN3_OC DRAIN2_OC DRAIN1_OC DRAIN0_OC  
P
P
P
P
P
P
P
P
Default value  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Field name  
DRAIN7_Oor DRAIN6_Oor DRAIN5_Oor DRAIN4_Oor DRAIN3_Oor DRAIN2_Oor DRAIN1_Oor DRAIN0_Oor  
S
S
S
S
S
S
S
S
Default value  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Bit  
7
6
5
4
3
2
1
0
Field name  
Default value  
TBD  
0h  
TSD  
0h  
CRC  
0h  
8-2 lists the memory-mapped registers for the interface.  
8-2. Interface Registers  
OFFSET  
0h  
ACRONYM  
Config  
REGISTER NAME  
SECTION  
Configuration Register  
1h  
Fault_Readback  
Fault Readback Register  
8-3. Interface Access Type Codes  
CODE  
DESCRIPTION  
Read type  
R
Read-only  
Read to clear  
Write  
RC  
W
Read to clear the fault  
Write-only  
Reset or Default Value  
-n  
Value after reset or the default value  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLC6A598  
 
 
 
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
8.5.1 Configuration Register(Offset=0h)[reset=0h]  
Configuration register is shown in 8-4and described in 8-5.  
8-4. Configuration Register  
7
6
5
4
3
2
1
0
DRAIN7  
W-0h  
DRAIN6  
W-0h  
DRAIN5  
W-0h  
DRAIN4  
W-0h  
DRAIN3  
W-0h  
DRAIN2  
W-0h  
DRAIN1  
W-0h  
DRAIN0  
W-0h  
8-5. Configuration Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DRAIN7  
DRAIN6  
DRAIN5  
DRAIN4  
DRAIN3  
DRAIN2  
DRAIN1  
DRAIN0  
W
0h  
Open-drain output bit for DRAIN7  
HIGH=Output power switch enabled  
LOW=Output power switch disabled  
6
5
4
3
2
1
0
W
W
W
W
W
W
W
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Open-drain output bit for DRAIN6  
HIGH=Output power switch enabled  
LOW=Output power switch disabled  
Open-drain output bit for DRAIN5  
HIGH=Output power switch enabled  
LOW=Output power switch disabled  
Open-drain output bit for DRAIN4  
HIGH=Output power switch enabled  
LOW=Output power switch disabled  
Open-drain output bit for DRAIN3  
HIGH=Output power switch enabled  
LOW=Output power switch disabled  
Open-drain output bit for DRAIN2  
HIGH=Output power switch enabled  
LOW=Output power switch disabled  
Open-drain output bit for DRAIN1  
HIGH=Output power switch enabled  
LOW=Output power switch disabled  
Open-drain output bit for DRAIN0  
HIGH=Output power switch enabled  
LOW=Output power switch disabled  
8.5.2 Fault Readback Register(Offset=1h)[reset=0h]  
Fault readback is shown in 8-6 and described in 8-7.  
8-6. Fault Readback Register  
23  
22  
21  
20  
19  
18  
17  
16  
DRAIN7_OCP DRAIN6_OCP DRAIN5_OCP DRAIN4_OCP DRAIN3_OCP DRAIN2_OCP DRAIN1_OCP DRAIN0_OCP  
RC-0h  
15  
RC-0h  
14  
RC-0h  
13  
RC-0h  
12  
RC-0h  
11  
RC-0h  
10  
RC-0h  
9
RC-0h  
8
DRAIN7_OorS DRAIN6_OorS DRAIN5_OorS DRAIN4_OorS DRAIN3_OorS DRAIN2_OorS DRAIN1_OorS DRAIN0_OorS  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLC6A598  
 
 
 
