TPS61088QRHLTQ1 [TI]

符合 AEC-Q100 标准的 10A 完全集成式同步升压转换器 | RHL | 20 | -40 to 125;
TPS61088QRHLTQ1
型号: TPS61088QRHLTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

符合 AEC-Q100 标准的 10A 完全集成式同步升压转换器 | RHL | 20 | -40 to 125

升压转换器
文件: 总35页 (文件大小:2012K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS61088-Q1  
ZHCSIC0A SEPTEMBER 2018REVISED NOVEMBER 2018  
TPS61088-Q1 10A 全集成同步升压转换器  
1 特性  
3 说明  
1
符合面向汽车应用的 AEC-Q100 标准:  
器件温度等级 1–40°C +125°CTA  
TPS61088-Q1 是一款输入电压为 2.7V 12V 的高功  
率密度同步升压转换器,旨在为汽车应用提供高效的小  
尺寸 解决方案。TPS61088-Q1 的最低输入电压为  
2.7V,因此也可在需要高功率输出的应用(比如紧急  
呼叫)中为单节或者双节锂离子备用电池 (BUB) 升  
压, 进而 驱动扬声器、天线以及其它电路。  
输入电压范围:2.7V 12V  
输出电压范围:4.5 12.6V  
10A 开关电流  
VIN = 5V、  
VOUT = 9V IOUT = 3A 时,效率高于 90%  
该器件还可用作后升压转换器,即对主汽车系统 3.3V  
电源轨进行升压,从而为需要 5V 电压的 CAN 收发器  
和其它电路供电。  
在轻负载条件下,有 PFM 模式和强制 PWM 模式  
可供选择  
关断期间,流入 VIN 引脚的电流为 1µA  
可通过电阻编程的开关峰值电流限制  
可调节的开关频率范围:200kHz 2.2MHz  
可编程软启动  
12.6V 输出电压能力使得 TPS61088-Q1 同样能够为音  
频放大器(例如,为紧急呼叫系统提供 10V 11V 电  
压)、天线、同轴电缆供电 (PoC) 和汽车音频总线  
(A2B) 器件供电。  
13.2V 输出过压保护  
逐周期过流保护  
10A 开关电流可支持 要求 在冷启动期间运行的应用,  
例如从 3.5V 输入转化为 11V 输出,同时仍然提供高达  
2A 的负载电流。  
热关断  
20 引脚 4.50mm × 3.50mm 超薄型四方扁平无引线  
(VQFN) 封装  
器件信息(1)  
使用 TPS61088-Q1 及其 WEBENCH 电源设计器  
创建定制设计  
器件型号  
封装  
VQFN (20)  
封装尺寸(标称值)  
TPS61088-Q1  
4.50mm x 3.50mm  
2 应用  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
汽车紧急呼叫  
汽车智能天线  
汽车同轴电缆供电 应用  
典型应用电路  
C6  
L1  
VIN  
VOUT  
BOOT  
SW  
VOUT  
FB  
C4  
R1  
FSW  
VIN  
R2  
R3  
C2  
C1  
R5  
R4  
C5  
VCC  
EN  
COMP  
ILIM  
C3  
ON  
OFF  
C7  
SS  
PGND  
AGND  
MODE  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSE52  
 
 
 
 
TPS61088-Q1  
ZHCSIC0A SEPTEMBER 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 13  
Application and Implementation ........................ 15  
9.1 Application Information............................................ 15  
9.2 Typical Application .................................................. 15  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
(说明 (续))....................................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
8.1 Overview ................................................................. 10  
8.2 Functional Block Diagram ....................................... 11  
8.3 Feature Description................................................. 11  
9
10 Power Supply Recommendations ..................... 23  
11 Layout................................................................... 23  
11.1 Layout Guidelines ................................................. 23  
11.2 Layout Example .................................................... 23  
11.3 Thermal Considerations........................................ 24  
12 器件和文档支持 ..................................................... 25  
12.1 器件支持................................................................ 25  
12.2 接收文档更新通知 ................................................. 25  
12.3 社区资源................................................................ 25  
12.4 ....................................................................... 25  
12.5 静电放电警告......................................................... 25  
12.6 术语表 ................................................................... 25  
13 机械、封装和可订购信息....................................... 25  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (September 2018) to Revision A  
Page  
首次发布生产数据数据表 ........................................................................................................................................................ 1  
2
版权 © 2018, Texas Instruments Incorporated  
 
