TPS7H1210MRGWTSEP [TI]

采用增强型航天塑料的耐辐射、-3V 至 -16.5V 输入、1A 负电压线性稳压器 | RGW | 20 | -55 to 125;
TPS7H1210MRGWTSEP
型号: TPS7H1210MRGWTSEP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用增强型航天塑料的耐辐射、-3V 至 -16.5V 输入、1A 负电压线性稳压器 | RGW | 20 | -55 to 125

稳压器
文件: 总29页 (文件大小:2610K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS7H1210-SEP  
ZHCSNP8 NOVEMBER 2021  
采用空间增强型塑料TPS7H1210-SEP –16.5-V1A 负线性稳压器  
1 特性  
3 说明  
提供供应商项目图VID V62/21616  
电离辐射总剂(TID) 30krad(Si)  
TPS7H1210-SEP 是一款低噪音、高 PSRR 负电压线  
性稳压器可提供最1A 的负载。  
– 每个晶圆批次TID RLAT辐射批次验收测  
):20krad (Si)  
确定了单粒子效(SEE)  
该稳压器装有一个 CMOS 辑电平兼容使能引脚  
(EN)此引脚允许用户定制电源管理方案。其他特性  
包括内置电流值限制和热关断以在故障情况下保护此器  
件和系统。  
– 单粒子锁(SEL)、单粒子烧(SEB) 和单粒子  
穿(SEGR) 对于线性能量传(LET) 的抗扰度  
= 43MeV-cm2/mg  
– 单粒子功能中(SEFI) 和单粒子瞬(SET) 对  
LET 的额定= 43MeV-cm2/mg  
由于在设计中主要使用双极技术TPS7H1210-SEP  
器件适合于高准确度、低噪声应用在此类应用中为  
了获得更高的系统性能清洁的电压轨很关键。因此,  
它非常适合为运算放大器、ADCDAC 和其他高性能  
模拟电路供电。  
• 低噪声13.7μVRMS 典型值10Hz 100kHz)  
• 高电源抑制比PSRRVIN = 6VVOUT = –  
5VIOUT = 1A 下的典型值):  
此外TPS7H1210-SEP 器件适用于后置直流/直流转  
换器稳压。通过滤除直流/直流开关转换所固有的输出  
电压纹波可确保在敏感器件和射频应用中尽可能提高  
系统性能。  
100Hz 61dB  
100 kHz 61dB  
1 MHz 41dB  
• 输入电压范围-3 V -16.5 V  
• 可调输出-1.2 V -15.5 V  
• 输出电流高1A  
• 与电容10μF 的陶瓷电容一起工作时保持稳定  
• 内置电流限制和热关断保护  
• 增强型航天塑(SEP)  
器件信息  
器件型号(1)  
封装(2)  
VQFN (20)  
5.00mm × 5.00mm  
等级  
特征值为  
20krad(Si)  
RLAT30krad(Si) = 83.6mg  
TPS7H1210MRGWSEP  
TPS7H1210EVM  
EVM  
评估板  
– 受控基线  
– 金键合线  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
NiPdAu 铅涂层  
(2) 尺寸和质量为标称值。  
– 一个组装和测试基地  
– 一个制造基地  
– 军用级-55°C 125°C温度范围  
– 延长了产品生命周期  
– 延长了产品变更通(PCN)  
– 产品可追溯性  
TPS7H1210-SEP  
-3 V t -íòXñ V  
-1.2 V t -íñXñ V @ 1 A  
IN  
OUT  
REN_TOP  
RFB_TOP  
CIN  
COUT  
– 采用增强型模塑化合物实现低释气  
EN  
FB  
2 应用  
REN_BOT  
RFB_BOT  
NR_SS  
GND  
• 支持近地轨(LEO) 航天应用  
卫星电力系(EPS)  
• 模拟电路电源  
CNR_SS  
– 数据转换器ADC DAC模数转换器和数模  
转换器)  
– 运算放大器  
典型应用原理图  
– 图像传感器  
• 后置直流/直流转换器稳压和纹波滤除  
• 用于空间受限区域的耐辐射超洁净模拟电源  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBVS414  
 
 
 
 
TPS7H1210-SEP  
ZHCSNP8 NOVEMBER 2021  
www.ti.com.cn  
Table of Contents  
8.1 Application Information............................................. 15  
8.2 Typical Application.................................................... 18  
8.3 Do's and Donts......................................................19  
9 Power Supply Recommendations................................20  
10 Layout...........................................................................20  
10.1 Layout Guidelines................................................... 20  
10.2 Layout Example...................................................... 21  
10.3 Thermal Performance............................................. 21  
11 Device and Documentation Support..........................22  
11.1 Device Support........................................................22  
11.2 Documentation Support.......................................... 22  
11.3 接收文档更新通知................................................... 22  
11.4 支持资源..................................................................22  
11.5 Trademarks............................................................. 22  
11.6 Electrostatic Discharge Caution..............................22  
11.7 术语表..................................................................... 22  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Typical Characteristics................................................7  
7 Detailed Description......................................................12  
7.1 Overview...................................................................12  
7.2 Functional Block Diagram.........................................12  
7.3 Feature Description...................................................12  
7.4 Device Functional Modes..........................................14  
8 Application and Implementation..................................15  
Information.................................................................... 22  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
November 2021  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS7H1210-SEP  
 
