TMUX7234PWR [TI]

具有 1.8V 逻辑的 44V、闩锁效应抑制、2:1 四通道精密多路复用器 | PW | 20 | -40 to 125;
TMUX7234PWR
型号: TMUX7234PWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 1.8V 逻辑的 44V、闩锁效应抑制、2:1 四通道精密多路复用器 | PW | 20 | -40 to 125

复用器
文件: 总46页 (文件大小:2220K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TMUX7234  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
TMUX7234 具有闩锁效应抑制1.8V 逻辑电平的  
44VRON2:14 通道精密开关  
1 特性  
3 说明  
闩锁效应抑制  
TMUX7234 是支持闩锁效应抑制的互补金属氧化物半  
导体 (CMOS) 多路复用器。TMUX7234 包含四个独立  
控制的 SPDT 开关和一个用于启用或禁用全部四个通  
道的 EN 引脚。该器件支持单电源4.5V 44V、  
双电源±4.5V ±22V或非对称电源例如VDD  
= 12VVSS = 5VTMUX7234 可在源极 (Sx) 和  
漏极 (D) 引脚上支持从 VSS VDD 范围的双向模拟和  
数字信号。  
• 双电源电压范围±4.5 V ±22 V  
• 单电源电压范围4.5 V 44 V  
• 低导通电阻3Ω  
• 低电荷注入3pC  
• 高电流支持400 mA最大值)  
• –40°C +125°C 工作温度  
1.8V 逻辑兼容输入  
失效防护逻辑  
轨到轨运行  
双向信号路径  
• 先断后合开关  
所有逻辑控制输入均支1.8V VDD 的逻辑电平因  
器件在有效电源电压范围内运行时确保  
TTL CMOS 逻辑兼容性。失效防护逻辑电路允许先  
在控制引脚上施加电压然后在电源引脚上施加电压,  
从而保护器件免受潜在的损害。  
2 应用  
工厂自动化和控制  
流量变送器  
可编程逻辑控制(PLC)  
模拟输入模块  
数据采集系(DAQ)  
半导体测试设备  
电池测试设备  
TMUX72xx 系列具有闩锁效应抑制特性可防止器件  
内寄生结构之间通常由过压事件引起的大电流不良事  
件。闩锁状态通常会一直持续到电源轨关闭为止并可  
能导致器件故障。闩锁效应抑制特性使得 TMUX72xx  
系列开关和多路复用器能够在恶劣的环境中使用。  
封装信息(1)  
封装尺寸标称值)  
器件型号  
TMUX7234  
封装  
超声波扫描仪  
患者监护和诊断  
光纤网络  
光学测试设备  
PWTSSOP206.50mm × 4.40mm  
RRQWQFN204.00mm × 4.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
有线网络  
远程射频单(RRU)  
有源天线系mMIMO (AAS)  
+15  
+15V  
S1A  
S1B  
D1  
D2  
VDD  
VSS  
THS3091  
S2A  
S2B  
S1A  
S1B  
D1  
D2  
D3  
D4  
MSP430  
-15  
-15V  
+15  
+15V  
S2A  
S2B  
S3A  
S3B  
D3  
D4  
THS3091  
S3A  
S3B  
S4A  
S4B  
-15  
-15V  
S4A  
S4B  
应用示意图  
SEL1  
SEL2  
SEL3  
SEL4  
Logic Decoder  
EN  
TMUX7234  
简化版图表  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCDS429  
 
 
 
 
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
Table of Contents  
7.9 Charge Injection........................................................24  
7.10 Off Isolation.............................................................24  
7.11 Crosstalk................................................................. 25  
7.12 Bandwidth............................................................... 25  
7.13 THD + Noise........................................................... 26  
7.14 Power Supply Rejection Ratio (PSRR)...................26  
8 Detailed Description......................................................27  
8.1 Overview...................................................................27  
8.2 Functional Block Diagram.........................................27  
8.3 Feature Description...................................................27  
8.4 Device Functional Modes..........................................29  
8.5 Truth Tables.............................................................. 29  
9 Application and Implementation..................................30  
9.1 Application Information............................................. 30  
9.2 Typical Application.................................................... 30  
10 Power Supply Recommendations..............................32  
11 Layout...........................................................................32  
11.1 Layout Guidelines................................................... 32  
11.2 Layout Example...................................................... 33  
12 Device and Documentation Support..........................34  
12.1 Documentation Support.......................................... 34  
12.2 Receiving Notification of Documentation Updates..34  
12.3 支持资源..................................................................34  
12.4 Trademarks.............................................................34  
12.5 Electrostatic Discharge Caution..............................34  
12.6 术语表..................................................................... 34  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Thermal Information....................................................5  
6.4 Recommended Operating Conditions.........................6  
6.5 Source or Drain Continuous Current...........................6  
6.6 ±15 V Dual Supply: Electrical Characteristics ............7  
6.7 ±15 V Dual Supply: Switching Characteristics ...........8  
6.8 ±20 V Dual Supply: Electrical Characteristics.............9  
6.9 ±20 V Dual Supply: Switching Characteristics..........10  
6.10 44 V Single Supply: Electrical Characteristics ....... 11  
6.11 44 V Single Supply: Switching Characteristics .......12  
6.12 12 V Single Supply: Electrical Characteristics ....... 13  
6.13 12 V Single Supply: Switching Characteristics ...... 14  
6.14 Typical Characteristics............................................15  
7 Parameter Measurement Information..........................20  
7.1 On-Resistance.......................................................... 20  
7.2 Off-Leakage Current................................................. 20  
7.3 On-Leakage Current................................................. 21  
7.4 Transition Time......................................................... 21  
7.5 tON(EN) and tOFF(EN) .................................................. 22  
7.6 Break-Before-Make...................................................22  
7.7 tON (VDD) Time............................................................23  
7.8 Propagation Delay.................................................... 23  
Information.................................................................... 34  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision E (August 2021) to Revision F (November 2022)  
Page  
PW 封装状态从预发更改为正在供........................................................................................................ 1  
Changes from Revision D (August 2021) to Revision E (August 2021)  
Page  
Updated ESD HBM spec.................................................................................................................................... 5  
Changes from Revision C (June 2021) to Revision D (August 2021)  
Page  
• 将状态从预告信更改为量产数................................................................................................................ 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TMUX7234  
 
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
5 Pin Configuration and Functions  
SEL1  
S1A  
D1  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
SEL4  
S4A  
D4  
D1  
S1B  
VSS  
GND  
S2B  
1
2
3
4
5
15  
14  
13  
12  
11  
D4  
S1B  
VSS  
GND  
S2B  
D2  
S4B  
VDD  
S4B  
VDD  
S3B  
D3  
Thermal  
Pad  
S3B  
D3  
S2A  
SEL2  
S3A  
SEL3  
Not to scale  
Not to scale  
5-2. TMUX7234 RRQ Package, 20-Pin WQFN  
5-1. TMUX7234 PW Package, 20-Pin TSSOP (Top  
(Top View)  
View)  
5-1. Pin Functions TMUX7234  
PIN  
PW NO.  
TYPE(1)  
DESCRIPTION(2)  
NAME  
SEL1  
S1A  
RRQ NO.  
1
2
3
4
19  
20  
1
I
Logic control input 1; has internal pull-down resistor. Controls switch 1 (see 8.5).  
Source pin 1A. Can be an input or output.  
I/O  
I/O  
I/O  
D1  
Drain pin 1. Can be an input or output.  
S1B  
2
Source pin 1B. Can be an input or output.  
Negative power supply. This pin has the most negative power-supply potential. This pin  
can be connected to ground in single supply applications. Connect a decoupling capacitor  
ranging from 0.1 μF to 10 μF between VSS and GND for reliable operation.  
VSS  
5
3
P
GND  
S2B  
D2  
6
7
4
5
P
I/O  
I/O  
I/O  
I
Ground (0 V) reference.  
Source pin 2B. Can be an input or output.  
8
6
Drain pin 2. Can be an input or output.  
S2A  
SEL2  
SEL3  
S3A  
D3  
9
7
Source pin 2A. Can be an input or output.  
10  
11  
12  
13  
14  
8
Logic control input 2; has internal pull-down resistor. Controls switch 2 (see 8.5).  
Logic control input 3; has internal pull-down resistor. Controls switch 3 (see 8.5).  
Source pin 3A. Can be an input or output.  
9
I
10  
11  
12  
I/O  
I/O  
I/O  
Drain pin 3. Can be an input or output.  
S3B  
Source pin 3B. Can be an input or output.  
Active low logic enable; has internal pull-down resistor. The SELx logic inputs determine  
switch connections when this pin is low (see 8.5).  
EN  
15  
16  
18  
13  
I
Positive power supply. This pin has the most positive power-supply potential. For reliable  
operation, connect a decoupling capacitor ranging from 0.1 μF to 10 μF between VDD  
and GND.  
VDD  
P
S4B  
D4  
17  
18  
19  
20  
14  
15  
16  
17  
I/O  
I/O  
I/O  
I
Source pin 4B. Can be an input or output.  
Drain pin 4. Can be input or output  
S4A  
SEL4  
Source pin 4A. Can be an input or output.  
Logic control input 4, has internal pull-down resistor. Controls switch 4 (see 8.5).  
The thermal pad is not connected internally. There is no requirement to solder this pad. If  
connected, it is recommended to leave the pad floating or tied to GND.  
Thermal Pad  
(1) I = input, O = output, I/O = input and output, P = power.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TMUX7234  
 
 
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
(2) Refer to 8.4 for what to do with unused pins.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TMUX7234  
 
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
MAX  
UNIT  
V
48  
VDDVSS  
VDD  
Supply voltage  
48  
V
0.5  
48  
VSS  
0.5  
V
VSEL or VEN  
Logic control input pin voltage (SELx, EN)  
Logic control input pin current (SELx, EN)  
Source or drain voltage (SxA, SxB, Dx)  
Diode clamp current(3)  
48  
30  
V
0.5  
ISEL or IEN  
mA  
V
30  
VS or VD  
VDD+0.5  
30  
VSS0.5  
30  
IIK  
mA  
mA  
°C  
°C  
°C  
mW  
IS or ID (CONT)  
Source or drain continuous current (SxA, SxB, Dx)  
Ambient temperature  
IDC ± 10 %(4)  
150  
TA  
55  
65  
Tstg  
TJ  
Storage temperature  
150  
Junction temperature  
150  
Ptot  
Total power dissipation (QFN package)(5)  
1680  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltages are with respect to ground, unless otherwise specified.  
(3) Pins are diode-clamped to the power-supply rails. Over voltage signals must be voltage and current limited to maximum ratings.  
(4) Refer to Source or Drain Continuous Current table for IDC specifications.  
(5) For QFN package: Ptot derates linearily above TA = 70°C by 24.8mW/°C.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/  
JEDEC JS-002, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Thermal Information  
TMUX7234  
THERMAL METRIC(1)  
PW (TSSOP)  
20 PINS  
74.7  
RRQ (WQFN)  
20 PINS  
40.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
19.9  
24.2  
32.3  
16.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.7  
0.2  
ΨJT  
31.7  
16.4  
ΨJB  
RθJC(bot)  
N/A  
2.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TMUX7234  
 
 
 
 
 
 
 
 
 
 
 
 
 
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
6.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
4.5  
VSS  
0
NOM  
MAX  
UNIT  
V
(1)  
Power supply voltage differential  
44  
44  
VDD VSS  
VDD  
Positive power supply voltage  
V
VS or VD  
VSEL or VEN  
IS or ID (CONT)  
TA  
Signal path input/output voltage (source or drain pin) (SxA, SxB, Dx)  
Address or enable pin voltage  
VDD  
V
44  
V
(2)  
Source or drain continuous current (SxA, SxB, Dx)  
Ambient temperature  
IDC  
mA  
°C  
125  
40  
(1) VDD and VSS can be any value as long as 4.5 V (VDD VSS) 44 V, and the minimum VDD is met.  
(2) Refer to Source or Drain Continuous Current table for IDC specifications.  
6.5 Source or Drain Continuous Current  
at supply voltage of VDD ± 10%, VSS ± 10 % (unless otherwise noted)  
CONTINUOUS CURRENT PER CHANNEL  
TA = 25°C  
TA = 85°C  
230  
TA = 125°C  
129  
UNIT  
PACKAGE  
TEST CONDITIONS  
+44 V Single Supply(1)  
350  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
±15 V Dual Supply  
+12 V Single Supply  
±5 V Dual Supply  
360  
260  
255  
170  
400  
400  
300  
300  
240  
235  
177  
175  
129  
230  
230  
180  
180  
150  
130  
108  
105  
80  
PW (TSSOP)  
+5 V Single Supply  
+44 V Single Supply(1)  
±15 V Dual Supply  
+12 V Single Supply  
±5 V Dual Supply  
120  
120  
100  
100  
85  
RRQ (WQFN)  
+5 V Single Supply  
(1) Specified for nominal supply voltage only.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TMUX7234  
 
 
 
 
 
 
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
6.6 ±15 V Dual Supply: Electrical Characteristics  
VDD = +15 V ± 10%, VSS = 15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
3.6  
5.5  
7.1  
8.4  
0.7  
0.8  
0.9  
1.5  
1.7  
1.9  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
VS = 10 V to +10 V  
ID = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
0.2  
0.4  
VS = 10 V to +10 V  
ID = 10 mA  
Refer to On-Resistance  
On-resistance mismatch between  
channels  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
VS = 10 V to +10 V  
IS = 10 mA  
Refer to On-Resistance  
RON FLAT On-resistance flatness  
RON DRIFT On-resistance drift  
40°C to +85°C  
40°C to +125°C  
VS = 0 V, IS = 10 mA  
Refer to On-Resistance  
0.015  
0.01  
40°C to +125°C  
/°C  
25°C  
0.4  
1
nA  
nA  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is off  
VS = +10 V / 10 V  
0.4  
1  
40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VD = 10 V / + 10 V  
Refer to Off-Leakage Current  
8
nA  
40°C to +125°C  
8  
25°C  
0.02  
0.02  
0.5  
4
nA  
nA  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is off  
VS = +10 V / 10 V  
VD = 10 V / + 10 V  
Refer to Off-Leakage Current  
0.5  
4  
40°C to +85°C  
ID(OFF)  
Drain off leakage current(1)  
12  
nA  
40°C to +125°C  
12  
25°C  
0.5  
4
nA  
nA  
nA  
0.5  
4  
VDD = 16.5 V, VSS = 16.5 V  
Switch state is on  
VS = VD = ±10 V  
IS(ON)  
ID(ON)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
Refer to On-Leakage Current  
8
8  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
44  
0.8  
1.2  
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.6  
µA  
µA  
pF  
IIL  
0.1 0.005  
CIN  
3
POWER SUPPLY  
25°C  
45  
8
70  
80  
95  
25  
30  
40  
µA  
µA  
µA  
µA  
µA  
µA  
VDD = 16.5 V, VSS = 16.5 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
25°C  
VDD = 16.5 V, VSS = 16.5 V  
Logic inputs = 0 V, 5 V, or VDD  
ISS  
VSS supply current  
40°C to +85°C  
40°C to +125°C  
(1) When VS is positive, VD is negative. Or when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating. Or when VD is at a voltage potential, VS is floating.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TMUX7234  
 
 
 
TMUX7234  
www.ti.com.cn  
MAX UNIT  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
6.7 ±15 V Dual Supply: Switching Characteristics  
VDD = +15 V ± 10%, VSS = 15 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +15 V, VSS = 15 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
25°C  
90  
180  
190  
200  
180  
190  
210  
140  
150  
160  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
ms  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
Refer to Transition Time  
tTRAN  
Transition time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 10 V  
110  
80  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tON  
Turn-on time from enable  
Turn-off time from enable  
Break-before-make time delay  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tOFF  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
50  
VS = 10 V,  
RL = 300 Ω, CL = 35 pF  
Refer to Break-Before-Make  
1
1
tBBM  
40°C to +85°C  
40°C to +125°C  
25°C  
0.16  
0.16  
0.16  
VDD rise time = 1µs  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on (VDD) Time  
Device turn on time  
(VDD to output)  
TON (VDD)  
40°C to +85°C  
40°C to +125°C  
RL = 50 Ω, CL = 5 pF  
Refer to Propagation Delay  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
450  
3
ps  
VD = 0 V, CL = 100 pF  
Refer to Charge Injection  
QINJ  
pC  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
Refer to Off Isolation  
OISO  
OISO  
XTALK  
Off-isolation  
Off-isolation  
Crosstalk  
25°C  
25°C  
25°C  
dB  
dB  
dB  
82  
62  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Refer to Off Isolation  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1MHz  
Refer to Crosstalk  
105  
RL = 50 Ω, CL = 5 pF  
VS = 0 V  
Refer to Bandwidth  
BW  
IL  
25°C  
25°C  
100  
MHz  
dB  
3dB Bandwidth  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Insertion loss  
0.3  
VPP = 0.62 V on VDD and VSS  
RL = 10 MΩ, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
48  
Refer to ACPSRR  
VPP = 15 V, VBIAS = 0 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.0004  
Refer to THD + Noise  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
25°C  
25°C  
16  
28  
pF  
pF  
CS(ON),  
CD(ON)  
On capacitance  
VS = 0 V, f = 1 MHz  
25°C  
77  
pF  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TMUX7234  
 
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
6.8 ±20 V Dual Supply: Electrical Characteristics  
VDD = +20 V ± 10%, VSS = 20 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +20 V, VSS = 20 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
3.2  
5.4  
6.7  
7.9  
0.7  
0.8  
0.9  
1.5  
1.7  
1.9  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
VS = 15 V to +15 V  
ID = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
0.2  
0.6  
VS = 15 V to +15 V  
ID = 10 mA  
Refer to On-Resistance  
On-resistance mismatch between  
channels  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
VS = 15 V to +15 V  
IS = 10 mA  
Refer to On-Resistance  
RON FLAT On-resistance flatness  
RON DRIFT On-resistance drift  
40°C to +85°C  
40°C to +125°C  
VS = 0 V, IS = 10 mA  
Refer to On-Resistance  
0.014  
0.02  
40°C to +125°C  
/°C  
25°C  
1
2
nA  
nA  
VDD = 22 V, VSS = 22 V  
Switch state is off  
VS = +15 V / 15 V  
1  
2  
40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VD = 15 V / + 15 V  
Refer to Off-Leakage Current  
12  
nA  
40°C to +125°C  
12  
25°C  
0.04  
0.04  
1
4
nA  
nA  
VDD = 22 V, VSS = 22 V  
Switch state is off  
VS = +15 V / 15 V  
VD = 15 V / + 15 V  
Refer to Off-Leakage Current  
1  
4  
40°C to +85°C  
ID(OFF)  
Drain off leakage current(1)  
30  
nA  
40°C to +125°C  
30  
25°C  
1
4
nA  
nA  
nA  
1  
4  
VDD = 22 V, VSS = 22 V  
Switch state is on  
VS = VD = ±15 V  
IS(ON)  
ID(ON)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
Refer to On-Leakage Current  
30  
30  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
44  
0.8  
1.2  
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.6  
µA  
µA  
pF  
IIL  
0.1 0.005  
CIN  
3
POWER SUPPLY  
25°C  
50  
10  
80  
95  
µA  
µA  
µA  
µA  
µA  
µA  
VDD = 22 V, VSS = 22 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
25°C  
110  
30  
VDD = 22 V, VSS = 22 V  
Logic inputs = 0 V, 5 V, or VDD  
35  
ISS  
VSS supply current  
40°C to +85°C  
40°C to +125°C  
45  
(1) When VS is positive, VD is negative. Or when VS is negative, VD is positive.  
(2) When VS is at a voltage potential, VD is floating. Or when VD is at a voltage potential, VS is floating.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TMUX7234  
 
 
 
TMUX7234  
www.ti.com.cn  
MAX UNIT  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
6.9 ±20 V Dual Supply: Switching Characteristics  
VDD = +20 V ± 10%, VSS = 20 V ±10%, GND = 0 V (unless otherwise noted)  
Typical at VDD = +20 V, VSS = 20 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
25°C  
90  
190  
200  
210  
190  
200  
210  
140  
150  
160  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
ms  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
Refer to Transition Time  
tTRAN  
Transition time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 10 V  
110  
75  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tON  
Turn-on time from enable  
Turn-off time from enable  
Break-before-make time delay  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
VS = 10 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tOFF  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
50  
VS = 10 V,  
RL = 300 Ω, CL = 35 pF  
Refer to Break-Before-Make  
1
1
tBBM  
40°C to +85°C  
40°C to +125°C  
25°C  
VDD rise time = 1µs  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-  
offTime  
0.16  
0.16  
0.16  
Device turn on time  
(VDD to output)  
TON (VDD)  
40°C to +85°C  
40°C to +125°C  
RL = 50 Ω, CL = 5 pF  
Refer to Propagation Delay  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
470  
3
ps  
VD = 0 V, CL = 100 pF  
Refer to Charge Injection  
QINJ  
pC  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 100 kHz  
Refer to Off Isolation  
OISO  
OISO  
XTALK  
Off-isolation  
Off-isolation  
Crosstalk  
25°C  
25°C  
25°C  
dB  
dB  
dB  
82  
62  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Refer to Off Isolation  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1MHz  
Refer to Crosstalk  
105  
RL = 50 Ω, CL = 5 pF  
VS = 0 V  
Refer to Bandwidth  
BW  
IL  
25°C  
25°C  
95  
MHz  
dB  
3dB Bandwidth  
RL = 50 Ω, CL = 5 pF  
VS = 0 V, f = 1 MHz  
Insertion loss  
0.25  
VPP = 0.62 V on VDD and VSS  
RL = 10 MΩ, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
48  
Refer to ACPSRR  
VPP = 20 V, VBIAS = 0 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.002  
Refer to THD + Noise  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
25°C  
25°C  
16  
26  
pF  
pF  
CS(ON),  
CD(ON)  
On capacitance  
VS = 0 V, f = 1 MHz  
25°C  
77  
pF  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TMUX7234  
 
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
6.10 44 V Single Supply: Electrical Characteristics  
VDD = +44 V, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +44 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
3
5.8  
7.2  
8.9  
0.7  
0.8  
0.9  
2
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
VS = 0 V to 40 V  
ID = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
0.2  
1.5  
VS = 0 V to 40 V  
ID = 10 mA  
Refer to On-Resistance  
On-resistance mismatch between  
channels  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
VS = 0 V to 40 V  
ID = 10 mA  
Refer to On-Resistance  
2.5  
3.3  
RON FLAT On-resistance flatness  
RON DRIFT On-resistance drift  
40°C to +85°C  
40°C to +125°C  
VS = 22 V, IS = 10 mA  
Refer to On-Resistance  
0.012  
0.02  
40°C to +125°C  
/°C  
VDD = 44 V, VSS = 0 V  
Switch state is off  
VS = 40 V / 1 V  
25°C  
1
4
nA  
nA  
1  
4  
40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VD = 1 V / 40 V  
Refer to Off-Leakage Current  
20  
nA  
40°C to +125°C  
20  
VDD = 44 V, VSS = 0 V  
Switch state is off  
VS = 40 V / 1 V  
VD = 1 V / 40 V  
Refer to Off-Leakage Current  
25°C  
0.04  
0.04  
1
8
nA  
nA  
1  
8  
40°C to +85°C  
ID(OFF)  
Drain off leakage current(1)  
40  
nA  
40°C to +125°C  
40  
25°C  
1
8
nA  
nA  
nA  
VDD = 44 V, VSS = 0 V  
Switch state is on  
VS = VD = 40 V or 1 V  
Refer to On-Leakage Current  
1  
8  
IS(ON)  
ID(ON)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
40  
40  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
44  
0.8  
1.2  
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.6  
µA  
µA  
pF  
IIL  
0.1 0.005  
CIN  
3
POWER SUPPLY  
25°C  
70  
110  
118  
140  
µA  
µA  
µA  
VDD = 44 V, VSS = 0 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
(1) When VS is 40 V, VD is 1 V. Or when VS is 1 V, VD is 40 V.  
(2) When VS is at a voltage potential, VD is floating. Or when VD is at a voltage potential, VS is floating.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TMUX7234  
 
 
 
TMUX7234  
www.ti.com.cn  
MAX UNIT  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
6.11 44 V Single Supply: Switching Characteristics  
VDD = +44 V, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +44 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
25°C  
90  
200  
220  
240  
200  
220  
240  
180  
200  
220  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
ms  
VS = 18 V  
RL = 300 Ω, CL = 35 pF  
Refer to Transition Time  
tTRAN  
Transition time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 18 V  
100  
90  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tON  
Turn-on time from enable  
Turn-off time from enable  
Break-before-make time delay  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
VS = 18 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tOFF  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
45  
VS = 18 V,  
RL = 300 Ω, CL = 35 pF  
Refer to Break-Before-Make  
1
1
tBBM  
40°C to +85°C  
40°C to +125°C  
25°C  
0.13  
0.13  
0.13  
VDD rise time = 1µs  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on (VDD) Time  
Device turn on time  
(VDD to output)  
TON (VDD)  
40°C to +85°C  
40°C to +125°C  
RL = 50 Ω, CL = 5 pF  
Refer to Propagation Delay  
tPD  
Propagation delay  
Charge injection  
25°C  
25°C  
570  
3
ps  
VD = 22 V, CL = 100 pF  
Refer to Charge Injection  
QINJ  
pC  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 100 kHz  
Refer to Off Isolation  
OISO  
OISO  
XTALK  
Off-isolation  
Off-isolation  
Crosstalk  
25°C  
25°C  
25°C  
dB  
dB  
dB  
82  
62  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Refer to Off Isolation  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1MHz  
Refer to Crosstalk  
105  
RL = 50 Ω, CL = 5 pF  
VS = 6 V  
Refer to Bandwidth  
BW  
IL  
25°C  
25°C  
92  
MHz  
dB  
3dB Bandwidth  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Insertion loss  
0.3  
VPP = 0.62 V on VDD and VSS  
RL = 10 MΩ, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
dB  
45  
Refer to ACPSRR  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 22 V, f = 1 MHz  
VS = 22 V, f = 1 MHz  
25°C  
25°C  
16  
28  
pF  
pF  
CS(ON),  
CD(ON)  
On capacitance  
VS = 22 V, f = 1 MHz  
25°C  
77  
pF  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TMUX7234  
 
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
6.12 12 V Single Supply: Electrical Characteristics  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
MAX UNIT  
ANALOG SWITCH  
25°C  
6.2  
12  
15  
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
Ω
VS = 0 V to 10 V  
ID = 10 mA  
Refer to On-Resistance  
RON  
On-resistance  
40°C to +85°C  
40°C to +125°C  
25°C  
18  
0.2  
2.4  
0.7  
0.8  
0.9  
3.6  
3.9  
4.8  
VS = 0 V to 10 V  
ID = 10 mA  
Refer to On-Resistance  
On-resistance mismatch between  
channels  
40°C to +85°C  
40°C to +125°C  
25°C  
ΔRON  
VS = 0 V to 10 V  
IS = 10 mA  
Refer to On-Resistance  
RON FLAT On-resistance flatness  
RON DRIFT On-resistance drift  
40°C to +85°C  
40°C to +125°C  
VS = 6 V, IS = 10 mA  
Refer to On-Resistance  
0.025  
0.01  
40°C to +125°C  
/°C  
VDD = 13.2 V, VSS = 0 V  
Switch state is off  
VS = 10 V / 1 V  
25°C  
0.4  
1
nA  
nA  
0.4  
1  
40°C to +85°C  
IS(OFF)  
Source off leakage current(1)  
VD = 1 V / 10 V  
Refer to Off-Leakage Current  
8
nA  
40°C to +125°C  
8  
VDD = 13.2 V, VSS = 0 V  
Switch state is off  
VS = 10 V / 1 V  
VD = 1 V / 10 V  
Refer to Off-Leakage Current  
25°C  
0.02  
0.02  
0.5  
4
nA  
nA  
0.5  
4  
40°C to +85°C  
ID(OFF)  
Drain off leakage current(1)  
12  
nA  
40°C to +125°C  
12  
25°C  
0.5  
4
nA  
nA  
nA  
VDD = 13.2 V, VSS = 0 V  
Switch state is on  
VS = VD = 10 V or 1 V  
Refer to On-Leakage Current  
0.5  
4  
IS(ON)  
ID(ON)  
Channel on leakage current(2)  
40°C to +85°C  
40°C to +125°C  
8
8  
LOGIC INPUTS (SEL / EN pins)  
VIH  
VIL  
IIH  
Logic voltage high  
1.3  
0
44  
0.8  
1.2  
V
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
40°C to +125°C  
Logic voltage low  
V
Input leakage current  
Input leakage current  
Logic input capacitance  
0.6  
µA  
µA  
pF  
IIL  
0.1 0.005  
CIN  
3
POWER SUPPLY  
25°C  
36  
55  
65  
75  
µA  
µA  
µA  
VDD = 13.2 V, VSS = 0 V  
Logic inputs = 0 V, 5 V, or VDD  
IDD  
VDD supply current  
40°C to +85°C  
40°C to +125°C  
(1) When VS is 10 V, VD is 1 V. Or when VS is 1 V, VD is 10 V.  
(2) When VS is at a voltage potential, VD is floating. Or when VD is at a voltage potential, VS is floating.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TMUX7234  
 
 
 
TMUX7234  
www.ti.com.cn  
MAX UNIT  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
6.13 12 V Single Supply: Switching Characteristics  
VDD = +12 V ± 10%, VSS = 0 V, GND = 0 V (unless otherwise noted)  
Typical at VDD = +12 V, VSS = 0 V, TA = 25(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TA  
MIN  
TYP  
25°C  
105  
200  
220  
250  
200  
220  
250  
190  
210  
240  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ms  
ms  
VS = 8 V  
RL = 300 Ω, CL = 35 pF  
Refer to Transition Time  
tTRAN  
Transition time from control input  
40°C to +85°C  
40°C to +125°C  
25°C  
VS = 8 V  
110  
105  
60  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tON  
Turn-on time from enable  
Turn-off time from enable  
Break-before-make time delay  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
VS = 8 V  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on and Turn-off  
Time  
tOFF  
40°C to +85°C  
40°C to +125°C  
25°C  
(EN)  
VS = 8 V,  
RL = 300 Ω, CL = 35 pF  
Refer to Break-Before-Make  
1
1
tBBM  
40°C to +85°C  
40°C to +125°C  
25°C  
0.16  
0.16  
0.16  
VDD rise time = 1µs  
RL = 300 Ω, CL = 35 pF  
Refer to Turn-on (VDD) Time  
Device turn on time  
(VDD to output)  
TON (VDD)  
40°C to +85°C  
40°C to +125°C  
RL = 50 Ω, CL = 5 pF  
Refer to Propagation Delay  
tPD  
Propagation delay  
Charge injection  
Off-isolation  
25°C  
25°C  
25°C  
490  
1
ps  
pC  
dB  
VD = 6 V, CL = 100 pF  
Refer to Charge Injection  
QINJ  
OISO  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 100 kHz  
82  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Refer to Off Isolation  
OISO  
Off-isolation  
Crosstalk  
25°C  
25°C  
dB  
dB  
62  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1MHz  
Refer to Crosstalk  
XTALK  
105  
RL = 50 Ω, CL = 5 pF  
VS = 6 V  
Refer to Bandwidth  
BW  
IL  
25°C  
25°C  
130  
MHz  
dB  
3dB Bandwidth  
RL = 50 Ω, CL = 5 pF  
VS = 6 V, f = 1 MHz  
Insertion loss  
0.5  
VPP = 0.62 V on VDD and VSS  
RL = 10 MΩ, CL = 5 pF,  
f = 1 MHz  
ACPSRR AC Power Supply Rejection Ratio  
25°C  
25°C  
dB  
%
50  
Refer to ACPSRR  
VPP = 6 V, VBIAS = 6 V  
RL = 10 kΩ, CL = 5 pF,  
f = 20 Hz to 20 kHz  
THD+N  
Total Harmonic Distortion + Noise  
0.0016  
Refer to THD + Noise  
CS(OFF)  
CD(OFF)  
Source off capacitance  
Drain off capacitance  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
25°C  
25°C  
19  
33  
pF  
pF  
CS(ON),  
CD(ON)  
On capacitance  
VS = 6 V, f = 1 MHz  
25°C  
78  
pF  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TMUX7234  
 
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
6.14 Typical Characteristics  
at TA = 25°C (unless otherwise noted)  
.
.
6-1. On-Resistance vs Source or Drain Voltage Dual  
6-2. On-Resistance vs Source or Drain Voltage Dual  
Supply  
Supply  
.
.
6-3. On-Resistance vs Source or Drain Voltage Single  
6-4. On-Resistance vs Source or Drain Voltage Single  
Supply  
Supply  
VDD = 15 V, VSS = -15 V  
VDD = 20 V, VSS = -20 V  
6-5. On-Resistance vs Temperature  
6-6. On-Resistance vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TMUX7234  
 
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
6.14 Typical Characteristics (continued)  
at TA = 25°C (unless otherwise noted)  
VDD = 12 V, VSS = 0 V  
VDD = 20 V, VSS = -20 V  
6-7. On-Resistance vs Temperature  
6-8. Leakage Current vs Temperature  
VDD = 15 V, VSS = -15 V  
VDD = 12 V, VSS = 0 V  
6-9. Leakage Current vs Temperature  
6-10. Leakage Current vs Temperature  
80  
60  
40  
20  
0
VDD = 20 V, VSS = 20 V  
VDD = 15 V, VSS = 15 V  
VDD = 5 V, VSS = 5 V  
-20  
-40  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
Drain Voltage (V)  
.
6-12. Charge Injection vs Drain Voltage Dual Supply  
.
6-11. Supply Current vs Logic Voltage  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TMUX7234  
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
6.14 Typical Characteristics (continued)  
at TA = 25°C (unless otherwise noted)  
80  
110  
100  
90  
80  
70  
60  
50  
40  
30  
VDD = 20 V, VSS = 20 V  
VDD = 15 V, VSS = 15 V  
VDD = 5 V, VSS = 5 V  
VDD = 36 V, VSS = 0 V  
VDD = 20 V, VSS = 0 V  
VDD = 15 V, VSS = 0 V  
VDD = 12 V, VSS = 0 V  
VDD = 5 V, VSS = 0 V  
60  
40  
20  
0
20  
10  
0
-10  
-20  
-30  
-40  
-50  
-20  
-40  
0
4
8
12 16 20 24 28 32 36 40 44  
Drain Voltage (V)  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
Source Voltage (V)  
.
.
6-14. Charge Injection vs Drain Voltage Single Supply  
6-13. Charge Injection vs Source Voltage Dual Supply  
110  
VDD = 44 V, VSS = 0 V  
VDD = 20 V, VSS = 0 V  
VDD = 15 V, VSS = 0 V  
VDD = 12 V, VSS = 0 V  
VDD = 5 V, VSS = 0 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
0
4
8
12 16 20 24 28 32 36 40 44  
Source Voltage (V)  
.
6-15. Charge Injection vs Source Voltage Single Supply  
.
6-16. TTRANSITION vs Temperature  
.
VDD = 15 V, VSS = -15 V  
6-17. TTRANSITION vs Temperature  
6-18. TON and TOFF vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TMUX7234  
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
6.14 Typical Characteristics (continued)  
at TA = 25°C (unless otherwise noted)  
VDD = 44 V, VSS = 0 V  
VDD = 15 V, VSS = -15 V, TA = 25°C .  
6-19. TON and TOFF vs Temperature  
6-20. Off-Isolation vs Frequency  
0.005  
0.004  
VDD = 5 V, VSS = 5 V  
VDD = 15 V, VSS = 15 V  
0.003  
0.002  
0.001  
0.0007  
0.0005  
0.0004  
0.0003  
0.0002  
10  
100  
Frequency (Hz)  
1k  
.
VDD = 15 V, VSS = -15 V .  
6-22. THD+N vs Frequency (Dual Supply)  
6-21. Crosstalk vs Frequency  
.
VDD = 15 V, VSS = -15 V .  
6-23. THD+N vs Frequency (Single Supply)  
6-24. On Response vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TMUX7234  
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
6.14 Typical Characteristics (continued)  
at TA = 25°C (unless otherwise noted)  
VDD = +15 V, VSS = -15 V  
VDD = +15 V, VSS = -15 V  
6-25. ACPSRR vs Frequency  
6-26. Capacitance vs Source Voltage or Drain Voltage  
VDD = 12 V, VSS = 0 V  
6-27. Capacitance vs Source Voltage or Drain Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TMUX7234  
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
7 Parameter Measurement Information  
7.1 On-Resistance  
The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (D) pins of the device.  
The on-resistance varies with input voltage and supply voltage. The symbol RON is used to denote on-  
resistance. 7-1 shows the measurement setup used to measure RON. Voltage (V) and current (ISD) are  
measured using this setup, and RON is computed with RON = V / ISD  
.
V
ISD  
Sx  
Dx  
VS  
7-1. On-Resistance Measurement Setup  
7.2 Off-Leakage Current  
There are two types of leakage currents associated with a switch during the off state:  
Source off-leakage current  
Drain off-leakage current  
Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is  
off. This current is denoted by the symbol IS(OFF)  
Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off.  
This current is denoted by the symbol ID(OFF)  
7-2 shows the setup used to measure both off-leakage currents.  
.
.
VDD  
VSS  
VDD  
VSS  
Is (OFF)  
ID (OFF)  
S1A  
S1B  
S1A  
S1B  
A
D1  
D1  
A
VS  
VD  
VD  
VS  
VD  
Is (OFF)  
ID (OFF)  
S4A  
S4B  
S4A  
S4B  
D4  
A
A
D4  
VS  
VS  
GND  
GND  
VD  
VD  
IS(OFF)  
ID(OFF)  
7-2. Off-Leakage Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TMUX7234  
 
 
 
 
 
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
7.3 On-Leakage Current  
Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch  
is on. This current is denoted by the symbol IS(ON)  
.
Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is  
on. This current is denoted by the symbol ID(ON)  
.
Either the source pin or drain pin is left floating during the measurement. 7-3 shows the circuit used for  
measuring the on-leakage current, denoted by IS(ON) or ID(ON)  
.
VDD  
VSS  
VDD  
VSS  
Is (ON)  
A
ID (ON)  
S1A  
S1B  
S1A  
S1B  
N.C.  
N.C.  
D1  
D1  
A
N.C.  
VS  
N.C.  
VD  
Is (ON)  
A
S4A  
S4B  
S4A  
S4B  
N.C.  
N.C.  
D4  
D4  
N.C.  
A
VS  
N.C.  
VD  
GND  
GND  
IS(ON)  
7-3. On-Leakage Measurement Setup  
ID(ON)  
7.4 Transition Time  
Transition time is defined as the time taken by the output of the device to rise or fall 90% after the address signal  
has risen or fallen past the logic threshold. The 90% transition measurement is utilized to provide the timing of  
the device. System level timing can then account for the time constant added from the load resistance and load  
capacitance. 7-4 shows the setup used to measure transition time, denoted by the symbol tTRANSITION  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
VS  
3 V  
0 V  
VDD  
S1A  
VSS  
VSEL  
tr < 20 ns  
tf < 20 ns  
50%  
50%  
D1  
Output  
CL  
S1B  
tTRANSITION  
tTRANSITION  
RL  
90%  
Output  
0 V  
S4A  
S4B  
VS  
D4  
Output  
CL  
10%  
RL  
SELx  
GND  
VSEL  
7-4. Transition-Time Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TMUX7234  
 
 
 
 
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
7.5 tON(EN) and tOFF(EN)  
Turn-on time is defined as the time taken by the output of the device to rise to 90% after the enable has risen  
past the logic threshold. The 90% measurement is utilized to provide the timing of the device. System level  
timing can then account for the time constant added from the load resistance and load capacitance. 7-7  
shows the setup used to measure turn-on time, denoted by the symbol tON(EN)  
.
Turn-off time is defined as the time taken by the output of the device to fall to 10% after the enable has fallen  
past the logic threshold. The 10% measurement is utilized to provide the timing of the device. System level  
timing can then account for the time constant added from the load resistance and load capacitance. 7-7  
shows the setup used to measure turn-off time, denoted by the symbol tOFF(EN)  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
3 V  
VDD  
VSS  
VEN  
tr < 20 ns  
tf < 20 ns  
50%  
50%  
S1A  
S1B  
0 V  
VS  
D1  
D4  
Output  
CL  
tON  
tOFF  
RL  
90%  
Output  
0 V  
S4A  
S4B  
VS  
Output  
CL  
10%  
RL  
EN  
GND  
VEN  
7-5. Turn-On and Turn-Off Time Measurement Setup  
7.6 Break-Before-Make  
Break-before-make delay is a safety feature that prevents two inputs from connecting when the device is  
switching. The output first breaks from the on-state switch before making the connection with the next on-state  
switch. The time delay between the break and the make is known as break-before-make delay. 7-6 shows the  
setup used to measure break-before-make delay, denoted by the symbol tOPEN(BBM)  
.
VDD  
VSS  
0.1 µF  
0.1 µF  
3 V  
VDD  
VSS  
VSEL  
tr < 20ns  
tf < 20ns  
S1A  
S1B  
VS  
0 V  
D1  
D4  
Output  
CL  
RL  
80%  
Output  
0 V  
S4A  
S4B  
VS  
tBBM  
1
tBBM 2  
Output  
CL  
RL  
tOPEN (BBM) = min ( tBBM 1, tBBM 2)  
SELx  
GND  
VSEL  
7-6. Break-Before-Make Delay Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TMUX7234  
 
 
 
 
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
7.7 tON (VDD) Time  
The tON (VDD) time is defined as the time taken by the output of the device to rise to 90% after the supply has  
risen past the supply threshold. The 90% measurement is used to provide the timing of the device turning on in  
the system. 7-7 shows the setup used to measure turn on time, denoted by the symbol tON (VDD)  
.
VSS  
0.1 µF  
0.1 µF  
VDD  
Supply  
VDD  
VDD  
S1A  
VSS  
tr = 10 µs  
4.5 V  
Ramp  
VS  
0 V  
Output  
D1  
D4  
S1B  
tON  
RL  
CL  
90%  
Output  
0 V  
VS  
S4A  
S4B  
Output  
CL  
RL  
EN  
3 V  
SELx  
GND  
7-7. tON (VDD) Time Measurement Setup  
7.8 Propagation Delay  
Propagation delay is defined as the time taken by the output of the device to rise or fall 50% after the input signal  
has risen or fallen past the 50% threshold. 7-8 shows the setup used to measure propagation delay, denoted  
by the symbol tPD  
.
VDD  
VSS  
250 mV  
0 V  
0.1 µF  
0.1 µF  
VDD  
S1A  
VSS  
Input  
(VS)  
50%  
50%  
tr < 40ps  
tf < 40ps  
50  
VS  
D1  
Output  
CL  
tPD  
1
tPD 2  
S1B  
RL  
Output  
0 V  
50%  
50%  
50  
S4A  
S4B  
VS  
D4  
Output  
CL  
tProp Delay = max ( tPD 1, tPD 2)  
RL  
GND  
7-8. Propagation Delay Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TMUX7234  
 
 
 
 
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
7.9 Charge Injection  
The TMUX7234 has a transmission-gate topology. Any mismatch in capacitance between the NMOS and PMOS  
transistors results in a charge injected into the drain or source during the falling or rising edge of the gate signal.  
The amount of charge injected into the source or drain of the device is known as charge injection, and is  
denoted by the symbol QINJ. 7-9 shows the setup used to measure charge injection from source (Sx) to drain  
(D).  
VDD  
VSS  
0.1 µF  
0.1 µF  
3 V  
VEN  
VDD  
VSS  
S1A  
tr < 20 ns  
tf < 20 ns  
Output  
D1  
D4  
VD  
0 V  
CL  
S1B  
Output  
Output  
CL  
Output  
VS  
VOUT  
QINJ = CL  
×
VOUT  
S4A  
S4B  
Output  
VD  
CL  
CL  
EN  
VEN  
GND  
7-9. Charge-Injection Measurement Setup  
7.10 Off Isolation  
Off isolation is defined as the ratio of the signal at the drain pin (D) of the device when a signal is applied to the  
source pin (Sx) of an off-channel. 7-10 shows the setup used to measure, and the equation used to calculate  
off isolation.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Network Analyzer  
VS  
S
D
50  
VOUT  
VSIG  
50  
SxA / SxB / Dx  
GND  
50  
7-10. Off Isolation Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TMUX7234  
 
 
 
 
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
7.11 Crosstalk  
Crosstalk is defined as the ratio of the signal at the drain pin (D) of a different channel, when a signal is applied  
at the source pin (Sx) of an on-channel. 7-11 shows the setup used to measure and the equation used to  
calculate crosstalk.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Network Analyzer  
VS  
S1A  
S4A  
D
50  
VOUT  
50  
VSIG  
50  
SxA / SxB / Dx  
GND  
50  
7-11. Crosstalk Measurement Setup  
7.12 Bandwidth  
Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied  
to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the device. 7-12  
shows the setup used to measure bandwidth.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Network Analyzer  
VS  
S
D
50  
VOUT  
VSIG  
50  
SxA / SxB / Dx  
GND  
50  
7-12. Bandwidth Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TMUX7234  
 
 
 
 
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
7.13 THD + Noise  
The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as  
the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the  
mux output. The on-resistance of the device varies with the amplitude of the input signal and results in distortion  
when the drain pin is connected to a low-impedance load. Total harmonic distortion plus noise is denoted as  
THD.  
VDD  
VSS  
0.1 µF  
0.1 µF  
VDD  
VSS  
Audio Precision  
S
D
40  
VOUT  
VS  
RL  
SxA / SxB / Dx  
GND  
50  
7-13. THD Measurement Setup  
7.14 Power Supply Rejection Ratio (PSRR)  
PSRR measures the ability of a device to prevent noise and spurious signals that appear on the supply voltage  
pin from coupling to the output of the switch. The DC voltage on the device supply is modulated by a sine wave  
of 620 mVPP. The ratio of the amplitude of signal on the output to the amplitude of the modulated signal is the  
ACPSRR. A high ratio represents a high degree of tolerance to supply rail variation.  
7-14 shows how the decoupling capacitors reduce high frequency noise on the supply pins. This helps  
stabilize the supply and immediately filter as much of the supply noise as possible.  
VDD  
Network Analyzer  
VSS  
DC Bias  
Injector  
With & Without  
Capacitor  
50  
0.1 µF  
0.1 µF  
VDD  
VSS  
620 mVPP  
VIN  
S
VBIAS  
50 Ω  
SxA / SxB / Dx  
50 Ω  
VOUT  
D
RL  
GND  
CL  
7-14. ACPSRR Measurement Setup  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TMUX7234  
 
 
 
 
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
8 Detailed Description  
8.1 Overview  
The TMUX7234 contains four independently controlled SPDT switches with an EN pin to enable or disable all  
four switches.  
8.2 Functional Block Diagram  
VDD  
VSS  
S1A  
S1B  
D1  
D2  
D3  
D4  
S2A  
S2B  
S3A  
S3B  
S4A  
S4B  
SEL1  
SEL2  
SEL3  
SEL4  
Logic Decoder  
EN  
TMUX7234  
8.3 Feature Description  
8.3.1 Bidirectional Operation  
The TMUX7234 conducts equally well from source (Sx) to drain (Dx) or from drain (Dx) to source (Sx). Each  
channel has very similar characteristics in both directions and supports both analog and digital signals.  
8.3.2 Rail-to-Rail Operation  
The valid signal path input or output voltage for the TMUX7234 ranges from VSS to VDD  
.
8.3.3 1.8 V Logic Compatible Inputs  
The TMUX7234 has 1.8 V logic compatible control for all logic control inputs. 1.8 V logic level inputs allows the  
switch to interface with processors that have lower logic I/O rails and eliminates the need for an external  
translator, which saves both space and BOM cost. For more information on 1.8 V logic implementations refer to  
Simplifying Design with 1.8 V logic Muxes and Switches.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TMUX7234  
 
 
 
 
 
 
 
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
8.3.4 Fail-Safe Logic  
TMUX7234 supports Fail-Safe Logic on the control input pins (EN and SELx) allowing it to operate up to 44 V,  
regardless of the state of the supply pins. This feature allows voltages on the control pins to be applied before  
the supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system complexity by  
removing the need for power supply sequencing on the logic control pins. For example, the Fail-Safe Logic  
feature allows the TMUX7234 logic input pins to ramp up to +44 V while VDD and VSS = 0 V. The logic control  
inputs are protected against positive faults of up to +44 V in powered-off condition, but do not offer protection  
against negative overvoltage conditions.  
8.3.5 Latch-Up Immune  
Latch-Up is a condition where a low impedance path is created between a supply pin and ground. This condition  
is caused by a trigger (current injection or overvoltage), but once activated, the low impedance path remains  
even after the trigger is no longer present. This low impedance path may cause system upset or catastrophic  
damage due to excessive current levels. The Latch-Up condition typically requires a power cycle to eliminate the  
low impedance path.  
The TMUX72xx family of devices are constructed on Silicon on Insulator (SOI) based process where an oxide  
layer is added between the PMOS and NMOS transistor of each CMOS switch to prevent parasitic structures  
from forming. The oxide layer is also known as an insulating trench and prevents triggering of latch up events  
due to overvoltage or current injections. The latch-up immunity feature allows the TMUX72xx family of switches  
and multiplexers to be used in harsh environments. For more information on latch-up immunity refer to Using  
Latch Up Immune Multiplexers to Help Improve System Reliability.  
8.3.6 Ultra-Low Charge Injection  
The TMUX7234 has a transmission gate topology, as shown in 8-1. Any mismatch in the stray capacitance  
associated with the NMOS and PMOS causes an output level change whenever the switch is opened or closed.  
OFF ON  
CGDN  
CGSN  
D
S
CGSP  
CGDP  
OFF ON  
8-1. Transmission Gate Topology  
The TMUX7234 contains specialized architecture to reduce charge injection on the source (Sx). To further  
reduce charge injection in a sensitive application, a compensation capacitor (Cp) can be added on the drain (D).  
This will ensure that excess charge from the switch transition will be pushed into the compensation capacitor on  
the drain (D) instead of the source (Sx). As a general rule of thumb, Cp should be 20x larger than the equivalent  
load capacitance on the source (Sx). 8-2 shows charge injection variation with different compensation  
capacitors on the drain side. This plot was captured on the TMUX7219 as part of the TMUX72xx family with a  
100pF load capacitance.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TMUX7234  
 
 
 
 
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
8-2. Charge Injection Compensation  
8.4 Device Functional Modes  
The enable EN pin is an active-low logic pin that controls the connection between the source (SxA and SxB) and  
drain (Dx) pins of the device. The TMUX7234 SELx logic control inputs determine which source pin is connected  
to the drain pin for each channel. When the EN pin of the TMUX7234 is pulled low, the SELx logic control inputs  
determine which source input is selected. When the EN pin is pulled high, all of the switches are in an open state  
regardless of the state of the SELx logic control inputs. The control pins can be as high as 44 V.  
The TMUX7234 can be operated without any external components except for the supply decoupling capacitors.  
The EN and SELx pins have internal pull-down resistors of 4 MΩ. If unused, EN and SELx pins should be tied to  
GND in order to ensure the device does not consume additional current as highlighted in Implications of Slow or  
Floating CMOS Inputs. Unused signal path inputs (Sx or Dx) should be connected to GND.  
8.5 Truth Tables  
8-1 shows the truth tables for the TMUX7234.  
8-1. TMUX7234 Truth Table  
Selected Source Pins Connected to  
EN  
SEL1  
SEL2  
SEL3  
SEL4  
Drain Pins  
S1B to D1  
S1A to D1  
S2B to D2  
S2A to D2  
S3B to D3  
S3A to D3  
S4B to D4  
S4A to D4  
Hi-Z (OFF)  
0
0
0
0
0
0
0
0
1
0
1
X(1)  
X
X
X
X
X
0
X
X
X
X
X
X
0
X
X
X
X
X
X
X
0
1
X
X
1
X
X
X
X
X
1
X
X
(1) X means do not care.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TMUX7234  
 
 
 
 
 
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TMUX7234 is part of the precision switches and multiplexers family of devices. This device operates with  
dual supplies (±4.5 V to ±22 V), a single supply (4.5 V and 44 V), or asymmetric supplies (such as, VDD = 12 V  
and VSS = 5 V), and offers rail-to-rail input and output. The TMUX7234 offers low RON, low on and off leakage  
currents and ultra-low charge injection performance. These features makes the TMUX7234 a precision, robust,  
high-performance analog multiplexer for high-voltage, industrial applications.  
9.2 Typical Application  
One key application of the TMUX7234 is in the ultrasonic water flow measurement system. Ultrasonic flow  
meters use time of flight (ToF) of an ultrasonic wave and its dependency and behavior in the medium using two  
transducer pairs for upstream and downstream paths. The signal waveforms are transmitted between two  
adjacent transducers. One transducer transmits an upstream path signal and the other transducer receives a  
downstream signal path. The flight time for the signal can be calculated using the known velocity of sound and  
length between the transducers. The upstream and downstream waveforms are processed on the main MCU to  
obtain the volume. 9-1 shows a circuit example utilizing the MSP430FR66047 MCU, high voltage low  
distortion operational amplifiers (THS3091), along with TMUX7234, 2:1, 4 channel precision switches. The  
TMUX7234 is used to select the Rx and Tx path of the transducer. The TMUX7234 offers low on-state  
resistance, flat capacitance performance, and low propagation delay which leads to very low signal distortion.  
The break-before-make feature allows transferring of a signal from one port to another, without shorting the  
inputs together. This device also offers low charge injection which makes this device suitable for high precision  
data acquisition systems.  
+15  
+15V  
S1A  
S1B  
D1  
D2  
THS3091  
S2A  
S2B  
MSP430  
-15  
-15V  
+15  
+15V  
S3A  
S3B  
D3  
D4  
THS3091  
S4A  
S4B  
-15  
-15V  
9-1. Ultrasonic Water Flow Measurement System  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TMUX7234  
 
 
 
 
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
9.2.1 Design Requirements  
For this design example, use the parameters listed in 9-1.  
9-1. Design Parameters  
PARAMETERS  
VALUES  
15 V  
Supply (VDD  
)
Supply (VSS  
)
-15 V  
MUX I/O signal range  
Control logic thresholds  
EN  
-15 V to 15 V (Rail-to-Rail)  
1.8 V compatiable (up to VDD  
)
EN pulled low to enable the switch  
9.2.2 Detailed Design Procedure  
The TMUX7234 can operate without any external components except for the supply decoupling capacitors. All  
inputs passing through the switch must fall within the recommended operating conditions of the TMUX7234,  
including signal range and continuous current. 6.4 shows how the signal range for this design can be -15 V to  
+15 V and the maximum continuous current can be up to 400 mA for wide-range current measurement with a  
positive supply of 15 V on VDD and negative supply of -15 V on VSS. The TMUX7234 device are bidirectional,  
single-pole double-throw (SPDT) switches that offer low on-resistance, low leakage, and low power. These  
features make these devices suitable for portable and power sensitive applications such as ultrasonic water  
metering systems. For a more detailed analysis of the ultrasonic water flow measurement system refer to the  
reference design.  
9.2.3 Application Curve  
The low on and off leakage currents of TMUX7234 and ultra-low charge injection performance make this device  
ideal for implementing high precision industrial systems. The TMUX7234 contains specialized architecture to  
reduce charge injection on the Source side (Sx) (For more details, see 8.3.6). 9-2 shows the plot for the  
charge injection versus drain voltage for the TMUX7234.  
80  
VDD = 20 V, VSS = 20 V  
VDD = 15 V, VSS = 15 V  
VDD = 5 V, VSS = 5 V  
60  
40  
20  
0
-20  
-40  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
Drain Voltage (V)  
TA = 25°C  
9-2. Charge Injection vs Drain Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TMUX7234  
 
 
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
10 Power Supply Recommendations  
TMUX7234 operates across a wide supply range of ±4.5 V to ±22 V (4.5 V to 44 V in single-supply mode).  
TMUX7234 also perform well with asymmetrical supplies such as VDD = 12 V and VSS = 5 V.  
Power-supply bypassing improves noise margin and prevents switching noise propagation from the supply rails  
to other components. Good power-supply decoupling is important to achieve optimum performance. Use a  
supply decoupling capacitor ranging from 0.1 μF to 10 μF at both the VDD and VSS pins to ground for an  
improved supply noise immunity. Place the bypass capacitors as close to the power supply pins of the device as  
possible using low-impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs)  
that offer low equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply  
decoupling purposes. For very sensitive systems, or for systems in harsh noise environments, avoiding the use  
of vias for connecting the capacitors to the device pins may offer superior noise immunity. The use of multiple  
vias in parallel lowers the overall inductance and is beneficial for connections to ground and power planes.  
Always ensure the ground (GND) connection is established before supplies are ramped.  
11 Layout  
11.1 Layout Guidelines  
A reflection can occur when a PCB trace turns a corner at a 90° angle. A reflection occurs primarily because of  
the change of width of the trace. The trace width increases to 1.414 times the width at the apex of the turn. This  
increase upsets the transmission-line characteristics, especially the distributed capacitance and selfinductance  
of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must  
turn corners. 11-1 shows progressively better techniques of rounding corners. Only the last example (BEST)  
maintains constant trace width and minimizes reflections.  
WORST  
BETTER  
BEST  
2W  
1W min.  
W
11-1. Trace Example  
Route high-speed signals using a minimum of vias and corners which reduces signal reflections and impedance  
changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via  
introduces discontinuities in the signals transmission line and increases the chance of picking up interference  
from the other layers of the board. Be careful when designing test points, through-hole pins are not  
recommended at high frequencies.  
11-2 and 11-3 illustrates an example of a PCB layout with the TMUX7234. Some key considerations are:  
Decouple the supply pins with a 0.1 µF and 1 µF capacitor, placed lowest value capacitor as close to the pin  
as possible. Make sure that the capacitor voltage rating is sufficient for the supply voltage.  
Keep the input lines as short as possible.  
Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.  
Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if  
possible, and only make perpendicular crossings when necessary.  
Using multiple vias in parallel will lower the overall inductance and is beneficial for connection to ground  
planes.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TMUX7234  
 
 
 
 
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
11.2 Layout Example  
11-2 shows an example board layout for the TMUX7234.  
SEL1  
SEL4  
S1A  
S4A  
D4  
Wide (low inductance)  
trace for power  
D1  
Wide (low inductance)  
trace for power  
S1B  
S4B  
TMUX7234  
VSS  
GND  
S2B  
D2  
VDD  
EN  
S3B  
D3  
S2A  
S3A  
SEL3  
SEL2  
Via to ground plane  
11-2. TMUX7234PW Layout Example  
Wide (low inductance)  
trace for power  
Wide (low inductance)  
trace for power  
D1  
D4  
S4B  
VDD  
S3B  
D3  
S1B  
VSS  
GND  
S2B  
Via to ground plane  
11-3. TMUX7234RRQ Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TMUX7234  
 
 
 
TMUX7234  
www.ti.com.cn  
ZHCSNF7F FEBRUARY 2021 REVISED DECEMBER 2022  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
Texas Instruments, Using Latch Up Immune Multiplexers to Help Improve System Reliability application  
report  
Texas Instruments, Improve Stability Issues with Low CON Multiplexers application brief  
Texas Instruments, Improving Signal Measurement Accuracy in Automated Test Equipment application brief  
Texas Instruments, Sample & Hold Glitch Reduction for Precision Outputs Reference Design reference guide  
Texas Instruments, Simplifying Design with 1.8 V logic Muxes and Switches application brief  
Texas Instruments, System-Level Protection for High-Voltage Analog Multiplexers application report  
Texas Instruments, True Differential, 4 x 2 MUX, Analog Front End, Simultaneous-Sampling ADC Circuit  
application report  
Texas Instruments, QFN/SON PCB Attachment application report  
Texas Instruments, Quad Flatpack No-Lead Logic Packages application report  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TMUX7234  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Feb-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TMUX7234PWR  
TMUX7234RRQR  
ACTIVE  
ACTIVE  
TSSOP  
WQFN  
PW  
20  
20  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
T234  
Samples  
Samples  
RRQ  
NIPDAU  
TMUX  
X234  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Feb-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TMUX7234PWR  
TMUX7234RRQR  
TSSOP  
WQFN  
PW  
20  
20  
3000  
3000  
330.0  
330.0  
16.4  
12.4  
6.95  
4.25  
7.1  
1.6  
8.0  
8.0  
16.0  
12.0  
Q1  
Q2  
RRQ  
4.25  
1.15  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TMUX7234PWR  
TMUX7234RRQR  
TSSOP  
WQFN  
PW  
20  
20  
3000  
3000  
356.0  
367.0  
356.0  
367.0  
35.0  
35.0  
RRQ  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0020A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
18X 0.65  
20  
1
2X  
5.85  
6.6  
6.4  
NOTE 3  
10  
B
11  
0.30  
20X  
4.5  
4.3  
NOTE 4  
0.19  
1.2 MAX  
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220206/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
20X (1.5)  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
11  
10  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220206/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
20X (1.5)  
SYMM  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
10  
11  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220206/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
RRQ0020A  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
A
B
PIN 1 INDEX AREA  
4.1  
3.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.5 0.1  
2X 2  
(0.2) TYP  
SYMM  
6
10  
EXPOSED  
THERMAL PAD  
5
11  
15  
SYMM  
21  
2X 2  
16X 0.5  
1
PIN 1 ID  
0.3  
20X  
0.2  
16  
0.5  
20  
0.1  
C A B  
20X  
0.05  
0.3  
4224817/A 03/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RRQ0020A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.5)  
SYMM  
20  
16  
SEE SOLDER MASK  
DETAIL  
20X (0.6)  
20X (0.25)  
16X (0.5)  
(1)  
1
15  
21  
SYMM  
(3.8)  
5
11  
(R0.05) TYP  
(
0.2) TYP  
VIA  
6
10  
(1)  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
SOLDER MASK DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224817/A 03/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RRQ0020A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.65) TYP  
16  
20  
20X (0.6)  
20X (0.25)  
16X (0.5)  
1
15  
(0.65) TYP  
(3.8)  
21  
SYMM  
4X ( 1.1)  
11  
(R0.05) TYP  
5
10  
6
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
EXPOSED PAD 21  
77% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4224817/A 03/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TMUX7234RRQR

具有 1.8V 逻辑的 44V、闩锁效应抑制、2:1 四通道精密多路复用器 | RRQ | 20 | -40 to 125
TI

TMUX7236

具有闩锁效应抑制和 1.8V 逻辑电平的 44V、低导通电阻、2:1 (SPDT)、双通道精密开关
TI

TMUX7236RUMR

具有闩锁效应抑制和 1.8V 逻辑电平的 44V、低导通电阻、2:1 (SPDT)、双通道精密开关 | RUM | 16 | -40 to 125
TI

TMUX7308F

TMUX730xF ±60-V Fault-Protected, 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic
TI

TMUX7308FPWR

具有 1.8V 逻辑电平的 ±60V 故障保护、8:1 单通道多路复用器 | PW | 16 | -40 to 125
TI

TMUX7308FRRPR

TMUX730xF ±60-V Fault-Protected, 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic
TI

TMUX7308F_V01

TMUX730xF ±60-V Fault-Protected, 8:1 and Dual 4:1 Multiplexers with 1.8-V Logic
TI

TMUX7308F_V02

TMUX730xF ±60-V Fault-Protected, 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic
TI

TMUX7309F

TMUX730xF ±60-V Fault-Protected, 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic
TI

TMUX7309FRRPR

TMUX730xF ±60-V Fault-Protected, 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic
TI

TMUX730XF

TMUX730xF ±60-V Fault-Protected, 8:1 and Dual 4:1 Multiplexers with Latch-Up Immunity and 1.8-V Logic
TI

TMUX7348F

具有故障阈值、闩锁效应抑制和 1.8V 逻辑电平的 ±60V 故障保护、8:1 多路复用器
TI