TPS61088-Q1  
www.ti.com.cn  
ZHCSIC0A SEPTEMBER 2018REVISED NOVEMBER 2018  
5 (说明 (续))  
TPS61088-Q1 使用自适应恒定关断时间峰值电流控制拓扑来调节输出电压。在中等到重负载条件下,TPS61088-  
Q1 在脉宽调制 (PWM) 模式下工作。在轻负载条件下,该器件可通过 MODE 引脚选择下列两种工作模式之一。一  
种是可提高效率的 PFM 模式;另一种是可避免因开关频率较低而引发应用问题的强制 PWM 模式。可通过外部电  
阻在 200kHz 2.2MHz 范围内调节 PWM 模式下的开关频率。TPS61088-Q1 还实现了可编程的软启动功能和可  
调节的开关峰值电流限制功能。此外,该器件还提供 13.2V 输出过压保护、逐周期过流保护和热关断保护。  
TPS61088-Q1 可提供小型 4.50mm × 3.50mm20 引脚 VQFN 封装。  
版权 © 2018, Texas Instruments Incorporated  
3
TPS61088-Q1  
ZHCSIC0A SEPTEMBER 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
6 Pin Configuration and Functions  
RHL Package  
20 Pin VQFN With Thermal Pad  
Top View  
EN  
FSW  
SW  
ILIM  
COMP  
FB  
SW  
VOUT  
VOUT  
VOUT  
MODE  
NC  
RHL  
SW  
SW  
PGND  
BOOT  
VIN  
Pin Functions  
PIN  
NUMBER  
I/O  
DESCRIPTION  
NAME  
VCC  
Output of the internal regulator. A ceramic capacitor of more than 1 µF is required between this pin and  
ground.  
1
O
Enable logic input. Logic high level enables the device. Logic low level disables the device and turns it  
into shutdown mode.  
EN  
2
3
I
I
I
FSW  
SW  
The switching frequency is programmed by a resister between this pin and the SW pin.  
The switching node pin of the converter. It is connected to the drain of the internal low-side power  
MOSFET and the source of the internal high-side power MOSFET.  
4, 5, 6, 7  
Power supply for high-side MOSFET gate driver. A ceramic capacitor of 0.1 µF must be connected  
between this pin and the SW pin  
BOOT  
VIN  
8
9
O
I
IC power supply input  
Soft-start programming pin. An external capacitor sets the ramp rate of the internal error amplifier's  
reference voltage during soft-start  
SS  
10  
O
No connection inside the device. Connect these two pins to ground plane on the PCB for good thermal  
dissipation  
NC  
11, 12  
13  
I
Operation mode selection pin for the device in light load condition. When this pin is connected to  
ground, the device works in PWM mode. When this pin is left floating, the device works in PFM mode.  
MODE  
VOUT  
FB  
14, 15, 16  
17  
O
I
Boost converter output  
Voltage feedback. Connect to the center tape of a resistor divider to program the output voltage.  
Output of the internal error amplifier, the loop compensation network should be connected between this  
pin and the AGND pin.  
COMP  
ILIM  
18  
19  
O
O
Adjustable switch peak current limit. An external resister should be connected between this pin and the  
AGND pin.  
AGND  
PGND  
20  
21  
Signal ground of the IC  
Power ground of the IC. It is connected to the source of the low-side MOSFET.  
4
Copyright © 2018, Texas Instruments Incorporated  
TPS61088-Q1  
www.ti.com.cn  
ZHCSIC0A SEPTEMBER 2018REVISED NOVEMBER 2018  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
MAX  
SW + 7  
14.5  
7
UNIT  
BOOT  
VIN, SW, FSW, VOUT  
Voltage(2)  
V
EN, VCC, SS, COMP, MODE  
ILIM, FB  
3.6  
TJ  
Operating junction temperature  
Storage temperature  
150  
°C  
°C  
Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
7.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human body model (HBM), Classification Level 2 per AEC Q100-002, all pins(1)  
Charged device model (CDM), Classification Level C5 per AEC Q100-011, all pins  
Electrostatic  
discharge  
V(ESD)  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
NOM  
MAX  
12  
UNIT  
VIN  
VOUT  
L
Input voltage range  
V
V
Output voltage range  
4.5  
12.6  
10  
Inductance, effective value  
Input capacitance, effective value  
Output capacitance, effective value  
Operating junction temperature  
0.47  
10  
2.2  
47  
µH  
µF  
µF  
°C  
CI  
CO  
TJ  
6.8  
1000  
125  
–40  
7.4 Thermal Information  
TPS61088-Q1  
THERMAL METRIC(1)  
RHL (VQFN) - 20 PINS  
UNIT  
STANDARD  
EVM  
25.8  
N/A  
N/A  
0.3  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
36.4  
31.4  
14.2  
0.5  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
14.2  
2.6  
8.8  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2018, Texas Instruments Incorporated  
5
 
TPS61088-Q1  
ZHCSIC0A SEPTEMBER 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
7.5 Electrical Characteristics  
Minimum and maximum values are at VIN = 2.7 V to 12 V and TJ = -40°C to 125°C. Typical values are at VIN = 3.6 V and TJ =  
25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER SUPPLY  
VIN  
Input voltage range  
2.7  
12  
2.7  
2.5  
V
V
VIN rising  
VIN falling  
Undervoltage lockout (UVLO)  
threshold  
VIN_UVLO  
2.4  
200  
2.1  
V
VIN_HYS  
VIN UVLO hysteresis  
UVLO threshold  
mV  
V
VCC_UVLO  
VCC falling  
Operating quiescent current from the  
VIN pin  
1
3
µA  
µA  
IC enabled, VEN = 2 V, no load, RILIM = 100  
kΩ , VFB = 1.3 V, VOUT = 12 V, TJ up to 125°C  
IQ  
Operating quiescent current from the  
VOUT pin  
110  
250  
IC disabled, VEN = 0 V, no load, no feedback  
resistor divider connected to the VOUT pin, TJ  
up to 125°C  
ISD  
Shutdown current into the VIN pin  
1
3.5  
µA  
V
VCC  
VCC regulation  
IVCC = 5 mA, VIN = 8 V  
5.8  
EN AND MODE INPUT  
VENH  
EN high threshold voltage  
VCC = 6 V  
VCC = 6 V  
VCC = 6 V  
VCC = 6 V  
VCC = 6 V  
VCC = 6 V  
1.2  
4.0  
V
V
VENL  
EN low threshold voltage  
0.4  
1.5  
REN  
EN internal pull-down resistance  
MODE high threshold voltage  
MODE low threshold voltage  
MODE internal pull-up resistance  
800  
800  
k  
V
VMODEH  
VMODEL  
RMODE  
OUTPUT  
VOUT  
V
kΩ  
Output voltage range  
4.5  
12.6  
V
V
PWM mode  
PFM mode  
VFB = 1.2 V  
1.186  
1.204  
1.212  
1.222  
VREF  
Reference voltage at the FB pin  
ILKG_FB  
ISS  
FB pin leakage current  
100  
nA  
Soft-start charging current  
5
μA  
ERROR AMPLIFIER  
ISINK  
COMP pin sink current  
COMP pin source current  
VFB = VREF +200 mV, VCOMP = 1.5 V  
VFB = VREF –200 mV, VCOMP = 1.5 V  
20  
20  
µA  
µA  
ISOURCE  
VCCLPH  
High clamp voltage at the COMP pin VFB = 1 V, RILIM = 49.9 kΩ  
2.3  
V
VFB = 1.5 V, RILIM = 49.9 kΩ, MODE pin  
floating  
VCCLPL  
Low clamp voltage at the COMP pin  
Error amplifier transconductance  
1.4  
GEA  
POWER SWITCH  
High-side MOSFET on-resistance  
Low-side MOSFET on-resistance  
CURRENT LIMIT  
Peak switch current limit in PFM  
VCOMP = 1.5 V  
190  
µA/V  
VCC = 6 V  
VCC = 6 V  
19.5  
18.0  
29.7  
27.5  
mΩ  
mΩ  
RDS(on)  
RILIM = 49.9 kΩ, VCC = 6 V, MODE pin floating  
10.0  
7.2  
11.4  
13.0  
10.5  
A
mode  
ILIM  
Peak switch current limit in FPWM  
mode  
RILIM = 49.9 kΩ, VCC = 6 V, MODE pin short to  
ground  
8.7  
0.6  
A
V
VILIM  
Reference voltage at the ILIM pin  
SWITCHING FREQUENCY  
RFREQ =301 kΩ, VIN = 5.0 V, VOUT = 9.0 V  
RFREQ =53.6 kΩ, VIN = 5.0 V, VOUT = 9.0 V  
RFREQ =301 kΩ, VIN = 5.0 V, VOUT = 9.0 V  
500  
2000  
90  
kHz  
kHz  
ns  
ƒSW  
Switching frequency  
Minimum on-time  
tON_min  
160  
6
Copyright © 2018, Texas Instruments Incorporated  
TPS61088-Q1  
www.ti.com.cn  
ZHCSIC0A SEPTEMBER 2018REVISED NOVEMBER 2018  
Electrical Characteristics (continued)  
Minimum and maximum values are at VIN = 2.7 V to 12 V and TJ = -40°C to 125°C. Typical values are at VIN = 3.6 V and TJ =  
25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
PROTECTION  
Output overvoltage protection  
threshold  
VOVP  
VOUT rising  
12.7  
13.2  
0.25  
13.6  
V
V
Output overvoltage protection  
hysteresis  
VOVP_HYS  
VOUT falling below VOVP  
THERMAL SHUTDOWN  
TSD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
150  
20  
°C  
°C  
TSD_HYS  
TJ falling below TSD  
7.6 Typical Characteristics  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
80  
60  
40  
20  
VIN = 3.0V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2 V  
VIN = 3.0V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2 V  
0
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3 45  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3 45  
Output Current (A)  
D001  
Output Current (A)  
D002  
VOUT = 5 V, PFM  
1. Efficiency vs Output Current  
VOUT = 5 V, FPWM  
2. Efficiency vs Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
80  
60  
40  
20  
0
VIN = 3.0V  
VIN = 3.0V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2 V  
VIN = 5.0 V  
VIN = 8.4 V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2 V  
VIN = 5.0 V  
VIN = 8.4 V  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3 45  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3 45  
Output Current (A)  
Output Current (A)  
D003  
D004  
VOUT = 9 V, PFM  
3. Efficiency vs Output Current  
VOUT = 9 V, FPWM  
4. Efficiency vs Output Current  
版权 © 2018, Texas Instruments Incorporated  
7
TPS61088-Q1  
ZHCSIC0A SEPTEMBER 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
100  
90  
80  
70  
60  
50  
40  
100  
80  
60  
40  
20  
0
VIN = 3.0V  
VIN = 3.0V  
30  
20  
10  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2 V  
VIN = 5.0 V  
VIN = 8.4 V  
VIN = 3.3V  
VIN = 3.6V  
VIN = 4.2 V  
VIN = 5.0 V  
VIN = 8.4 V  
0
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3 45  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3 45  
Output Current (A)  
Output Current (A)  
D005  
D006  
VOUT = 12 V, PFM  
5. Efficiency vs Output Current  
VOUT = 12 V, FPWM  
6. Efficiency vs Output Current  
14  
12  
10  
8
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
PFM Mode  
FPWM Mode  
6
4
600  
400  
2
200  
0
0
40  
50  
60  
70  
80  
90  
100  
110  
0
100 200 300 400 500 600 700 800 900 1000  
Resistance (kW)  
Resistance(kW)  
TPS6  
D008  
7. Current Limit vs Setting Resistance  
8. Switching Frequency vs Setting Resistance  
150  
145  
140  
135  
130  
125  
120  
115  
110  
105  
100  
95  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature(èC)  
Temperature (èC)  
D010  
D009  
9. Quiescent Current vs Temperature  
10. Shutdown Current vs Temperature  
8
版权 © 2018, Texas Instruments Incorporated  
TPS61088-Q1  
www.ti.com.cn  
ZHCSIC0A SEPTEMBER 2018REVISED NOVEMBER 2018  
Typical Characteristics (接下页)  
1.21  
1.209  
1.208  
1.207  
1.206  
1.205  
1.204  
1.203  
1.202  
1.201  
1.2  
-40  
-20  
0
20  
40  
60  
80  
100  
1201
Temperature (°C)  
D007  
11. Reference Voltage vs Temperature  
版权 © 2018, Texas Instruments Incorporated  
9
TPS61088-Q1  
ZHCSIC0A SEPTEMBER 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS61088-Q1 is a fully-integrated synchronous boost converter with a 21.3-mΩ power switch and a 24.4-  
mΩ rectifier switch to output high power from a single cell or two-cell Lithium batteries. The device is capable of  
providing an output voltage of 12.6 V and delivering up to 30-W power from a 5-V input.  
The TPS61088-Q1 uses adaptive constant off-time peak current control topology to regulate the output voltage.  
In moderate to heavy load condition, the TPS61088-Q1 works in the quasi-constant frequency pulse width  
modulation (PWM) mode. The switching frequency in the PWM mode is adjustable ranging from 200 kHz to 2.2  
MHz by an external resistor. In light load condition, the device has two operation modes selected by the MODE  
pin. When the MODE pin is left floating, the TPS61088-Q1 works in the pulse frequency modulation (PFM) mode.  
The PFM mode brings high efficiency at the light load. When the MODE pin is short to ground, the TPS61088-Q1  
works in the forced PWM mode (FPWM). The FPWM mode can avoid the acoustic noise and other problems  
caused by the low switching frequency. The TPS61088-Q1 implements cycle-by-cycle current limit to protect the  
device from overload conditions during boost switching. The switch peak current limit is programmable by an  
external resistor. The TPS61088-Q1 uses external loop compensation, which provides flexibility to use different  
inductors and output capacitors. The adaptive off-time peak current control scheme gives excellent transient line  
and load response with minimal output capacitance.  
10  
版权 © 2018, Texas Instruments Incorporated  
TPS61088-Q1  
www.ti.com.cn  
ZHCSIC0A SEPTEMBER 2018REVISED NOVEMBER 2018  
8.2 Functional Block Diagram  
L1  
VIN  
C3  
C1  
SW  
VIN  
BOOT  
VOUT  
VOUT  
C2  
Deadtime  
Control Logic  
C4  
LDO  
VCC  
R3  
PGND  
Comp  
Comp  
C5  
CLMIT  
FB  
FSW  
gm  
R4  
R1  
SS  
1/K  
VIN  
Comp  
SW  
COMP  
EN  
C7  
Vref  
R2  
C6  
SS Vref  
Vref  
Shutdown  
Shutdown  
Control  
AGND  
ILIM  
ON/  
OFF  
CLMIT  
OVP  
VOUT  
VIN  
UVLO  
Mode  
Selection  
R5  
Thermal  
Shutdown  
MODE  
8.3 Feature Description  
8.3.1 Enable and Start-up  
The TPS61088-Q1 has an adjustable soft-start function to prevent high inrush current during start-up. To  
minimize the inrush current during start-up, an external capacitor, connected to the SS pin and charged with a  
constant current, is used to slowly ramp up the internal positive input of the error amplifier. When the EN pin is  
pulled high, the soft-start capacitor CSS (C7 in the Functional Block Diagram) is charged with a constant current  
of 5 μA typically. During this time, the SS pin voltage is compared with the internal reference (1.204 V), the lower  
one is fed into the internal positive input of the error amplifier. The output of the error amplifier (which determines  
the inductor peak current value) ramps up slowly as the SS pin voltage goes up. The soft-start phase is  
completed after the SS pin voltage exceeds the internal reference (1.204 V). The larger the capacitance at the  
SS pin, the slower the ramp of the output voltage and the longer the soft-start time. A 47-nF capacitor is usually  
sufficient for most applications. When the EN pin is pulled low, the voltage of the soft-start capacitor is  
discharged to ground.  
Use 公式 1 to calculate the soft-start time.  
版权 © 2018, Texas Instruments Incorporated  
11  
 