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
8-6. Fault Readback Register (continued)  
23  
22  
21  
20  
19  
18  
17  
16  
RC-0h  
RC-0h  
RC-0h  
RC-0h  
RC-0h  
RC-0h  
RC-0h  
RC-0h  
7
6
5
4
3
2
1
0
TBD  
TSD  
CRC  
RC-0h  
RC-0h  
RC-0h  
8-7. Configuration Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
23  
DRAIN7_OCP  
DRAIN6_OCP  
DRAIN5_OCP  
DRAIN4_OCP  
DRAIN3_OCP  
DRAIN2_OCP  
DRAIN1_OCP  
DRAIN0_OCP  
DRAIN7_OorS  
RC  
0h  
Over current fault flag for DRAIN7, read to clear the fault  
HIGH=Over current fault detected  
LOW=Over current fault not detected  
22  
21  
20  
19  
18  
17  
16  
15  
RC  
RC  
RC  
RC  
RC  
RC  
RC  
RC  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Over current fault flag for DRAIN6, read to clear the fault  
HIGH=Over current fault detected  
LOW=Over current fault not detected  
Over current fault flag for DRAIN5, read to clear the fault  
HIGH=Over current fault detected  
LOW=Over current fault not detected  
Over current fault flag for DRAIN4, read to clear the fault  
HIGH=Over current fault detected  
LOW=Over current fault not detected  
Over current fault flag for DRAIN3, read to clear the fault  
HIGH=Over current fault detected  
LOW=Over current fault not detected  
Over current fault flag for DRAIN2, read to clear the fault  
HIGH=Over current fault detected  
LOW=Over current fault not detected  
Over current fault flag for DRAIN1, read to clear the fault  
HIGH=Over current fault detected  
LOW=Over current fault not detected  
Over current fault flag for DRAIN0, read to clear the fault  
HIGH=Over current fault detected  
LOW=Over current fault not detected  
Open or short to ground fault flag for DRAIN7, read to clear  
the fault  
HIGH=Open or short to ground fault detected  
LOW=Open or short to ground fault not detected  
14  
DRAIN6_OorS  
RC  
0h  
Open or short to ground fault flag for DRAIN6, read to clear  
the fault  
HIGH=Open or short to ground fault detected  
LOW=Open or short to ground fault not detected  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLC6A598  
 
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
8-7. Configuration Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
13  
DRAIN5_OorS  
RC  
0h  
Open or short to ground fault flag for DRAIN5, read to clear  
the fault  
HIGH=Open or short to ground fault detected  
LOW=Open or short to ground fault not detected  
12  
11  
10  
9
DRAIN4_OorS  
DRAIN3_OorS  
DRAIN2_OorS  
DRAIN1_OorS  
DRAIN0_OorS  
RC  
RC  
RC  
RC  
RC  
0h  
0h  
0h  
0h  
0h  
Open or short to ground fault flag for DRAIN4, read to clear  
the fault  
HIGH=Open or short to ground fault detected  
LOW=Open or short to ground fault not detected  
Open or short to ground fault flag for DRAIN3, read to clear  
the fault  
HIGH=Open or short to ground fault detected  
LOW=Open or short to ground fault not detected  
Open or short to ground fault flag for DRAIN2, read to clear  
the fault  
HIGH=Open or short to ground fault detected  
LOW=Open or short to ground fault not detected  
Open or short to ground fault flag for DRAIN1, read to clear  
the fault  
HIGH=Open or short to ground fault detected  
LOW=Open or short to ground fault not detected  
8
Open or short to ground fault flag for DRAIN0, read to clear  
the fault  
HIGH=Open or short to ground fault detected  
LOW=Open or short to ground fault not detected  
7
6
TBD  
TSD  
RC  
RC  
0h  
0h  
TBD  
Thermal-shutdown detection flag, read to clear the fault  
HIGH = Thermal shutdown detected  
LOW = Thermal shutdown not detected  
5
4
3
2
1
0
CRC  
R
0h  
CRC checksum of configuration registers  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLC6A598  
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TLC6A598 device is a serial-in, parallel-out, power and logic, 8-bit shift register with low-side open-drain  
DMOS output ratings of 50-V and 350-mA continuous sink-current capabilities when VCC = 5 V. The device is  
designed to drive resistive loads and is particularly well-suited as an interface between a microcontroller and  
LEDs or lamps. The device also provides up to 7000 V of ESD protection when tested using the human body  
model and 1500 V when using the machine model.  
The serial output (SEROUT) clocks out of the device on the falling edge of SRCK to provide additional hold time  
for cascaded applications. Connect the device (SEROUT) pin to the next device (SERIN) for daisy chain. This  
connection provides improved performance for applications where clock signals can be skewed, devices are not  
located near one another, or the system must tolerate electromagnetic interference.  
9.2 Typical Application 1  
9-1 shows a typical application circuit with TLC6A598 to drive LEDs. The MCU generates all the input signals.  
Vsupply  
5 V - 50 V  
VCC  
3 V - 5.5 V  
Rx  
0.1 μF  
LEDx  
VCC  
G
DRAIN0  
DRAIN1  
DRAIN2  
DRAIN3  
DRAIN4  
DRAIN5  
DRAIN6  
DRAIN7  
SER OUT  
RCK  
SRCK  
SER IN  
SRCLR  
MCU  
PGND  
LGND  
9-1. Typical Application With TLC6A598 to Drive LEDs  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TLC6A598  
 
