TPS562231DRLT [TI]

4.5V 至 17V 输入、2A 输出、同步降压转换器 | DRL | 6 | -40 to 125;
TPS562231DRLT
型号: TPS562231DRLT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4.5V 至 17V 输入、2A 输出、同步降压转换器 | DRL | 6 | -40 to 125

转换器
文件: 总27页 (文件大小:1763K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS562231  
ZHCSJF5B FEBRUARY 2019REVISED OCTOBER 2019  
采用 SOT563 封装的 TPS562231 4.5V 17V 输入、2A 同步降压转换器  
1 特性  
3 说明  
1
2A 转换器集成了 95m55mFET  
TPS562231 是一款采用 SOT563 封装的简单易用型  
2A 同步降压转换器。  
D-CAP3™模式控制,用于快速瞬态响应  
输入电压范围:4.5V 17V  
输出电压范围:0.6V 7V  
脉冲跳跃模式  
该器件经过优化,最大限度地减少了运行所需的外部组  
件并可实现低待机电流。  
这些开关模式电源 (SMPS) 器件采用 D-CAP3 模式控  
制,该模式控制可提供快速瞬态响应,并同时支持诸如  
高分子聚合物等低等效串联电阻 (ESR) 输出电容以及  
超低 ESR 陶瓷电容器(无需外部补偿组件)。  
850kHz 开关频率  
小于 2µA(典型值)的低关断电流  
2% 反馈电压精度 (25ºC)  
从预偏置输出电压中启动  
逐周期过流限制  
在轻载运行期间,TPS562231 在脉冲跳跃模式 (PSM)  
下运行,从而保持高效率。TPS562231 采用 6 引脚  
1.6mm × 1.6mm SOT563 (DRL) 封装,额定结温范围  
–40°C 125°C。  
断续模式过流保护  
非锁存 UVP TSD 保护  
6 引脚 SOT563 封装  
精密使能端  
器件信息(1)  
TPS563231 引脚对引脚兼容  
器件型号  
TPS562231  
封装  
封装尺寸(标称值)  
DRL (6)  
1.60mm x 1.60mm  
2 应用  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
标准 12V 电源轨  
数字电视电源  
嵌入式系统  
网络家庭终端设备  
数字机顶盒 (STB)  
监控  
电表  
空白  
SPACER  
简化电路原理图  
TPS562231 效率  
VIN  
100  
VIN  
BST  
CBST  
CIN  
L
VOUT  
80  
60  
SW  
FB  
EN  
RFBT  
GND  
COUT  
RFBB  
40  
Vo=1.05V  
Vo=1.8V  
Vo=3.3V  
Vo=5V  
20  
0.001  
0.01  
0.1  
1
2
Iout(A)  
TPS5  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDA4  
 
 
 
 
TPS562231  
ZHCSJF5B FEBRUARY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 10  
Application and Implementation ........................ 12  
8.1 Application Information............................................ 12  
8.2 Typical Application ................................................. 12  
Power Supply Recommendations...................... 16  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
7.2 Functional Block Diagram ......................................... 9  
7.3 Feature Description................................................... 9  
8
9
10 Layout................................................................... 17  
10.1 Layout Guidelines ................................................. 17  
10.2 Layout Example .................................................... 17  
11 器件和文档支持 ..................................................... 18  
11.1 器件支持 ............................................................... 18  
11.2 接收文档更新通知 ................................................. 18  
11.3 社区资源................................................................ 18  
11.4 ....................................................................... 18  
11.5 静电放电警告......................................................... 18  
11.6 Glossary................................................................ 18  
12 机械、封装和可订购信息....................................... 19  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (March 2019) to Revision B  
Page  
Changed FB I/O Type from 'O' to 'I'........................................................................................................................................ 4  
Changes from Original (February 2019) to Revision A  
Page  
已更改 将销售状态从预告信息更改为初始发行版........................................................................................................... 1  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TPS562231  
www.ti.com.cn  
ZHCSJF5B FEBRUARY 2019REVISED OCTOBER 2019  
5 Pin Configuration and Functions  
DRL Package  
6-Pin SOT563  
Top View  
1
VIN  
SW  
6
FB  
EN  
2
3
5
4
GND  
BST  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Supply input for the high-side NFET gate drive circuit. Connect 0.1 µF capacitor between  
BST and SW pins.  
BST  
4
O
Enable input control. High = On, Low = Off. Can be connected to VIN. Do not float. Adjust  
the input undervoltage lockout with EN resistor divider.  
EN  
5
6
3
I
I
FB  
Converter feedback input. Connect to output voltage with feedback resistor divider.  
Power ground terminals, connected to the source of low-side FET internally. Connect to  
system ground, ground side of CIN and COUT. Path to CIN must as short as possible.  
GND  
SW  
VIN  
2
1
O
I
Switch node connection between high-side NFET and low-side NFET.  
Input voltage supply pin. The drain terminal of high-side power NFET.  
Copyright © 2019, Texas Instruments Incorporated  
3
TPS562231  
ZHCSJF5B FEBRUARY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
-0.3  
–2  
MAX  
19  
UNIT  
VIN  
V
V
V
V
V
BST  
24.5  
26.5  
5.5  
BST (10 ns transient)  
BST to SW  
Input voltage  
FB  
5.5  
EN  
VIN + 0.3  
19  
SW  
V
V
SW (10 ns transient)  
–3.5  
21  
Operating junction  
TJ  
–40  
–55  
150  
150  
°C  
°C  
temperature  
Storage temperature  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
17  
UNIT  
VIN  
4.5  
–0.1  
–0.1  
–0.1  
–0.1  
–1.8  
V
BST  
22  
BST to SW  
EN  
5
Input voltage  
VIN  
4.5  
17  
V
FB  
SW  
Operating junction  
temperature  
TJ  
–40  
125  
°C  
4
Copyright © 2019, Texas Instruments Incorporated  
TPS562231  
www.ti.com.cn  
ZHCSJF5B FEBRUARY 2019REVISED OCTOBER 2019  
6.4 Thermal Information  
TPS562231  
THERMAL METRIC(1)  
DRL  
6 PINS  
135.8  
45.5  
UNIT  
θJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJC(top)  
θJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
23.8  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.2  
ψJB  
24.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2019, Texas Instruments Incorporated  
5
TPS562231  
ZHCSJF5B FEBRUARY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
MAX UNIT  
6.5 Electrical Characteristics  
TJ = –40°C to 125°C, VIN = 12 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
POWER SUPPLY (VIN PIN)  
Operating – non-switching  
supply current  
IVIN  
VEN = 5 V, VFB = 0.7 V  
220  
300  
µA  
µA  
IVINSDN  
Shutdown supply current  
VEN = 0 V  
2
4.0  
3.6  
0.4  
12  
Rising threshold  
Falling threshold  
Hysteresis  
4.3  
Undervoltage lockout  
thresholds  
VIN_UVLO  
3.3  
V
ENABLE (EN PIN)  
VENH  
VENL  
REN  
EN high-level input voltage  
1.1  
1
1.24  
1.13  
1000  
1.42  
1.3  
V
V
EN low-level input voltage  
EN pin resistance to GND  
VEN = 12 V  
kΩ  
VOLTAGE REFERENCE (FB PIN)  
VIN = 4.5 V to 17 V, TJ = 25 °C  
VIN = 4.5 V to 17 V, TJ = –40°C to 125°C  
VFB = 0.6 V  
588  
600  
600  
0
612  
mV  
mV  
nA  
VREF  
Reference voltage  
VFB input current  
IFB  
±100  
MOSFET  
RDSON_H  
RDSON_L  
High-side switch resistance  
Low-side switch resistance  
TJ = 25°C, VBST – VSW = 5.5 V  
TJ = 25°C  
95  
55  
mΩ  
mΩ  
CURRENT LIMIT  
Low side FET source current  
limit  
Zero cross current detection TPS562231  
THERMAL SHUTDOWN  
Thermal shutdown  
threshold(1)  
ON-TIME TIMER CONTROL  
IOC_LS  
IZC  
2.3  
2.8  
0
3.3  
A
A
Shutdown temperature  
Hysteresis  
160  
25  
TSDN  
°C  
tON(MIN)  
Minimum on time(1)  
Minimum off time(1)  
80  
ns  
ns  
tOFF(MIN)  
SOFT START  
Tss  
VFB = 0.5 V  
250  
Soft-start time  
Internal soft-start time  
VIN = 12 V, VOUT = 3.3 V, CCM mode  
1.5  
ms  
FREQUENCY  
Fsw  
Switching frequency  
850  
kHz  
OUTPUT UNDERVOLTAGE AND OVERVOLTAGE PROTECTION  
VUVP Output UVP falling threshold Hiccup detect  
THICCUP_WAIT UVP propagation delay  
THICCUP_RE Hiccup time before restart  
(1) Not production tested.  
65  
0.6  
24  
%
ms  
ms  
6
版权 © 2019, Texas Instruments Incorporated  
TPS562231  
www.ti.com.cn  
ZHCSJF5B FEBRUARY 2019REVISED OCTOBER 2019  
6.6 Typical Characteristics  
VIN = 12 V (unless otherwise noted)  
230  
225  
220  
215  
210  
205  
200  
610  
608  
606  
604  
602  
600  
598  
596  
594  
592  
-50  
-25  
0
25  
50  
75  
Temperature (°C)  
100  
125  
150  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature(èC)  
Iq-S  
Refe  
1. IQ vs Junction Temperature  
2. VREF Voltage vs Junction Temperature  
4.3  
1.3  
1.25  
1.2  
4.2  
4.1  
4
Rising  
Falling  
Rising  
Falling  
3.9  
3.8  
3.7  
3.6  
1.15  
1.1  
-50  
-25  
0
25  
Temperature (°C)  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
Temperature (°C)  
50  
75  
100  
125  
150  
vin-  
en-S  
3. VIN UVLO vs Junction Temperature  
4. EN Pin UVLO vs Junction Temperature  
140  
120  
100  
80  
3.04  
3
HS  
LS  
2.96  
2.92  
2.88  
2.84  
60  
40  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
Temperature (°C)  
50  
75  
100  
125  
150  
Temperature(èC)  
Vall  
rdso  
6. RDS-ON vs Junction Temperature  
5. Current Limit vs Junction Temperature  
版权 © 2019, Texas Instruments Incorporated  
7
TPS562231  
ZHCSJF5B FEBRUARY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
VIN = 12 V (unless otherwise noted)  
100  
100  
80  
80  
60  
40  
20  
0
60  
40  
Vin=5V  
Vin=9V  
Vin=12V  
Vin=17V  
Vin=5V  
Vin=9V  
Vin=12V  
Vin=17V  
20  
0.001  
0.01  
0.1  
1
2
0.001  
0.01  
0.1  
1
2
Iout(A)  
Iout(A)  
TPS5  
TPS5  
7. TPS562231 VOUT = 1.05 V Efficiency  
8. TPS562231 VOUT = 1.8 V Efficiency  
100  
100  
90  
80  
70  
60  
50  
40  
80  
60  
40  
20  
Vin=5V  
Vin=9V  
Vin=12V  
Vin=17V  
7.5V  
9V  
12V  
17V  
0.001  
0.01  
0.1  
1
2
0.001  
0.01  
0.1  
1
2
Iout(A)  
Iout(A)  
TPS5  
TPS5  
9. TPS562231 VOUT = 3.3 V Efficiency  
10. TPS562231 VOUT = 5 V Efficiency  
3.339  
3.36  
3.336  
3.333  
3.33  
3.35  
3.34  
3.33  
3.32  
3.31  
3.3  
3.327  
3.324  
3.321  
3.318  
3.315  
3.312  
3.309  
3.306  
3.29  
3.28  
3.27  
3.26  
3.25  
Vin=9V  
Vin=12V  
Vin=17V  
Io=0A  
Io=1A  
Io=2A  
0
0.2 0.4 0.6 0.8  
1
Iout(A)  
1.2 1.4 1.6 1.8  
2
4
6
8
10  
12  
14  
16  
18  
Vin(V)  
TPS5  
TPS5  
11. TPS562231 VOUT = 3.3V Load Regulation  
12. TPS562231 VOUT = 3.3 V Line Regulation  
8
版权 © 2019, Texas Instruments Incorporated  
TPS562231  
www.ti.com.cn  
ZHCSJF5B FEBRUARY 2019REVISED OCTOBER 2019  
7 Detailed Description  
7.1 Overview  
The TPS562231 is a 2-A synchronous step-down converter. The proprietary D-CAP3 mode control supports low  
ESR output capacitors such as specialty polymer capacitors and multi-layer ceramic capacitors without complex  
external compensation circuits. The fast transient response of D-CAP3 mode control can reduce the output  
capacitance required to meet a specific level of performance.  
7.2 Functional Block Diagram  
EN  
5
1
VIN  
VUVP  
+
UVP  
Hiccup  
VREG5  
Control Logic  
Regulator  
UVLO  
6
FB  
BST  
SW  
4
2
+
+
PWM  
Voltage  
Reference  
+
SS  
Soft Start  
HS  
+
Internal Ramp  
One-Shot  
TSD  
XCON  
VREG5  
LS  
Ripple Injection  
OCL  
threshold  
OCL  
+
3
GND  
+
ZC  
7.3 Feature Description  
7.3.1 Adaptive On-Time Control and PWM Operation  
The main control loop of the TPS562231 is adaptive on-time pulse width modulation (PWM) controller that  
supports a proprietary D-CAP3 mode control. The D-CAP3 mode control combines adaptive on-time control with  
an internal compensation circuit for pseudo-fixed frequency and low external component count configuration with  
both low-ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output.  
At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal on-  
shot timer expires. This one shot duration is set proportional to the converter input voltage, VIN, and inversely  
proportional to the output voltage, VOUT, to maintain a pseudo-fixed frequency over the input voltage range,  
hence it is called adaptive on-time control. The on-shot timer is reset and the high-side MOSFET is turned on  
again when the feedback voltage falls below the reference voltage. An internal ramp is added to reference  
voltage to simulate output ripple, eliminating the need for ESR induced output ripple from D-CAP3 mode control.  
版权 © 2019, Texas Instruments Incorporated  
9
TPS562231  
ZHCSJF5B FEBRUARY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
Feature Description (接下页)  
7.3.2 Soft Start and Pre-Biased Soft Start  
The TPS562231 has an internal 1.5-ms soft-start. When the EN pin becomes high, the internal soft-start function  
begins ramping up the reference voltage from 0 V to 0.6 V linearly.  
If the output capacitor is pre-biased at startup, the devices initiate switching and start ramping up only after the  
internal reference voltage becomes greater than the feedback voltage VFB. This scheme ensures that the  
converters ramp up smoothly into regulation point.  
7.3.3 Over Current and Short Circuit Protection  
The TPS562231 is protected from over-current conditions by cycle-by-cycle current limit on the valley of the  
inductor current. Hiccup mode will be activated if a fault condition persists to prevent over-heating.  
The current going through low-side (LS) MOSFET is sensed and monitored. When the LS MOSFET turns on, the  
inductor current begins to ramp down. The LS MOSFET will not be turned OFF if its current is above the LS  
current limit ILS_LIMIT even the feedback voltage, VFB, drops below the reference voltage VREF. The LS MOSFET is  
kept ON so that inductor current keeps ramping down, until the inductor current ramps below the LS current limit  
ILS_LIMIT. Then the LS MOSFET is turned OFF and the HS switch is turned on after a dead time.  
As the inductor current is limited by ILS_LIMT, the output voltage tends to drop as the inductor current may be  
smaller than the load current. Hiccup current protection mode is activated once the VFB drops below the UVP  
threshold after a delay time (600 µs typically). In hiccup mode, the regulator is shut down and kept off for 24 ms  
typically before the TPS562231 try to start again. If over-current or short-circuit fault condition still exist, hiccup  
will repeat until the fault condition is removed. Hiccup mode reduces power dissipation under severe over-current  
conditions, prevents over-heating and potential damage to the device.  
7.3.4 Undervoltage Lockout (UVLO) Protection  
UVLO protection monitors the internal regulator voltage. When the voltage is lower than UVLO threshold voltage,  
the device is shut off. This protection is non-latching.  
7.3.5 Thermal Shutdown  
The device monitors the temperature of itself. If the temperature exceeds the threshold value (typically 160°C),  
the device is shut off. This is a non-latch protection.  
7.4 Device Functional Modes  
7.4.1 Shutdown Mode  
The EN pin provides electrical ON and OFF control for the TPS562231. When VEN is below its threshold (1.13 V  
typically), the device is in shutdown mode. The switching regulator is turned off and the quiescent current drops  
to 2.0 µA typically. The TPS562231 also employ VIN under voltage lock out protection. If VIN voltage is below its  
UVLO threshold (3.6 V typically), the regulator is turned off.  
7.4.2 Continuous Conduction Mode (CCM)  
Continuous Conduction Mode (CCM) operation is employed when the load current is higher than half of the  
peak-to-peak inductor current. In CCM operation, the frequency of operation is pseud fixed, output voltage ripple  
will be at a minimum in this mode and the maximum output current of 2 A can be supplied.  
10  
版权 © 2019, Texas Instruments Incorporated  
TPS562231  
www.ti.com.cn  
ZHCSJF5B FEBRUARY 2019REVISED OCTOBER 2019  
Device Functional Modes (接下页)  
7.4.3 Pulse Skip Mode (PSM, TPS562231)  
The TPS562231 is designed with Advanced Eco-mode™ to maintain high light load efficiency. As the output  
current decreases from heavy load condition, the inductor current is also reduced and eventually comes to point  
that its rippled valley touches zero level, which is the boundary between continuous conduction mode (CCM) and  
discontinuous conduction mode (DCM). The low-side MOSFET is turned off when the zero inductor current is  
detected. As the load current further decreases the converter runs into discontinuous conduction mode. The on-  
time is kept almost the same as it was in the continuous conduction mode so that it takes longer time to  
discharge the output capacitor with smaller load current to the level of the reference voltage. This makes the  
switching frequency lower, proportional to the load current, and keeps the light load efficiency high. The transition  
point to the light load operation current IOUT_LL can be calculated in 公式 1.  
(V - VOUT ) ì VOUT  
1
IN  
IOUT _LL  
=
ì
2 ì L ì fSW  
V
IN  
(1)  
As the load current continues to decrease, the switching frequency also decreases. The on-time starts to  
decrease once the switching frequency is lower than 250 kHz. The on-time can be about 22% reduced at most  
for extremely light load condition. This function is employed to achieve smaller ripple at extremely light load  
condition.  
版权 © 2019, Texas Instruments Incorporated  
11  
 
TPS562231  
ZHCSJF5B FEBRUARY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The devices are typical step-down DC-DC converters. It typically uses to convert a higher dc voltage to a lower  
dc voltage with a maximum available output current of 2 A. The following design procedure can be used to select  
component values for the TPS562231. Alternately, the WEBENCH® software may be used to generate a  
complete design. The WEBENCH software uses an iterative design procedure and accesses a comprehensive  
database of components when generating a design. This section presents a simplified discussion of the design  
process.  
8.2 Typical Application  
The TPS562231 only require a few external components to convert from a higher variable voltage supply to a  
fixed output voltage. 13 shows a basic schematic of 3.3-V output application. This section provides the design  
procedure.  
VIN 12 V  
BST  
VIN  
CBOOT  
0.1 µF  
CIN  
10 µF  
VOUT  
3.3 V  
L 3.3 µH  
SW  
FB  
EN  
RFBT  
45.3 kΩ  
COUT  
47 µF  
GND  
RFBB  
10 kΩ  
13. TPS562231 3.3V/2-A Reference Design  
8.2.1 Design Requirements  
1 shows the design parameters for this application.  
1. Design Parameters  
PARAMETER  
Input voltage range  
EXAMPLE VALUE  
4.5 to 17 V  
3.3 V  
Output voltage  
Transient response, 2-A load step  
Input ripple voltage  
ΔVout = ±5%  
400 mV  
Output ripple voltage  
Output current rating  
Operating frequency  
30 mV  
2 A  
850 kHz  
8.2.2 Detailed Design Procedure  
8.2.2.1 Output Voltage Resistors Selection  
The output voltage is set with a resistor divider from the output node to the FB pin. 1% tolerance or better divider  
resistors is recommended. Start by using 公式 2 to calculate VOUT  
.
12  
版权 © 2019, Texas Instruments Incorporated  
 
 
TPS562231  
www.ti.com.cn  
ZHCSJF5B FEBRUARY 2019REVISED OCTOBER 2019  
To improve efficiency at very light loads consider using larger value resistors, too high of resistance will be more  
susceptible to noise and voltage errors from the FB input current will be more noticeable.  
÷
RFBT  
RFBB  
VOUT = 0.6 ì 1 +  
«
(2)  
Choose the value of RFBB to be 10 k. With the desired output voltage set to 3.3 V and the VREF = 0.6 V, the  
RFBT value can then be calculated using 公式 2. The formula yields to a value 45.3 kof RFBT  
.
8.2.2.2 Output Filter Selection  
The LC filter used as the output filter has double pole at:  
1
fP  
=
2p L ì COUT  
(3)  
At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal  
gain of the device. The low frequency phase is 180°. At the output filter pole frequency, the gain rolls off at a –40  
dB per decade rate and the phase drops rapidly. D-CAP3 introduces a high frequency zero that reduces the gain  
roll off to –20 dB per decade and increases the phase to 90° one decade above the zero frequency. The inductor  
and capacitor for the output filter must be selected so that the double pole of 公式 3 is located below the high  
frequency zero but close enough that the phase boost provided be the high frequency zero provides adequate  
phase margin for a stable circuit. To meet this requirement use the values recommended in 2.  
2. Recommended Component Values  
L1 (µH)  
TYP  
1.2  
OUTPUT  
VOLTAGE (V)  
R1 (kΩ)  
R2 (kΩ)  
C8 + C9 (µF)  
MIN  
1
MAX  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
1
1.05  
1.2  
1.5  
1.8  
2.5  
3.3  
5
6.65  
7.5  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
20 to 68  
1
1.2  
10  
1.2  
1.5  
1.5  
2.2  
2.2  
3.3  
3.3  
1.5  
15  
1.5  
20  
2.2  
31.6  
45.3  
73.2  
97.6  
2.2  
3.3  
4.7  
6.5  
4.7  
The inductor peak-to-peak ripple current, peak current and RMS current are calculated using 公式 4, 公式 5, and  
公式 6. The inductor saturation current rating must be greater than the calculated peak current and the RMS or  
heating current rating must be greater than the calculated RMS current.  
V
- VOUT  
VOUT  
IN_MAX  
IL _PP  
=
ì
V
L ì fSW  
IN_MAX  
(4)  
(5)  
IL _PP  
IL _PK = IOUT  
+
2
1
IL _RMS  
=
IO2 UT  
+
IL2_PP  
12  
(6)  
For this design example, the calculated peak current is 2.43 A and the calculated RMS current is 2.01A. The  
inductor used is a WE 74437349033 with a peak current rating of 13.5 A and an RMS current rating of 5 A.  
The capacitor value and ESR determines the amount of output voltage ripple. The TPS562231 is intended for  
use with ceramic or other low ESR capacitors. Recommended values range from 20 µF to 68 µF. Use 公式 7 to  
determine the required RMS current rating for the output capacitor.  
VOUT ì V  
- VOUT  
(
)
IN_MAX  
IC _RMS  
=
12 ì V  
ì L ì fSW  
IN_MAX  
(7)  
13  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
 
TPS562231  
ZHCSJF5B FEBRUARY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
For this design two Murata GRM21BR61A226ME44L 22-µF/10-V output capacitors are used in parallel. The  
typical ESR is 3mΩ each. The calculated RMS current is 0.39 A and each output capacitor is rated for 5 A.  
8.2.2.3 Input Capacitor Selection  
The TPS562231 requires an input decoupling capacitor and a bulk capacitor is needed depending on the  
application. TI recommends a ceramic capacitor over 10-µF for the decoupling capacitor. An additional 0.1-µF  
capacitor from VIN pin to GND pin is also recommended to provide additional high frequency filtering. The  
capacitor voltage rating needs to be greater than the maximum input voltage, 25 V or higher voltage rating is  
recommended.  
8.2.2.4 Bootstrap Capacitor Selection  
A 0.1-µF ceramic capacitor must be connected between the BST to SW pin for proper operation. 10 V or higher  
voltage rating is recommended.  
14  
版权 © 2019, Texas Instruments Incorporated  
TPS562231  
www.ti.com.cn  
ZHCSJF5B FEBRUARY 2019REVISED OCTOBER 2019  
8.2.3 Application Curves  
VSW [5V/div]  
VSW [5V/div]  
VOUT [5mV/div ]  
VOUT [10mV/div ]  
IL [1A/div]  
IL [1A/div]  
Time [1s/div]  
Time [2s/div]  
14. CCM Mode  
15. DCM Mode  
VSW [5V/div]  
VIN [5V/div]  
VOUT [10mV/div ]  
VOUT [1V/div ]  
IL [2A/div]  
IL [1A/div]  
Time [1ms/div]  
Time [2ms/div]  
17. Start-up by VIN  
16. PSM Mode  
VOUT [100mV/div ]  
VEN [2V/div]  
VOUT [1V/div ]  
IL [2A/div]  
Iout [1A/div]  
IO  
Time [400s/div]  
Time [1ms/div]  
19. Load Transient  
18. Start-up by EN  
版权 © 2019, Texas Instruments Incorporated  
15  
TPS562231  
ZHCSJF5B FEBRUARY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
VOUT [1V/div ]  
VOUT [1V/div ]  
IL [2A/div]  
IL [2A/div]  
Time [20ms/div]  
Time [20ms/div]  
21. Short Recovery  
20. Short Protection  
9 Power Supply Recommendations  
TPS562231 is designed to operate from input supply voltage in the range of 4.5 V to 17 V. Buck converters  
require the input voltage to be higher than the output voltage for proper operation. The maximum recommended  
operating duty cycle is 70%. Using that criteria, the minimum recommended input voltage is VO / 0.7.  
16  
版权 © 2019, Texas Instruments Incorporated  
TPS562231  
www.ti.com.cn  
ZHCSJF5B FEBRUARY 2019REVISED OCTOBER 2019  
10 Layout  
10.1 Layout Guidelines  
1. VIN and GND traces should be as wide as possible to reduce trace impedance. The wide areas are also of  
advantage from the view point of heat dissipation.  
2. The input capacitor and output capacitor should be placed as close to the device as possible to minimize  
trace impedance.  
3. Provide sufficient vias for the input capacitor and output capacitor.  
4. Keep the SW trace as physically short and wide as practical to minimize radiated emissions.  
5. Do not allow switching current to flow under the device.  
6. A separate VOUT path should be connected to the upper feedback resistor.  
7. Make a Kelvin connection to the GND pin for the feedback path.  
8. Voltage feedback loop should be placed away from the high-voltage switching trace, and preferably has  
ground shield.  
9. The trace of the VFB node should be as small as possible to avoid noise coupling.  
10. The GND trace between the output capacitor and the GND pin should be as wide as possible to minimize its  
trace impedance.  
10.2 Layout Example  
VIN  
GND  
CIN  
RFBB  
RFBT  
VIN  
SW  
FB  
EN  
EN  
Control  
SW  
GND  
BST  
CBST  
L
VOUT  
GND  
COUT  
VIA (Connected to GND plane at bottom layer)  
VIA (Connected to SW)  
22. TPS562231 Layout  
版权 © 2019, Texas Instruments Incorporated  
17  
TPS562231  
ZHCSJF5B FEBRUARY 2019REVISED OCTOBER 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 商标  
D-CAP3, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
18  
版权 © 2019, Texas Instruments Incorporated  
TPS562231  
www.ti.com.cn  
ZHCSJF5B FEBRUARY 2019REVISED OCTOBER 2019  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS562231DRLR  
TPS562231DRLT  
ACTIVE  
ACTIVE  
SOT-5X3  
SOT-5X3  
DRL  
DRL  
6
6
4000 RoHS & Green  
250 RoHS & Green  
Call TI | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
2231  
2231  
Call TI | SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS562231DRLR  
TPS562231DRLT  
TPS562231DRLT  
SOT-5X3  
SOT-5X3  
SOT-5X3  
DRL  
DRL  
DRL  
6
6
6
4000  
250  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
1.8  
1.8  
2.0  
1.8  
1.8  
1.8  
0.75  
0.75  
0.75  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS562231DRLR  
TPS562231DRLT  
TPS562231DRLT  
SOT-5X3  
SOT-5X3  
SOT-5X3  
DRL  
DRL  
DRL  
6
6
6
4000  
250  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DRL0006A  
SOT - 0.6 mm max height  
S
C
A
L
E
8
.
0
0
0
PLASTIC SMALL OUTLINE  
1.7  
1.5  
PIN 1  
ID AREA  
A
1
6
4X 0.5  
1.7  
1.5  
2X 1  
NOTE 3  
4
3
1.3  
1.1  
0.3  
6X  
0.05  
TYP  
0.00  
B
0.1  
0.6 MAX  
C
SEATING PLANE  
0.05 C  
0.18  
0.08  
6X  
SYMM  
SYMM  
0.27  
0.15  
6X  
0.1  
0.05  
C A B  
0.4  
0.2  
6X  
4223266/C 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-293 Variation UAAD  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRL0006A  
SOT - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
6X (0.67)  
SYMM  
1
6
6X (0.3)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.48)  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDERMASK DETAILS  
4223266/C 12/2021  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
7. Land pattern design aligns to IPC-610, Bottom Termination Component (BTC) solder joint inspection criteria.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRL0006A  
SOT - 0.6 mm max height  
PLASTIC SMALL OUTLINE  
6X (0.67)  
SYMM  
1
6
6X (0.3)  
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.48)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4223266/C 12/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS562242

3-V to 17-V input voltage, 2-A, 1.4-MHz synchronous buck converter in SOT563
TI

TPS5625

SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER
TI

TPS5625CPWP

SWITCHING CONTROLLER, PDSO28, PLASTIC, TSSOP-28
TI

TPS5625CPWPR

SWITCHING CONTROLLER, PDSO28, PLASTIC, TSSOP-28
TI

TPS5625PWP

SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER
TI

TPS5625PWPR

SYNCHRONOUS-BUCK HYSTERETIC REGULATOR CONTROLLER
TI

TPS5625PWPRG4

2A SWITCHING CONTROLLER, 200kHz SWITCHING FREQ-MAX, PDSO28, GREEN, PLASTIC, HTSSOP-28
TI

TPS56300

DUAL-OUTPUT LOW-INPUT-VOLTAGE DSP POWER SUPPLY CONTROLLER WITH SEQUENCING
TI

TPS56300EVM-139

DUAL-OUTPUT LOW-INPUT-VOLTAGE DSP POWER SUPPLY CONTROLLER WITH SEQUENCING
TI

TPS56300PWP

DUAL-OUTPUT LOW-INPUT-VOLTAGE DSP POWER SUPPLY CONTROLLER WITH SEQUENCING
TI

TPS56300PWPG4

Dual Output, Low Input Voltage Controllers with Sequencing 28-HTSSOP
TI

TPS56300PWPR

Dual Output, Low Input Voltage Controllers with Sequencing 28-HTSSOP
TI