TPS61088-Q1  
ZHCSIC0A SEPTEMBER 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Feature Description (接下页)  
VREF ìCSS  
tSS  
=
ISS  
where  
tSS is the soft-start time.  
VREF is the internal reference voltage of 1.204 V.  
CSS is the capacitance between the SS pin and ground.  
ISS is the soft-start charging current of 5 µA.  
(1)  
8.3.2 Undervoltage Lockout (UVLO)  
The UVLO circuit prevents the device from malfunctioning at low input voltage and the battery from excessive  
discharge. The TPS61088-Q1 has both VIN UVLO function and VCC UVLO function. It disables the device from  
switching when the falling voltage at the VIN pin trips the UVLO threshold VIN_UVLO, which is typically 2.4 V. The  
device starts operating when the rising voltage at the VIN pin is 200-mV above the VIN_UVLO. It also disables the  
device when the falling voltage at the VCC pin trips the UVLO threshold VCC_UVLO, which is typically 2.1 V.  
8.3.3 Adjustable Switching Frequency  
This device features a wide adjustable switching frequency ranging from 200 kHz to 2.2 MHz. The switching  
frequency is set by a resistor connected between the FSW pin and the SW pin of the TPS61088-Q1. A resistor  
must always be connected from the FSW pin to SW pin for proper operation. The resistor value required for a  
desired frequency can be calculated using 公式 2.  
VOUT  
1
4ì(  
- tDELAY  
ì
)
ƒSW  
V
IN  
RFREQ  
=
CFREQ  
where  
RFREQ is the resistance connected between the FSW pin and the SW pin.  
CFREQ = 23 pF  
ƒSW is the desired switching frequency.  
tDELAY = 89 ns  
VIN is the input voltage.  
VOUT is the output voltage.  
(2)  
8.3.4 Adjustable Peak Current Limit  
To avoid an accidental large peak current, an internal cycle-by-cycle current limit is adopted. The low-side switch  
is turned off immediately as soon as the switch current touches the limit. The peak switch current limit can be set  
by a resistor at the ILIM pin to ground. The relationship between the current limit and the resistance depends on  
the status of the MODE pin.  
When the MODE pin is floating, namely the TPS61088-Q1 is set to work in the PFM mode at light load, use 公式  
3 to calculate the resistor value:  
where  
RILIM is the resistance between the ILIM pin and ground.  
ILIM is the switch peak current limit.  
(3)  
When the resistor value is 49.9 kΩ, the typical current limit is 11 A.  
When the MODE pin is connected to ground, namely the TPS61088-Q1 is set to work in the forced PWM mode  
at light load, use 公式 4 to calculate the resistor value.  
12  
版权 © 2018, Texas Instruments Incorporated  
 
 
TPS61088-Q1  
www.ti.com.cn  
ZHCSIC0A SEPTEMBER 2018REVISED NOVEMBER 2018  
Feature Description (接下页)  
(4)  
When the resistor value is 49.9 kΩ, the typical current limit is 9.4 A.  
Considering the device variation and the tolerance over temperature, the minimum current limit at the worst case  
can be 1.5 A lower than the value calculated by above equations.  
8.3.5 Overvoltage Protection  
If the output voltage at the VOUT pin is detected above 13.2 V (typical value), the TPS61088-Q1 stops switching  
immediately until the voltage at the VOUT pin drops the hysteresis value lower than the output overvoltage  
protection threshold. This function prevents overvoltage on the output and secures the circuits connected to the  
output from excessive overvoltage.  
8.3.6 Thermal Shutdown  
A thermal shutdown is implemented to prevent damages due to excessive heat and power dissipation. Typically,  
the thermal shutdown happens at a junction temperature of 150°C. When the thermal shutdown is triggered, the  
device stops switching until the junction temperature falls below typically 130°C, then the device starts switching  
again.  
8.4 Device Functional Modes  
8.4.1 Operation  
The synchronous boost converter TPS61088-Q1 operates at a quasi-constant frequency pulse width modulation  
(PWM) in moderate to heavy load condition. Based on the VIN to VOUT ratio, a circuit predicts the required off-  
time of the switching cycle. At the beginning of each switching cycle, the low-side N-MOSFET switch, shown in  
Functional Block Diagram, is turned on, and the inductor current ramps up to a peak current that is determined  
by the output of the internal error amplifier. After the peak current is reached, the current comparator trips, and it  
turns off the low-side N-MOSFET switch and the inductor current goes through the body diode of the high-side  
N-MOSFET in a dead-time duration. After the dead-time duration, the high-side N-MOSFET switch is turned on.  
Because the output voltage is higher than the input voltage, the inductor current decreases. The high-side switch  
is not turned off until the fixed off-time is reached. After a short dead-time duration, the low-side switch turns on  
again and the switching cycle is repeated.  
In light load condition, the TPS61088-Q1 implements two operation modes, PFM mode and forced PWM mode,  
to meet different application requirements. The operation mode is set by the status of the MODE pin. When the  
MODE pin is connected to ground, the device works in the forced PWM mode. When the MODE pin is left  
floating, the device works in the PFM mode.  
8.4.1.1 PWM Mode  
In the forced PWM mode, the TPS61088-Q1 keeps the switching frequency unchanged in light load condition.  
When the load current decreases, the output of the internal error amplifier decreases as well to keep the inductor  
peak current down, delivering less power from input to output. When the output current further reduces, the  
current through the inductor will decrease to zero during the off-time. The high-side N-MOSFET is not turned off  
even if the current through the MOSFET is zero. Thus, the inductor current changes its direction after it runs to  
zero. The power flow is from output side to input side. The efficiency will be low in this mode. But with the fixed  
switching frequency, there is no audible noise and other problems which might be caused by low switching  
frequency in light load condition.  
版权 © 2018, Texas Instruments Incorporated  
13  
TPS61088-Q1  
ZHCSIC0A SEPTEMBER 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Device Functional Modes (接下页)  
8.4.1.2 PFM Mode  
The TPS61088-Q1 improves the efficiency at light load with the PFM mode. When the converter operates in light  
load condition, the output of the internal error amplifier decreases to make the inductor peak current down,  
delivering less power to the load. When the output current further reduces, the current through the inductor will  
decrease to zero during the off-time. Once the current through the high side N-MOSFET is zero, the high-side  
MOSFET is turned off until the beginning of the next switching cycle. When the output of the error amplifier  
continuously goes down and reaches a threshold with respect to the peak current of ILIM / 12, the output of the  
error amplifier is clamped at this value and does not decrease any more. If the load current is smaller than what  
the TPS61088-Q1 delivers, the output voltage increases above the nominal setting output voltage. The  
TPS61088-Q1 extends its off time of the switching period to deliver less energy to the output and regulate the  
output voltage to 0.7% higher than the nominal setting voltage. With the PFM operation mode, the TPS61088-Q1  
keeps the efficiency above 80% even when the load current decreases to 1 mA. In addition, the output voltage  
ripple is much smaller at light load due to low peak current. Refer to 12.  
Output Voltage  
PFM mode at light load  
1.007 × VOUT_NOM  
VOUT_NOM  
PWM mode at heavy load  
12. PFM Mode Diagram  
14  
版权 © 2018, Texas Instruments Incorporated  
 
TPS61088-Q1  
www.ti.com.cn  
ZHCSIC0A SEPTEMBER 2018REVISED NOVEMBER 2018  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS61088-Q1 is designed for outputting voltage up to 12.6 V with 11-A switch current capability to deliver  
more than 20-W power. The TPS61088-Q1 operates at a quasi-constant frequency pulse-width modulation  
(PWM) in moderate to heavy load condition. In light load condition, the converter can either operate in the PFM  
mode or in the forced PWM mode according to the mode selection. The PFM mode brings high efficiency over  
entire load range, but the PWM mode can avoid the acoustic noise as the switching frequency is fixed. The  
converter uses the adaptive constant off-time peak current control scheme, which provides excellent transient  
line and load response with minimal output capacitance. The TPS61088-Q1 can work with different inductor and  
output capacitor combination by external loop compensation. It also supports adjustable switching frequency  
ranging from 200 kHz to 2.2 MHz.  
9.2 Typical Application  
C6  
0.1 µF  
VOUT=9 V  
IOUT= 2 A  
1.2 µH  
L1  
VIN=3.3V to 4.2V  
VOUT  
FB  
BOOT  
C9  
1 µF  
C4  
47 µF  
SW  
R1  
360kQ  
R3  
R2  
FSW  
VIN  
255kQ  
C1  
56kQ  
C8  
10 µF  
R5  
R4  
C2  
C5  
VCC  
COMP  
ILIM  
C3  
0.1 µF  
49.9kQ  
3.3 µF  
EN  
PGND  
C7  
SS  
47nF  
AGND  
MODE  
13. TPS61088-Q1 3.3 V to 9-V/3-A Output Converter  
9.2.1 Design Requirements  
1. Design Parameters  
DESIGN PARAMETERS  
Input voltage  
EXAMPLE VALUES  
3.3 to 4.2 V  
Output voltage  
9 V  
100 mV peak to peak  
2 A  
Output voltage ripple  
Output current rating  
Operating frequency  
Operation mode at light load  
600 kHz  
PFM  
版权 © 2018, Texas Instruments Incorporated  
15  
 
TPS61088-Q1  
ZHCSIC0A SEPTEMBER 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
9.2.2.1 Custom Design with WEBENCH Tools  
Click here to create a custom design using the TPS61088-Q1 device with the WEBENCH® Power Designer.  
1. Start by entering your VIN, VOUT and IOUT requirements.  
2. Optimize your design for key parameters like efficiency, footprint and cost using the optimizer dial and  
compare this design with other possible solutions from Texas Instruments.  
3. WEBENCH Power Designer provides you with a customized schematic along with a list of materials with real  
time pricing and component availability.  
4. In most cases, you will also be able to:  
Run electrical simulations to see important waveforms and circuit performance,  
Run thermal simulations to understand the thermal performance of your board,  
Export your customized schematic and layout into popular CAD formats,  
Print PDF reports for the design, and share your design with colleagues.  
5. Get more information about WEBENCH tools at www.ti.com/webench.  
9.2.2.2 Setting Switching Frequency  
The switching frequency is set by a resistor connected between the FSW pin and the SW pin of the TPS61088-  
Q1. The resistor value required for a desired frequency can be calculated using 公式 5.  
VOUT  
1
4ì(  
- tDELAY  
ì
)
ƒSW  
V
IN  
RFREQ  
=
CFREQ  
where  
RFREQ is the resistance connected between the FSW pin and the SW pin.  
CFREQ = 23 pF  
ƒSW is the desired switching frequency.  
tDELAY = 89 ns  
VIN is the input voltage.  
VOUT is the output voltage.  
(5)  
9.2.2.3 Setting Peak Current Limit  
The peak input current is set by selecting the correct external resistor value correlating to the required current  
limit. Because the TPS61088-Q1 is configured to work in the PFM mode in light load condition, use 公式 6 to  
calculate the correct resistor value:  
where  
RILIM is the resistance connected between the ILIM pin and ground.  
ILIM is the switching peak current limit.  
(6)  
For a typical current limit of 11.0 A, the resistor value is 49.9 kΩ. Considering the device variation and the  
tolerance over temperature, the minimum current limit at the worst case can be 1.3 A lower than the value  
calculated by 公式 6. The minimum current limit must be higher than the required peak switch current at the  
lowest input voltage and the highest output power to make sure the TPS61088-Q1 does not hit the current limit  
and still can regulate the output voltage in these conditions.  
9.2.2.4 Setting Output Voltage  
The output voltage is set by an external resistor divider (R1, R2 in the Functional Block Diagram). Typically, a  
minimum current of 20 μA flowing through the feedback divider gives good accuracy and noise covering. A  
standard 56-kΩ resistor is typically selected for low-side resister R2.  
16  
版权 © 2018, Texas Instruments Incorporated  
 
 
TPS61088-Q1  
www.ti.com.cn  
ZHCSIC0A SEPTEMBER 2018REVISED NOVEMBER 2018  
The value of R1 is then calculated as:  
(VOUT - VREF )ìR2  
R1 =  
VREF  
(7)  
9.2.2.5 Inductor Selection  
Because the selection of the inductor affects the power supply’s steady state operation, transient behavior, loop  
stability, and boost converter efficiency, the inductor is the most important component in switching power  
regulator design. Three most important specifications to the performance of the inductor are the inductor value,  
DC resistance, and saturation current.  
The TPS61088-Q1 is designed to work with inductor values between 0.47 and 10 µH. A 0.47-µH inductor is  
typically available in a smaller or lower-profile package, while a 10-µH inductor produces lower inductor current  
ripple. If the boost output current is limited by the peak current protection of the IC, using a 10-µH inductor can  
maximize the controller’s output current capability.  
Inductor values can have ±20% or even ±30% tolerance with no current bias. When the inductor current  
approaches saturation level, its inductance can decrease 20% to 35% from the value at 0-A current depending  
on how the inductor vendor defines saturation. When selecting an inductor, make sure its rated current,  
especially the saturation current, is larger than its peak current during the operation.  
Follow 公式 8 to 公式 10 to calculate the peak current of the inductor. To calculate the current in the worst case,  
use the minimum input voltage, maximum output voltage, and maximum load current of the application. To leave  
enough design margin, TI recommends using the minimum switching frequency, the inductor value with –30%  
tolerance, and a low-power conversion efficiency for the calculation.  
In a boost regulator, calculate the inductor DC current as in 公式 8.  
VOUT ìIOUT  
IDC  
=
V ì h  
IN  
where  
VOUT is the output voltage of the boost regulator.  
IOUT is the output current of the boost regulator.  
VIN is the input voltage of the boost regulator.  
η is the power conversion efficiency.  
(8)  
Calculate the inductor current peak-to-peak ripple as in 公式 9.  
1
IPP  
=
1
1
L ì(  
+
)ì ƒSW  
VOUT - V  
V
IN  
IN  
where  
IPP is the inductor peak-to-peak ripple.  
L is the inductor value.  
ƒSW is the switching frequency.  
VOUT is the output voltage.  
VIN is the input voltage.  
(9)  
Therefore, the peak current, ILpeak, detected by the inductor is calculated with 公式 10.  
IPP  
ILpeak = IDC  
+
2
(10)  
Set the current limit of the TPS61088-Q1 higher than the peak current ILpeak. Then select the inductor with  
saturation current higher than the setting current limit.  
Boost converter efficiency is dependent on the resistance of its current path, the switching loss associated with  
the switching MOSFETs, and the inductor core loss. The TPS61088-Q1 has optimized the internal switch  
resistance. However, the overall efficiency is affected significantly by the DC resistance (DCR) of the inductor,  
equivalent series resistance (ESR) at the switching frequency, and the core loss. Core loss is related to the core  
material and different inductors have different core loss. For a certain inductor, larger current ripple generates  
版权 © 2018, Texas Instruments Incorporated  
17  
 
 
 
TPS61088-Q1  
ZHCSIC0A SEPTEMBER 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
higher DCR and ESR conduction losses and higher core loss. Usually, a data sheet of an inductor does not  
provide the ESR and core loss information. If needed, consult the inductor vendor for detailed information.  
Generally, TI recommends an inductor with lower DCR and ESR. However, there is a tradeoff among the  
inductor’s inductance, DCR and ESR resistance, and its footprint. Furthermore, shielded inductors typically have  
higher DCR than unshielded inductors. 2 lists recommended inductors for the TPS61088-Q1. Verify whether  
the recommended inductor can support the user's target application with the previous calculations and bench  
evaluation. In this application, the Sumida's inductor CDMC8D28NP-1R2MC is selected for its small size and low  
DCR.  
2. Recommended Inductors  
PART NUMBER  
L (µH)  
DCR MAXIMUM  
SATURATION CURRENT /  
HEAT RATING CURRENT (A)  
SIZE MAXIMUM  
(L × W × H mm)  
Vendor(1)  
(mΩ)  
CDMC8D28NP-1R2MC  
744311150  
1.2  
1.5  
2.2  
2.2  
2.2  
7
7.2  
7
12.2 / 12.9  
14 / 11  
9.5 × 8.7 × 3  
7.3 × 7.2 × 4  
11.2 × 10.3 × 4  
11.2 × 10.3 × 3  
7.4 × 6.8 × 5  
Sumida  
Wurth  
PIMB104T-2R2MS  
PIMB103T-2R2MS  
PIMB065T-2R2MS  
18 / 12  
Cyntec  
Cyntec  
Cyntec  
9
16 / 13  
12.5  
12 / 10.5  
(1) See Third-party Products Disclaimer  
9.2.2.6 Input Capacitor Selection  
For good input voltage filtering, TI recommends low-ESR ceramic capacitors. The VIN pin is the power supply for  
the TPS61088-Q1. A 0.1-μF ceramic bypass capacitor is recommended as close as possible to the VIN pin of the  
TPS61088-Q1. The VCC pin is the output of the internal LDO. A ceramic capacitor of more than 1 μF is required  
at the VCC pin to get a stable operation of the LDO.  
For the power stage, because of the inductor current ripple, the input voltage changes if there is parasite  
inductance and resistance between the power supply and the inductor. It is recommended to have enough input  
capacitance to make the input voltage ripple less than 100mV. Generally, 10-μF input capacitance is sufficient for  
most applications.  
DC bias effect: High-capacitance ceramic capacitors have a DC bias effect, which has a  
strong influence on the final effective capacitance. Therefore, the right capacitor value  
must be chosen carefully. The differences between the rated capacitor value and the  
effective capacitance result from package size and voltage rating in combination with  
material. A 10-V rated 0805 capacitor with 10 μF can have an effective capacitance of less  
5 μF at an output voltage of 5 V.  
9.2.2.7 Output Capacitor Selection  
For small output voltage ripple, TI recommends a low-ESR output capacitor like a ceramic capacitor. Typically,  
three 22-μF ceramic output capacitors work for most applications. Higher capacitor values can be used to  
improve the load transient response. Take care when evaluating a capacitor’s derating under DC bias. The bias  
can significantly reduce capacitance. Ceramic capacitors can lose most of their capacitance at rated voltage.  
Therefore, leave margin on the voltage rating to ensure adequate effective capacitance. From the required output  
voltage ripple, use the following equations to calculate the minimum required effective caapctance COUT  
:
18  
版权 © 2018, Texas Instruments Incorporated  
 
TPS61088-Q1  
www.ti.com.cn  
ZHCSIC0A SEPTEMBER 2018REVISED NOVEMBER 2018  
(VOUT - VIN_MIN)ìIOUT  
VOUT ì ƒSW ìCOUT  
= ILpeak ìRC _ESR  
V
=
ripple _ dis  
(11)  
V
ripple _ESR  
where  
Vripple_dis is output voltage ripple caused by charging and discharging of the output capacitor.  
Vripple_ESR is output voltage ripple caused by ESR of the output capacitor.  
VIN_MIN is the minimum input voltage of boost converter.  
VOUT is the output voltage.  
IOUT is the output current.  
ILpeak is the peak current of the inductor.  
ƒSW is the converter switching frequency.  
RC_ESR is the ESR of the output capacitors.  
(12)  
9.2.2.8 Loop Stability  
The TPS61088-Q1 requires external compensation, which allows the loop response to be optimized for each  
application. The COMP pin is the output of the internal error amplifier. An external compensation network  
comprised of resister R5, ceramic capacitors C5 and C8 is connected to the COMP pin.  
The power stage small signal loop response of constant off time (COT) with peak current control can be modeled  
by 公式 13.  
«
’≈  
÷∆  
÷
S
S
1 +  
1 -  
RO ì 1 - D  
2 ì p ì ƒESRZ «  
2 ì p ì ƒRHPZ ◊  
(
)
ì
GPS (S) =  
S
2 ì Rsense  
1 +  
2 ì p ì ƒP  
where  
D is the switching duty cycle.  
RO is the output load resistance.  
Rsense is the equivalent internal current sense resistor, which is 0.08 Ω.  
(13)  
(14)  
2
ƒP  
=
2p ì RO ì CO  
where  
CO is output capacitor.  
1
ƒESRZ  
=
2p ì RESR ì CO  
where  
RESR is the equivalent series resistance of the output capacitor.  
(15)  
(16)  
2
RO ì 1 - D  
(
)
ƒRHPZ  
=
2p ì L  
版权 © 2018, Texas Instruments Incorporated  
19  
 
TPS61088-Q1  
ZHCSIC0A SEPTEMBER 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
The COMP pin is the output of the internal transconductance amplifier. 公式 17 shows the small signal transfer  
function of compensation network.  
«
÷
S
1 +  
2 ì p ì ƒCOMZ ◊  
GEA ì REA ì VREF  
Gc(S) =  
ì
VOUT  
«
’≈  
÷
S
S
1 +  
1 +  
÷∆  
2 ì p ì ƒCOMP1 «  
2 ì p ì ƒCOMP2 ◊  
where  
GEA is the amplifier’s transconductance  
REA is the amplifier’s output resistance  
VREF is the refernce voltage at the FB pin  
VOUT is the output voltage  
ƒCOMP1, ƒCOMP2 are the poles' frequency of the compensation network.  
ƒCOMZ is the zero's frequency of the compensation network.  
(17)  
The next step is to choose the loop crossover frequency, ƒC. The higher in frequency that the loop gain stays  
above zero before crossing over, the faster the loop response is. It is generally accepted that the loop gain cross  
over no higher than the lower of either 1/10 of the switching frequency, ƒSW, or 1/5 of the RHPZ frequency,  
ƒRHPZ  
.
Then set the value of R5, C5, and C8 (in 13) by following these equations.  
2pì VOUT ìRsense ì ƒC ìCO  
R5 =  
(1 œ D)ì VREF ìGEA  
where  
ƒC is the selected crossover frequency.  
(18)  
(19)  
(20)  
The value of C5 can be set by 公式 19.  
RO ìCO  
C5 =  
2R5  
The value of C8 can be set by 公式 20.  
RESR ì CO  
C8 =  
R5  
If the calculated value of C8 is less than 10 pF, it can be left open.  
Designing the loop for greater than 45° of phase margin and greater than 10-dB gain margin eliminates output  
votlage ringing during the line and load transient.  
20  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
TPS61088-Q1  
www.ti.com.cn  
ZHCSIC0A SEPTEMBER 2018REVISED NOVEMBER 2018  
9.2.3 Application Curves  
Vout(AC)  
20 mV/div  
Vout(AC)  
100 mV/Div  
Inductor  
Current  
2 A/Div  
SW  
5 V/div  
Inductor  
Current  
1 A/div  
SW  
5 V/Div  
2 µS/Div  
1 uS/div  
14. Switching Waveforms in CCM  
15. Switching Waveforms in DCM  
Vout(AC)  
20 mV/div  
EN  
1 V/Div  
SW  
5 V/div  
Vout  
2 V/Div  
Inductor  
Current  
1 A/div  
Inductor  
Current  
2 A/Div  
20 µS/div  
2 mS/Div  
17. Start-up Waveforms  
16. Switching Waveforms in PFM Mode  
EN  
1 V/Div  
Output  
Current  
1 A/div  
Vout  
2 V/Div  
Inductor  
Current  
2 A/Div  
Vout(AC)  
500 mV/div  
500 µS/div  
200 µS/Div  
VOUT = 9 V  
IOUT = 1 to 2 A  
18. Shutdown Waveforms  
19. Load Transient  
版权 © 2018, Texas Instruments Incorporated  
21  
TPS61088-Q1  
ZHCSIC0A SEPTEMBER 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Input  
Voltage  
500 mV/div  
Vout(AC)  
100 mV/div  
500 µS/div  
VOUT = 9 V  
VIN = 3.3 to 3.6 V  
20. Line Transient  
22  
版权 © 2018, Texas Instruments Incorporated  
TPS61088-Q1  
www.ti.com.cn  
ZHCSIC0A SEPTEMBER 2018REVISED NOVEMBER 2018  
10 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 2.7 V to 12 V. This input supply  
must be well regulated. If the input supply is located more than a few inches from the converter, additional bulk  
capacitance may be required in addition to the ceramic bypass capacitors. A typical choice is an electrolytic or  
tantalum capacitor with a value of 47 μF.  
11 Layout  
11.1 Layout Guidelines  
As for all switching power supplies, especially those running at high switching frequency and high currents,  
layout is an important design step. If layout is not carefully done, the regulator could suffer from instability and  
noise problems. To maximize efficiency, switch rise and fall times are very fast. To prevent radiation of high-  
frequency noise (for example, EMI), proper layout of the high-frequency switching path is essential. Minimize the  
length and area of all traces connected to the SW pin, and always use a ground plane under the switching  
regulator to minimize interplane coupling.  
The input capacitor must be close to the VIN pin and GND pin in order to reduce the Iinput supply ripple.  
The layout should also be done with well consideration of the thermal as this is a high power density device. A  
thermal pad that improves the thermal capabilities of the package should be soldered to the large ground plate,  
using thermal vias underneath the thermal pad.  
11.2 Layout Example  
The bottom layer is a large ground plane connected to the PGND plane and AGND plane on top layer by vias.  
AGND  
L1  
EN  
FSW  
SW  
ILIM  
VIN  
COMP  
FB  
SW  
VOUT  
VOUT  
VOUT  
MODE  
NC  
SW  
SW  
VOUT  
BOOT  
VIN  
PGND  
CIN  
COUT  
PGND  
21. Recommended TPS61088-Q1 Layout  
版权 © 2018, Texas Instruments Incorporated  
23  
TPS61088-Q1  
ZHCSIC0A SEPTEMBER 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
11.3 Thermal Considerations  
The maximum IC junction temperature should be restricted to 125°C under normal operating conditions.  
Calculate the maximum allowable dissipation, PD(max), and keep the actual power dissipation less than or equal to  
PD(max). The maximum-power-dissipation limit is determined using 公式 21.  
125 - TA  
RqJA  
PD(max)  
=
where  
TA is the maximum ambient temperature for the application.  
θJA is the junction-to-ambient thermal resistance given in the Thermal Information table.  
R
(21)  
The TPS61088-Q1 comes in a thermally-enhanced VQFN package. This package includes a thermal pad that  
improves the thermal capabilities of the package. The real junction-to-ambient thermal resistance of the package  
greatly depends on the PCB type, layout, and thermal pad connection. Using thick PCB copper and soldering the  
thermal pad to a large ground plate enhance the thermal performance. Using more vias connects the ground  
plate on the top layer and bottom layer around the IC without solder mask also improves the thermal capability.  
24  
版权 © 2018, Texas Instruments Incorporated  
 
