TPS5210DW [TI]

PROGRAMMABLE SYNCHRONOUS-BUCK REGULATOR CONTROLLER; 可编程同步降压稳压器控制器
TPS5210DW
型号: TPS5210DW
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

PROGRAMMABLE SYNCHRONOUS-BUCK REGULATOR CONTROLLER
可编程同步降压稳压器控制器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总29页 (文件大小:417K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS5210  
PROGRAMMABLE SYNCHRONOUS-BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
DW OR PWP PACKAGE  
±1% Reference Over Full Operating  
Temperature Range  
(TOP VIEW)  
Synchronous Rectifier Driver for Greater  
Than 90% Efficiency  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
IOUT  
DROOP  
OCP  
VHYST  
VREFB  
VSENSE  
ANAGND  
SLOWST  
BIAS  
LODRV  
LOHIB  
DRVGND  
LOWDR  
DRV  
PWRGD  
VID0  
VID1  
VID2  
VID3  
2
3
Programmable Reference Voltage Range of  
1.3 V to 3.5 V  
4
5
User–Selectable Hysteretic Type Control  
6
VID4  
Droop Compensation for Improved Load  
Transient Regulation  
7
INHIBIT  
IOUTLO  
LOSENSE  
HISENSE  
BOOTLO  
HIGHDR  
BOOT  
8
9
Adjustable Overcurrent Protection  
Programmable Softstart  
10  
11  
12  
13  
14  
Overvoltage Protection  
Active Deadtime Control  
V
CC  
Power Good Output  
Internal Bootstrap Schottky Diode  
Low Supply Current . . . 3-mA Typ  
description  
The TPS5210 is a synchronous-buck regulator controller which provides an accurate, programmable supply  
voltage to microprocessors. An internal 5-bit DAC is used to program the reference voltage to within a range  
of 1.3 V to 3.5 V. The output voltage can be set to be equal to the reference voltage or to some multiple of the  
reference voltage. A hysteretic controller with user-selectable hysteresis and programmable droop  
compensation is used to dramatically reduce overshoot and undershoot caused by load transients. Propagation  
delay from the comparator inputs to the output drivers is less than 250 ns. Overcurrent shutdown and crossover  
protection for the output drivers combine to eliminate destructive faults in the output FETs. The softstart current  
source is proportional to the reference voltage, thereby eliminating variation of the softstart timing when  
changes are made to the output voltage. PWRGD monitors the output voltage and pulls the open-collector  
output low when the output drops 7% below the nominal output voltage. An overvoltage circuit disables the  
output drivers if the output voltage rises 15% above the nominal value. The inhibit pin can be used to control  
powersequencing. Inhibitandundervoltagelockoutassuresthe12-Vsupplyvoltageandsystemsupplyvoltage  
(5 V or 3.3 V) are within proper operating limits before the controller starts. Single-supply (12 V) operation is  
easily accomplished using a low-current divider for the required 5-V signals. The output driver circuits include  
2-A drivers with internal 8-V gate-voltage regulators. The high-side driver can be configured either as a  
ground-referenced driver or as a floating bootstrap driver. The TPS5210 is available in a 28-pin SOIC package  
and a 28-pin TSSOP PowerPAD package. It operates over a junction temperature range of 0°C to 125°C.  
AVAILABLE OPTIONS  
PACKAGES  
T
J
SOIC  
(DW)  
TSSOP  
(PWP)  
0°C to 125°C  
TPS5210DW  
TPS5210PWPR  
The DW package is available taped and reeled. Add R suffix to device  
type (e.g., TPS5210DWR).  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1999, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
V
ANAGND  
7
PWRGD  
28  
LOSENSE  
20  
IOUTLO HISENSE  
CC  
VID0  
VID1  
VID2  
VID3  
VID4  
15  
21  
19  
11111  
Decode  
NOCPU  
UVLO  
2 V  
+
1
22  
3
IOUT  
INHIBIT  
OCP  
2x  
Shutdown  
10 V  
S
R
Q
V
CC  
Fault  
Rising  
Edge  
Delay  
Deglitch  
+
100 mV  
HIGHDR  
Deglitch  
V
PGD  
HIGHIN  
0.93 V  
ref  
V
OVP  
1.15 V  
V
CC  
ref  
VSENSE  
Analog Bias  
Analog  
Bias  
PREREG  
DRV REG  
8
9
SLOWST  
BIAS  
DRV  
I
VREFB  
14  
Slowstart  
Comp  
5
+
+
Bandgap  
Shutdown  
VID  
MUX  
and  
16  
17  
CM Filters  
BOOT  
HIGHDR  
VREF  
+
Σ
+
200 k  
18  
Decoder  
Hysteresis  
Comp  
BOOTLO  
200 kΩ  
+ –  
Shutdown  
Hysteresis  
Setting  
13  
12  
LOWDR  
DRVGND  
27 26  
25  
24 23  
5
2
4
6
11  
10  
LODRV  
VID0 VID1 VID2 VID3 VID4 VREFB DROOP VHYST VSENSE  
LOHIB  
TPS5210  
PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
7
ANAGND  
BIAS  
Analog ground  
9
O
I
Analog BIAS pin. A 1-µF ceramic capacitor should be connected from BIAS to ANAGND.  
Bootstrap. Connect a 1-µF low-ESR capacitor from BOOT to BOOTLO.  
BOOT  
16  
18  
BOOTLO  
O
Bootstrap low. Connect BOOTLO to the junction of the high-side and low-side FETs for floating drive  
configuration. Connect BOOTLO to PGND for ground reference drive configuration.  
DROOP  
2
I
Droop voltage. Voltage input used to set the amount of output-voltage set-point droop as a function of load  
current. The amount of droop compensation is set with a resistor divider between IOUT and ANAGND.  
DRV  
14  
12  
17  
19  
O
Drive regulator for the FET drivers. A 1-µF ceramic capacitor should be connected from DRV to DRVGND.  
Drive ground. Ground for FET drivers. Connect to FET PWRGND.  
DRVGND  
HIGHDR  
HISENSE  
O
I
High drive. Output drive to high-side power switching FETs  
High current sense. For current sensing across high-side FETs, connect to the drain of the high-side FETs; for  
optional resistor sensing scheme, connect to power supply side of current-sense resistor placed in series with  
high-side FET drain.  
INHIBIT  
IOUT  
22  
1
I
Disables the drive signals to the MOSFET drivers. Can also serve as UVLO for system logic supply (either 3.3 V  
or 5 V).  
O
Current out. Output voltage on this pin is proportional to the load current as measured across the Rds(on) of the  
high-side FETs. The voltage on this pin equals 2×Rds(on)×IOUT. In applications where very accurate current  
sensingisrequired, asenseresistorshouldbeconnectedbetweentheinputsupplyandthedrainofthehigh-side  
FETs.  
IOUTLO  
21  
O
Current sense low output. This is the voltage on the LOSENSE pin when the high-side FETs are on. A ceramic  
capacitor should be connected from IOUTLO to HISENSE to hold the sensed voltage while the high-side FETs  
are off. Capacitance range should be between 0.033 µF and 0.1 µF.  
LODRV  
LOHIB  
10  
11  
I
I
Low drive enable. Normally tied to 5 V. To activate the low-side FETs as a crowbar, pull LODRV low.  
Low side inhibit. Connect to the junction of the high and low side FETs to control the anti-cross-conduction and  
eliminate shoot-through current. Disabled when configured in crowbar mode.  
LOSENSE  
20  
I
Low current sense. For current sensing across high-side FETs, connect to the source of the high-side FETs; for  
optional resistor sensing scheme, connect to high-side FET drain side of current-sense resistor placed in series  
with high-side FET drain.  
LOWDR  
OCP  
13  
3
O
I
Low drive. Output drive to synchronous rectifier FETs  
Over current protection. Current limit trip point is set with a resistor divider between IOUT and ANAGND.  
PWRGD  
28  
O
Power good. Power Good signal goes high when output voltage is within 7% of voltage set by VID pins.  
Open-drain output.  
SLOWST  
8
O
I
Slow Start (soft start). A capacitor from SLOWST to ANAGND sets the slowstart time.  
Slowstart current = I  
/5  
VREFB  
V
15  
4
12-V supply. A 1-µF ceramic capacitor should be connected from V  
to DRVGND.  
CC  
CC  
VHYST  
HYSTERESIS set pin. The hysteresis is set with a resistor divider from V to ANAGND.  
REFB  
The hysteresis window = 2 × (V  
Voltage Identification input 0  
Voltage Identification input 1  
Voltage Identification input 2  
Voltage Identification input 3  
– V  
)
HYST  
REFB  
VID0  
VID1  
VID2  
VID3  
VID4  
27  
26  
25  
24  
23  
I
I
I
I
I
Voltage Identification input 4. Digital inputs that set the output voltage of the converter. The code pattern for  
settingthe output voltage is located in Table 1. Internally pulled up to 5 V with a resistor divider biased from V  
.
CC  
VREFB  
5
6
O
I
Buffered reference voltage from VID network  
VSENSE  
Voltage sense Input. To be connected to converter output voltage bus to sense and control output voltage. It is  
recommended an RC low pass filter be connected at this pin to filter noise.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5210  
PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
detailed description  
V
REF  
The reference/voltage identification (VID) section consists of a temperature-compensated bandgap reference  
and a 5-bit voltage selection network. The 5 VID terminals are inputs to the VID selection network and are  
TTL-compatible inputs internally pulled up to 5 V by a resistor divider connected to V . The VID codes conform  
CC  
to the Intel VRM 8.3 DC-DC Converter Specification for voltage settings between 1.8 V and 3.5 V, and they are  
decrementedby50mV,downto1.3V,forthelowerVIDsettings.VoltageshigherthanV  
usinganexternaldivider. RefertoTable1fortheVIDcodesettings. TheoutputvoltageoftheVIDnetwork, V  
canbeimplemented  
REF  
,
REF  
is within ±1% of the nominal setting over the VID range of 1.3 V to 2.5 V, including a junction temperature range  
of 5°C to +125°C, and a V supply voltage range of 11.4 V to 12.6 V. The output of the reference/VID network  
CC  
is indirectly brought out through a buffer to the V  
pin. The voltage on this pin will be within 2% of V  
. It  
REFB  
REF  
is not recommended to drive loads with V  
because the current drawn from V  
, other than setting the hysteresis of the hysteretic comparator,  
sets the charging current for the slowstart capacitor. Refer to the  
REFB  
REFB  
slowstart section for additional information.  
hysteretic comparator  
The hysteretic comparator regulates the output voltage of the synchronous-buck converter. The hysteresis is  
set by 2 external resistors and is centered on V . The 2 external resistors form a resistor divider from V  
REF  
REFB  
toANAGND, withtheoutputvoltageconnectingtotheV  
to twice the voltagedifferencebetween the V  
pin. The hysteresis of the comparator will be equal  
HYST  
and V  
pins. The propagation delay from the comparator  
REFB  
HYST  
inputs to the driver outputs is 250 ns (maximum). The maximum hysteresis setting is 60 mV.  
low-side driver  
The low-side driver is designed to drive low-Rds(on) n-channel MOSFETs. The current rating of the driver is  
2 A, source and sink. The bias to the low-side driver is internally connected to the DRV regulator.  
high-side driver  
The high-side driver is designed to drive low-Rds(on) n-channel MOSFETs. The current rating of the driver is  
2 A, source and sink. The high-side driver can be configured either as a ground-referenced driver or as a floating  
bootstrap driver. When configured as a floating driver, the bias voltage to the driver is developed from the DRV  
regulator. The internal bootstrap diode, connected between the DRV and BOOT pins, is a Schottky for improved  
drive efficiency. The maximum voltage that can be applied between BOOT and DRVGND is 30 V. The driver  
can be referenced to ground by connecting BOOTLO to DRVGND, and connecting BOOT to eitherDRV or V  
.
CC  
deadtime control  
Deadtime control prevents shoot-through current from flowing through the main power FETs during switching  
transitions by actively controlling the turn-on times of the MOSFET drivers. The high-side driver is not allowed  
to turn on until the gate-drive voltage to the low-side FETs is below 2 V; the low-side driver is not allowed to turn  
on until the voltage at the junction of the high-side and low-side FETs (Vphase) is below 2 V.  
current sensing  
Current sensing is achieved by sampling and holding the voltage across the high-side power FETs while the  
high-side FETs are on. The sampling network consists of an internal 60-switch and an external ceramic hold  
capacitor. Recommended value of the hold capacitor is between 0.033 µF and 0.1 µF. Internal logic controls  
the turn-on and turn-off of the sample/hold switch such that the switch does not turn on until the Vphase voltage  
transitions high, and the switch turns off when the input to the high-side driver goes low. The sampling will occur  
only when the high-side FETs are conducting current. The voltage on the IOUT pin equals 2 times the sensed  
high-side voltage. In applications where a higher accuracy in current sensing is required, a sense resistor can  
be placed in series with the high-side FETs, and the voltage across the sense resistor can be sampled by the  
current sensing circuit.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5210  
PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
detailed description (continued)  
droop compensation  
The droop compensation network reduces the load transient overshoot/undershoot on V , relative to V  
. V  
O
O
REF  
is programmed to a voltage greater than V  
by an external resistor divider from V to VSENSE to reduce the  
REF  
O
undershoot on V during a low-to-high load transient. The overshoot during a high-to-low load transient is  
O
reduced by subtracting the voltage on DROOP from V  
resistor divider, and connected to DROOP.  
. The voltage on IOUT is divided with an external  
REF  
inhibit  
INHIBIT is a TTL-compatible digital input used to enable the controller. When INHIBIT is low, the output drivers  
are low and the slowstart capacitor is discharged. When INHIBIT goes high, the short across the slowstart  
capacitor is released and normal converter operation begins. When the system-logic supply is connected to  
INHIBIT, it also controls power sequencing by locking out controller operation until the system-logic supply  
exceeds the input threshold voltage of the inhibit circuit. The 12-V supply and the system logic supply (either  
5 V or 3.3 V) must be above UVLO thresholds before the controller is allowed to start up. The start threshold  
is 2.1 V and the hysteresis is 100 mV for the INHIBIT comparator.  
V
undervoltage lockout (UVLO)  
CC  
The undervoltage lockout circuit disables the controller while the V  
supply is below the 10-V start threshold  
CC  
during power up. When the controller is disabled, the output drivers will be low and the slowstart capacitor is  
discharged. When V exceeds the start threshold, the short across the slowstart capacitor is released and  
CC  
normal converter operation begins. There is a 2-V hysteresis in the undervoltage lockout circuit for noise  
immunity.  
slowstart  
The slowstart circuit controls the rate at which V powers up. A capacitor is connected between SLOWST and  
O
ANAGND and is charged by an internal current source. The current source is proportional to the reference  
voltage, so that the charging rate of C  
is proportional to the reference voltage. By making the charging  
slowst  
currentproportionaltoV  
, thepower-uptimeforV willbeindependentofV  
. Thus, C  
canremain  
REF  
O
REF  
SLOWST  
the same value for all VID settings. The slowstart charging current is determined by the following equation:  
I
= I(V ) / 5 (amps)  
slowstart  
REFB  
Where I(V  
) is the current flowing out of V  
.
REFB  
REFB  
It is recommended that no additional loads be connected to V  
hysteresis voltage. The maximum current that can be sourced by the V  
setting the slowstart time is:  
, other than the resistor divider for setting the  
REFB  
circuit is 500 µA. The equation for  
REFB  
t
= 5 × C  
× R  
(seconds)  
SLOWST  
SLOWST  
VREFB  
Where R  
is the total external resistance from V to ANAGND.  
REFB  
VREFB  
power good  
The power-good circuit monitors for an undervoltage condition on V . If V is7%belowV , thenthePWRGD  
REF  
O
O
pin is pulled low. PWRGD is an open-drain output.  
overvoltage protection  
The overvoltage protection (OVP) circuit monitors V for an overvoltage condition. If V is 15% above V ,  
REF  
O
O
then a fault latch is set and both output drivers are turned off. The latch will remain set until V goes below the  
CC  
undervoltage lockout value. A 3-µs deglitch timer is included for noise immunity. Refer to the LODRV section  
for information on how to protect the microprocessor against overvoltages due to a shorted fault across the  
high-side power FET.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5210  
PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
detailed description (continued)  
overcurrent protection  
The overcurrent protection (OCP) circuit monitors the current through the high-side FET. The overcurrent  
threshold is adjustable with an external resistor divider between IOUT and ANAGND, with the divider voltage  
connected to the OCP pin. If the voltage on OCP exceeds 100 mV, then a fault latch is set and the output drivers  
are turned off. The latch will remain set until V  
goes below the undervoltage lockout value. A 3-µs deglitch  
CC  
timer is included for noise immunity. The OCP circuit is also designed to protect the high-side power FET against  
a short-to-ground fault on the terminal common to both power FETs.  
drive regulator  
The drive regulator provides drive voltage to the output drivers. The minimum drive voltage is 7 V. The minimum  
short circuit current is 100 mA. Connect a 1-µF ceramic capacitor from DRV to DRVGND.  
LODRV  
TheLODRVcircuitisdesignedtoprotectthemicroprocessoragainstovervoltagesthatcanoccurifthehigh-side  
power FETs become shorted. External components to sense an overvoltage condition are required to use this  
feature. When an overvoltage fault occurs, the low-side FETs are used as a crowbar. LODRV is pulled low and  
the low-side FET will be turned on, overriding all control signals inside the TPS5210 controller. The crowbar  
action will short the input supply to ground through the faulted high-side FETs and the low-side FETs. A fuse  
in series with V should be added to disconnect the short-circuit.  
in  
Table 1. Voltage Identification Codes  
VID TERMINALS  
(0 = GND, 1 = floating or pull-up to 5 V)  
V
REF  
VID4  
0
VID3  
1
VID2  
1
VID1  
1
VID0  
1
(Vdc)  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
2.05  
No CPU  
2.10  
2.20  
2.30  
2.40  
2.50  
2.60  
0
1
1
1
0
0
1
1
0
1
0
1
1
0
0
0
1
0
1
1
0
1
0
1
0
0
1
0
0
1
0
1
0
0
0
0
0
1
1
1
0
0
1
1
0
0
0
1
0
1
0
0
1
0
0
0
0
0
1
1
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
0
1
1
0
0
1
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5210  
PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
Table 1. Voltage Identification Codes (Continued)  
VID TERMINALS  
V
REF  
(0 = GND, 1 = floating or pull-up to 5 V)  
VID4  
VID3  
VID2  
VID1  
VID0  
(Vdc)  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
3.40  
3.50  
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
absolute maximum ratings over operating virtual junction temperature (unless otherwise noted)  
Supply voltage range, V  
(see Note1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 14 V  
CC  
Input voltage range: BOOT to DRVGND (High-side Driver ON) . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 30 V  
BOOT to HIGHDRV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 15 V  
BOOT to BOOTLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 15 V  
INHIBIT, VIDx, LODRV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 7.3 V  
PWRGD, OCP, DROOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 7 V  
LOHIB, LOSENSE, IOUTLO, HISENSE . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 14 V  
VSENSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 5 V  
Voltage difference between ANAGND and DRVGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±0.5 V  
Output current, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 mA  
REFB  
Short circuit duration, DRV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 125°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
stg  
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: Unless otherwise specified, all voltages are with respect to ANAGND.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
= 70°C  
T = 85°C  
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING  
A
DW  
1200 mW  
12 mW/°C  
660 mW  
630 mW  
480 mW  
460 mW  
PWP  
1150 mW  
11.5 mW/°C  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5210  
PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
recommended operating conditions  
MIN  
11.4  
0
MAX  
13  
UNIT  
V
Supply voltage, V  
CC  
Input voltage, BOOT to DRVGND  
28  
V
Input voltage, BOOT to BOOTLO  
0
13  
V
Input voltage, INHIBIT, VIDx, LODRV, PWRGD, OCP, DROOP  
Input voltage, LOHIB, LOSENSE, IOUTLO, HISENSE  
Input voltage, VSENSE  
0
6
V
0
13  
V
0
4.5  
±0.2  
0.4  
V
Voltage difference between ANAGND and DRVGND  
0
V
Output current, V  
0
mA  
REFB  
Not recommended to load V  
other than to set hystersis since I  
sets slowstart time.  
VREFB  
REFB  
electrical characteristics over recommended operating virtual junction temperature range,  
= 12 V, I = 0 A (unless otherwise noted)  
V
CC  
DRV  
reference/voltage identification  
PARAMETER  
TEST CONDITIONS  
= 11.4 to 12.6 V, 1.3 V V  
MIN  
–0.01  
TYP  
MAX  
0.01  
UNIT  
V/V  
V/V  
V/V  
V/V  
V/V  
V/V  
V/V  
V/V  
V/V  
V/V  
V/V  
V
V
V
V
V
V
V
V
V
V
V
V
V
2.5 V  
REF  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
REF  
REF  
= 11.4 to 12.6 V, V  
= 11.4 to 12.6 V, V  
= 11.4 to 12.6 V, V  
= 11.4 to 12.6 V, V  
= 11.4 to 12.6 V, V  
= 11.4 to 12.6 V, V  
= 11.4 to 12.6 V, V  
= 11.4 to 12.6 V, V  
= 11.4 to 12.6 V, V  
= 11.4 to 12.6 V, V  
= 2.6 V  
= 2.7 V  
= 2.8 V  
= 2.9 V  
= 3 V  
–0.0104  
–0.0108  
–0.0112  
–0.0116  
–0.0120  
–0.0124  
–0.0128  
–0.0132  
–0.0136  
–0.0140  
–0.011  
0.0104  
0.0108  
0.0112  
0.0116  
0.0120  
0.0124  
0.0128  
0.0132  
0.0136  
0.0140  
0.011  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
REF  
Reference voltage accuracy, (Includes  
offset of droop compensation net-  
work)  
= 3.1 V  
= 3.2 V  
= 3.3 V  
= 3.4 V  
= 3.5 V  
V
REF  
= 1.3 V, Hysteresis window = 30 mV  
=1.3 V, Hysteresis,  
T = 60°C window = 30 mV (see Note 3)  
–0.008  
0.008  
0.0090  
0.0115  
J
Cumulative reference accuracy  
(see Note 2)  
V/V  
V
= 1.9 Vv, Hysteresis,  
REF  
T = 60°C window = 30 mV (see Note 3)  
–0.0090  
J
V
= 3.5 V, Hysteresis,  
REF  
T = 60°C window = 30 mV (see Note 3)  
–0.0115  
2.25  
J
VIDx  
VIDx  
High-level input voltage  
Low-level input voltage  
Output voltage  
V
V
1
I
= 50 µA  
V
–2%  
REF  
V
V +2%  
REF  
V
VREFB  
REF  
2
V
REFB  
Output regulation  
10 µA I 500 µA  
mV  
kΩ  
V
O
Input resistance  
VIDx = 0 V  
36  
73  
95  
5
VIDx  
Input pull-up voltage divider  
4.8  
4.9  
NOTES: 2. Cumulative reference accuracy is the combined accuracy of the reference voltage and the input offset voltage of the hysteretic  
comparator. Cumulative accuracy equals the average of the high-level and low-level thresholds of the hysteretic comparator.  
3. This parameter is ensured by design and is not production tested.  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5210  
PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
electrical characteristics over recommended operating virtual junction temperature range,  
V
= 12 V, I  
= 0 A (unless otherwise noted) (continued)  
CC  
DRV  
power good  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
93  
MAX  
UNIT  
REF  
Undervoltage trip threshold  
Low-level output voltage  
High-level input current  
Hysteresis voltage  
90  
95 %V  
V
I
= 5 mA  
0.5  
1
0.75  
V
OL  
O
I
V
= 6 V  
µA  
OH  
PWRGD  
V
hys  
1.3  
2.9  
4.5 %V  
REF  
slowstart  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
13  
3
MAX  
UNIT  
V
= 0.5 V,  
= 65 µA  
V
= 1.3 V,  
SLOWST  
VREFB  
Charge current  
10.4  
15.6  
µA  
I
VREFB  
Discharge current  
V
= 1 V  
mA  
mV  
nA  
SLOWST  
Comparator input offset voltage  
Comparator input bias current  
Comparator hysteresis  
10  
100  
7.5  
See Note 3  
10  
–7.5  
mV  
NOTE 3: This parameter is ensured by design and is not production tested.  
hysteretic comparator  
PARAMETER  
Input offset voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
2.5  
UNIT  
mV  
nA  
V
= 0 V (see Note 3)  
–2.5  
DROOP  
See Note 3  
– V  
Input bias current  
500  
3.5  
Hysteresis accuracy  
V
= 15 mV  
REFB HYST  
(Hysteresis window = 30 mV)  
–3.5  
mV  
Maximum hysteresis setting  
V
REFB  
– V = 30 mV  
60  
mV  
HYST  
NOTE 3: This parameter is ensured by design and is not production tested.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5210  
PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
electrical characteristics over recommended operating virtual junction temperature range,  
V
= 12 V, I  
= 0 A (unless otherwise noted) (continued)  
CC  
DRV  
high-side VDS sensing  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Gain  
2
V/V  
V
= 12 V,  
V
= 11.9 V,  
LOSENSE  
HISENSE  
Differential input to V sensing amp = 100 mV  
Initial accuracy  
Sink current  
Source current  
194  
206  
250  
mV  
nA  
µA  
ds  
13 V  
IOUTLO  
IOUT  
5 V V  
IOUTLO  
= 0.5 V,  
V
V
V
= 12 V,  
HISENSE  
IOUT  
IOUTLO  
500  
50  
= 11.5 V  
V
V
= 0.05 V, V  
= 12 V,  
HISENSE  
IOUT  
IOUTLO  
IOUT  
Sink current  
µA  
= 12 V  
V
V
V
= 11 V, R  
IOUT  
= 10 kΩ  
= 10 kΩ  
0
0
2
1.5  
V
V
V
V
V
HISENSE  
HISENSE  
HISENSE  
Output voltage swing  
= 4.5 V, R  
IOUT  
= 3 V, R  
= 10 kΩ  
0
0.75  
IOUT  
High-level input voltage  
Low-level input voltage  
2.85  
LOSENSE  
V
= 4.5 V (see Note 3)  
HISENSE  
2.4  
80  
11.4 V V  
12.6 V,  
HISENSE  
LOSENSE connected to HISENSE,  
– V = 0.15 V  
50  
62  
60  
85  
V
HISENSE  
4.5 V V  
IOUTLO  
5.5 V,  
HISENSE  
LOSENSE connected to HISENSE,  
123  
144  
Sample/hold resistance  
V
– V  
= 0.15 V  
HISENSE  
IOUTLO  
3 V V  
3.6 V,  
HISENSE  
LOSENSE connected to HISENSE,  
V
67  
69  
95  
75  
– V  
= 0.15 V  
HISENSE  
IOUTLO  
V
V
= 12.6 V to 3 V,  
HISENSE  
HISENSE  
CMRR  
dB  
– V  
= 100 mV  
OUTLO  
NOTE 3. This parameter is ensured by design and is not production tested.  
inhibit  
PARAMETER  
Start threshold  
Hysteresis  
TEST CONDITIONS  
MIN  
1.9  
TYP  
2.1  
MAX  
2.35  
0.12  
UNIT  
V
V
V
0.08  
1.85  
0.1  
Stop threshold  
overvoltage protection  
PARAMETER  
Overvoltage trip threshold  
TEST CONDITIONS  
MIN  
TYP  
115  
10  
MAX  
UNIT  
112  
120 %V  
REF  
Hysteresis  
See Note 3  
mV  
NOTE 3: This parameter is ensured by design and is not production tested.  
overcurrent protection  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
110  
UNIT  
OCP trip threshold  
Input bias current  
90  
100  
mV  
nA  
100  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5210  
PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
electrical characteristics over recommended operating virtual junction temperature range,  
V
= 12 V, I  
= 0 A (unless otherwise noted) (continued)  
CC  
DRV  
deadtime  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.4  
UNIT  
High-level input voltage  
Low-level input voltage  
High-level input voltage  
Low-level input voltage  
2.4  
LOHIB  
V
See Note 3  
See Note 3  
3
LOWDR  
V
1.7  
NOTE 3: This parameter is ensured by design and is not production tested.  
LODRV  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
TYP  
MAX  
UNIT  
High-level input voltage  
LODRV  
1.85  
V
Low-level input voltage  
0.95  
droop compensation  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
Initial accuracy  
V
= 50 mV  
46  
54  
mV  
DROOP  
drive regulator  
PARAMETER  
Output voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
11.4 V V  
12.6 V,  
50 mA  
I
= 50 mA  
7
9
CC  
DRV  
Output regulation  
1 mA I  
100  
mV  
mA  
DRV  
Short-circuit current  
100  
bias regulator  
PARAMETER  
Output voltage  
TEST CONDITIONS  
12.6 V, See Note 4  
MIN  
TYP  
MAX  
UNIT  
11.4 V V  
6
V
CC  
NOTE 4: The bias regulator is designed to provide a quiet bias supply for the TPS5210 controller. External loads should not be driven by the bias  
regulator.  
input undervoltage lockout  
PARAMETER  
Start threshold  
TEST CONDITIONS  
MIN  
9.25  
1.9  
TYP  
10 10.75  
2.2  
MAX  
UNIT  
V
V
V
Hysteresis  
2
Stop threshold  
7.5  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5210  
PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
electrical characteristics over recommended operating virtual junction temperature range,  
V
= 12 V, I  
= 0 A (unless otherwise noted) (continued)  
CC  
DRV  
output drivers  
PARAMETER  
TEST CONDITIONS  
Duty cycle < 2%, < 100 µs,  
T = 125°C,  
MIN  
TYP  
MAX  
UNIT  
t
V
pw  
High-side sink  
High-side source  
Low-side sink  
2
– V  
= 6.5 V,  
BOOTLO  
J
BOOT  
= 1.5 V (source) or 6 V (sink),  
V
HIGHDR  
See Note 3  
2
2
2
Peak output  
current  
(see Note 5)  
A
Duty Cycle < 2%,  
T = 125°C,  
t
V
< 100 µs,  
= 6.5 V,  
pw  
J
DRV  
= 1.5 V (source) or 5 V (sink),  
V
LOWDR  
See Note 3  
Low-side source  
High-side sink  
High-side source  
Low-side sink  
3
45  
T = 125°C,  
V
– V  
= 6.5 V,  
BOOTLO  
J
BOOT  
= 6 V (source) or 0.5 V (sink)  
Output  
resistance  
(see Note 5)  
V
HIGHDR  
5.7  
45  
T = 125°C,  
V
= 6.5 V,  
J
DRV  
= 6 V (source) or 0.5 V (sink)  
V
LOWDR  
Low-side source  
NOTES: 3. This parameter is ensured by design and is not production tested.  
5. The pull-up/pull-down circuits of the drivers are bipolar and MOSFET transistors in parallel. The peak output current rating is the  
combined current from the bipolar and MOSFET transistors. The output resistance is the R  
the voltage on the driver output is less than the saturation voltage of the bipolar transistor.  
of the MOSFET transistor when  
ds(on)  
supply current  
PARAMETER  
TEST CONDITIONS  
MIN  
11.4  
TYP  
MAX  
UNIT  
Supply voltage  
range  
V
12  
13  
V
CC  
CC  
V
V
= 5 V,  
> 10.75 V at startup,  
VID code 11111,  
INHIBIT  
CC  
3
5
10  
V
= 0 V  
BOOTLO  
Quiescent  
current  
V
V
C
= 5 V,  
> 10.75 V at startup,  
= 50 pF,  
HIGHDR  
= 200 kHz,  
VID code 11111,  
INHIBIT  
CC  
V
mA  
V
C
= 0 V,  
= 50 pF,  
LOWDR  
BOOTLO  
f
See Note 3  
SWX  
V
V
= 0 V or VID code = 11111 or V  
< 9.25 V at startup,  
CC  
INHIBIT  
BOOT  
80  
µA  
High-side  
driver  
quiescent  
= 13 V,  
V
= 0 V  
BOOTLO  
V
V
C
= 5 V,  
VID code 11111, V  
> 10.75 V at startup,  
CC  
INHIBIT  
BOOT  
= 13 V,  
= 50 pF,  
V
= 0 V,  
2
mA  
BOOTLO  
f = 200 kHz (see Note 3)  
SWX  
current  
HIGHDR  
NOTE 3: This parameter is ensured by design and is not production tested.  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5210  
PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
switching characteristics over recommended operating virtual-junction temperature range,  
V
= 12 V, I  
= 0 A (unless otherwise noted)  
CC  
DRV  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VSENSE to HIGHDR or  
LOWDR (excluding dead-  
time)  
1.3 V V  
VREF  
(see Note 3)  
3.5 V, 10 mV overdrive  
150  
250  
ns  
OCP comparator  
1
1
Propagation delay  
OVP comparator  
See Note 3  
µs  
PWRGD comparator  
SLOWST comparator  
1
Overdrive = 10 mV (see Note 3)  
560  
900  
60  
ns  
C
= 9 nF,  
V
= 6.5 V,  
L
BOOT  
T = 125°C  
HIGHDR output  
LOWDR output  
HIGHDR output  
LOWDR output  
V
= 0 V,  
BOOTLO  
= 9 nF,  
J
Rise time  
Fall time  
ns  
C
V
= 6.5 V,  
DRV  
L
60  
60  
60  
T = 125°C  
J
C
= 9 nF,  
V
= 6.5 V,  
BOOT  
L
V
= 0 V,  
T = 125°C  
J
BOOTLO  
= 9 nF,  
ns  
C
V
= 6.5 V,  
DRV  
L
T = 125°C  
J
Deglitch time (Includes  
comparator propagation  
delay)  
OCP  
OVP  
2
2
5
5
See Note 3  
µs  
V
V
= 12 V,  
pulsed from 12 V to 11.9 V,  
HISENSE  
IOUTLO  
2
3
3
100 ns rise/fall times  
(see Note 3)  
V
V
= 4.5 V,  
HISENSE  
pulsed from 4.5 V to 4.4 V,  
Response time  
High-side VDS sensing  
µs  
IOUTLO  
100 ns rise/fall times (see Note 3)  
V
V
= 3 V,  
HISENSE  
pulsed from 3 V to 2.9 V,  
IOUTLO  
100 ns rise/fall times (see Note 3)  
Short-circuit protection  
rising-edge delay  
SCP  
LOSENSE = 0 V (see Note 3)  
300  
30  
500  
100  
100  
ns  
ns  
ns  
V
sensing sample/hold  
3 V V  
11 V,  
HISENSE  
DS  
Turn-on/turn-off delay  
Crossover delay time  
switch  
V
= V  
(see Note 3)  
LOSENSE  
HISENSE  
LOWDR to HIGHDRV, and  
LOHIB to LOWDR  
See Note 3  
30  
Prefilter pole frequency  
Propagation delay  
Hysteretic comparator  
LODRV  
See Note 3  
See Note 3  
5
MHz  
ns  
400  
NOTE 3: This parameter is ensured by design and is not production tested.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5210  
PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
TYPICAL CHARACTERISTICS  
SLOWSTART TIME  
vs  
SLOWSTART CAPACITANCE  
SLOWSTART TIME  
vs  
SUPPLY CURRENT (VREFB)  
100  
10  
1000  
100  
V
I
= 2 V  
= 100 µA  
(VREFB)  
(VREFB)  
V
= 2 V  
= 0.1 µF  
(VREFB)  
C
S
J
T
J
= 25°C  
T
= 25°C  
1
0.1  
0
10  
1
0.0001  
0.0010  
0.0100  
0.1000  
1
1
10  
100  
1000  
Slowstart Capacitance – µF  
I
– Supply Current (VREFB) – µA  
CC  
Figure 1  
Figure 2  
DRIVER  
OUTPUT RISE TIME  
vs  
DRIVER  
OUTPUT FALL TIME  
vs  
LOAD CAPACITANCE  
LOAD CAPACITANCE  
100  
1000  
100  
T
J
= 25°C  
T
J
= 25°C  
High Side  
Low Side  
High Side  
Low Side  
10  
10  
1
0.1  
1
0.1  
1
10  
100  
1
10  
100  
C
– Load Capacitance – nF  
C
– Load Capacitance – nF  
L
L
Figure 3  
Figure 4  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5210  
PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
TYPICAL CHARACTERISTICS  
OVP THRESHOLD  
vs  
JUNCTION TEMPERATURE  
OCP THRESHOLD VOLTAGE  
vs  
JUNCTION TEMPERATURE  
118  
117  
105  
103  
101  
99  
116  
115  
114  
97  
113  
112  
95  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 5  
Figure 6  
INHIBIT START THRESHOLD VOLTAGE  
INHIBIT HYSTERESIS VOLTAGE  
vs  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
2.1  
150  
125  
2.05  
2
100  
75  
1.95  
1.9  
50  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 7  
Figure 8  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5210  
PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
TYPICAL CHARACTERISTICS  
UVLO START THRESHOLD VOLTAGE  
UVLO HYSTERESIS  
vs  
JUNCTION TEMPERATURE  
vs  
JUNCTION TEMPERATURE  
10.5  
2.5  
V = 12 V  
I
V = 12 V  
I
2.3  
2.1  
1.9  
1.7  
1.5  
10  
9.5  
9
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 9  
Figure 10  
QUIESCENT CURRENT  
vs  
JUNCTION TEMPERATURE  
POWERGOOD THRESHOLD  
vs  
JUNCTION TEMPERATURE  
6
4
2
95  
V = 12 V  
I
94  
93  
92  
91  
90  
0
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 11  
Figure 12  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5210  
PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
TYPICAL CHARACTERISTICS  
DRIVER  
SLOW START CHARGE CURRENT  
REGULATOR VOLTAGE  
vs  
JUNCTION TEMPERATURE  
vs  
JUNCTION TEMPERATURE  
15  
14  
13  
8.5  
V
R
= 1.3 V  
= 20 kΩ  
(VREFB)  
(VREFB)  
8.25  
8
7.75  
7.5  
12  
11  
10  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 13  
Figure 14  
DRIVER  
DRIVER  
HIGH-SIDE OUTPUT RESISTANCE  
vs  
LOW-SIDE OUTPUT RESISTANCE  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
5
4
3
6
4
2
1
0
2
0
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
T
J
– Junction Temperature – °C  
T
J
– Junction Temperature – °C  
Figure 15  
Figure 16  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5210  
PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
TYPICAL CHARACTERISTICS  
SENSING SAMPLE/HOLD RESISTANCE  
vs  
JUNCTION TEMPERATURE  
100  
V
= 12 V  
(HISENSE)  
75  
50  
25  
0
0
25  
50  
75  
100  
125  
T
J
– Junction Temperature – °C  
Figure 17  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5210  
PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
APPLICATION INFORMATION  
The following figure is a typical application schematic. The circuit can be divided into the power-stage section  
and the control-circuit section. The power stage must be tailored to the input/output requirements of the  
application. The control circuit is basically the same for all applications with some minor tweaking of specific  
values. Table 2 shows the values of the power stage components for various output-current options.  
L102  
L101  
Q101  
12V  
Vo  
R102  
C104  
Q102  
+
+
C105  
C106  
C101 C102 C103  
R101  
GND  
RTN  
Power Stage  
Control Section  
C2  
1 uF  
C1  
1 uF  
VCC  
DRV  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
14  
13  
12  
11  
10  
9
C3  
BOOT  
LOWDR  
DRVGND  
LOHIB  
R2  
150  
C4  
1 uF  
1 uF  
HIGHDR  
BOOTLO  
HISENSE  
LOSENSE  
IOUTLO  
INHIBIT  
VID4  
R1  
LODRV  
BIAS  
C5  
0.1 uF  
C7  
3.40 k  
1%  
C6  
SLOWST  
ANAGND  
VSENSE  
VREFB  
VHYST  
OCP  
8
0.033 uF  
1000 pF  
7
R3 10.0 k  
R5  
100  
ENABLE  
6
VID3  
5
R6  
VID2  
R4  
2.55 k  
1%  
20.0 k  
C8  
2200 pF  
4
R7  
3.92 k  
R8  
1.00 k  
VID1  
3
VID0  
DROOP  
IOUT  
2
PWRGD  
1
R9  
R10  
1.00 k  
4.32 k  
TPS5210  
U1  
Figure 18. Standard Application Schematic  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5210  
PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
APPLICATION INFORMATION  
Table 2. Power Stage Components  
12-V–Input Power Stage Components  
Ref  
Function  
Des  
4–A Out  
8–A Out  
12–A Out  
20–A Out  
40–A Out  
Sanyo,  
16SV100M,  
100–uF, 16–V, 20%  
Sanyo,  
16SA470M,  
2 x 470–uF, 16–V, 20%  
Sanyo,  
16SA470M,  
2 x 470–uF, 16–V, 20%  
Sanyo,  
16SA470M,  
3 x 470–uF, 16–V, 20%  
Sanyo,  
16SA470M,  
4 x 470–uF, 16–V, 20%  
Input Bulk  
Capacitor  
C101  
muRata,  
muRata,  
muRata,  
muRata,  
muRata,  
Input  
GRM42–6Y5V105Z025A GRM42–6Y5V225Z016A GRM42–6Y5V225Z016A GRM42–6Y5V105Z025A GRM42–6Y5V105Z025A  
C102 Mid–Freq  
Capacitor  
1.0–uF, 25–V,  
+80%–20%,  
Y5V  
2.2–uF, 16–V,  
+80%–20%,  
Y5V  
2.2–uF, 16–V,  
+80%–20%,  
Y5V  
3 x 1.0–uF, 25–V,  
+80%–20%,  
Y5V  
4 x 1.0–uF, 25–V,  
+80%–20%,  
Y5V  
Input  
Hi–Freq  
Bypass  
Capacitor  
muRata,  
GRM39X7R104K016A  
0.1–uF, 16–V, X7R  
muRata,  
GRM39X7R104K016A,  
0.1–uF, 16–V, X7R  
muRata,  
GRM39X7R104K016A,  
2 x 0.1–uF, 16–V, X7R  
muRata,  
GRM39X7R104K016A,  
3 x 0.1–uF, 16–V, X7R  
muRata,  
GRM39X7R104K016A,  
4 x 0.1–uF, 16–V, X7R  
C103  
muRata,  
GRM39X7R102K050A,  
1000–pF, 50–V, X7R  
muRata,  
GRM39X7R102K050A,  
1000–pF, 50–V, X7R  
muRata,  
GRM39X7R102K050A,  
2 x 1000–pF, 50–V, X7R  
muRata,  
GRM39X7R102K050A,  
3 x 1000–pF, 50–V, X7R  
muRata,  
GRM39X7R102K050A,  
4 x 1000–pF, 50–V, X7R  
Snubber  
C104  
Capacitor  
Sanyo,  
6TPB150M,  
3 x 150–uF, 6.3–V, 20%  
Sanyo,  
4SP820M,  
820–uF, 4–V, 20%  
Sanyo,  
4SP820M,  
2 x 820–uF, 4–V, 20%  
Sanyo,  
4SP820M,  
3 x 820–uF, 4–V, 20%  
Sanyo,  
4SP820M,  
4 x 820–uF, 4–V, 20%  
Output Bulk  
C105  
Capacitor  
Output  
Hi–Freq  
Bypass  
Capacitor  
muRata,  
GRM39X7R104K016A,  
0.1–uF, 16–V, X7R  
muRata,  
GRM39X7R104K016A,  
0.1–uF, 16–V, X7R  
muRata,  
GRM39X7R104K016A,  
2 x 0.1–uF, 16–V, X7R  
muRata,  
GRM39X7R104K016A,  
3 x 0.1–uF, 16–V, X7R  
muRata,  
GRM39X7R104K016A,  
4 x 0.1–uF, 16–V, X7R  
C106  
Input  
Filter  
Inductor  
CoilCraft,  
DO1608C–332,  
3.3–uH, 2.0–A  
Coiltronics,  
UP2B–2R2,  
2.2–uH, 7.2–A  
Coiltronics,  
UP2B–2R2,  
2.2–uH, 7.2–A  
Coiltronics,  
UP3B–1R0,  
1–uH, 12.5–A  
Coiltronics,  
UP3B–1R0,  
1–uH, 12.5–A  
L101  
L102  
Output  
Filter  
Inductor  
CoilCraft,  
DO3316P–332,  
3.3–uH, 6.1–A  
Coiltronics,  
UP3B–2R2,  
2.2–uH, 9.2–A  
Coiltronics,  
UP4B–1R5,  
1.5–uH, 13.4–A  
MicroMetals,  
T68–8/90 Core w/7T  
#16, 1.0–uH, 25–A  
Pulse Engineering,  
P1605,  
1.0–uH, 50–A  
Lo–Side  
R101 Gate  
Resistor  
3.3–Ohm,  
1/16–W, 5%  
3.3–Ohm,  
1/16–W, 5%  
2 x 3.3–Ohm,  
1/16–W, 5%  
3 x 3.3–Ohm,  
1/16–W, 5%  
4 x 3.3–Ohm,  
1/16–W, 5%  
Snubber  
Resistor  
2.7–Ohm,  
1/10–W, 5%  
2.7–Ohm,  
1/10–W, 5%  
2 x 2.7–Ohm,  
1/10–W, 5%  
3 x 2.7–Ohm,  
1/10–W, 5%  
4 x 2.7–Ohm,  
1/10–W, 5%  
R102  
Q101  
Power  
Switch  
Siliconix, Si4410,  
NMOS, 13–mOhm  
Siliconix, Si4410,  
NMOS, 13–mOhm  
Siliconix, 2 x Si4410,  
NMOS, 13–mOhm  
Siliconix, 2 x Si4410,  
NMOS, 13–mOhm  
IR, 2 x IRF7811,  
NMOS, 11–mOhm  
Synchron-  
Q102 ous  
Switch  
Siliconix, Si4410,  
NMOS, 13–mOhm  
Siliconix, Si4410,  
NMOS, 13–mOhm  
Siliconix, 2 x Si4410,  
NMOS, 13–mOhm  
Siliconix, 3 x Si4410,  
NMOS, 13–mOhm  
IR, 4 x IRF7811,  
NMOS, 11–mOhm  
Nominal Frequency  
Hysteresis Window  
220 KHz  
20 mV  
330 KHz  
20 mV  
240 KHz  
20 mV  
140 KHz  
20 mV  
168 KHz  
10 mV  
Nominal frequency measured with Vo set to 2 V.  
The values listed above are recommendations based on actual test circuits. Many variations of the above are  
possible based upon the desires and/or requirements of the user. Performance of the circuit is equally, if not  
more, dependent upon the layout than on the specific components, as long as the device parameters are not  
exceeded. Fast-response, low-noise circuits require critical attention to the layout details. Even though the  
operating frequencies of typical power supplies are relatively low compared to today’s microprocessor circuits,  
the power levels and edge rates can cause severe problems both in the supply and the load. The power stage,  
having the highest current levels and greatest dv/dt rates, should be given the greatest attention.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5210  
PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
APPLICATION INFORMATION  
frequency calculation  
A detailed derivation of frequency calculation is shown in the application report, “Designing Fast Response  
SynchronousBuckRegulatorsUsingtheTPS5210”, TILiteraturenumberSLVA044. Whenlessaccurateresults  
are acceptable, the simplified equation shown below can be used:  
V
V
V
ESR  
O
I
O
f
s
V
L
Hysteresis Window  
I
Control Section  
Below are the equations needed to select the various components within the control section. Details and the  
derivationsoftheequationsusedinthissectionareavailableintheapplicationreportDesigningFastResponse  
Synchronous Buck Regulators Using the TPS5210”, TI Literature number SLVA044.  
output voltage selection  
Of course the most important function of the power supply is to regulate the output voltage to a specific value.  
Values between 1.3 V and 3.5 V can be easily set by shorting the correct VID inputs to ground. Values above  
the maximum reference voltage (3.5 V) can be set by setting the reference voltage to any convenient voltage  
within its range and selecting values for R2 and R3 to give the correct output. Select R3:  
R3 << than V  
/I  
; a recommended value is 10 kΩ  
REF BIAS(VSENSE)  
Then, calculate R2 using:  
R3  
V
V
V
R2  
R3  
O
REF  
V
V
1
or  
R2  
O
REF  
REF  
R2 and R3 can also be used to make small adjusts to the output voltage within the reference-voltage range  
and/or to adjust for load-current active droop compensation. If there is no need to adjust the output voltage, R3  
can be eliminated. R2, R3 (if used), and C7 are used as a noise filter; calculate using:  
150 ns  
C7  
R2 R3  
slowstart timing  
Slowstart reduces the startup stresses on the power-stage components and reduces the input current surge.  
Slowstart timing is a function of the reference-voltage current (determined by R6) and is independent of the  
reference voltage. The first step in setting slowstart timing will be to determine R6:  
R6 should be between 7 kand 300 k, a recommended value is 20 k.  
Set the slowstart timing using the formula:  
t
t
SS  
SS  
)
R6  
C5  
(
5
5
R
VREFB  
Where C5 = Slowstart capacitance in µF  
= Slowstart timing in µs  
t
R
SS  
VREFB  
= Resistance from VREFB to GND in ohms (R6)  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5210  
PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
APPLICATION INFORMATION  
hysteresis voltage  
A hysteretic controller regulates by self-oscillation, thus requiring a small ripple voltage on the output which the  
input comparator uses for sensing. Once selected, the TPS5210 hysteresis is proportional to the reference  
voltage; programming Vref to a new value automatically adjusts the hysteresis to be the same percentage of  
Vref. The actual output ripple voltage is the combination of the hysteresis voltage, overshoot caused by internal  
delays, and the output capacitor characteristics. Figure 20 shows the hysteresis window voltage (V to V  
)
HI  
LO  
and the output voltage ripple (V  
to V  
). Since the output current from VREFB should be less than 500 µA,  
MAX  
MIN  
the total divider resistance (R5 + R6) should be greater than 7 K. The hysteresis voltage should be no greater  
than 60 mV so R6 will dominate the divider.  
VREFB  
Hysteresis Window = 2 × V  
R5  
R6  
R5  
VHSYT  
Figure 19. Hysteresis Divider Circuit  
V
O
V
MAX  
V
HI  
V
REF  
V
LO  
V
MIN  
t
Figure 20. Output Ripple  
The upper divider resistor, R5, is calculated using:  
0
( )  
)
Hysteresis Window  
VHYST  
(
0
R5 =  
× R6  
× R6  
(
)
2 × VREFB Hysteresis Window  
2 × 100  
Where Hysteresis Window = the desired peak-to-peak hysteresis voltage.  
VREFB = selected reference voltage.  
V
(%) = [(Hysteresis Window)/VREFB] * 100 < V  
(%)  
HYST  
O(Ripple)(P–P)  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5210  
PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
APPLICATION INFORMATION  
current limit  
Current limit can be implemented using the on-resistance of the upper FETs as the sensing elements. Select  
R8:  
0.1V  
100 × 100nA  
VOCP  
R8 <<  
10 kΩ  
(
)
IBias(OCP)  
(A recommended value is 1 k)  
The IOUT signal is used to drive the current limit and droop-circuit dividers. The voltage at IOUT at the output  
current trip point will be:  
(
)
2 ×  
× TF  
RDS(ON)  
NumFETs  
Where NumFETS = Number of upper FETS in Parallel.  
TF = R temperature correction factor.  
=
×
IO(Trip)  
VIOUT(Trip)  
DS(ON)  
O(Trip)  
I
= Desired output current trip level (A).  
Calculate R7 using:  
V
IOUT(Trip)  
R7  
1
R8  
0.1 V  
NotethatsinceR  
ofMOSFETscanvaryfromlottolotandwithtemperature,tightcurrent-limitcontrol(less  
DS(ON)  
than 1.5 x I ) using this method is not practical. If tight control is required, an external current-sense resistor  
O
in series with the drain of the upper FET can be used with HISENSE and LOSENSE connected across the  
resistor.  
droop compensation  
Droop compensation is used to reduce the output voltage range during load transients by increasing the output  
voltage setpoint toward the upper tolerance limit during light loads and decreasing the voltage setpoint toward  
the lower tolerance limit during heavy loads. This allows the output voltage to swing a greater amount and still  
remain within the tolerance window. The maximum droop voltage is set with R9 and R10. Select R10:  
VDROOP(Min)  
0.01V  
100 × 100 nA  
R10 <<  
1 kΩ  
(
)
IBias(DROOP,Max)  
(Again, a value of 1 kis recommended)  
The voltage at IOUT during normal operation (0 to 100% load) will vary from 0 V up to:  
(
)
2 ×  
× TF  
RDS(ON)  
NumFETs  
= Maximum output load current (A).  
=
×
IO(Max)  
VIOUT(Max)  
Where I  
O(Max)  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5210  
PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
APPLICATION INFORMATION  
droop compensation (continued)  
Then, calculate R9:  
V
IOUT(Max)  
R9  
1
R10  
V
DROOP  
Where V  
= Desired droop voltage  
DROOP  
At full load, the output voltage will be:  
R2  
R3  
V
V
1
V
O
REF  
DROOP  
using the TPS5210 when both 12 V and 5 V are available  
When both 12 V and 5 V are available, several components can be removed from the basic schematic shown  
above. R1, R4, and C9 are no longer required if 5 V is brought in directly to INHIBIT and LODRV. However, if  
undervoltage lockout for the 5-V input is desired, R1 and R4 can be used to set the startup setpoint. TheINHIBIT  
pin trip level is 2.1 V. Select R4:  
2.1V  
100 × 100nA  
VINH  
R4 <<  
210k Ω  
(
)
IINH(Max)  
Then, set the 5-V UVLO trip level with R1:  
(
)
× R4  
– 2V  
5VTrip  
R1 =  
2V  
LODRV  
INHIBIT  
R1  
R4  
Figure 21. 5-V Input with UVLO  
using the TPS5210 when only 5 V is available  
The TPS5210 controller requires 12 V for internal control of the device. If an external source for 12 V is not  
available, a small on-board source must be included in the design. Total 12-V current is very small, typically  
about 20 mA, so even a small charge pump can be used to generate the supply voltage. The power stage is  
not voltage dependent, but component values must be selected for 5-V inputs and the frequency of operation  
is dependent upon the power stage input voltage.  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5210  
PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
APPLICATION INFORMATION  
L102  
L101  
Q101  
5V  
Vo  
R102  
C104  
Q102  
+
+
C105  
C106  
C101  
C102 C103  
R101  
GND  
RTN  
Power Stage  
Control Section  
C2  
1 uF  
C1  
0.1 uF  
12 V  
12-V  
VCC  
DRV  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
14  
13  
12  
11  
10  
9
Boost  
Circuit  
C3  
BOOT  
LOWDR  
DRVGND  
LOHIB  
R2  
150  
C4  
1 uF  
1 uF  
HIGHDR  
BOOTLO  
HISENSE  
LOSENSE  
IOUTLO  
INHIBIT  
VID4  
LODRV  
BIAS  
C5  
0.1 uF  
C7  
R1  
10.0 k  
1%  
C6  
SLOWST  
ANAGND  
VSENSE  
VREFB  
VHYST  
OCP  
8
0.033 uF  
1000 pF  
ENABLE  
7
R3 10.0 k  
R5  
6
100  
VID3  
5
R6  
20.0 k  
VID2  
R4  
11.0 k  
C8  
4
R7  
3.92 k  
R8  
1.00 k  
2200 pF  
VID1  
1%  
3
VID0  
DROOP  
IOUT  
2
PWRGD  
1
R9  
R10  
1.00 k  
4.32 k  
TPS5210  
U1  
Figure 22. Typical 5-V-Only Application Circuit  
application examples  
Various application and layout examples using the TPS5210 are available from Texas Instruments. This  
information can be downloaded from http://www.ti.com/sc/docs/products/msp/pwrsply/default.htm or received  
from your TI representative.  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5210  
PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
APPLICATION INFORMATION  
layout guidelines  
Good power supply results will only occur when care is given to proper design and layout. Layout will affectnoise  
pickup and generation and can cause a good design to perform with less than expected results. With a range  
of currents from milliamps to tens or even hundreds of amps, good power supply layout is much more difficult  
than most general PCB design. The general design should proceed from the switching node to the output, then  
back to the driver section, and, finally, place the low-level components. Below are several specific points to  
consider before layout of a TPS5210 design begins.  
1. All sensitive analog components should be referenced to ANAGND. These include components connected  
to SLOWST, DROOP, IOUT, OCP, VSENSE, VREFB, VHYST, BIAS, and LOHIB.  
2. Analogground and drive ground should be isolated as much as possible. Ideally, analog ground will connect  
to the ground side of the bulk storage capacitors on V , and drive ground will connect to the main ground  
O
plane close to the source of the low-side FET.  
3. Connections from the drivers to the gate of the power FETs, should be as short and wide as possible to  
reduce stray inductance. This becomes more critical if external gate resistors are not being used.  
4. The bypass capacitor for the DRV regulator should be placed close to the TPS5210 and be connected to  
DRVGND.  
5. The bypass capacitor for V  
should be placed close to the TPS5210 and be connected to DRVGND.  
CC  
6. When configuring the high-side driver as a floating driver, the connection from BOOTLO to the power FETs  
should be as short and as wide as possible. The other pins that also connect to the power FETs, LOHIB  
and LOSENSE, should have a separate connection to the FETS since BOOTLO will have large peak  
currents flowing through it.  
7. When configuring the high-side driver as a floating driver, the bootstrap capacitor (connected from BOOT  
to BOOTLO) should be placed close to the TPS5210.  
8. When configuring the high-side driver as a ground-referenced driver, BOOTLO should be connected to  
DRVGND.  
9. The bulk storage capacitors across V should be placed close to the power FETS. High-frequency bypass  
I
capacitors should be placed in parallel with the bulk capacitors and connected close to the drain of the  
high-side FET and to the source of the low-side FET.  
10. High-frequency bypass capacitors should be placed across the bulk storage capacitors on V .  
O
11. HISENSE and LOSENSE should be connected very close to the drain and source, respectively, of the  
high-side FET. HISENSE and LOSENSE should be routed very close to each other to minimize  
differential-mode noise coupling to these traces. Ceramic decoupling capacitors should be placed close to  
where HISENSE connects to Vin, to reduce high-frequency noise coupling on HISENSE.  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5210  
PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
MECHANICAL DATA  
DW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
16 PIN SHOWN  
0.050 (1,27)  
16  
0.020 (0,51)  
0.010 (0,25)  
M
0.014 (0,35)  
9
0.419 (10,65)  
0.400 (10,15)  
0.010 (0,25) NOM  
0.299 (7,59)  
0.293 (7,45)  
Gage Plane  
0.010 (0,25)  
1
8
0°8°  
0.050 (1,27)  
0.016 (0,40)  
A
Seating Plane  
0.004 (0,10)  
0.012 (0,30)  
0.004 (0,10)  
0.104 (2,65) MAX  
PINS **  
16  
20  
24  
28  
0.710  
DIM  
0.410  
0.510  
0.610  
A MAX  
A MIN  
(10,41) (12,95) (15,49) (18,03)  
0.400  
0.500  
0.600  
0.700  
(10,16) (12,70) (15,24) (17,78)  
4040000/C 07/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-013  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS5210  
PROGRAMMABLE SYNCHRONOUS BUCK REGULATOR CONTROLLER  
SLVS171A – SEPTEMBER 1998 – REVISED MAY 1999  
MECHANICAL DATA  
PWP (R-PDSO-G**)  
PowerPAD PLASTIC SMALL-OUTLINE PACKAGE  
20-PIN SHOWN  
0,30  
0,19  
0,65  
20  
M
0,10  
11  
Thermal Pad  
(See Note D)  
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
1
10  
0,25  
A
0°8°  
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
14  
16  
20  
24  
28  
DIM  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
7,70  
9,80  
9,60  
A MAX  
A MIN  
4073225/E 03/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusions.  
D. Thepackagethermalperformancemaybeenhancedbybondingthethermalpadtoanexternalthermalplane.Thispadiselectrically  
and thermally connected to the backside of the die and possibly selected leads.  
E. Falls within JEDEC MO-153  
PowerPAD is a trademark of Texas Instruments Incorporated.  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1999, Texas Instruments Incorporated  

相关型号:

TPS5210DWR

Voltage-Mode SMPS Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TPS5210PWP

PROGRAMMABLE SYNCHRONOUS-BUCK REGULATOR CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS5210PWPR

PROGRAMMABLE SYNCHRONOUS-BUCK REGULATOR CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS5210_16

PROGRAMMABLE SYNCHRONOUS-BUCK REGULATOR CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS5211

HIGH FREQUENCY PROGRAMMABLE HYSTERETIC REGULATOR CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS5211PWP

HIGH FREQUENCY PROGRAMMABLE HYSTERETIC REGULATOR CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS5211PWPR

Analog IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TPS524

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TPS5300

MOBILE CPU POWER SUPPLY CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS5300DAP

Analog IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TPS5300DAPG4

3.3A SWITCHING CONTROLLER, 500kHz SWITCHING FREQ-MAX, PDSO32, GREEN, PLASTIC, HTSSOP-32

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS5300DAPR

暂无描述

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI