TPS65631DPDR [TI]

双路输出有源矩阵有机发光二极管 (AMOLED) 显示屏电源 | DPD | 12 | -40 to 85;
TPS65631DPDR
型号: TPS65631DPDR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双路输出有源矩阵有机发光二极管 (AMOLED) 显示屏电源 | DPD | 12 | -40 to 85

驱动 光电二极管 接口集成电路
文件: 总24页 (文件大小:867K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS65631  
ZHCSCJ0E SEPTEMBER 2012REVISED MAY 2014  
TPS65631 双输出有源矩阵有机发光二极管 (AMOLED) 显示屏电源  
1 特性  
3 说明  
1
2.9V 4.5V 输入电压范围  
4.6V 固定正输出电压  
TPS65631 被设计用于驱动需要正负电源轨的  
AMOLED(有源矩阵有机发光二极管)显示屏。 此器  
件集成了一个针对 VPOS 的升压转换器和一个针对  
25ºC 85ºC 温度范围内,VPOS 精度 0.5%  
单独的 VPOS 输出感测引脚  
VNEG 的反相降压升压转换器,非常适合于电池供电类  
产品。 数字控制引脚 (CTRL) 允许用数字步长设定负  
输出电压。 TPS65631 使用能够实现出色线路瞬态性  
能的创新技术。  
-1.4V -4.4V 的数字可编程负输出电压(缺省值 -  
4V)  
支持的输出电流高达 250mA  
出色的线路瞬态稳压  
短路保护功能  
器件信息(1)  
产品型号  
封装  
封装尺寸(标称值)  
热关断  
TPS65631  
QFN (12)  
3.00mm x 3.00mm  
采用 3.00mm x 3.00mm 12 引脚四方扁平无引线  
(QFN) 封装  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
空白  
空白  
空白  
空白  
空白  
2 应用范围  
AMOLED 显示屏  
4 简化电路原理图  
L1  
4.7 µH  
效率与输出电流间的关系  
100  
90  
80  
70  
60  
50  
40  
30  
20  
VI  
PVIN  
AVIN  
SWP  
OUTP  
FBS  
2.9 V to 4.5 V  
VPOS  
4.6 V, 300 mA  
C1  
2×10 µF  
C2  
10 µF  
TPS65631  
EN / Program VNEG  
CTRL  
C4  
100 nF  
VNEG  
±4.0 V, 300 mA  
OUTN  
SWN  
CT  
C3  
2×10 µF  
PGND  
AGND  
GND  
L2  
4.7 µH  
VPOS = 4.6 V  
10  
VNEG = –4.0 V  
50  
VI = 3.7 V  
250 300  
0
0
100  
150  
200  
Output Current (mA)  
G000  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSBK1  
 
 
 
 
TPS65631  
ZHCSCJ0E SEPTEMBER 2012REVISED MAY 2014  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ......................................... 8  
8.3 Feature Description................................................... 8  
8.4 Device Functional Modes........................................ 12  
Applications and Implementation ...................... 12  
9.1 Application Information............................................ 12  
9.2 Typical Application .................................................. 12  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ..................................... 4  
7.2 Handling Ratings....................................................... 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Timing Requirements................................................ 6  
7.7 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 8  
8.1 Overview ................................................................... 8  
9
10 Power Supply Recommendations ..................... 16  
11 Layout................................................................... 17  
11.1 Layout Guidelines ................................................. 17  
11.2 Layout Example .................................................... 17  
12 器件和文档支持 ..................................................... 18  
12.1 器件支持................................................................ 18  
12.2 Trademarks........................................................... 18  
12.3 Electrostatic Discharge Caution............................ 18  
12.4 Glossary................................................................ 18  
13 机械封装和可订购信息 .......................................... 18  
8
5 修订历史记录  
日期  
修订版本  
注释  
2014 5 月  
E
没有针对修订版本 E 的之前修订历史记录 - 首次公开发布  
2
Copyright © 2012–2014, Texas Instruments Incorporated  
 
TPS65631  
www.ti.com.cn  
ZHCSCJ0E SEPTEMBER 2012REVISED MAY 2014  
6 Pin Configuration and Functions  
DPD PACKAGE  
(TOP VIEW)  
SWP  
PGND  
OUTP  
FBS  
1
12 PVIN  
2
3
4
5
6
11 AVIN  
10 SWN  
9
8
7
OUTN  
CT  
AGND  
GND  
CTRL  
DPD PACKAGE  
(BOTTOM VIEW)  
PVIN 12  
AVIN 11  
SWN 10  
1
2
3
4
5
6
SWP  
PGND  
OUTP  
FBS  
OUTN  
CT  
9
8
7
AGND  
GND  
CTRL  
Pin Functions  
NAME  
AGND  
AVIN  
CT  
NO.  
5
I/O  
DESCRIPTION  
Analog ground.  
11  
8
Input supply voltage for internal analog circuits (both converters).  
I/O  
Timing capacitor pin. Connect a capacitor between this pin and ground to  
control the time it takes for the output of the inverting buck-boost converter to  
ramp from one value of VNEG to another.  
CTRL  
7
I
Control pin. Combined device enable and inverting buck-boost converter output  
voltage programming pin.  
FBS  
4
6
I
Feedback sense pin of the boost converter output voltage.  
GND  
Ground. (Note: it is possible to leave this pin floating without affecting device  
performance.)  
PGND  
PVIN  
2
12  
10  
1
O
Power ground of the boost converter.  
Input supply voltage pin for the inverting buck-boost converter.  
Switch pin of the inverting buck-boost converter.  
Switch pin of the boost converter.  
SWN  
SWP  
O
OUTN  
OUTP  
9
O
Rectifier pin of the inverting buck-boost converter.  
Rectifier pin of the boost converter.  
3
O
Exposed Thermal  
Pad  
13  
Connect this pad to AGND and PGND.  
Copyright © 2012–2014, Texas Instruments Incorporated  
3
TPS65631  
ZHCSCJ0E SEPTEMBER 2012REVISED MAY 2014  
www.ti.com.cn  
7 Specifications  
(1)  
7.1 Absolute Maximum Ratings  
(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
–6  
MAX  
6
UNIT  
V
SWP, OUTP, FBS, PVIN, AVIN  
OUTN  
–6  
V
(2)  
Input voltage  
SWN  
CTRL  
CT  
6
V
–0.3  
–0.3  
–40  
5.5  
3.6  
150  
V
V
Operating junction temperature range, TJ  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) With respect to GND pin.  
7.2 Handling Ratings  
MIN  
MAX  
UNIT  
TSTG  
Storage temperature range  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001,  
–65  
150  
°C  
–2  
2
kV  
(1)  
all pins  
VESD  
Electrostatic discharge Charged device model (CDM), per JEDEC specification  
–500  
–200  
500  
200  
V
V
(2)  
JESD22-C101, all pins  
Machine model (MM) ESD stress voltage  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process..  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
NOM  
3.7  
MAX UNIT  
VI  
Input supply voltage range  
Output voltage range  
2.9  
4.5  
V
VPOS  
VNEG  
IPOS  
4.6  
VO  
V
–4.4  
–4  
–1.4  
300  
300  
85  
IO  
Output current range  
mA  
INEG  
TA  
TJ  
Operating ambient temperature  
Operating junction temperature  
–40  
–40  
25  
85  
°C  
°C  
125  
7.4 Thermal Information  
PD  
THERMAL METRIC(1)  
UNIT  
12 PINS  
51.5  
47.1  
25.0  
0.5  
RθJA  
Junction-to-ambient thermal resistance  
RθJCtop  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
25.2  
4.4  
RθJCbot  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2012–2014, Texas Instruments Incorporated  
TPS65631  
www.ti.com.cn  
ZHCSCJ0E SEPTEMBER 2012REVISED MAY 2014  
7.5 Electrical Characteristics  
VI = 3.7 V, V(CTRL) = 3.7 V, VPOS = 4.6 V, VNEG = –4.0 V, TJ = –40°C to 125°C, typical values are at TA = 25°C (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
II  
Shutdown current into AVIN and  
PVIN  
CTRL pin connected to ground.  
0.1  
µA  
VI rising.  
VI falling.  
2.4  
2.1  
VUVLO  
Undervoltage lockout threshold  
V
V
BOOST CONVERTER  
Output voltage  
4.6  
VO  
25°C TA 85°C, no load  
–40°C TA < 85°C, no load  
I(SWP) = 200 mA  
–0.5%  
–0.8%  
0.5%  
0.8%  
Output voltage tolerance  
Switch (low-side) on-resistance  
Rectifier (high-side) on-resistance  
Switching frequency  
200  
350  
1.7  
1
rDS(ON)  
mΩ  
I(SWP) = 200 mA  
IO = 200 mA  
MHz  
A
Switch current limit  
Inductor valley current  
0.8  
Short-circuit threshold voltage in  
operation  
VO falling  
4.1  
3
V
Short-circuit detection time during  
operation  
ms  
mV  
Output sense threshold voltage  
using OUTP  
V(OUTP) - V(FBS) increasing  
300  
Output sense threshold voltage  
using FBS  
V(OUTP) - V(FBS) decreasing  
Between FBS pin and ground  
200  
4
mV  
MΩ  
Ω
Input resistance of FBS  
CTRL pin connected to ground,  
IO = 1 mA  
Discharge resistance  
30  
Line regulation  
Load regulation  
IO = 200 mA  
0.002  
0.01  
%/V  
%/A  
INVERTING BUCK-BOOST CONVERTER  
Output voltage default  
–4.0  
VO  
Output voltage range  
–4.4  
–1.4  
0.05  
V
Output voltage tolerance  
Switch (high-side) on-resistance  
Rectifier (low-side) on-resistance  
Switching frequency  
–0.05  
I(SWN) = 200 mA  
I(SWN) = 200 mA  
IO = 10 mA  
200  
300  
1.7  
rDS(ON)  
mΩ  
MHz  
A
Switch current limit  
VI = 2.9 V  
1.5  
2.2  
Short-circuit threshold voltage during  
operation  
Voltage drop from nominal VO  
500  
200  
10  
mV  
Short-circuit threshold voltage during  
start-up  
180  
230  
Short-circuit detection time during  
start-up  
tSCP  
ms  
ms  
Ω
Short-circuit detection time during  
operation  
3
CTRL pin connected to ground,  
IO = 1 mA  
Discharge resistance  
150  
Line regulation  
Load regulation  
IO = 200 mA  
0.006  
0.31  
%/V  
%/A  
CTRL  
High-level threshold voltage  
Low-level threshold voltage  
1.2  
V
V
0.4  
Copyright © 2012–2014, Texas Instruments Incorporated  
5
TPS65631  
ZHCSCJ0E SEPTEMBER 2012REVISED MAY 2014  
www.ti.com.cn  
Electrical Characteristics (continued)  
VI = 3.7 V, V(CTRL) = 3.7 V, VPOS = 4.6 V, VNEG = –4.0 V, TJ = –40°C to 125°C, typical values are at TA = 25°C (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pull-down resistance  
150  
400  
860  
kΩ  
OTHER  
R(CT)  
tINIT  
CT pin output resistance  
Initialization time  
150  
300  
300  
500  
400  
80  
kΩ  
µs  
µs  
µs  
°C  
tOFF  
Shut-down time  
30  
30  
tSTORE  
TSD  
Data storage time  
80  
Thermal shutdown temperature  
145  
7.6 Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
CTRL Interface  
tHIGH  
tLOW  
High-level pulse duration  
Low-level pulse duration  
2
2
10  
10  
25  
25  
µs  
µs  
6
Copyright © 2012–2014, Texas Instruments Incorporated  
TPS65631  
www.ti.com.cn  
ZHCSCJ0E SEPTEMBER 2012REVISED MAY 2014  
7.7 Typical Characteristics  
At TA = 25°C, unless otherwise noted.  
4.0  
3.5  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
−0.5  
−1.0  
−50  
−25  
0
25  
50  
75  
100  
125  
−50  
−25  
0
25  
50  
75  
100  
125  
Junction Temperature (°C)  
Junction Temperature (°C)  
G001  
G002  
Figure 1. Shutdown Current into AVIN and PVIN  
Figure 2. Boost Converter Switch rDS(ON)  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
−50  
−25  
0
25  
50  
75  
100  
125  
−50  
−25  
0
25  
50  
75  
100  
125  
Junction Temperature (°C)  
Junction Temperature (°C)  
G003  
G004  
Figure 3. Boost Converter Rectifier rDS(ON)  
Figure 4. Inverting Buck-Boost Converter Switch rDS(ON)  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
−50  
−25  
0
25  
50  
75  
100  
125  
Junction Temperature (°C)  
G005  
Figure 5. Inverting Buck-Boost Converter Rectifier rDS(ON)  
Copyright © 2012–2014, Texas Instruments Incorporated  
7
TPS65631  
ZHCSCJ0E SEPTEMBER 2012REVISED MAY 2014  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS65631 consists of a boost converter and an inverting buck boost converter. The VPOS output is fixed at  
4.6 V and VNEG output is programmable via a digital interface in the range of -1.4 V ~ -4.4 V, the default is -4 V.  
The transition time of VNEG output is adjustable by the CT pin capacitor.  
8.2 Functional Block Diagram  
SWP  
OUTP  
1
3
4
VPOS  
DCHG  
Short-Circuit  
Protection  
Gate Driver  
FBS  
Output Sense  
Control  
AVIN  
PGND  
±
VI  
11  
+
PWM Control  
Oscillator  
VREF  
SWP  
CTRL  
Short-Circuit  
Protection  
±
CT  
+
CT  
Control  
8
+
±
50 mV  
Constant Off-Time  
Controller  
Gate  
Drive  
Digital  
DCHG  
Interface  
PVIN  
OUTN  
12  
9
VNEG  
6
5
10  
7
2
GND  
AGND  
SWN  
CTRL  
PGND  
8.3 Feature Description  
8.3.1 Boost Converter  
The boost converter uses a fixed-frequency current-mode topology, and its output voltage (VPOS) is fixed at 4.6 V  
For the highest output voltage accuracy, connect the output sense pin (FBS) directly to the positive pin of the  
output capacitor. If not used, the FBS pin can be left floating or connected to ground. If the FBS pin is not used,  
the boost converter senses its output voltage using the OUTP pin.  
8
Copyright © 2012–2014, Texas Instruments Incorporated  
TPS65631  
www.ti.com.cn  
ZHCSCJ0E SEPTEMBER 2012REVISED MAY 2014  
Feature Description (continued)  
8.3.2 Inverting Buck-Boost Converter  
The inverting buck-boost converter uses a constant-off-time peak-current mode topology. The converter's default  
output voltage (VNEG) is –4 V, but it can be programmed to any voltage in the range –1.4 V to –4.4 V (see  
Programming VNEG).  
8.3.2.1 Programming VNEG  
The output voltage of the inverting buck-boost converter (VNEG) can be programmed using the CTRL pin. If  
output voltage programming is not required, the CTRL pin can be used as a standard enable pin (see Enable  
(CTRL)).  
ttINIT  
tLOW  
t
ttHIGH  
ttSTORE  
ttOFF  
CTRL  
VPOS  
VNEG  
4.6 V  
ttSCP  
t
ttSET  
±4.0 V  
±4.2 V  
Figure 6. Programming VNEG Using the CTRL Pin  
When the CTRL pin is pulled high, the inverting buck-boost converter starts up with its default voltage of –4V.  
The device now counts the rising edges applied to the CTRL pin and sets the output voltage (VNEG) according to  
Table 1. For the timing diagram shown in Figure 6, VNEG is programmed to –4.2 V, since three rising edges are  
detected.  
The CTRL interface is designed to work with pulses whose duration is between 2 µs and 25 µs. Pulses shorter  
than 2 µs or longer than 25 µs are not ensured to be recognized.  
Table 1. Programming Table for VNEG  
Number of Rising Edges  
VNEG  
Number of Rising Edges  
VNEG  
0 / no pulses  
–4 V  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
–2.9 V  
–2.8 V  
–2.7 V  
–2.6 V  
–2.5 V  
–2.4 V  
–2.3 V  
–2.2 V  
–2.1 V  
–2.0 V  
–1.9 V  
–1.8 V  
–1.7 V  
–1.6 V  
–1.5 V  
–1.4 V  
1
2
–4.4 V  
–4.3 V  
–4.2 V  
–4.1 V  
–4.0 V  
–3.9 V  
–3.8 V  
–3.7 V  
–3.6 V  
–3.5 V  
–3.4 V  
–3.3 V  
–3.2 V  
–3.1 V  
–3.0 V  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Copyright © 2012–2014, Texas Instruments Incorporated  
9
 