TPS61088-Q1  
www.ti.com.cn  
ZHCSIC0A SEPTEMBER 2018REVISED NOVEMBER 2018  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.1.2 开发支持  
12.1.2.1 使用 WEBENCH 工具创建定制设计  
请单击此处,使用 TPS61088-Q1 器件及其 WEBENCH®电源设计器创建定制设计。  
1. 首先,输入您的输入电压、输出电压和输出电流要求。  
2. 使用优化器拨盘优化效率、封装和成本等关键设计参数并将您的设计与德州仪器 (TI) 的其它可行解决方案进行  
比较。  
3. WEBENCH 电源设计器提供一份定制原理图以及罗列实时价格和组件供货情况的物料清单。  
4. 在大多数情况下,您还可以:  
运行电气仿真,观察重要波形以及电路性能;  
运行热性能仿真,了解电路板热性能;  
将定制原理图和布局方案导出至常用 CAD 格式,  
打印设计方案的 PDF 报告并与同事共享。  
5. 请访问 www.ti.com.cn/webench,获取有关 WEBENCH 工具的详细信息。  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018, Texas Instruments Incorporated  
25  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2018 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS61088QRHLRQ1  
TPS61088QRHLTQ1  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RHL  
RHL  
20  
20  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
S61088Q  
S61088Q  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS61088QRHLRQ1  
TPS61088QRHLTQ1  
VQFN  
VQFN  
RHL  
RHL  
20  
20  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.8  
3.8  
4.8  
4.8  
1.3  
1.3  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS61088QRHLRQ1  
TPS61088QRHLTQ1  
VQFN  
VQFN  
RHL  
RHL  
20  
20  
3000  
250  
367.0  
213.0  
367.0  
191.0  
38.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RHL0020A  
PLASTIC QUAD FLATPACK- NO LEAD  
A
3.6  
3.4  
B
PIN 1 INDEX AREA  
4.6  
4.4  
C
1 MAX  
SEATING PLANE  
0.08 C  
2.05±0.1  
2X 1.5  
SYMM  
0.5  
0.3  
20X  
(0.2) TYP  
10  
11  
14X 0.5  
9
12  
SYMM  
21  
2X  
3.05±0.1  
3.5  
19  
2
0.29  
20X  
0.19  
0.1  
0.05  
20  
1
PIN 1 ID  
(OPTIONAL)  
C A B  
C
4X (0.2)  
2X (0.55)  
4219071 / A 05/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RHL0020A  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.3)  
(2.05)  
2X (1.5)  
SYMM  
1
20  
2X (0.4)  
20X (0.6)  
19  
2
20X (0.24)  
14X (0.5)  
SYMM  
21  
(3.05) (4.3)  
6X (0.525)  
2X (0.75)  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
9
12  
(R0.05) TYP  
(Ø0.2) VIA  
TYP)  
10  
11  
4X (0.2)  
4X  
(0.775)  
2X (0.55)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 18X  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219071 / A 05/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271)  
.
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
6. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to theri  
locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RHL0020A  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.3)  
2X (1.5)  
(0.55)  
TYP  
(0.56)  
TYP  
1
20  
SOLDER MASK EDGE  
TYP  
20X (0.6)  
2
19  
20X (0.24)  
14X (0.5)  
SYMM  
(1.05)  
TYP  
(4.3)  
21  
6X  
(0.85)  
(R0.05) TYP  
METAL  
TYP  
12  
9
2X  
(0.775)  
2X (0.25)  
6X (0.92)  
11  
10  
4X (0.2)  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1mm THICK STENCIL  
EXPOSED PAD  
75% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4219071 / A 05/2017  
NOTES: (continued)  
7.  
Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS61088RHLR

10A 全集成同步升压转换器 | RHL | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61088RHLT

10A 全集成同步升压转换器 | RHL | 20 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61089

采用 2.0mm x 2.5mm VQFN 封装的 12.6V、7A 全集成同步升压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61089RNRR

采用 2.0mm x 2.5mm VQFN 封装的 12.6V、7A 全集成同步升压转换器 | RNR | 11 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61089RNRT

采用 2.0mm x 2.5mm VQFN 封装的 12.6V、7A 全集成同步升压转换器 | RNR | 11 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61090

SYNCHRONOUS BOOST CONVERTER WITH 2A SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61090EVM-029

EVALUATION MODULE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61090RSA

SYNCHRONOUS BOOST CONVERTER WITH 2A SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61090RSAR

SYNCHRONOUS BOOST CONVERTER WITH 2A SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61090RSARG4

SYNCHRONOUS BOOST CONVERTER WITH 2A SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61091

SYNCHRONOUS BOOST CONVERTER WITH 2A SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61091RSA

SYNCHRONOUS BOOST CONVERTER WITH 2A SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI