TLV6003DBVR [TI]

单路超低功耗 (980nA)、16V 精密轨到轨输入和输出运算放大器 | DBV | 5 | -40 to 125;
TLV6003DBVR
型号: TLV6003DBVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

单路超低功耗 (980nA)、16V 精密轨到轨输入和输出运算放大器 | DBV | 5 | -40 to 125

放大器 运算放大器
文件: 总26页 (文件大小:1574K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLV6003  
ZHCSKC8 OCTOBER 2019  
TLV6003 980nA 16V 精密轨至轨输入和输出运算放大器  
1 特性  
3 说明  
1
微功耗运行:1.2µA(最大值)  
低输入失调电压:550µV(最大值)  
TLV6003 是一款纳瓦级功耗运算放大器,每个通道仅  
消耗 980nA 的电流,同时提供极低的最大失调电压。  
逆向电池保护可在电池安装不当产生过大电流时保护放  
大器。在恶劣环境下,输入电压可以比正电源轨高  
5V,不会损坏器件。  
高达 18V 的反向电池保护  
轨至轨输入/输出  
增益带宽积:5.5kHz  
额定温度范围:  
TA = –40°C +125°C  
低电源电流与低输入偏置电流耦合,使该器件可与高串  
联电阻输入源(如 PIR 运动检测仪和一氧化碳传感  
器)一起使用。在 550μV (25°C) 的低最大失调电压、  
120dB 的典型 CMRR 112dB 的最小开环增益  
(2.7V) 情况下可以保持直流精度。  
工作温度范围:  
TA = –55°C +125°C  
输入共模范围超过电源轨:  
–0.1V VCC + 5V  
电源电压范围:2.5V 16V  
最高额定工作电源电压为 2.5V 16V,电气特性在  
2.7V5V 15V 下指定。2.5V 工作电压使该器件与  
锂离子电池供电系统兼容,从而使 TLV6003 成为输入  
信号增益和低功耗微控制器(如 TI MSP430)缓冲  
的理想之选。  
小封装:  
5 引脚 SOT-23  
2 应用  
流量变送器  
TLV6003 采用小型 SOT-23 封装。  
压力变送器  
器件信息(1)  
运动检测器(PIRuWave 等)  
血糖监测仪  
器件型号  
TLV6003  
封装  
SOT-23 (5)  
封装尺寸(标称值)  
气体检测仪  
2.90mm x 1.60mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。  
PIR 运动检测器缓冲器  
失调电压与温度间的关系  
800  
700  
600  
500  
400  
300  
200  
100  
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
5 Typical Units Shown  
VOUT  
+
IR  
TLV6003  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (èC)  
C001  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLOS981  
 
 
 
TLV6003  
ZHCSKC8 OCTOBER 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
Application and Implementation ........................ 14  
8.1 Application Information............................................ 14  
8.2 Typical Application .................................................. 15  
Power Supply Recommendations...................... 18  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information – TLV6003 ............................... 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 13  
7.4 Device Functional Modes........................................ 13  
10 Layout................................................................... 18  
10.1 Layout Guidelines ................................................. 18  
10.2 Layout Example .................................................... 18  
11 器件和文档支持 ..................................................... 19  
11.1 器件支持................................................................ 19  
11.2 文档支持................................................................ 19  
11.3 接收文档更新通知 ................................................. 19  
11.4 社区资源................................................................ 19  
11.5 ....................................................................... 19  
11.6 静电放电警告......................................................... 19  
11.7 Glossary................................................................ 19  
12 机械、封装和可订购信息....................................... 19  
7
4 修订历史记录  
日期  
修订版本  
说明  
2019 10 月  
*
初始发行版。  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TLV6003  
www.ti.com.cn  
ZHCSKC8 OCTOBER 2019  
5 Pin Configuration and Functions  
DBV Package  
5-pin SOT-23  
Top View  
OUT  
GND  
+IN  
1
5
VCC  
2
3
4
œIN  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
OUT  
GND  
+IN  
DBV  
1
2
3
4
5
O
I
Output  
Negative (lowest) power supply  
Noninverting input  
–IN  
I
Inverting input  
VCC  
Positive (highest) power supply  
Copyright © 2019, Texas Instruments Incorporated  
3
TLV6003  
ZHCSKC8 OCTOBER 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VCC  
Supply voltage(2)  
Input voltage  
–18  
17  
V
Singe-ended and common-mode input  
voltage, VICR  
–0.3  
VCC + 5  
VIN+, VIN–  
V
Differential, VID  
±20  
±10  
±10  
Input current (any input)  
Output current  
mA  
mA  
IO  
Continuous total power dissipation  
Maximum junction temperature  
Storage temperature  
See Dissipation Rating  
TJ  
–55  
–65  
150  
150  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential voltages, are with respect to GND  
6.2 ESD Ratings  
VALUE  
±450  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.5  
NOM  
MAX  
16  
UNIT  
Single Supply  
Split Supply  
VCC  
TA  
Supply Voltage  
V
±1.25  
–55  
±8  
Operating free-air temperature  
125  
°C  
6.4 Thermal Information – TLV6003  
TLV6003  
THERMAL METRIC(1)  
DBV  
5 PINS  
166.0  
89.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
36.5  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
14.0  
ψJB  
36.3  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2019, Texas Instruments Incorporated  
TLV6003  
www.ti.com.cn  
ZHCSKC8 OCTOBER 2019  
6.5 Electrical Characteristics  
at TA = 25°C, VCC = 2.7 V, 5 V, and 15 V, VICR = VO = VCC/2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DC PERFORMANCE  
390  
±550  
µV  
VIO  
Input offset voltage(1)  
TA = –55°C to +125°C  
TA = –55°C to +125°C  
1500  
dVIO/dT  
Offset voltage drift  
2
µV/°C  
VCC = 2.7 V  
63  
60  
66  
63  
76  
75  
120  
VCC = 2.7 V,  
TA = –40°C to +125°C  
VCC = 5 V  
120  
120  
Common-mode  
rejection ratio  
CMRR  
VICR = 0 V to VCC  
dB  
VCC = 5 V,  
TA = –40°C to +125°C  
VCC = 15 V  
VCC = 15 V,  
TA = –40°C to +125°C  
VCC = 2.7 V, 0.2 V < VO < VCC – 0.2 V, RL = 500 kΩ  
VCC = 15 V, 0.2 V < VO < VCC – 0.2 V, RL = 500 kΩ  
112  
123  
dB  
dB  
AOL  
Open-loop gain  
INPUT  
IIO  
25  
250  
pA  
Input offset current  
Input bias current  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
1200  
100  
250  
pA  
2000  
IIB  
Differential input  
resistance  
ri(d)  
300  
3
MΩ  
Common-mode input  
capacitance  
Ci(c)  
f = 100 kHz  
pF  
DYNAMIC PERFORMANCE  
UGBW  
SR  
Unity gain bandwidth  
Slew rate at unity gain  
Phase margin  
RL = 500 kΩ, CL = 100 pF  
5.5  
2.5  
60  
kHz  
V/ms  
°
VO(pp) = 0.8 V, RL = 500 kΩ, CL = 100 pF  
RL = 500 kΩ, CL = 100 pF  
PM  
Gain margin  
RL = 500 kΩ, CL = 100 pF  
15  
dB  
VCC = 2.7 or 5 V, V(STEP)PP = 1 V,  
0.1%  
1.84  
AV = –1, CL = 100 pF, RL = 100 kΩ  
ts  
Settling time  
ms  
0.1%  
6.1  
32  
VCC = 15 V, V(STEP)PP = 1 V,  
AV = –1, CL = 100 pF, RL = 100 kΩ  
0.01%  
NOISE PERFORMANCE  
f = 10 Hz  
800  
500  
Equivalent input noise  
voltage  
Vn  
nV/Hz  
fA/Hz  
f = 100 Hz  
Equivalent input noise  
current  
In  
f = 100 Hz  
8
OUTPUT  
VCC – 0.05  
VCC – 0.07  
VCC – 0.08  
VCC – 0.1  
VCC – 0.02  
VCC – 0.05  
0.090  
IOL = 2 µA (sourcing)  
IOL = 50 µA (sourcing)  
IOH = 2 µA (sinking)  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
TA = –40°C to +125°C  
Voltage output swing  
from the positive rail  
VOL  
V
0.150  
0.180  
0.230  
0.260  
μA  
Voltage output swing  
from the negative rail  
VOH  
0.180  
IOH = 50 µA (sinking)  
VO = 0.5 V from rail  
IO  
Output current  
±200  
(1) Input offset voltage and offset voltage drift are specified by characterization from TA = –55°C to +125°C. All other temperature  
specifications cover the range of TA = –40°C to +125°C, as listed in the test conditions column.  
Copyright © 2019, Texas Instruments Incorporated  
5
TLV6003  
ZHCSKC8 OCTOBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
at TA = 25°C, VCC = 2.7 V, 5 V, and 15 V, VICR = VO = VCC/2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
980  
MAX UNIT  
POWER SUPPLY  
1200  
VCC = 2.7 V and 5 V  
VCC = 15 V  
TA = –40°C to +125°C  
1350  
nA  
1250  
ICC  
Supply current  
1000  
TA = –40°C to +125°C  
1400  
nA  
Reverse supply current VCC = –18 V, VIN = 0 V, VO = open current  
50  
90  
85  
100  
VCC = 2.7 to 5 V, no load  
TA = –40°C to 125°C  
Power supply rejection  
ratio (ΔVCC/ΔVOS  
PSRR  
dB  
)
100  
95  
110  
VCC = 5 to 15 V, no load  
TA = –40°C to 125°C  
6
版权 © 2019, Texas Instruments Incorporated  
TLV6003  
www.ti.com.cn  
ZHCSKC8 OCTOBER 2019  
6.6 Typical Characteristics  
at TA = 25°C and VCC = 5 V (unless otherwise noted)  
6
5
4
3
2
1
1400  
1200  
1000  
800  
600  
400  
200  
0
–200  
-600  
-400  
-200  
0
200  
400  
600  
0.10.20 0.60 1.00 1.40 1.80 2.20 2.60 2.9  
C002  
V
– Common-Mode Input Voltage – V  
VIO - Input Offset Voltage - mV  
ICR  
VCC = 2.7 V  
2. Input Offset Voltage vs Common-Mode Input Voltage  
1. Input Offset Voltage Histogram  
100  
400  
300  
200  
0
–100  
–200  
–300  
–400  
100  
0
–100  
–200  
–300  
–400  
0.4 1.0 1.6 2.2 2.8 3.4 4.0 4.6 5.2  
–0.1  
2.0  
–0.1  
4.2  
6.4  
8.6 10.8 13.0 15.2  
V
– Common-Mode Input Voltage – V  
V
– Common-Mode Input Voltage – V  
ICR  
ICR  
VCC = 5 V  
VCC = 15 V  
3. Input Offset Voltage vs Common-Mode Input Voltage  
4. Input Offset Voltage vs Common-Mode Input Voltage  
600  
600  
500  
400  
300  
200  
100  
500  
400  
300  
200  
100  
I
IO  
I
IO  
0
0
I
IB  
I
IB  
–100  
–200  
–100  
–200  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
T
A
– Free-Air Temperature – °C  
T
A
– Free-Air Temperature – °C  
VCC = 2.7 V  
VCC = 5.0 V  
5. Input Bias Current and Offset Current vs Free-Air  
6. Input Bias Current and Offset Current vs Common-  
Temperature  
Mode Input Voltage  
版权 © 2019, Texas Instruments Incorporated  
7
TLV6003  
ZHCSKC8 OCTOBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C and VCC = 5 V (unless otherwise noted)  
700  
400  
350  
300  
250  
200  
150  
100  
50  
600  
500  
400  
300  
200  
100  
I
I
IO  
I
IO  
0
0
–50  
–100  
–150  
IB  
–100  
I
IB  
–200  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
0.2 0.6 1.0 1.4 1.8 2.2 2.6 2.9  
–0.1  
T
A
– Free-Air Temperature – °C  
V
– Common Mode Input Voltage – V  
ICR  
VCC = 15 V  
VCC = 2.7 V  
7. Input Bias Current and Offset Current vs Free-Air  
8. Input Bias Current and Offset Current vs Common-  
Temperature  
Mode Input Voltage  
200  
150  
100  
50  
250  
200  
150  
100  
50  
I
IO  
I
IO  
0
0
–50  
–50  
I
IB  
I
IB  
–100  
–150  
–100  
–150  
–0.1  
0.4 1.0 1.6 2.2 2.8 3.4 4.0 4.6 5.2  
2.0  
–0.1  
4.2  
6.4  
8.6 10.8 13.0 15.2  
V
– Common Mode Input Voltage – V  
ICR  
V
– Common-Mode Input Voltage –V  
ICR  
VCC = 5.0 V  
VCC = 15.0 V  
9. Input Bias Current and Offset Current vs Common-  
10. Input Bias Current and Offset Current vs Common-  
Mode Input Voltage  
Mode Input Voltage  
120  
2.7  
2.4  
100  
80  
60  
40  
20  
0
T
A
= –40°C  
2.1  
1.8  
1.5  
1.2  
T
A
= –0°C  
T
= 25 °C  
= 70 °C  
= 125 °C  
A
T
A
T
A
0
50  
100  
150  
200  
1
10  
100  
1k  
10k  
f – Frequency – Hz  
I
– High-Level Output Current – mA  
OH  
11. Common-Mode Rejection Ratio vs Frequency  
12. High-Level Output Voltage vs High-Level Output  
Current  
8
版权 © 2019, Texas Instruments Incorporated  
TLV6003  
www.ti.com.cn  
ZHCSKC8 OCTOBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C and VCC = 5 V (unless otherwise noted)  
1.50  
5.0  
4.5  
4.0  
3.5  
3.0  
T
A
= –40°C  
1.25  
1.00  
0.75  
0.50  
0.25  
0
T
= 25 °C  
= 0 °C  
A
T
A
T
A
= –40°C  
T
A
= –0°C  
T
= 25 °C  
= 70 °C  
= 125 °C  
A
T
= 70 °C  
A
T
A
T
= 125 °C  
A
T
A
0
50  
100  
150  
200  
0
50  
100  
150  
200  
I
– Low-Level Output Current – mA  
I
– High-Level Output Current – mA  
OL  
OH  
13. Low-Level Output Voltage vs Low-Level Output  
14. High-Level Output Voltage vs High-Level Output  
Current  
Current  
1.50  
1.25  
15.0  
T
A
= 0 °C  
14.5  
T
= –40°C  
A
1.00  
0.75  
0.50  
0.25  
0
T
A
= –0°C  
T
= 25 °C  
= 70 °C  
= 125 °C  
14.0  
13.5  
13  
A
T
A
= 25 °C  
= 70 °C  
= 125 °C  
T
A
T
A
T
A
T
A
T
A
= –40°C  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
I
– Low-Level Output Current – mA  
I
– High-Level Output Current – mA  
OL  
OH  
15. Low-Level Output Voltage vs Low-Level Output  
16. High-Level Output Voltage vs High-Level Output  
Current  
Current  
1.50  
1.25  
16  
14  
12  
10  
8
T
A
= –40°C  
1.00  
0.75  
0.50  
0.25  
0
T
= –0°C  
A
T
A
= 25 °C  
= 70 °C  
= 125 °C  
6
T
A
T
A
4
2
V
= 5 V  
CC  
V
= 2.7 V  
CC  
0
0
50  
100  
150  
200  
10  
100  
f – Frequency – Hz  
1k  
I
– Low-Level Output Current – mA  
OL  
17. Low-Level Output Voltage vs Low-Level Output  
18. Output Voltage Peak-to-Peak vs Frequency  
Current  
版权 © 2019, Texas Instruments Incorporated  
9
TLV6003  
ZHCSKC8 OCTOBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C and VCC = 5 V (unless otherwise noted)  
10k  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
AV = 10  
1k  
AV = 1  
T
= 125°C  
= 70 °C  
= 25 °C  
= 0 °C  
A
T
A
100  
T
A
T
A
T
A
= –40°C  
10  
0
2
4
6
8
10 12 14 16  
100  
1k  
10k  
f – Frequency – Hz  
V
– Supply Voltage – V  
CC  
19. Output Impedance vs Frequency  
20. Supply Current vs Supply Voltage  
120  
60  
135  
50  
110  
100  
90  
40  
30  
20  
10  
90  
45  
80  
70  
0
0
60  
–10  
50  
–20  
–45  
40  
10  
100  
1k  
10k  
10  
100  
1k  
10k  
f – Frequency – Hz  
f – Frequency – Hz  
22. Open-Loop Gain and Phase vs Frequency  
21. Power Supply Rejection Ratio vs Frequency  
7
3.5  
6
5
4
3
2
1
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
SR+  
V
= 5, 15 V  
CC  
V
= 2.7 V  
CC  
V
= 2.7, 5, & 15 V  
CC  
SR–  
0
2.5 4.0 5.5 7.0 8.5 10.0 11.5 13.0 14.5 16.0  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
V
– Supply Voltage –V  
T
A
– Free-Air Temperature – °C  
CC  
23. Gain Bandwidth Product vs Supply Voltage  
24. Slew Rate vs Free-Air Temperature  
10  
版权 © 2019, Texas Instruments Incorporated  
TLV6003  
www.ti.com.cn  
ZHCSKC8 OCTOBER 2019  
Typical Characteristics (接下页)  
at TA = 25°C and VCC = 5 V (unless otherwise noted)  
80  
4
3
70  
60  
50  
40  
30  
20  
10  
0
2
1
0
–1  
–2  
–3  
–4  
0
1
2
3
4
5
6
7
8
9
10  
10  
100  
1k  
10k  
t – Time – s  
C
– Capacitive Load – pF  
L
26. Voltage Noise Over a 10-Second Period  
25. Phase Margin vs Capacitive Load  
4
2.0  
3
V
3
IN  
2
V
IN  
2
1
0
1
0
0.5  
4
0.0  
–1  
3
–1  
–0.5  
–1.0  
–1.5  
–2  
2
V
O
1
V
O
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
t – Time – ms  
t – Time – ms  
AV = 1  
AV = –1  
27. Large-Signal Step Response  
28. Large-Signal Step Response  
120  
100  
80  
50  
300  
200  
V
V
IN  
IN  
150  
0
100  
0
–150  
–100  
0
60  
V
O
40  
–50  
–100  
–150  
V
20  
O
0
0
100 200 300 400 0 500  
0
200 400 600 800 1000 1200  
t – Time – ms  
t – Time – ms  
AV = 1  
AV = –1  
29. Small-Signal Step Response  
30. Small-Signal Step Response  
版权 © 2019, Texas Instruments Incorporated  
11  
TLV6003  
ZHCSKC8 OCTOBER 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TLV6003 is a nanopower operational amplifier consuming only 980 nA per channel, while offering very low  
maximum offset. Reverse battery protection guards the amplifier from overcurrent conditions due to improper  
battery installation. The TLV6003 is based on a rail-to-rail bipolar technology that is specifically designed to allow  
high common-mode-range functionality. For harsh environments, the inputs can be taken 5 V greater than the  
positive supply rail without damage to the device. Offset is specified by characterization to an ambient  
temperature of –55°C, making the TLV6003 a good choice for low-temperature industrial automation.  
7.2 Functional Block Diagram  
VCC  
VBIAS1  
INœ  
IN+  
Class AB  
Control  
Circuitry  
OUT  
VBIAS2  
GND  
12  
版权 © 2019, Texas Instruments Incorporated  
TLV6003  
www.ti.com.cn  
ZHCSKC8 OCTOBER 2019  
7.3 Feature Description  
7.3.1 Reverse-Battery Protection  
The TLV6003 is protected against reverse-battery voltage up to 18 V. When subjected to reverse-battery  
conditions, the supply current is typically 50 nA at 25°C (inputs grounded and outputs open). This current is  
determined by the leakage of internal Schottky diodes, and therefore increases as the ambient temperature  
increases.  
When subjected to reverse-battery conditions, and negative voltages are applied to the inputs or outputs, the  
input ESD structure conducts current; limit this current to less than 10 mA. If the inputs or outputs are referred to  
ground rather than midrail, no extra precautions are required.  
7.3.2 Common-Mode Input Range  
The TLV6003 has rail-to-rail inputs and outputs. For common-mode inputs from –0.1 V to VCC – 0.8 V, a PNP  
differential pair provides the gain.  
For inputs between VCC – 0.8 V and VCC, two NPN emitter followers buffering a second PNP differential pair  
provide the gain.  
This special combination of a NPN and PNP differential pair enables the inputs to be taken 5 V greater than VCC  
.
As the inputs rise to greater than VCC, the NPNs change from functioning as transistors to functioning as diodes.  
This change leads to an increase in input bias current. The second PNP differential pair continues to function  
normally as the inputs exceed VCC  
.
The TLV6003 has a negative common-mode input voltage range that can fall to less than VGND by 100 mV. If the  
inputs are taken to less than VGND – 0.1, reduced open-loop gain will be observed.  
7.4 Device Functional Modes  
The TLV6003 has a single functional mode and is operational when the power-supply voltage is greater than 2.5  
V. The maximum specified power-supply voltage for the TLV6003 is 16 V.  
版权 © 2019, Texas Instruments Incorporated  
13  
TLV6003  
ZHCSKC8 OCTOBER 2019  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Drive a Capacitive Load  
The TLV6003 is internally compensated for stable unity-gain operation, with a 5.5-kHz typical gain bandwidth.  
However, the unity gain follower is the most sensitive configuration to capacitive load. The combination of a  
capacitive load placed directly on the output of an amplifier along with the amplifier output impedance creates a  
phase lag, which reduces the phase margin of the amplifier. If the phase margin is significantly reduced, the  
response will be underdamped, which causes peaking in the transfer function. This condition creates very low  
phase margin, and leads to excessive ringing or oscillations.  
In order to drive heavy (> 50 pF) capacitive loads, an isolation resistor (RISO) must be used, as shown in 31.  
By using this isolation resistor, the capacitive load is isolated from the amplifier output. The higher the value of  
RISO, the more stable the amplifier. If the value of RISO is sufficiently high, the feedback loop is stable,  
independent of the value of CL. However, larger values of RISO result in reduced output swing and reduced  
output current drive. The recommended value for RISO is 30 kΩ to 50 kΩ.  
R
ISO  
-
V
OUT  
V
IN  
+
C
L
31. Resistive Isolation of Capacitive Load  
14  
版权 © 2019, Texas Instruments Incorporated  
 
TLV6003  
www.ti.com.cn  
ZHCSKC8 OCTOBER 2019  
8.2 Typical Application  
32 shows a simple micropower potentiostat circuit for use with three-terminal unbiased CO sensors; although,  
the design is applicable to many other type of three-terminal gas sensors or electrochemical cells.  
The basic sensor has three electrodes: the sense or working electrode (WE), counter electrode (CE) and  
reference electrode (RE). A current flows between the CE and WE proportional to the detected concentration.  
The RE monitors the potential of the internal reference point. For an unbiased sensor, the WE and RE electrodes  
must be maintained at the same potential by adjusting the bias on CE. Through the potentiostat circuit formed by  
U1, the servo feedback action maintains the RE pin at a potential set by VREF  
.
R1 maintains stability due to the large capacitance of the sensor.  
C1 and R2 form the potentiostat integrator and set the feedback time constant.  
U2 forms a transimpedance amplifier (TIA) to convert the resulting sensor current into a proportional voltage. The  
transimpedance gain, and resulting sensitivity, is set by RF according to 公式 1.  
VTIA = (–I * RF) + VREF  
(1)  
RL is a load resistor with a value that is normally specified by the sensor manufacturer (typically, 10 Ω). The  
potential at WE is set by the applied VREF.  
Riso provides capacitive isolation and, combined with C2, form the output filter and ADC reservoir capacitor to  
drive the ADC.  
R1  
10 k  
C1  
0.1µF  
Potentiostat (Bias Loop)  
CE  
R2  
10 kΩ  
2.5V  
RE  
CO Sensor  
U1  
+
VREF  
WE  
Transimpedance Amplifier (I to V conversion)  
RF  
ISENS  
Riso  
49.9 kꢀ  
RL  
U2  
VTIA  
+
VREF  
C2  
1µF  
32. Three Terminal CO Gas Sensor  
版权 © 2019, Texas Instruments Incorporated  
15  
 
 
TLV6003  
ZHCSKC8 OCTOBER 2019  
www.ti.com.cn  
Typical Application (接下页)  
8.2.1 Design Requirements  
For this example, an electrical model of a CO sensor is used to simulate the sensor performance, as shown in 图  
33. The simulation is designed to model a CO sensor with a sensitivity of 69 nA/ppm. The supply voltage and  
maximum ADC input voltage is 2.5 V, and the maximum concentration is 300 ppm.  
CO Sensor  
Model  
VCE  
10 kΩ  
CE  
300 Ω  
260 mF  
10 µF  
2 Ω  
2 Ω  
2.5 V  
10 kΩ  
RE  
œ
VREF  
+
TLV6003  
130 mF  
300 Ω  
110 kΩ  
VTIA  
ISENS  
0 - 20 µA  
2.5 V  
10 Ω  
WE  
œ
VREF  
+
TLV6003  
33. CO Sensor Simulation Schematic  
1. Design Parameters  
DESIGN PARAMETER  
Supply voltage  
EXAMPLE VALUE  
2.5 V  
Amplifier quiescent current  
< 2 µA  
Transimpedance amplifier  
sensitivity  
110 mV/µA  
16  
版权 © 2019, Texas Instruments Incorporated  
 
TLV6003  
www.ti.com.cn  
ZHCSKC8 OCTOBER 2019  
8.2.2 Detailed Design Procedure  
First, determine the VREF voltage. This voltage is a compromise between maximum headroom and resolution, as  
well as allowance for the minimum swing on the CE terminal because the CE terminal generally goes negative in  
relation to the RE potential as the concentration (sensor current) increases. Bench measurements found the  
difference between CE and RE to be 180 mV at 300 ppm for this particular sensor.  
To allow for negative CE swing, footroom, and voltage drop across the 10-kΩ resistor, 300 mV is chosen for  
VREF  
.
Therefore, 300 mV is used as the minimum VZERO to add some headroom.  
VZERO = VREF = 300 mV  
where  
VZERO is the zero concentration voltage.  
VREF is the reference voltage (300 mV).  
(2)  
Next, calculate the maximum sensor current at highest expected concentration:  
ISENSMAX = IPERPPM * ppmMAX = 69 nA * 300 ppm = 20.7 µA  
where  
ISENSMAX is the maximum expected sensor current.  
IPERPPM is the manufacturer specified sensor current in Amps per ppm.  
ppmMAX is the maximum required ppm reading.  
(3)  
(4)  
Then, find the available output swing range greater than the reference voltage available for the measurement:  
VSWING = VOUTMAX – VZERO = 2.5 V – 0.3 V = 2.2 V  
where  
VSWING is the expected change in output voltage  
VOUTMAX is the maximum amplifer output swing (usually near VCC  
)
Finally, calculate the transimpedance resistor (RF) value using the maximum swing and the maximum sensor  
current:  
RF = VSWING / ISENSMAX = 2.2 V / 20.7 µA = 106.28 k(use 110 kfor a common value)  
(5)  
8.2.3 Application Curve  
VTIA  
VCE  
ISENS  
2.5 V  
0.3 V  
20 mA  
Time (10 ms/div)  
C012  
34. Sensor Transient Response to Simulated 300-ppm CO Exposure  
版权 © 2019, Texas Instruments Incorporated  
17  
TLV6003  
ZHCSKC8 OCTOBER 2019  
www.ti.com.cn  
9 Power Supply Recommendations  
The TLV6003 is specified for operation from 2.5 V to 16 V (±1.25 V to ±8 V) over a –40°C to +125°C temperature  
range.  
CAUTION  
Supply voltages larger than 17 V can permanently damage the device.  
For proper operation, the power supplies must be properly decoupled. For decoupling the supply lines, place 100  
nF capacitors as close as possible to the operational amplifier power supply pins. For single-supply operation,  
place a capacitor between VCC and GND supply leads. For dual supplies, place one capacitor between VCC and  
ground, and one capacitor between GND and ground.  
Low-bandwidth nanopower devices do not have good high-frequency (> 1 kHz) AC PSRR rejection against high-  
frequency switching supplies and other 1-kHz and greater noise sources. Therefore, use extra supply filtering if  
kilohertz or greater noise is expected on the power supply lines.  
10 Layout  
10.1 Layout Guidelines  
Bypass the VCC pin to ground with a low ESR capacitor.  
The best placement is closest to the VCC and ground pins.  
Take care to minimize the loop area formed by the bypass capacitor connection between VCC and ground.  
Connect the ground pin to the PCB ground plane at the pin of the device.  
Place the feedback components as close as possible to the device to minimize strays.  
10.2 Layout Example  
Minimize parasitic  
inductance by placing  
bypass capacitor  
VCC  
CBYPASS  
close to VCC  
.
VOUT  
OUT  
VCC  
GND  
+IN  
-IN  
RF  
Keep high  
impedance input  
signal away from  
noisy traces.  
VIN  
Route trace under  
package for output to  
feedback resistor  
connection.  
35. SOT-23 Layout Example (Top View)  
18  
版权 © 2019, Texas Instruments Incorporated  
TLV6003  
www.ti.com.cn  
ZHCSKC8 OCTOBER 2019  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
《基于 SPICE TINA-TI 模拟仿真程序》  
DIP 适配器评估模块  
TI 通用运算放大器评估模块  
TI 滤波器设计工具  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
《单电源、低侧、单向电流检测电路》应用报告  
《使用纳瓦级功耗运算放大器简化功率敏感型工厂和楼宇自动化系统中的环境测量》应用手册  
《由锂离子电池供电的个人电子产品中的 GPIO 引脚电源信号链》应用简介  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLV6003DBVR  
ACTIVE  
SOT-23  
DBV  
5
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
1NE9  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Oct-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLV6003DBVR  
SOT-23  
DBV  
5
3000  
180.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Oct-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOT-23 DBV  
SPQ  
Length (mm) Width (mm) Height (mm)  
210.0 185.0 35.0  
TLV6003DBVR  
5
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLV6004

四路、5.5V、1MHz、RRIO 运算放大器
TI

TLV6004IPWR

四路、5.5V、1MHz、RRIO 运算放大器 | PW | 14 | -40 to 125
TI

TLV61046A

具有功率二极管和隔离开关的 28V 输出电压升压转换器
TI

TLV61046ADBVR

具有功率二极管和隔离开关的 28V 输出电压升压转换器 | DBV | 6 | -40 to 125
TI

TLV61046ADBVT

具有功率二极管和隔离开关的 28V 输出电压升压转换器 | DBV | 6 | -40 to 125
TI

TLV61048

采用 SOT-23 封装的 14V 输出电压非同步升压转换器
TI

TLV61048DBVR

采用 SOT-23 封装的 14V 输出电压非同步升压转换器 | DBV | 6 | -40 to 125
TI

TLV61048DBVT

采用 SOT-23 封装的 14V 输出电压非同步升压转换器 | DBV | 6 | -40 to 125
TI

TLV61070A

具有 0.5V 超低输入电压的 5V、2A 升压转换器
TI

TLV61070ADBVR

具有 0.5V 超低输入电压的 5V、2A 升压转换器 | DBV | 6 | -40 to 125
TI

TLV61220

LOW INPUT VOLTAGE STEP-UP CONVERTER IN THIN SOT-23 PACKAGE
TI

TLV61220DBVR

LOW INPUT VOLTAGE STEP-UP CONVERTER IN THIN SOT-23 PACKAGE
TI