 
 
TPS65631  
ZHCSCJ0E SEPTEMBER 2012REVISED MAY 2014  
www.ti.com.cn  
8.3.2.2 Controlling the VNEG Transition Time  
The transition time (tset) is the time required to move VNEG from one voltage level to the next. Users can control  
the transition time by connecting a capacitor between the CT pin and ground. When the CT pin is left open or is  
connected to ground, the transition time is as short as possible. When a capacitor is connected to the CT pin, the  
transition time is determined by the time constant (τ) of the external capacitor (C(CT)) and the internal resistance  
of the CT pin (R(CT)). The output voltage VNEG reaches 70% of its programmed value after 1τ.  
An example is given below for the case when using 100 nF for C(CT)  
.
τ ≈ tset(70%) = R(CT) × C(CT) = 300 kΩ × 100 nF = 30 ms  
(1)  
The output voltage VNEG reaches its programmed value after approximately 3τ.  
The external capacitor connected to the CT pin has no effect on the first programming of VNEG, when the  
inverting buck-boost converter ramps its output to the default voltage as fast as possible. Figure 7 shows the  
detail of programming of the VNEG transition time with the CT pin during start-up.  
CTRL  
4.6 V  
VPOS  
t10 mst  
±3.8 V  
VNEG  
±4.0 V (Default)  
±4.1 V (Initial)  
tNot programmable  
tby CT capacitor  
tProgrammable by  
tCT capacitor (3×Tau)  
tNot programmable  
tby CT capacitor  
Figure 7. Programming the Transition Time of VNEG  
8.3.3 Soft-Start and Start-Up Sequence  
The TPS65631 features a soft-start function to limit inrush current. When the device is enabled by a high-level  
signal applied to the CTRL pin, the boost converter starts switching with a reduced switch current limit. Ten  
milliseconds after the CTRL pin goes high, the inverting buck-boost converter starts with a default value of –4 V.  
A typical start-up sequence is shown in Figure 8.  
CTRL  
VPOS  
10 ms (typ.)  
VNEG  
Figure 8. Typical Start-Up Sequence  
10  
Copyright © 2012–2014, Texas Instruments Incorporated  
 
 
TPS65631  
www.ti.com.cn  
ZHCSCJ0E SEPTEMBER 2012REVISED MAY 2014  
8.3.4 Enable (CTRL)  
The CTRL pin serves two functions. One is to enable and disable the device, and the other is to program the  
output voltage (VNEG) of the inverting buck-boost converter (see Programming VNEG). If the digital interface is not  
required, the CTRL pin can be used as a standard enable pin for the device, which will come up with its default  
value on VNEG of –4 V. When CTRL is pulled high, the device is enabled. The device is shut down with CTRL  
low.  
8.3.5 Undervoltage Lockout  
The TPS65631 features an undervoltage lockout function that disables the device when the input supply voltage  
is too low for normal operation.  
8.3.6 Short Circuit Protection  
The TPS65631 is protected against short-circuits of VPOS and VNEG to ground and to each other.  
8.3.6.1 Short-Circuits During Normal Operation  
During normal operation an error condition is detected if VPOS falls below 4.1 V for more than 3 ms or VNEG is  
pulled above the programmed nominal output by 500 mV for longer than 3 ms. In either case the device enters  
shutdown mode: the converters are disabled and their outputs are disconnected from the input. To resume  
normal operation either cycle the input supply voltage or toggle the CTRL pin low and then high again.  
8.3.6.2 Short-Circuits During Start-Up  
During start up an error condition is detected if:  
VPOS is not in regulation 10 ms after a high-level is applied to the CTRL pin.  
VNEG is higher than threshold level 10 ms after a high-level is applied to the CTRL pin.  
VNEG is not in regulation 20 ms after a high-level is applied to the CTRL pin.  
To resume normal operation either cycle the input supply voltage or toggle the CTRL pin low and then high  
again.  
8.3.7 Output Discharge During Shutdown  
The TPS65631 actively discharges its outputs during shutdown. Figure 9 shows the output discharge control.  
VI  
CTRL  
VPOS  
tVUVLO  
tVUVLO  
Discharge  
Discharge  
Discharge  
Discharge  
Discharge  
Discharge  
VNEG  
t10 ms (typ.)  
t10 ms (typ.)  
Figure 9. Active Discharge of VPOS and VNEG During Shutdown  
8.3.8 Thermal Shutdown  
The TPS65631 enters thermal shutdown mode if its junction temperature exceeds 145°C (typical). During  
thermal shutdown mode none of the device functions are available. To resume normal operation, either cycle the  
input supply voltage or toggle the CTRL pin low and then high again.  
Copyright © 2012–2014, Texas Instruments Incorporated  
11  
 
TPS65631  
ZHCSCJ0E SEPTEMBER 2012REVISED MAY 2014  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Operation with VI < 2.9 V  
The recommended minimum input supply voltage for full performance is 2.9 V. The device continues to operate  
with input supply voltages below 2.9 V; however, full performance is not guaranteed. The device does not  
operate with input supply voltages below the UVLO threshold.  
8.4.2 Operation with VI VPOS (Diode Mode)  
The TPS65631 features a "diode" mode that enables it to regulate its output voltage even when the input supply  
voltage is close to VPOS (that is, too high for normal boost operation). When operating in diode mode the  
converter's high-side switch stops switching and its body diode is used as the rectifier. Boost converter efficiency  
is reduced when operating in diode mode. At low output currents (2 mA and below), the boost converter  
automatically transitions from pulse-width modulation to pulse-skip mode. This ensures that VPOS stays in  
regulation but increases the output voltage ripple on VPOS  
.
8.4.3 Operation with CTRL  
When a low-level signal is applied to the CTRL pin the device is disabled and switching is inhibited. When the  
input supply voltage is above the UVLO threshold and a high-level signal is applied to the CTRL pin the device is  
enabled and its start-up sequence begins.  
9 Applications and Implementation  
9.1 Application Information  
Figure 10 shows a typical application circuit suitable for supplying AMOLED displays in smartphone applications.  
The circuit is designed to operate from a single-cell Li-Ion battery and generates a positive output voltage VPOS of  
4.6 V and a negative output voltage of –4 V. Both outputs are capable of supplying up to 300 mA of output  
current.  
9.2 Typical Application  
L1  
4.7 µH  
VI  
PVIN  
AVIN  
SWP  
OUTP  
FBS  
2.9 V to 4.5 V  
VPOS  
4.6 V, 300 mA  
C1  
2×10 µF  
C2  
10 µF  
TPS65631  
EN / Program VNEG  
CTRL  
C4  
100 nF  
VNEG  
±4.0 V, 300 mA  
OUTN  
SWN  
CT  
C3  
2×10 µF  
PGND  
AGND  
GND  
L2  
4.7 µH  
Figure 10. Typical Application Schematic  
12  
Copyright © 2012–2014, Texas Instruments Incorporated  
 
TPS65631  
www.ti.com.cn  
ZHCSCJ0E SEPTEMBER 2012REVISED MAY 2014  
Typical Application (continued)  
9.2.1 Design Requirements  
For this design example, use the following input parameters.  
Table 2. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
Output voltage  
EXAMPLE  
2.9 V to 4.5 V  
VPOS = 4.6V, VNEG = –4 V  
1.7 MHz  
Switching frequency  
9.2.2 Detailed Design Procedure  
In order to maximize performance, the TPS65631 has been optimized for use with a relatively narrow range of  
component values, and customers are strongly recommended to use the application circuit shown in Figure 10  
with the components listed in Table 3 and Table 4.  
9.2.2.1 Inductor Selection  
The boost converter and inverting buck-boost converter have been optimized for use with 4.7 µH inductors, and it  
is recommended that this value be used in all applications. Customers using other values of inductor are strongly  
recommended to characterize circuit performance on a case-by-case basis.  
Table 3. Inductor Selection  
PARAMETER  
VALUE  
MANUFACTURER  
Coilmaster  
Toko  
PART NUMBER  
MMPP252012-4R7N  
1239AS-H-4R7M  
LPP252012-4R7N  
XFL4020-4R7ML  
L1, L2  
4.7 µH  
ABCO  
Coilcraft  
9.2.2.2 Capacitor Selection  
The recommended capacitor values are shown in Table 4. Applications using less than the recommended  
capacitance (e.g. to save PCB area) may experience increased voltage ripple. In general, the lower the output  
power, the lower the necessary capacitance.  
Table 4. Capacitor Selection  
PARAMETER  
VALUE  
2 × 10 µF  
10 µF  
MANUFACTURER  
Murata  
PART NUMBER  
C1  
C2  
C3  
C4  
GRM21BR71A106KE51  
GRM21BR71A106KE51  
GRM21BR71A106KE51  
GRM21BR71E104KA01  
Murata  
2 × 10 µF  
100 nF  
Murata  
Murata  
9.2.2.3 Stability  
Applications using component values that differ significantly from those recommended in Table 3 and Table 4  
should be checked for stability over the full range of operating conditions.  
Copyright © 2012–2014, Texas Instruments Incorporated  
13  
 
 
TPS65631  
ZHCSCJ0E SEPTEMBER 2012REVISED MAY 2014  
www.ti.com.cn  
9.2.3 Application Curves  
The performance shown in the following graphs was obtained using the circuit shown in Figure 10 and the  
external components shown in Table 3 and Table 4. The output voltage settings for these measurements were  
VPOS = 4.6 V and VNEG = –4 V.  
100  
V
(CTRL)  
90  
80  
70  
V
POS  
60  
50  
40  
V
NEG  
30  
VI = 4.3 V  
VI = 3.7 V  
VI = 3.2 V  
VI = 2.9 V  
20  
10  
0
L1 = L2 = Coilcraft XFL4020−4R7ML  
50 100 150 200  
I
IN  
0
250  
300  
Output Current (mA)  
G000  
Time = 2 ms/div  
Figure 12. Start-Up Waveforms  
Figure 11. Efficiency vs. Output Current  
V
POS  
V
V
POS  
(SWP)  
V
(SWP)  
I
(L3)  
I
(L3)  
Time = 400 ns/div  
Time = 400 ns/div  
Figure 14. VPOS Switch Voltage, Inductor Current and  
Output Voltage Ripple (IO = 300 mA)  
Figure 13. VPOS Switch Voltage, Inductor Current and  
Output Voltage Ripple (IO = 100 mA)  
V
V
NEG  
NEG  
V
(SWN)  
V
(SWN)  
I
(L1)  
I
(L1)  
Time = 400 ns/div  
Time = 400 ns/div  
Figure 15. VNEG Switch Voltage, Inductor Current and  
Output Voltage Ripple (IO = 100 mA)  
Figure 16. VNEG Switch Voltage, Inductor Current and  
Output Voltage Ripple (IO = 300 mA)  
14  
Copyright © 2012–2014, Texas Instruments Incorporated  
TPS65631  
www.ti.com.cn  
ZHCSCJ0E SEPTEMBER 2012REVISED MAY 2014  
4.610  
−4.390  
−4.395  
−4.400  
−4.405  
−4.410  
−4.415  
−4.420  
4.605  
4.600  
4.595  
4.590  
4.585  
TJ = –40°C  
TJ = 25°C  
TJ = 85°C  
TJ = –40°C  
TJ = 25°C  
IOUT = 100 mA  
IOUT = 100 mA  
3.1 3.3  
TJ = 85°C  
4.580  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
4.1  
4.3  
4.5  
2.9  
3.5  
3.7  
3.9  
4.1  
4.3 4.5  
Input Voltage (V)  
Input Voltage (V)  
G000  
G000  
Figure 17. Boost Converter Line Regulation  
Figure 18. Inverting Buck-Boost Converter Line Regulation  
4.610  
4.605  
4.600  
4.595  
4.590  
4.585  
−4.390  
−4.395  
−4.400  
−4.405  
−4.410  
TJ = –40°C  
TJ = 25°C  
TJ = 85°C  
TJ = –40°C  
TJ = 25°C  
TJ = 85°C  
−4.415  
VI = 3.7 V  
50  
VI = 3.7 V  
50  
4.580  
0
−4.420  
100  
150  
200  
250  
300  
0
100  
150  
200  
250 300  
Output Current (mA)  
Output Current (mA)  
G000  
G000  
Figure 19. Boost Converter Load Regulation  
Figure 20. Inverting Buck-Boost Converter Load  
Regulation  
VI  
IPOS  
VPOS  
VPOS  
VNEG  
Time = 40 µs/div  
Time = 200 µs/div  
Figure 22. Boost Converter Load Transient Response  
Figure 21. Line Transient Response  
Copyright © 2012–2014, Texas Instruments Incorporated  
15  
TPS65631  
ZHCSCJ0E SEPTEMBER 2012REVISED MAY 2014  
www.ti.com.cn  
INEG  
VNEG  
Time = 400 µs/div  
Figure 23. Inverting Buck-Boost Converter Load Transient Response  
10 Power Supply Recommendations  
The TPS65631 is designed to operate from an input voltage supply range between 2.9 V and 4.5 V. If the input  
supply is located more than a few centimeters from the TPS65631 additional bulk capacitance may be required.  
The 2×10 µF shown in the schematics in this data sheet are a typical choice for this function.  
16  
Copyright © 2012–2014, Texas Instruments Incorporated  
TPS65631  
www.ti.com.cn  
ZHCSCJ0E SEPTEMBER 2012REVISED MAY 2014  
11 Layout  
11.1 Layout Guidelines  
No PCB layout is perfect, and compromises are always necessary. However, following the basic principles listed  
below (in order of importance) should go a long way to achieving good performance:  
Route switching currents on the top layer using short, wide traces. Do not route these signals through vias,  
which have relatively high parasitic inductance and resistance.  
Place C1 as close as possible to pin 12.  
Place C2 as close as possible to pin 3.  
Place C3 as close as possible to pin 9.  
Place L1 as close as possible to pin 1.  
Place L2 as close as possible to pin 10.  
Use the thermal pad to join GND, AGND and PGND.  
Connect the FBS pin directly to the positive pin of C2, that is, keep this connection separate from the  
connection between OUTP and C2.  
Use a copper pour on layer 2 as a thermal spreader and connect the thermal pad to it using a number of  
thermal vias.  
Figure 24 illustrates how a PCB layout following the above principles may be realized in practice.  
11.2 Layout Example  
Figure 24 shows the above principles implemented for the circuit of Figure 10.  
L1  
C1  
C2  
SWP  
PGND  
OUTP  
FBS  
1
2
3
4
5
6
12 PVIN  
11 AVIN  
10 SWN  
L2  
9
8
7
OUTN  
CT  
C3  
C4  
AGND  
GND  
CTRL  
Via to signal layer on internal or bottom layer.  
Thermal via to copper pour on internal or bottom layer.  
Figure 24. PCB Layout Example  
Copyright © 2012–2014, Texas Instruments Incorporated  
17  
 
TPS65631  
ZHCSCJ0E SEPTEMBER 2012REVISED MAY 2014  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.2 Trademarks  
All trademarks are the property of their respective owners.  
12.3 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
12.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms and definitions.  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
18  
Copyright © 2012–2014, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65631DPDR  
ACTIVE  
WSON  
DPD  
12  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 85  
SDS  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS65631DPDR  
WSON  
DPD  
12  
3000  
330.0  
12.4  
3.3  
3.3  
1.1  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WSON DPD 12  
SPQ  
Length (mm) Width (mm) Height (mm)  
346.0 346.0 33.0  
TPS65631DPDR  
3000  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS65631W

+4.6V/-1.4V 至 -4.4V 双输出 200mA AMOLED 显示屏电源
TI

TPS65631WDSKR

+4.6V/-1.4V 至 -4.4V 双输出 200mA AMOLED 显示屏电源 | DSK | 10 | -40 to 85
TI

TPS65632

三路输出 AMOLED 显示电源
TI

TPS65632A

三输出 AMOLED 显示屏电源
TI

TPS65632ARTER

三输出 AMOLED 显示屏电源 | RTE | 16 | -40 to 85
TI

TPS65632RTER

三路输出 AMOLED 显示电源 | RTE | 16 | -40 to 85
TI

TPS65632RTET

三路输出 AMOLED 显示电源 | RTE | 16 | -40 to 85
TI

TPS65640

用于笔记本 PC 和平板 PC 的具有数字 VCOM 缓冲器的 LCD 偏置
TI

TPS65640RHRR

用于笔记本 PC 和平板 PC 的具有数字 VCOM 缓冲器的 LCD 偏置 | RHR | 28 | -40 to 85
TI

TPS65642

LCD Bias with Integrated Gamma Reference for Notebook PCs, Tablet PCs and Monitors
TI

TPS65642A

用于笔记本 PC、平板 PC 和监视器的具有集成伽马参考的 LCD 偏置
TI

TPS65642AYFFR

用于笔记本 PC、平板 PC 和监视器的具有集成伽马参考的 LCD 偏置 | YFF | 56 | -40 to 85
TI