 
 
 
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
9.2.1 Design Requirements  
9-1. System Specifications  
DESCRIPTION  
DESIGN PARAMETER  
EXAMPLE VALUE  
5 V to 50 V  
Vsupply  
VCC  
VLED  
ILED  
Supply voltage for the LED strings  
Supply voltage for the TLC6A598  
LED forward voltage  
3 V to 5.5 V  
3.3 V (typical)  
50 mA to 350 mA  
LED current  
9.2.2 Detailed Design Procedure  
To begin the design process, the designer must decide on a few parameters, as follows:  
Vsupply: LED supply voltage  
VLEDx: LED forward voltage  
ILED: LED current  
RON: Resistance for each output channels when it is on, 1-typical, TA = 25°C  
With these parameters determined, the resistor in series with the LED can be calculated by using the 方程3:  
V
− V  
LED  
supply  
I
R
=
− R  
(3)  
X
ON  
LED  
9.2.3 Application Curves  
9-2. Turn on Drain0/2/4/6  
9-3. Turn off Drain0/2/4/6  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TLC6A598  
 
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
9.3 Typical Application 2  
9-4 shows a typical cascade application circuit with two TLC6A598 chips configured in cascade topology. The  
MCU generates all the input signals.  
Vsupply  
9 V - 40 V  
VCC  
3 V - 5.5 V  
Rx  
0.1 μF  
LEDx  
VCC  
G
DRAIN0  
DRAIN1  
DRAIN2  
DRAIN3  
DRAIN4  
DRAIN5  
DRAIN6  
DRAIN7  
SER OUT  
RCK  
SRCK  
SER IN  
SRCLR  
MCU  
PGND  
LGND  
Vsupply  
9 V - 40 V  
VCC  
3 V - 5.5 V  
Rx  
0.1 μF  
LEDx  
VCC  
G
DRAIN0  
DRAIN1  
DRAIN2  
DRAIN3  
DRAIN4  
DRAIN5  
DRAIN6  
DRAIN7  
SER OUT  
RCK  
SRCK  
SER IN  
SRCLR  
PGND  
LGND  
9-4. Typical Application With Cascade TLC6A598  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TLC6A598  
 
 
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
9.3.1 Design Requirements  
9-2. System Specifications  
DESIGN PARAMETER  
DESCRIPTION  
EXAMPLE VALUE  
5 V to 50 V  
Vsupply  
VCC  
VLED  
ILED  
Supply voltage for the LED strings  
Supply voltage for the TLC6A598  
LED forward voltage  
3 V to 5.5 V  
3.3 V (typical)  
50 mA to 350 mA  
LED current  
9.3.2 Detailed Design Procedure  
To begin the design process, the designer must decide on a few parameters, as follows:  
Vsupply: LED supply voltage  
VLEDx: LED forward voltage  
ILED: LED current  
RON: Resistance for each output channels when it is on, 1-typical, TA = 25°C  
With these parameters determined, the resistor in series with the LED can be calculated by using the 方程4:  
V
− V  
LED  
supply  
I
R
=
− R  
(4)  
X
ON  
LED  
9.4 Typical Application 3  
9-5 shows a typical application circuit with TLC6A598 to drive Relays. The MCU generates all the input  
signals.  
Please note that inductive loads, such as stepper motors or relays, can generate negative transients on the  
DRAINx pins of the device. Typically, this event occurs when the output channel FET turns ON, pulling the  
DRAINx node to ground. This event can cause the DRAINx node to go below the voltage rating listed in the  
Absolute Maximum Ratings table, which in effect causes excessive ground current leakage.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TLC6A598  
 
 
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
Vsupply  
5 V – 50 V  
VCC  
3 V - 5.5 V  
Lx  
0.1 μF  
VCC  
G
DRAIN0  
DRAIN1  
DRAIN2  
DRAIN3  
DRAIN4  
DRAIN5  
DRAIN6  
DRAIN7  
SER OUT  
RCK  
SRCK  
SER IN  
SRCLR  
MCU  
PGND  
LGND  
9-5. Typical Application With TLC6A598 to Drive Relays  
9.4.1 Design Requirements  
9-3. System Specifications  
DESIGN PARAMETER  
DESCRIPTION  
EXAMPLE VALUE  
Vsupply  
VCC  
Supply voltage for the coil  
Supply voltage for the TLC6A598  
Output current for the coil  
5 V to 50 V  
3 V to 5.5 V  
ICOIL  
30 mA to 350 mA  
9.4.2 Detailed Design Procedure  
To begin the design process, the designer must decide on a few parameters, as follows:  
Vsupply: LED supply voltage  
RCOIL: Coil resistance  
RON: Resistance for each output channels when it is on, 1-typical, TA = 25°C  
With these parameters determined, the coil current can be calculated by using the 方程5:  
V
supply  
I
=
(5)  
COIL  
R
+ R  
COIL  
ON  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TLC6A598  
 
 
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
The TLC6A598 device is designed to operate with an input voltage supply range from 3 V to 5.5 V. This input  
supply must be well regulated. TI recommends placing the ceramic bypass capacitors near the VCC pin.  
11 Layout  
11.1 Layout Guidelines  
There are no special layout requirements for the digital signal pins. The only requirement is placing the ceramic  
bypass capacitors near the corresponding pins.  
Maximize the copper coverage on the PCB to increase the thermal conductivity of the board. The major heat-  
flow path from the package to the ambient is through the copper on the PCB. Maximizing the copper coverage is  
extremely important when the design does not include heat sinks attached to the PCB on the other side of the  
package.  
Add as many thermal vias as possible directly under the package ground pad to optimize the thermal  
conductivity of the board.  
All thermal vias must be either plated shut or plugged and capped on both sides of the board to prevent solder  
voids. To ensure reliability and performance, the solder coverage must be at least 85%.  
11.2 Layout Example  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
1
2
DRAIN1  
DRAIN0  
SER IN  
VCC  
DRAIN2  
DRAIN3  
SRCLR  
G
3
4
5
PGND  
PGND  
PGND  
PGND  
PGND  
RCK  
6
PGND  
7
PGND  
8
PGND  
9
LGND  
SRCK  
DRAIN4  
DRAIN5  
10  
11  
12  
SER OUT  
DRAIN7  
DRAIN6  
11-1. TLC6A598 Example Layout  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TLC6A598  
 
 
 
 
TLC6A598  
ZHCSNT5C JUNE 2021 REVISED MARCH 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most-  
current data available for the designated device. This data is subject to change without notice and without  
revision of this document. For browser-based versions of this data sheet, see the left-hand navigation pane.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TLC6A598  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Feb-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLC6A598MDWR  
ACTIVE  
SOIC  
DW  
24  
2000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-55 to 125  
TLC6A598M  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Feb-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLC6A598MDWR  
SOIC  
DW  
24  
2000  
330.0  
24.4  
10.75 15.7  
2.7  
12.0  
24.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Feb-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC DW 24  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
TLC6A598MDWR  
2000  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TLC6A598MDWR

适用于航空电子应用的高功率 8 位相移高可靠性驱动器 | DW | 24 | -55 to 125
TI

TLC6C5712-Q1

汽车类 12 位恒流 LED 灌流驱动器
TI

TLC6C5712QPWPRQ1

汽车类 12 位恒流 LED 灌流驱动器 | PWP | 28 | -40 to 125
TI

TLC6C5716-Q1

汽车类 16 通道完整诊断恒流 RGB LED 驱动器
TI

TLC6C5716QDAPRQ1

汽车类 16 通道完整诊断恒流 RGB LED 驱动器 | DAP | 38 | -40 to 125
TI

TLC6C5724-Q1

汽车类 24 通道完整诊断恒流 RGB LED 驱动器
TI

TLC6C5724QDAPRQ1

汽车类 24 通道完整诊断恒流 RGB LED 驱动器 | DAP | 38 | -40 to 125
TI

TLC6C5748-Q1

具有内部电流设置的 48 通道、16 位 PWM LED 驱动器
TI

TLC6C5748QDCARQ1

具有内部电流设置的 48 通道、16 位 PWM LED 驱动器 | DCA | 56 | -40 to 125
TI

TLC6C5816-Q1

具有诊断功能的汽车类电源逻辑 16 位移位寄存器 LED 驱动器
TI

TLC6C5816QPWPRQ1

具有诊断功能的汽车类电源逻辑 16 位移位寄存器 LED 驱动器 | PWP | 28 | -40 to 125
TI

TLC6C5912

TLC6C5912 12 位移位寄存器 LED 驱动器
TI