TPS7H1210-SEP  
ZHCSNP8 NOVEMBER 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
OUT  
NC  
FB  
1
IN  
15  
13  
NR_SS  
EN  
Thermal Pad  
NC  
NC  
12 NC  
NC  
11  
5-1. RGW Package, 20-Pin VQFN (Top View)  
5-1. Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
Enable. This dual-polarity pin turns the regulator on when |VEN| 2 V. The EN pin can be  
connected to IN if not used. If VEN is negative polarity, then keep |VEN| |VIN|.  
EN  
13  
I
I
Feedback. This pin is the input to the control-loop error amplifier. It is used to set the output  
voltage of the device and is normally equal to VREF (1.182 V, typical) during operation.  
FB  
3
7
GND  
IN  
Ground.  
Input supply. It is recommended to connect a 10-µF capacitor from IN to GND (as close to the  
device as possible).  
15, 16  
I
No connect. This pin is not internally connected. It is recommended to connect these pins to  
GND to prevent charge buildup; however, these pins can also be left open or tied to any voltage  
between GND and VIN.  
2, 46, 8–  
12, 1719  
NC  
Noise reduction and soft start. A capacitor connected from this pin to GND controls the soft-start  
function and allows RMS noise to be reduced to very low levels. TI recommends connecting a  
100-nF capacitor from NR_SS to GND (as close to the device as possible) to filter the noise  
generated by the internal band gap and maximize AC performance.  
NR_SS  
OUT  
14  
Output of the regulator. A capacitor greater than or equal to 10 µF must be tied from this pin to  
ground to ensure stability. TI recommends connecting a 47-µF ceramic capacitor from OUT to  
GND (as close to the device as possible) to maximize AC performance.  
1, 20  
O
Thermal  
Pad  
Connect the thermal pad to a large-area ground plane. The thermal pad is not internally  
grounded and it must be externally tied to GND for proper operation.  
(1) I = Input, O = Output, = Other  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS7H1210-SEP  
 
 
TPS7H1210-SEP  
ZHCSNP8 NOVEMBER 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
35  
2  
MAX  
UNIT  
V
IN to GND  
FB to GND  
0.3  
0.3  
35  
V
FB to IN  
V
0.3  
35  
0.3  
2  
Input voltage  
EN to GND  
10  
V
NR_SS to IN  
35  
V
NR_SS to GND  
0.3  
0.3  
35  
V
OUT to GND  
V
33  
0.3  
Output voltage  
OUT to IN  
V
Output current  
Peak output  
Internally limited  
Operating virtual junction temperature  
Storage temperature  
TJ  
150  
150  
°C  
°C  
55  
65  
Tstg  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) ±500  
±1000  
V(ESD) Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS7H1210-SEP  
 
 
 
 
 
 
TPS7H1210-SEP  
ZHCSNP8 NOVEMBER 2021  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
16.5  
VIN  
NOM  
MAX  
3  
10  
UNIT  
IN  
Input voltage  
V
EN  
Output voltage  
Output current  
OUT(1)  
OUT(2)  
VREF  
1
V
A
15.5  
0
RFB_BOT is the lower feedback  
resistor  
(3)  
RFB_BOT  
240  
kΩ  
Input capacitance  
Output capacitance  
CIN  
10  
10  
µF  
µF  
COUT  
47  
Noise reduction and soft start  
capacitor  
CNR_SS  
100  
nF  
°C  
Operating junction temperature  
TJ  
125  
55  
(1) The minimum dropout voltage must also be met.  
(2) To ensure stability at no load conditions, a current from the feedback resistive network greater than or equal to 5 µA is required.  
(3) This condition helps ensure stability at no load.  
6.4 Thermal Information  
TPS7H1210-SEP  
THERMAL METRIC(1)  
RQW (VQFN)  
UNIT  
20 PINS  
32.7  
24  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
11.8  
0.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJT  
11.7  
3.6  
ΨJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS7H1210-SEP  
 
 
 
 
 
 
TPS7H1210-SEP  
ZHCSNP8 NOVEMBER 2021  
www.ti.com.cn  
6.5 Electrical Characteristics  
Over |VIN| = 3 V, IOUT = 1 mA, CIN = 20 µF, COUT = 20 µF, CNR_SS = 0 nF, FB tied to OUT, EN tied to IN, over operating  
temperature range (TJ = 55°C to 125°C), unless otherwise noted.(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER SUPPLIES AND CURRENTS  
VUVLO  
Undervoltage lockout threshold  
V
2  
224  
363  
IOUT = 0.5 A  
325  
VIN = 4.6 V, VOUT(set) = 5  
V,  
|VDO| = |VIN –  
VOUT(measured)|,  
CIN = 30 µF  
IOUT = 1 A  
500  
mV  
|VDO  
|
Dropout voltage  
IOUT = 1 A,  
TJ = 25°C  
363  
2.9  
450  
VIN = 6 V, VOUT(SET) = 5 V,  
VOUT(forced) = 4.5 V  
ICL  
Current limit  
A
IQ  
Quiescent current  
Ground current(2)  
VEN = 3 V, IOUT = 0 A  
VEN = 3 V, IOUT = 0.5 A  
VEN = 0.4 V  
210  
5
350  
10  
3
µA  
IGND  
mA  
1
|ISHDN  
|
Shutdown current  
µA  
nA  
1
3
VEN = 0.4 V  
IFB(LKG)  
Feedback leakage current(3)  
14  
75  
ACCURACY  
VREF  
Reference voltage  
VFB = VREF  
V
1.199 1.182 1.164  
±1%  
±1%  
2%  
2%  
|VIN| = 3 V, 1 mA IOUT 1 A  
2%  
2%  
|VIN| = 16.5 V, 1 mA IOUT 100 mA  
VACC  
Output voltage accuracy  
|VIN| = 16.5 V, |VOUT| = 15.5 V,  
IOUT = 1 A  
±1%  
2%  
2%  
Line regulation  
Load regulation  
VOUT/V  
VOUT/A  
ΔVOUT/ΔVIN  
ΔVOUT/ΔIOUT  
ENABLE  
VEN(+HI)  
3 V |VIN| 16.5 V  
1 mA IOUT 1 A  
0.007%  
0.5%  
Enable turn-on (positive logic)  
Enable turn-on (negative logic)  
Enable turn-off (positive logic)  
Enable turn-off (negative logic)  
2
VIN  
10  
-2  
0.4  
0
VEN(HI)  
VIN = 16.5 V  
V
VEN(+LO)  
0
VEN(LO)  
0.4  
0.48  
0.51  
0.5  
1
VIN = VEN = 3 V  
|IEN  
|
Enable current  
1
µA  
°C  
VIN = VEN = 16.5 V  
VIN = 16.5 V, VEN = 10 V  
1
TSD(enter)  
TSD(exit)  
NOISE AND PSRR  
Thermal shutdown enter temperature  
178  
152  
Thermal shutdown exit temperature  
f = 100 Hz  
61  
61  
41  
VIN = 6 V, VOUT = 5 V,  
PSRR  
VN  
Power-supply rejection ratio  
f = 100 kHz  
f = 1 MHz  
dB  
COUT = 50.11 µF, IOUT = 1 A,  
CNR_SS = 100 nF(4)  
Output noise rms voltage (bandwidth  
from 10 Hz to 100 kHz)  
VIN = 3 V, VOUT(nom) = VREF, CIN = 11.1 µF,  
COUT = 50.11 µF, CNR_SS = 100 nF, IOUT = 1 A  
13.7  
µVRMS  
(1) At operating conditions, VIN 0 V, VOUT(nom) VREF 0 V; at regulation, VIN VOUT(nom) |VDO|; IOUT > 0 flows from OUT to IN.  
(2) IGND = IIN IOUT  
(3) IFB > 0 flows into the device.  
(4) CIN is removed as part of PSRR testing. During normal operation, follow the recommended operating condition of CIN 10 µF.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS7H1210-SEP  
 
 
 
 
 
 
TPS7H1210-SEP  
ZHCSNP8 NOVEMBER 2021  
www.ti.com.cn  
6.6 Typical Characteristics  
Over |VIN| = 3 V, IOUT = 1 mA, CIN = 20 µF, COUT = 20 µF, CNR_SS = 0 nF, FB tied to OUT, EN tied to IN, TA = 25°C, unless  
otherwise noted.  
-1.1780  
-1.1785  
-1.1790  
-1.1795  
-1.1800  
-1.1805  
-1.1810  
-1.1815  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
VIN = -3 V  
VIN = -5 V  
VIN = -12 V  
VIN = -16.5 V  
8
-55  
-18  
-16  
-14  
-12  
-10  
VIN (V)  
-8  
-6  
-4  
-2  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (°C)  
IFB > 0 flows into the device  
6-1. Reference Voltage vs Input Voltage  
6-2. Feedback Leakage Current vs Temperature  
Across Temperature  
Across Input Voltage  
8
7
6
5
4
3
2
1
IOUT = 1 mA  
IOUT = 500 mA  
IOUT = 1000 mA  
0
-18  
-16  
-14  
-12  
-10  
-8  
-6  
-4  
-2  
VIN (V)  
IOUT = 500 mA  
6-4. Ground Current vs Input Voltage  
6-3. Ground Current vs Input Voltage  
Across Temperature  
Across Output Current  
8
7
6
5
4
3
2
1
580  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
570  
560  
550  
540  
530  
520  
510  
500  
490  
480  
470  
460  
0
0
-18  
-16  
-14  
-12  
-10  
-8  
-6  
-4  
-2  
100 200 300 400 500 600 700 800 900 1000  
IOUT (mA)  
VEN (V)  
6-6. Enable Current vs Enable Voltage  
6-5. Ground Current vs Output Current  
Across Temperature  
Across Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS7H1210-SEP  
 
TPS7H1210-SEP  
ZHCSNP8 NOVEMBER 2021  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
Over |VIN| = 3 V, IOUT = 1 mA, CIN = 20 µF, COUT = 20 µF, CNR_SS = 0 nF, FB tied to OUT, EN tied to IN, TA = 25°C, unless  
otherwise noted.  
280  
270  
260  
250  
240  
230  
220  
210  
200  
190  
180  
170  
160  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
-55°C  
-40°C  
25°C  
85°C  
125°C  
1.9  
1.8  
1.7  
1.6  
-18  
-16  
-14  
-12  
-10  
VIN (V)  
-8  
-6  
-4  
-2  
-18  
-16  
-14  
-12  
-10  
VIN (V)  
-8  
-6  
-4  
-2  
IOUT = 0 mA  
VEN = 0.4 V  
6-7. Quiescent Current vs Input Voltage  
6-8. Shutdown Current vs Input Voltage  
Across Temperature  
Across Temperature  
270  
260  
250  
240  
230  
220  
210  
200  
450  
400  
350  
300  
250  
200  
150  
100  
50  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
0
0
100 200 300 400 500 600 700 800 900 1000  
IOUT (mA)  
-15 -14 -13 -12 -11 -10 -9  
VIN (V)  
-8  
-7  
-6  
-5  
-4  
VIN = 4.6 V  
VOUT(SET) = 5 V  
CIN = 30 μF  
IOUT = 500 mA  
CIN = 30 μF  
6-10. Dropout Voltage vs Output Current  
6-9. Dropout Voltage vs Input Voltage  
Across Temperature  
Across Temperature  
420  
400  
380  
360  
340  
320  
300  
280  
260  
240  
220  
200  
2.5  
2
Iout = 500 mA  
Iout = 1000 mA  
Enable Threshold Positive  
1.5  
1
0.5  
0
OFF  
-0.5  
-1  
-1.5  
-2  
Enable Threshold Negative  
-2.5  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (°C)  
Temperature (°C)  
VIN = 4.6 V  
VOUT(SET) = 5 V  
CIN = 30 μF  
6-12. Enable Threshold Voltage vs Temperature  
6-11. Dropout Voltage vs Temperature  
Across Output Current  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS7H1210-SEP  
TPS7H1210-SEP  
ZHCSNP8 NOVEMBER 2021  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
Over |VIN| = 3 V, IOUT = 1 mA, CIN = 20 µF, COUT = 20 µF, CNR_SS = 0 nF, FB tied to OUT, EN tied to IN, TA = 25°C, unless  
otherwise noted.  
0
-0.001%  
-0.002%  
-0.003%  
-0.004%  
-0.005%  
-0.006%  
-0.007%  
-0.008%  
0.2%  
0.1%  
0.0  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
-55°C  
-40°C  
0°C  
25°C  
85°C  
125°C  
-0.1%  
-0.2%  
-0.3%  
-0.4%  
-0.5%  
-0.6%  
-2  
-4  
-6  
-8  
-10  
VIN (V)  
-12  
-14  
-16  
-18  
0
100 200 300 400 500 600 700 800 900 1000  
IOUT (mA)  
Each individual curve is normalized to 0% at VIN = 3 V  
Each individual curve is normalized to 0% at IOUT = 0 mA  
6-13. Line Regulation vs Input Voltage  
6-14. Load Regulation vs Output Current  
Across Temperature  
Across Temperature  
100  
100  
80  
COUT = 20 µF  
COUT = 50 µF  
COUT = 97 µF  
80  
60  
40  
20  
0
60  
40  
CNR_SS = 0 nF  
CNR_SS = 10 nF  
CNR_SS = 100 nF  
CNR_SS = 1 µF  
20  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
CIN = 0 μF(A)  
COUT = 50.11 μF  
CIN = 0 μF(A)  
CNR_SS = 100 nF  
IOUT = 1 A  
IOUT = 1 A  
All curves have 100-nF and 10-nF capacitor on VOUT  
6-15. Power-Supply Rejection Ratio vs Frequency Across  
6-16. Power-Supply Rejection Ratio vs Frequency Across  
COUT  
CNR_SS  
100  
80  
100  
80  
60  
60  
40  
40  
IOUT = 10 mA  
IOUT = 200 mA  
IOUT = 500 mA  
IOUT = 1000 mA  
VOUT = VFB  
VOUT = -5 V  
VOUT = -12 V  
20  
20  
VOUT = -15.5 V  
0
0
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
CIN = 0 μF(A)  
COUT = 50.11 μF  
CIN = 0 μF(A)  
CNR_SS = 100 nF  
CNR_SS = 100 nF  
|VIN| = |VOUT + 1 V|, 3-V minimum  
COUT = 50.11 μF  
IOUT = 1 A  
6-17. Power-Supply Rejection Ratio vs Frequency Across  
6-18. Power-Supply Rejection Ratio vs Frequency Across  
Output Current  
Output Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS7H1210-SEP  
TPS7H1210-SEP  
ZHCSNP8 NOVEMBER 2021  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
Over |VIN| = 3 V, IOUT = 1 mA, CIN = 20 µF, COUT = 20 µF, CNR_SS = 0 nF, FB tied to OUT, EN tied to IN, TA = 25°C, unless  
otherwise noted.  
100  
80  
60  
40  
20  
0
10000  
1000  
100  
10  
VDO = 800 mV  
VDO = 1000 mV  
IOUT = 1 mA, VN = 7.2 µVRMS  
IOUT = 200 mA, VN = 13.3 µVRMS  
IOUT = 500 mA, VN = 13.4 µVRMS  
IOUT = 1000 mA, VN = 13.7 µVRMS  
1
0.1  
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
CIN = 0 μF(A)  
CNR_SS = 100 nF  
COUT = 50.11 μF  
CNR_SS = 100 nF  
COUT = 50.11 μF  
CIN = 11.1 μF  
IOUT = 1 A  
VOUT = 5 V  
VN = output noise RMS voltage (10-Hz to 100-kHz bandwidth)  
|VIN| = |VOUT + VDO|, 3-V minimum  
6-19. Power-Supply Rejection Ratio vs Frequency Across  
6-20. Output Noise vs Frequency Across Output Current  
Dropout Voltage  
(Noise Spectral Density)  
10000  
CNR_SS = 0 nF, VN = 14.3 µVRMS  
CNR_SS = 10 nF, VN = 14.3 µVRMS  
CNR_SS = 100 nF, VN = 13.7 µVRMS  
CNR_SS = 1 µF, VN = 13.4 µVRMS  
1000  
100  
10  
1
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
IOUT = 1 A  
IOUT = 1 mA  
COUT = 50.11 μF  
CIN = 11.1 μF  
COUT = 50.11 μF  
CIN = 11.1 μF  
VN = output noise RMS voltage (10-Hz to 100-kHz bandwidth)  
VN = output noise RMS voltage (10-Hz to 100-kHz bandwidth)  
6-21. Output Noise vs Frequency Across CNR_SS  
6-22. Output Noise vs Frequency Across CNR_SS  
(Noise Spectral Density)  
(Noise Spectral Density)  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS7H1210-SEP  
 
TPS7H1210-SEP  
ZHCSNP8 NOVEMBER 2021  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
Over |VIN| = 3 V, IOUT = 1 mA, CIN = 20 µF, COUT = 20 µF, CNR_SS = 0 nF, FB tied to OUT, EN tied to IN, TA = 25°C, unless  
otherwise noted.  
10000  
1000  
VOUT (50 mV/div) (AC coupled)  
100  
10  
VOUT = VFB, VN = 13.7 µVRMS  
VOUT = -5 V, VN = 27.2 µVRMS  
VOUT = -12 V, VN = 44.3 µVRMS  
VOUT = -15.5 V, VN = 51.4 µVRMS  
1
IOUT (500 mA/div)  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Time (100 µs/div)  
VOUT = 12 V  
COUT = 50 μF  
IOUT = 1 A  
|VIN| = |VOUT + VDO|, 3-V minimum  
COUT = 50.11 μF  
CIN = 11.1 μF  
IOUT (slew) = 1 A / 10  
μs  
VIN = 15 V  
VN = output noise RMS voltage (10-Hz to 100-kHz bandwidth)  
CNR_SS = 100 nF  
CIN = 11.1 μF  
6-23. Output Noise vs Frequency Across Output Voltage  
(Noise Spectral Density)  
6-24. Load Step: 1 mA to 500 mA  
VOUT (50 mV/div) (AC coupled)  
IOUT (500 mA/div)  
VIN (5 V/div)  
VOUT (5 V/div)  
Time (100 µs/div)  
IOUT (slew) = 1 A / 10  
Time (50 ms/div)  
VIN(SET) = 15 V  
COUT = 50 μF  
VOUT(SET) = 12 V CIN = 11.1 μF  
VIN = 15 V  
VOUT = 12 V  
μs  
CNR_SS = 100 nF  
CNR_SS = 100 nF  
CIN = 11.1 μF  
COUT = 50 μF  
6-26. Start-up with Soft-Start  
6-25. Load Step: 500 mA to 1 mA  
A. CIN is removed as part of PSRR testing. During normal operation, follow the recommended operating condition of CIN 10 μF.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS7H1210-SEP  
TPS7H1210-SEP  
ZHCSNP8 NOVEMBER 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS7H1210-SEP negative voltage linear regulator uses a bipolar process to achieve very low noise and  
very high PSRR levels at a wide input voltage and current range. These features, plus its radiation tolerance,  
make this device ideal for high-performance analog applications in satellites.  
7.2 Functional Block Diagram  
GND  
Control  
Logic  
EN  
FB  
OUT  
OUT  
1.2V VREF  
NR_SS  
+
-
Thermal  
Shutdown  
Current  
Limit  
IN IN  
7.3 Feature Description  
7.3.1 Internal Current Limit  
The fixed internal current limit of the TPS7H1210-SEP device helps protect the regulator during fault conditions.  
The maximum amount of current the device can source is the current limit (2.9 A, typical), and it is largely  
independent of output voltage. For reliable operation, do not operate the device in current limit for extended  
periods of time.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS7H1210-SEP  
 
 
 
 
TPS7H1210-SEP  
ZHCSNP8 NOVEMBER 2021  
www.ti.com.cn  
7.3.2 Enable Pin Operation  
The TPS7H1210-SEP provides a dual-polarity enable pin (EN) that turns on the regulator when |VEN| > 2 V,  
whether the voltage is positive or negative, as shown in 7-1. Specifically, if VEN VEN(+HI) or VEN VEN(HI)  
,
the regulator is enabled. If VEN(+LO) VEN VEN(LO), the regulator is disabled.  
This functionality allows for different system power management topologies; for example:  
Connecting the EN pin directly to a negative voltage, such as VIN.  
Connecting the EN pin directly to a positive voltage, such as the output of digital logic circuitry.  
Connecting the EN pin to a resistor divider from VIN to GND to turn-on at a specific input voltage level  
(programmable turn-on voltage).  
VOUT  
VEN  
VIN  
Time (20ms/div)  
7-1. Enable Pin Positive and Negative Threshold  
7.3.3 Programmable Soft-Start  
The NR_SS capacitor acts as a noise reduction capacitor and a soft-start capacitor to slow down the rise time of  
the output. The output rise time, when using an NR_SS capacitor, is approximated by 方程1.  
tSS (ms) = 1.2 × CNR_SS (nF)  
(1)  
In 方程式 1, tSS is the soft-start time in milliseconds and CNR_SS is the capacitance at the NR_SS pin in  
nanofarads.  
7-2 shows the start-up voltage waveforms versus CNR_SS  
.
2
CNR_SS = 10 nF  
CNR_SS = 100 nF  
CNR_SS = 1 µF  
0
-2  
-4  
-6  
-8  
-10  
-12  
-14  
-100  
100  
300  
500  
Time (ms)  
700  
900  
7-2. Start-Up Waveforms vs CNR_SS  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS7H1210-SEP  
 
 
 
TPS7H1210-SEP  
ZHCSNP8 NOVEMBER 2021  
www.ti.com.cn  
7.3.4 Thermal Protection  
Thermal protection disables the output when the junction temperature rises to approximately 178°C, allowing the  
device to cool. When the junction temperature cools to approximately 152°C, the output circuitry is enabled.  
Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit  
may cycle on and off. This cycling limits the dissipation of the regulator, mitigating damage as a result of  
overheating.  
Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate  
heat sink. For reliable operation, limit the junction temperature to a maximum of 125°C.  
The internal protection circuitry of the TPS7H1210-SEP has been designed to protect against overload  
conditions. It was not intended to replace proper thermal management. Continuously running the TPS7H1210-  
SEP into thermal shutdown degrades device reliability.  
7.4 Device Functional Modes  
7.4.1 Normal Operation  
The device regulates to the nominal output voltage under all of the following conditions:  
The input voltage magnitude has previously exceeded the UVLO rising voltage magnitude and has not  
decreased below the UVLO falling threshold magnitude.  
The input voltage magnitude is greater than the nominal output voltage magnitude added to the dropout  
voltage magnitude.  
|VEN| > |V(HI)  
|
The output current is less than the current limit.  
The device junction temperature is less than the maximum specified recommended operating conditions  
junction temperature.  
7.4.2 Dropout Operation  
If the input voltage magnitude is lower than the magnitude of the nominal output voltage plus the specified  
dropout voltage, but all other conditions are met for normal operation, the device operates in dropout mode. In  
this condition, the output voltage is the same as the input voltage minus the dropout voltage. The transient  
performance of the device is significantly degraded because the pass device (as a bipolar junction transistor, or  
BJT) is in saturation and no longer controls the current through the LDO. Line or load transients in dropout can  
result in large output voltage deviations.  
7.4.3 Disabled  
The device is disabled under any of the following conditions:  
|VEN| < |V(HI)  
|
The device junction temperature is greater than the thermal shutdown temperature.  
7-1 shows the conditions that lead to the different modes of operation.  
7-1. Device Functional Mode Comparison  
PARAMETER  
OPERATING MODE  
VIN  
VEN  
IOUT  
IOUT < ICL  
TJ  
Normal mode  
Dropout mode  
|VIN| > { |VOUT(nom)| + |VDO|, |VIN(min)| }  
|VEN| > |V(HI)  
|
|
TJ < 125°C  
TJ < 125°C  
|VIN(min)| < |VIN| < |VOUT(nom)| + |VDO  
|
|VEN| > |V(HI)  
Disabled mode  
(any true condition disables the  
device)  
|VEN| < |V(HI)  
|
TJ > ~178°C  
|VIN| |VUVLO  
|
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS7H1210-SEP  
 
 
TPS7H1210-SEP  
ZHCSNP8 NOVEMBER 2021  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Adjustable Operation  
The TPS7H1210-SEP has an output voltage range of VREF to 15.5 V. The nominal output voltage of the device  
is set by two external resistors, as shown in 8-2.  
RFB_TOP and RFB_BOT can be calculated for any output voltage range using 方程式 2. To ensure stability under  
no-load conditions at |VOUT| > |VREF|, this resistive network must provide a current equal to or greater than 5  
μA.  
V
V
REF  
OUT  
R
= R  
×
FB_BOT  
1 , where  
> 5 µA  
(2)  
FB_TOP  
V
R
REF  
FB_BOT  
8-1 shows the resistor combinations to achieve a few of the most common rails using commercially available,  
1%-tolerance resistors. If greater voltage accuracy is required, consider the output voltage offset contributions  
because of the feedback pin current and use 0.1%-tolerance resistors.  
8-1. Example 1% Tolerance Resistors for Common Voltage Rails  
RFB_TOP  
(kΩ)  
RFB_BOT  
(kΩ)  
VOUT  
(V)  
RESISTOR NETWORK  
BIAS CURRENT (µA)  
RESISTOR ERROR  
CONTRIBUTION(1)  
0
N/A  
84.4  
N/A  
1.182  
1.8  
2.5  
3.3  
5  
7.32  
11.3  
19.1  
34  
14  
+0.001%  
+0.341%  
0.245%  
0.189%  
+0.066%  
0.086%  
+0.187%  
0.627%  
10.2  
10.7  
10.5  
17.4  
15.4  
15  
115.9  
110.5  
112.6  
67.9  
115  
445  
137  
133  
9  
76.8  
10  
12  
15  
78.8  
11.3  
104.6  
(1) This is the error contribution due to the mismatch between the ideal resistor ratio and the actual resistor ratio (using the indicated  
resistor values). It does not include the error contribution due to the resistor tolerance itself. More accurate ratios are possible by using  
0.1% tolerance resistors.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS7H1210-SEP  
 
 
 
 
 
TPS7H1210-SEP  
ZHCSNP8 NOVEMBER 2021  
www.ti.com.cn  
8.1.2 Capacitor Recommendations  
It is recommended to use low equivalent series resistance (ESR) capacitors for the input, output, noise  
reduction, and bypass capacitors. Ceramic capacitors with an X7R dielectric is preferred. This dielectric offers  
stable characteristics over temperature.  
备注  
High-ESR capacitors may degrade PSRR and affect stability.  
The TPS7H1210-SEP negative linear regulator achieves stability with a minimum input and output capacitance  
of 10 μF. TI recommends using a 10-μF capacitor at the input. A larger capacitor is recommended at the  
output. Specifically, TI recommends using a 47-μF capacitor (or multiple capacitors to reach ~47 μF) at the  
output to improve single event transient (SET) performance.  
8.1.3 Noise Reduction and Feed-Forward Capacitor Requirements  
Although the noise-reduction (CNR_SS) capacitor is not needed to achieve stability, TI highly recommends using a  
100-nF noise-reduction capacitor to minimize noise and maximize AC performance. The noise-reduction  
capacitor is especially important at low currents as shown in 6-22.  
It is generally recommended to not use a feed-forward capacitor. While a feed-forward capacitor can provide  
some improvements in PSRR at certain frequencies, it also has additional risks. See Pros and Cons of Using a  
Feed-Forward Capacitor with a Low Dropout Regulator for additional information.  
CAUTION  
Using a feed-forward capacitor with the TPS7H1210-SEP can cause the FB pin to go too positive  
during shutdown, thus damaging the device.  
8-1 shows the different PSRR performance of the device with and without a feed-forward capacitor with VIN  
13 V, VOUT = 12 V, IOUT = 1 A, CNR_SS = 100 nF, and COUT = 50 μF.  
=
100  
CFF = 0 nF  
CFF = 10 nF  
80  
60  
40  
20  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
8-1. Power-Supply Rejection Ratio vs Frequency Across CFF  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS7H1210-SEP  
 
TPS7H1210-SEP  
ZHCSNP8 NOVEMBER 2021  
www.ti.com.cn  
8.1.4 Power-Supply Rejection Ratio (PSRR)  
Using a noise-reduction capacitor (CNR_SS) of at least 10-nF greatly improves TPS7H1210-SEP power-supply  
rejection ratio. If the CNR_SS capacitor is omitted, the PSRR can be 10 dB lower or worse across a wide range of  
frequencies. A 100-nF capacitor is generally recommended.  
Additionally, TI recommends using at least a 47-μF output capacitor for both single event transient (SET) and to  
achieve great AC performance. A 10-μF input capacitor is generally sufficient for good device performance;  
however, a 47-μF input capacitor or larger may be ideal if the input rail is extremely noisy.  
The high power-supply rejection of the TPS7H1210-SEP makes it a good choice for powering high-performance  
analog circuitry.  
8.1.5 Output Noise  
The TPS7H1210-SEP provides low output noise when a noise-reduction capacitor (CNR_SS) is used.  
The noise-reduction capacitor serves as a filter for the internal reference. By using at a 100-nF noise reduction  
capacitor (CNR_SS), the output noise can be reduced by approximately 80% (from 35.7 μVRMS to 7.1 μVRMS).  
See 6-22 for additional information. The benefit is less pronounced at higher currents (see 6-21).  
The TPS7H1210-SEP low output voltage noise makes it an ideal solution for powering noise-sensitive circuitry.  
8.1.6 Transient Response  
As with any regulator, increasing the size of the output capacitor reduces overshoot and undershoot magnitude,  
but increases duration of the transient response.  
8.1.7 Post DC-DC Converter Filtering  
Most of the time, the voltage rails available in a system do not match the voltage specifications demanded by  
one or more of its circuits; these rails must be stepped up or down, depending on specific voltage requirements.  
DC-DC converters are generally the preferred solution to stepping up or down a voltage rail when current  
consumption is not negligible. These devices offer high efficiency with minimum heat generation, but they have  
one primary disadvantage: they introduce a high-frequency component, and the associated harmonics, on top of  
the DC output signal.  
If not filtered properly, this high-frequency component degrades analog circuitry performance, and reduces  
overall system accuracy and precision.  
The TPS7H1210-SEP offers a wide-bandwidth, very-high power-supply rejection ratio (PSRR). This specification  
makes it ideal for post DC-DC converter filtering. TI recommends using a schematic like the one shown in 8-2  
for high performance. Also, verify that the TPS7H1210-SEP regulator PSRR is still high within the fundamental  
frequency (and its first harmonic, if possible) of the switching regulator.  
8.1.8 Power for Precision Analog  
One of the primary TPS7H1210-SEP applications is to provide very low noise voltage rails to high-performance  
analog circuitry in order to maximize system accuracy and precision. This includes powering operational  
amplifiers, ADCs, DACs, and RF amplifiers.  
Because of the low noise levels at high voltages, the TPS7H1210-SP can directly power high performance  
analog circuitry with high-voltage input supply requriements.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS7H1210-SEP  
TPS7H1210-SEP  
ZHCSNP8 NOVEMBER 2021  
www.ti.com.cn  
8.2 Typical Application  
TPS7H1210-SEP  
VOUT = -5 V  
VIN  
IN  
OUT  
REN_TOP  
102 kΩ  
RFB_TOP  
34 kΩ  
CIN  
11.1 µF  
COUT  
50.11 µF  
EN  
FB  
REN_BOT  
68 kΩ  
RFB_BOT  
10.5 kΩ  
NR_SS  
GND  
CNR_SS  
100 nF  
8-2. Adjustable Operation for Optimized AC and Radiation Performance  
8.2.1 Design Requirements  
The design goals for this example are VIN = 6 V, VOUT = 5 V, and IOUT = 1-A maximum. The design must  
optimize transient response, and the input supply comes from a supply on the same printed-circuit board (PCB).  
8.2.2 Detailed Design Procedure  
The design consists of CIN, COUT, CNR_SS, RFB_TOP, RFB_BOT, REN_TOP, REN_BOT, and the circuit shown in 8-2.  
The first step when designing with a linear regulator is to examine the maximum load current along with the input  
and output voltage requirements to determine if the device thermal and dropout voltage requirements can be  
met. At 1 A, the input dropout voltage of the TPS7H1210-SEP device is a maximum of 500 mV over  
temperature; thus, the dropout headroom is sufficient for operation over both input and output voltage accuracy.  
Keep in mind that operating an LDO close to the dropout limit reduces AC performance, but has the benefit of  
reducing the power dissipation across the LDO.  
The maximum power dissipated in the linear regulator is the maximum voltage drop across the pass element  
from the input to the output multiplied by the maximum load current (plus a small amount of quiescent power). In  
this example, the maximum voltage drop across in the pass element is (6 V) (5 V), giving us a VDROP = 1  
V. The power dissipated in the pass element is calculated by taking this voltage drop multiplied by the maximum  
load current. For this example, the maximum power dissipated in the linear regulator is approximately 1 W.  
To ensure an accurate output voltage, RFB_TOP and RFB_BOT must also be found, and the current through these  
resistors must be greater than 5 µA to ensure stability. For this design, RFB_TOP is set to 34 kΩ, to achieve  
reasonable leakage current leakage while continuing to hold it well above 5 µA. Then 方程式 3 is used to  
calculate the proper value for RFB_BOT  
.
R
× V  
V
REF  
FB_TOP  
REF  
R
=
= 10.5 kΩ and I  
=
= 112.6 µA  
(3)  
FB_BOT  
DIVIDER  
V
V  
R
OUT  
REF  
FB_BOT  
Next, for CIN a 10 µF, 1 µF, and 0.1-µF ceramic capacitor are selected. This provides margin over the 10-µF  
minimum input capacitance and reduces the impedance across a wider range of frequencies than a single 10-µF  
capacitor.  
For COUT, 5 × 10-µF, 1 × 100-nF, and 1 × 10-nF ceramic capacitors are selected. The multiple ceramic  
capacitors reduce ESR (equivalent series resistance) and ESL (equivalent series inductance) to aid in good AC  
performance. Additionally, better SET (single-event-transient) performance is generally achieved by choosing a  
larger output capacitance than the minimum of 10 µF.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS7H1210-SEP  
 
 
 
TPS7H1210-SEP  
ZHCSNP8 NOVEMBER 2021  
www.ti.com.cn  
Next, CNR_SS is set at 100 nF for optimal noise performance along with maximized AC performance while  
keeping reasonable soft-start times.  
To have a configurable turn-on voltage, feed the EN pin by a resistor divider from VIN to GND. Since the  
TPS7H1210-SEP is commanded to turn-on when EN is less than 2 V (see VEN(-HI) in 6.5), 方程式 4 can be  
used to determine the resistors to select for a desired turn-on voltage, VIN(turn-on)  
.
R
× 2 V  
EN_TOP  
IN turnon  
R
=
(4)  
EN_BOT  
V
2 V  
For this design REN_TOP = 102 kΩand REN_BOT = 68 kΩ, which results in VIN(turn-on) = 5 V. This means that as  
VIN is ramping from 0 V to its final value of 6 V during start-up, the regulator will turn-on when VIN reaches 5  
V.  
8.2.3 Application Curves  
8-3 and 8-4 show a 1-mA to 500-mA load step and 500-mA to 1-mA load step respectively using the  
values described within this section.  
VOUT (50 mV/div) (AC coupled)  
VOUT (50 mV/div) (AC coupled)  
IOUT (500 mA/div)  
IOUT (500 mA/div)  
Time (200 µs/div)  
VOUT = 5 V  
Time (200 µs/div)  
VOUT = 5 V  
IOUT (slew) = 1 A / 10  
μs  
IOUT (slew) = 1 A / 10  
μs  
VIN = 6 V  
VIN = 6 V  
CNR_SS = 100 nF  
CNR_SS = 100 nF  
CIN = 11.1 μF  
COUT = 50.11 μF  
CIN = 11.1 μF  
COUT = 50.11 μF  
8-3. Load Step: 1 mA to 500 mA  
8-4. Load Step: 500 mA to 1 mA  
8.3 Do's and Donts  
Place at least one low ESR 10-µF capacitor as close as possible to both the IN and OUT terminals of the  
regulator to the GND pin.  
Provide adequate thermal paths away from the device.  
Do not place the input or output capacitor more than 10 mm away from the regulator.  
Do not exceed the absolute maximum ratings.  
Do not float the EN pin.  
Do not resistively or inductively load the NR_SS pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS7H1210-SEP  
 
 
 
TPS7H1210-SEP  
ZHCSNP8 NOVEMBER 2021  
www.ti.com.cn  
9 Power Supply Recommendations  
The input supply for the LDO must be within its recommended operating conditions, of 16.5 V to 3 V. The  
input voltage must provide adequate headroom for the device to have a regulated output. If the input supply is  
noisy, additional input capacitors with low ESR can help improve the output noise performance.  
10 Layout  
Layout is a critical part of good power-supply design. Several signal paths that conduct fast-changing currents or  
voltages can interact with stray inductance or parasitic capacitance to generate noise or degrade the power-  
supply performance. To help eliminate these problems, bypass the IN pin to ground with a low ESR ceramic  
bypass capacitor with an X7R dielectric.  
10.1 Layout Guidelines  
10.1.1 Improve PSRR and Noise Performance  
To improve AC performance such as PSRR, output noise, and transient response, TI recommends designing the  
board with separate planes for IN, OUT, and GND. The IN and OUT planes should be isolated from each other  
by a GND plane section. In addition, the ground connection for the output capacitor should connect directly to  
the GND pin of the device.  
Equivalent series inductance (ESL) and equivalent series resistance (ESR) must be minimized in order to  
maximize performance and ensure stability. Every capacitor (CIN, COUT, CNR_SS, and CFF if used) must be placed  
as close as possible to the device and on the same side of the PCB as the regulator itself.  
Do not place any of the capacitors on the opposite side of the PCB from where the regulator is installed. The use  
of vias and long traces is strongly discouraged because they may impact system performance negatively and  
even cause instability.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS7H1210-SEP  
 
 
 
TPS7H1210-SEP  
ZHCSNP8 NOVEMBER 2021  
www.ti.com.cn  
10.2 Layout Example  
It may be possible to obtain acceptable performance with alternative PCB layouts.  
RFB_TOP  
RFB_BOT  
Sense Line  
Output Power Plane  
COUT  
5
4
3
2
1
NC  
GND  
NC  
6
20 OUT  
NC  
7
8
19  
Input GND Plane and Thermal Relief  
18 NC  
17 NC  
Thermal Pad  
NC  
9
Output GND Plane  
10  
16  
NC  
IN  
11  
13  
14 15  
12  
CNR  
Input Power Plane  
CIN  
10-1. TPS7H1210-SEP Layout Guideline  
10.3 Thermal Performance  
The high-current and high-voltage characteristics of the TPS7H1210-SEP means that, often enough, high power  
(heat) is dissipated from the device itself. This heat, if dissipated into the PCB, creates a temperature gradient in  
the surrounding area that causes nearby components to react to this temperature change (drift). In high-  
performance systems, such drift may degrade overall system accuracy and precision.  
The heat generated by the device is a result of the power dissipation, which depends on input voltage and load  
conditions. Power dissipation (PD) can be approximated by calculating the product of the output current times the  
voltage drop across the output pass element, as shown in 方程5:  
P
= V V  
× I  
OUT  
(5)  
D
IN  
OUT  
Be sure the PCB is able to effectively dissipate the heat resulting from the power dissipation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS7H1210-SEP  
 
 
 
TPS7H1210-SEP  
ZHCSNP8 NOVEMBER 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
11.1.1.1 Spice Models  
Computer simulation of circuit performance using SPICE is often useful when analyzing the performance of  
analog circuits and systems. A PSpice model for the TPS7H1210-SEP is available through the product folder  
under the Design & Development section.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
Texas Instrument, TPS7H1210-SEP Total Ionizing Dose (TID) radiation report  
Texas Instrument, TPS7H1210-SEP Single-Event Effects (SEE) radiation report  
Texas Instrument, TPS7H1210-SEP Evaluation Module (EVM) user's guide  
Texas Instrument, Pros and Cons of Using a Feedforward Capacitor with a Low-Dropout Regulator  
application report  
Vendor item drawing available, VID V62/21616  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS7H1210-SEP  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS7H1210MRGWSEP  
TPS7H1210MRGWTSEP  
V62/21616-01XE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
RGW  
RGW  
RGW  
RGW  
20  
20  
20  
20  
20  
250  
20  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-55 to 125  
-55 to 125  
7H1210  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
7H1210  
7H1210  
7H1210  
V62/21616-01XE-T  
250  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Mar-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RGW 20  
5 x 5, 0.65 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4227157/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGW0020A  
PLASTIC QUAD FLATPACK-NO LEAD  
5.1  
4.9  
B
PIN 1 INDEX AREA  
5.1  
4.9  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
3.15±0.1  
2X 2.6  
(0.1) TYP  
10  
6
16X 0.65  
5
11  
SYMM  
21  
2X  
2.6  
15  
1
0.36  
0.26  
20X  
PIN1 ID  
(OPTIONAL)  
0.1  
C A B  
C
20  
16  
0.05  
SYMM  
0.65  
0.45  
20X  
4219039/A 06/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGW0020A  
PLASTIC QUAD FLATPACK-NO LEAD  
(4.65)  
3.15)  
(2.6)  
(
20  
16  
16X (0.65)  
15  
1
(1.325)  
21  
SYMM  
(4.65) (2.6)  
(R0.05) TYP  
11  
5
20X (0.31)  
20X (0.75)  
(Ø0.2) VIA  
6
10  
TYP  
(1.325)  
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 15X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
EXPOSED METAL  
METAL  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219039/A 06/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGW0020A  
PLASTIC QUAD FLATPACK-NO LEAD  
(4.65)  
4X ( 1.37)  
2X (0.785)  
16  
20  
16X (0.65)  
21  
1
15  
2X (0.785)  
SYMM  
(4.65) (2.6)  
(R0.05) TYP  
11  
5
20X (0.31)  
20X (0.75)  
METAL  
TYP  
6
10  
SYMM  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
75% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4219039/A 06/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS7H2201-SP

耐辐射 QMLV、1.5V 至 7V 输入、6A 负载开关/电子保险丝

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H2201HKR/EM

耐辐射 QMLV、1.5V 至 7V 输入、6A 负载开关/电子保险丝 | HKR | 16 | 25 to 25

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H2201Y/EM

耐辐射 QMLV、1.5V 至 7V 输入、6A 负载开关/电子保险丝 | KGD | 0 | 25 to 25

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H2211-SP

耐辐射 QMLV、4.5V 至 14V 输入、3.5A 负载开关/电子保险丝

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H2211HKR/EM

耐辐射 QMLV、4.5V 至 14V 输入、3.5A 负载开关/电子保险丝 | HKR | 16 | 25 to 25

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H2211Y/EM

耐辐射 QMLV、4.5V 至 14V 输入、3.5A 负载开关/电子保险丝 | KGD | 0 | 25 to 25

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H2221-SEP

抗辐射、1.6V 至 5.5V 输入、1.25A 负载开关

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H2221MDCKTSEP

抗辐射、1.6V 至 5.5V 输入、1.25A 负载开关 | DCK | 6 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H3301-SP

耐辐射 QMLV、2.3V 至 3.5V 输入、3A 灌电流和拉电流 DDR 终端 LDO 稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H3301HKR/EM

Radiation-hardened QMLV, 2.3-V to 3.5-V input, 3-A sink and source DDR termination LDO regulator | HKR | 16 | 25 to 25

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H3302-SEP

耐辐射、2.3V 至 3.5V 输入、3A 灌电流和拉电流 DDR 终端 LDO 稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS7H4001-SP

耐辐射 QMLV、3V 至 7V 输入、18A 同步降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI