TPS7H2211HKR/EM [TI]

耐辐射 QMLV、4.5V 至 14V 输入、3.5A 负载开关/电子保险丝 | HKR | 16 | 25 to 25;
TPS7H2211HKR/EM
型号: TPS7H2211HKR/EM
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

耐辐射 QMLV、4.5V 至 14V 输入、3.5A 负载开关/电子保险丝 | HKR | 16 | 25 to 25

电子 开关
文件: 总43页 (文件大小:2200K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
TPS7H2211-SP 耐辐射保(RHA) 14V3.5A 电子保险丝  
开关由可与低压控制信号直接连接的打开和关闭输入  
(EN) 控制。过压保护和软启动可通OVP SS 引脚  
使用很少的外部组件进行编程。TPS7H2211-SP 采用  
陶瓷封装带有外露散热垫可提高散热性能。  
1 特性  
电离辐射总剂(TID) 100krad(Si)  
– 抗辐射加固保障100krad(Si)  
确定了单粒子效(SEE)  
器件信息  
等级(2)  
可订购器件型号(1)  
– 单粒子锁(SEL)、单粒子烧(SEB) 和单粒子  
穿(SEGR) 对于线性能量传(LET) 的抗扰度  
= 75MeV-cm2/mg*  
封装  
飞行等QMLV-  
RHA 100krad(Si)  
5962R1822001VXC  
16 CFP  
11.00mm ×  
9.60mm =  
1.56g(4)  
– 单粒子功能中(SEFI) 和单粒子瞬(SET) 对  
LET 的额定= 75MeV-cm2/mg*  
• 集成式单通eFuse  
• 输入电压范围4.5 V 14 V  
• 低导通电(RON)在温度25°C 和输入电压为  
12V 时具60mΩ最大值  
3.5A 最大持续开关电流  
• 低控制输入阈值支持使用  
1.2V1.8V2.5V 3.3V 逻辑电平  
• 可配置上升时间软启动)  
• 反向电流保(RCP)  
5962-1822001VXC  
TPS7H2211HKR/EM  
飞行等QMLV  
工程样品(3)  
飞行等QMLV-  
RHA KGD  
5962R1822001V9A  
已知合格芯片  
3.66mm × 5.75mm  
工程样品(3)  
TPS7H2211Y/EM  
TPS7H2211EVM-CVAL  
评估模块  
评估板  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 有关器件等级的其他信息请查SLYB235。  
(3) 这些器件仅适用于工程评估。器件按照不合规的流程进行加工  
处理。这些器件不适用于质检、生产、辐射测试或飞行用途。  
这些零器件无法55°C 125°C 的完MIL 额定温度范围  
内或运行寿命中保证其性能。  
• 过压保(OVP)  
• 内部电流限制快速跳变)  
• 热关断  
• 带散热垫的陶瓷封装  
(4) 质量误差±10% 以内。  
• 支持军用55°C 125°C温度范围  
VIN  
VOUT  
VIN  
VOUT  
SS  
*请参TPS7H2211-SP SEE 辐射报告了解测试条件和完整  
信息  
CSS  
RTOP_EN  
2 应用  
RTOP_OVP  
TPS7H2211-SP  
卫星电力系(EPS)  
• 冷备用电源冗余)  
• 电源时序  
命令和数据处理  
通信负载  
• 耐辐射电源树  
EN  
RBOT_EN  
OVP  
GND  
RBOT_OVP  
3 说明  
TPS7H2211-SP 是一个单通道 eFuse具有附加功能  
的集成 FET 负载开关),可提供反向电流保护、过压  
保护和可配置的上升时间以更大限度减少浪涌电流  
软启动。此器件包含一个可在 4.5V 14V 输入电  
压范围内运行P MOSFET并且支持最3.5A  
的持续电流。  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEW6  
 
 
 
 
 
 
 
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
Table of Contents  
9.3 Feature Description...................................................18  
9.4 Device Functional Modes..........................................23  
10 Application and Implementation................................25  
10.1 Application Information........................................... 25  
10.2 Typical Applications................................................ 25  
11 Power Supply Recommendations..............................35  
12 Layout...........................................................................35  
12.1 Layout Guidelines................................................... 35  
12.2 Layout Example...................................................... 35  
13 Device and Documentation Support..........................36  
13.1 Device Support....................................................... 36  
13.2 Documentation Support.......................................... 36  
13.3 Receiving Notification of Documentation Updates..36  
13.4 支持资源..................................................................36  
13.5 Trademarks.............................................................36  
13.6 Electrostatic Discharge Caution..............................36  
13.7 术语表..................................................................... 36  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Related Products.............................................................2  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 7  
7.1 Absolute Maximum Ratings........................................ 7  
7.2 ESD Ratings............................................................... 7  
7.3 Recommended Operating Conditions.........................8  
7.4 Thermal Information....................................................8  
7.5 Electrical Characteristics.............................................9  
7.6 Switching Characteristics..........................................11  
7.7 Quality Conformance Inspection...............................11  
7.8 Typical Characteristics..............................................12  
8 Parameter Measurement Information..........................15  
9 Detailed Description......................................................17  
9.1 Overview...................................................................17  
9.2 Functional Block Diagram.........................................17  
Information.................................................................... 37  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (November 2021) to Revision B (May 2022)  
Page  
• 发布了器件的裸片版本5962R1822001V9A TPS7H2211Y/EM................................................................1  
Changes from Revision * (August 2021) to Revision A (November 2021)  
Page  
• 发布5962R1822001VXC 器件........................................................................................................................1  
• 将器件分类从“负载开关”更改为“eFuse并更新了整个文档中的相关措辞...............................................1  
Added additional information about the NC pins and added a default recommendation....................................3  
5 Related Products  
PROGRAMMABLE  
CURRENT LIMIT  
DEVICE  
VIN RANGE  
MAXIMUM OUTPUT CURRENT  
CURRENT SENSE  
TPS7H2211-SP  
TPS7H2201-SP  
4.5 V to 14 V  
1.5 V to 7 V  
3.5 A  
6 A  
No  
No  
Yes  
Yes  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS7H2211-SP  
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
6 Pin Configuration and Functions  
1
16  
15  
14  
13  
VOUT  
VOUT  
VOUT  
VOUT  
SS  
VIN  
2
VIN  
3
4
VIN  
VIN  
NC  
Thermal Pad  
5
6
12  
11  
NC  
EN  
7
8
10  
9
NC  
OVP  
GND  
NC  
6-1. HKR Package  
16-Pin CFP With Thermal Pad  
(Top View)  
6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
1
NAME  
2
VIN  
I
Switch input. An input bypass capacitor is recommended for minimizing VIN dip.  
Active high switch control input. Do not float this pin.  
3
4
6
EN  
OVP  
GND  
SS  
I
I
Overvoltage protection. Set using an external resistor divider. If no OVP is desired, connect  
this pin to GND. Do not float this pin.  
7
8
Device ground.  
Soft start (switch slew rate control). If this functionality is not desired, the SS pin must be left  
disconnected (floating). In all cases be sure to follow the requirements of 9.3.3.  
12  
I/O  
13  
14  
15  
16  
5
VOUT  
NC  
O
Switch output. A minimum 10-µF output capacitor is recommended.  
NC No connect. These pins are not internally connected. It is recommended to connect  
these pins to GND to prevent charge buildup; however, these pins can also be left open or  
tied to any voltage between GND and VIN.  
9
10  
11  
Thermal pad (exposed center pad) for heat dissipation purposes. The thermal pad is  
internally connected to the seal ring and GND.  
Thermal Pad  
Metal Lid  
The lid is internally connected to the thermal pad and GND through the seal ring.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS7H2211-SP  
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
6-2. Bare Die Information  
BACKSIDE  
POTENTIAL  
BOND PAD METALLIZATION  
DIE THICKNESS  
BACKSIDE FINISH  
BOND PAD THICKNESS  
COMPOSITION  
15 mils  
Silicon with backgrind  
Ground  
AlCu  
1050 nm  
2
5
3
6
4
7
1
8
61 60 59 58  
57 56 55 54  
9
10 11 12  
53 52 51 50  
49 48 47 46  
13 14 15 16  
45 44 43 42  
41 40 39 38  
17 18 19 20  
21 22 23 24  
25  
26  
27  
37  
36  
28  
29  
35  
30  
31  
32 33  
34  
0
0
3510  
3662  
76  
1. All dimensions in microns (μm).  
2. The inner rectangle is the die and the outer rectangle is the die plus scribe lines.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS7H2211-SP  
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
6-3. Bond Pad Coordinates in Microns (μm)  
DESCRIPTION  
PAD NUMBER  
X MIN  
725.8  
169.3  
354.8  
540.3  
169.3  
354.8  
540.3  
725.8  
169.3  
354.8  
540.3  
725.8  
169.3  
354.8  
540.3  
725.8  
169.3  
354.8  
540.3  
725.8  
169.3  
354.8  
540.3  
725.8  
61.1  
Y MIN  
5485.5  
5485.5  
5485.5  
5485.5  
5300  
X MAX  
881.3  
Y MAX  
5641  
VIN  
VIN  
1
2
324.8  
5641  
VIN  
3
510.3  
5641  
VIN  
4
695.8  
5641  
VIN  
5
324.8  
5455.5  
5455.5  
5455.5  
5455.5  
5243.45  
5243.45  
5243.45  
5243.45  
5057.95  
5057.95  
5057.95  
5057.95  
4103.4  
4103.4  
4103.4  
4103.4  
3917.9  
3917.9  
3917.9  
3917.9  
2181.15  
1991.65  
1800.8  
1531.85  
1236.25  
801.4  
VIN  
6
5300  
510.3  
VIN  
7
5300  
695.8  
VIN  
8
5300  
881.3  
VIN  
9
5087.95  
5087.95  
5087.95  
5087.95  
4902.45  
4902.45  
4902.45  
4902.45  
3947.9  
3947.9  
3947.9  
3947.9  
3762.4  
3762.4  
3762.4  
3762.4  
2025.65  
1836.15  
1645.3  
1376.35  
1080.75  
645.9  
324.8  
VIN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
510.3  
VIN  
695.8  
VIN  
881.3  
VIN  
324.8  
VIN  
510.3  
VIN  
695.8  
VIN  
881.3  
VIN  
324.8  
VIN  
510.3  
VIN  
695.8  
VIN  
881.3  
VIN  
324.8  
VIN  
510.3  
VIN  
695.8  
VIN  
881.3  
VINA(1)  
VINA(1)  
NC  
216.6  
61.1  
216.6  
61.1  
216.6  
NC  
61.1  
216.6  
EN  
61.1  
216.6  
NC  
61.1  
216.6  
OVP  
GND  
GND  
NC  
61.1  
451.4  
216.6  
606.9  
452.45  
641.95  
3103.2  
3683.4  
3683.4  
3683.4  
3575.15  
3389.65  
3204.15  
3018.65  
3575.15  
3389.65  
3204.15  
3018.65  
61.1  
607.95  
797.45  
3258.7  
3838.9  
3838.9  
3838.9  
3730.65  
3545.15  
3359.65  
3174.15  
3730.65  
3545.15  
3359.65  
3174.15  
216.6  
61.1  
216.6  
61.1  
216.6  
NC  
652.7  
808.2  
NC  
1221.4  
1715.65  
3762.4  
3762.4  
3762.4  
3762.4  
3947.9  
3947.9  
3947.9  
3947.9  
1376.9  
1871.15  
3917.9  
3917.9  
3917.9  
3917.9  
4103.4  
4103.4  
4103.4  
4103.4  
SS  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS7H2211-SP  
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
6-3. Bond Pad Coordinates in Microns (μm) (continued)  
DESCRIPTION  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
PAD NUMBER  
X MIN  
Y MIN  
4902.45  
4902.45  
4902.45  
4902.45  
5087.95  
5087.95  
5087.95  
5087.95  
5300  
X MAX  
3730.65  
3545.15  
3359.65  
3174.15  
3730.65  
3545.15  
3359.65  
3174.15  
3730.65  
3545.15  
3359.65  
3174.15  
3730.65  
3545.15  
3359.65  
3174.15  
Y MAX  
5057.95  
5057.95  
5057.95  
5057.95  
5243.45  
5243.45  
5243.45  
5243.45  
5455.5  
5455.5  
5455.5  
5455.5  
5641  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
3575.15  
3389.65  
3204.15  
3018.65  
3575.15  
3389.65  
3204.15  
3018.65  
3575.15  
3389.65  
3204.15  
3018.65  
3575.15  
3389.65  
3204.15  
3018.65  
5300  
5300  
5300  
5485.5  
5485.5  
5485.5  
5485.5  
5641  
5641  
5641  
(1) VINA supplies internal circuitry. Connect VINA to VIN in a single point manner.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS7H2211-SP  
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted); all voltages referenced to GND(1)  
MIN  
0.5  
0.5  
0.3  
0.3  
MAX UNIT  
VIN  
Input voltage pins  
16  
16  
V
V
VOUT  
SS  
Output voltage pins  
Soft start pin  
16  
V
EN, OVP  
IIN, IOUT  
IIN_PLS, IOUT_PLS  
TJ  
Enable and over voltage protection pins  
Continuous switch current  
Pulsed switch current (t 5 µs)  
Junction temperature  
7.5  
5.4  
30  
V
A
A
150  
150  
°C  
°C  
55  
65  
Tstg  
Storage temperature  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per ANSI/ESDA/JEDEC specification JS-002(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS7H2211-SP  
 
 
 
 
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted); all voltages referenced to GND  
MIN  
4.5  
0
MAX  
14  
UNIT  
V
VIN  
Input voltage pins  
VOUT  
EN, OVP  
VINSR  
IIN, IOUT  
TJ  
Output voltage pins  
14(1)  
7
V
Enable and overvoltage pins  
Input voltage slew rate  
Continuous switch current  
Operating junction temperature(2)  
0
V
0.015  
3.5  
V/µs  
A
125  
°C  
55  
(1) This maximum VOUT voltage is only applicable when the device is disabled (EN = Low). When the device is enabled (EN = High), the  
maximum VOUT voltage is the input voltage, VIN.  
(2) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature  
may have to be derated. Maximum ambient temperature [TA(max)] is dependent on the maximum operating junction temperature  
[TJ(max)], the maximum power dissipation of the device in the application [PD(max)], and the junction-to-ambient thermal resistance of the  
part/package in the application (θJA), as given by the equation: TA (max) = TJ(max) (θJA × PD(max)  
)
7.4 Thermal Information  
TPS7H2211-SP  
THERMAL METRIC(1)  
HKR (CFP)  
16 PINS  
23  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
5.4  
7.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.3  
ψθJT  
7.4  
ψθJB  
RθJC(bot)  
0.33  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS7H2211-SP  
 
 
 
 
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
7.5 Electrical Characteristics  
over operating ambient temperature range TA = 55°C to 125°C, VIN = 4.5 to 14 V, COUT = 10 µF, and all voltages  
referenced to GND (unless otherwise noted); includes group E radiation testing at TA = 25°C for RHA devices(1)  
SUB-  
PARAMETER  
TEST CONDITIONS  
GROUP  
MIN  
TYP  
MAX UNIT  
(2)  
POWER SUPPLIES AND CURRENTS  
VINUVLOR  
VINUVLOF  
Internal VIN UVLO rising  
Internal VIN UVLO falling  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1
3.2  
2.6  
3.4  
2.9  
0.55  
5
3.8  
3.2  
V
V
V
HYSTVIN-UVLO Internal VIN UVLO hysteresis  
0.75  
IQ  
Quiescent current  
IOUT = 0 mA, EN = 7 V  
10 mA  
1.3  
VIN = 14 V  
VIN = 12 V  
VIN = 9 V  
1
0.65  
0.15  
0.04  
6.9  
5.9  
4.4  
3.7  
390  
363  
264  
249  
208  
247  
44  
0.94  
VIN to VOUT forward leakage  
current  
EN = 0 V, VOUT = 0 V, measured  
VOUT current  
IF  
mA  
mA  
0.49  
0.23  
10  
VIN = 4.5 V  
VIN = 14 V  
VIN = 12 V  
VIN = 9 V  
9.5  
8
EN = 0 V, VOUT = 0 V, measured  
VIN current  
ISD VIN  
VIN off-state supply current  
VIN = 4.5 V  
VIN = 4.5 V  
VIN = 14 V  
VIN = 4.5 V  
VIN = 14 V  
VIN = 4.5 V  
VIN = 14 V  
7
Reverse current protection enter  
voltage(3)  
VRCP_ENTER  
VRCP_EXIT  
tRCP  
mV  
mV  
µs  
EN = 7 V, see 8-1  
EN = 7 V, see 8-2  
EN = 7 V, see 8-1  
1
1
Reverse current protection exit  
voltage(3)  
1
9
Reverse current protection  
response time  
9
EN = 0 V, VOUT = 0 to 14 V and VOUT > VIN  
EN = 7 V, VIN = 0 V, VOUT = 0 to 14 V  
1, 2, 3  
1, 2, 3  
250  
240  
Reverse current protection leakage  
current  
IRCP  
µA  
37  
SOFT START  
ISS  
Soft start charge current  
1, 2, 3  
65  
83 µA  
ENABLE (EN) INPUT  
VIHEN  
EN threshold voltage, rising  
1, 2, 3  
1, 2, 3  
1, 2, 3  
9, 10, 11  
1, 2, 3  
1, 2, 3  
0.60  
0.50  
94  
0.63  
0.52  
109  
0.68  
0.57  
V
V
VILEN  
EN threshold voltage, falling  
EN hysteresis voltage  
HYSTEN  
tLOW_OFF  
VINEN  
IEN  
139 mV  
µs  
EN signal low time during cycling  
VIN percentage for enable (4)  
EN pin input leakage current  
20  
VOUT falls to < 90%, see 8-3  
75%  
EN = 7 V, VIN = 14 V  
2
12  
nA  
OVERVOLTAGE PROTECTION (OVP)  
VOVPR  
VOVPF  
HYSTOVP  
IOVP  
OVP threshold voltage, rising  
OVP threshold voltage, falling  
OVP hysteresis voltage  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1.11  
1.09  
5
1.15  
1.14  
14  
1.18  
1.17  
V
V
4.6 V < VIN < 14 V  
OVP = 7 V  
40 mV  
OVP pin input leakage current  
1.5  
12  
nA  
CURRENT LIMIT(5)  
IL_trip  
IL_peak  
tftr  
Internal current limit trip point  
VIN = 12 V, CSS = 2 nF  
1
1
9
9
8
25  
A
A
Fast trip off current limit peak  
Fast trip off response time  
Fast trip off off-time  
VIN = 12 V, 10 to 10 mshort in 1 µs,  
switch inductance = 270 nH  
2.3  
51  
µs  
µs  
tfto  
VIN = 12 V, CSS = 2 nF  
THERMAL SHUTDOWN  
Thermal shutdown  
155  
20  
°C  
°C  
Thermal shutdown hysteresis  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS7H2211-SP  
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
over operating ambient temperature range TA = 55°C to 125°C, VIN = 4.5 to 14 V, COUT = 10 µF, and all voltages  
referenced to GND (unless otherwise noted); includes group E radiation testing at TA = 25°C for RHA devices(1)  
SUB-  
PARAMETER  
TEST CONDITIONS  
GROUP  
MIN  
TYP  
MAX UNIT  
(2)  
RESISTANCE CHARACTERISTICS  
3
41  
43  
54  
65  
72  
41  
43  
54  
65  
72  
41  
43  
54  
65  
72  
41  
43  
54  
65  
72  
44  
47  
59  
71  
79  
45  
46  
60  
71  
79  
45  
46  
60  
71  
79  
45  
46  
55°C  
40°C  
25°C  
VIN = 14 V, IOUT = 3.5 A  
1
85°C  
125°C  
55°C  
40°C  
25°C  
2
3
VIN = 12 V, IOUT = 3.5 A  
VIN = 9 V, IOUT = 3.5 A  
VIN = 6 V, IOUT = 3.5 A  
VIN = 4.5 V, IOUT = 3.5 A  
1
85°C  
125°C  
55°C  
40°C  
25°C  
2
3
On-state resistance,  
RON  
mΩ  
1
61  
71  
79  
45  
47  
61  
71  
79  
48  
50  
65  
76  
84  
lead length 2.5 mm  
85°C  
125°C  
55°C  
40°C  
25°C  
2
3
1
85°C  
125°C  
55°C  
40°C  
25°C  
2
3
1
2
85°C  
125°C  
(1) See the 5962-18220 SMD (standard microcircuit drawing) for additional information on the RHA devices.  
(2) For subgroup definitions, see the Quality Conformance Inspection table  
(3) This parameter is not referenced to GND; it is referenced from VOUT to VIN.  
(4) VIN must be 75% of its final value before EN is asserted only if VINSR > VOUTSR  
.
(5) See 9.3.2 for additional information on current limits and how the associated parameters are defined.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS7H2211-SP  
 
 
 
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
7.6 Switching Characteristics  
over operating ambient temperature TA = 25°C, COUT = 10 µF, CSS = 2 nF, RLOAD = 10 Ω(unless otherwise noted); all  
voltages referenced to GND  
PARAMETER  
TEST CONDITIONS  
SUBGROUP(1)  
MIN  
TYP  
MAX  
UNIT  
VIN = 5 V  
tON  
Turn-on time  
107  
56  
167  
8
µs  
µs  
µs  
µs  
µs  
tOFF  
Turn-off time  
9
9
See 8-4  
See 8-5  
tF  
VOUT fall time  
OVP assert time  
OVP deassert time  
tASSERT  
tDEASSERT  
VIN = 12 V  
tON  
41  
Turn-on time  
220  
41  
139  
6
µs  
µs  
µs  
µs  
µs  
tOFF  
Turn-off time  
9
9
See 8-4  
See 8-5  
tF  
VOUT fall time  
OVP assert time  
OVP deassert time  
tASSERT  
tDEASSERT  
63  
(1) For subgroup definitions, see the Quality Conformance Inspection table  
7.7 Quality Conformance Inspection  
MIL-STD-883, Method 5005 - Group A  
SUBGROUP  
DESCRIPTION  
Static tests at  
TEMPERATURE (°C)  
1
2
25  
125  
55  
25  
Static tests at  
3
Static tests at  
4
Dynamic tests at  
Dynamic tests at  
Dynamic tests at  
5
125  
55  
25  
6
7
Functional tests at  
Functional tests at  
Functional tests at  
Switching tests at  
Switching tests at  
Switching tests at  
8A  
8B  
9
125  
55  
25  
10  
11  
125  
55  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS7H2211-SP  
 
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
7.8 Typical Characteristics  
6.5  
1.3  
1.2  
1.1  
1
VIN = 4.5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 14 V  
VIN = 4.5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 14 V  
6
5.5  
5
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
4.5  
4
3.5  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (°C)  
Temperature (°C)  
7-1. IQ vs Temperature Across VIN  
7-2. IF vs Temperature Across VIN  
9
8.5  
8
100  
80  
60  
40  
20  
0
VIN = 4.5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 14 V  
VOUT = 4.5 V  
VOUT = 9 V  
VOUT = 12 V  
7.5  
7
6.5  
6
5.5  
5
4.5  
4
3.5  
3
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (°C)  
Temperature (°C)  
VIN = 0 V  
7-3. ISD vs Temperature Across VIN  
7-4. IRCP vs Temperature Across VOUT With EN  
= 7 V  
140  
68  
VOUT = 4.5 V  
VOUT = 9 V  
VOUT = 12 V  
VOUT = 14 V  
VIN = 4.5 V  
VIN = 9 V  
VIN = 12 V  
VIN = 14 V  
67.5  
120  
100  
80  
60  
40  
20  
0
67  
66.5  
66  
65.5  
65  
64.5  
64  
63.5  
63  
62.5  
62  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (°C)  
Temperature (°C)  
VIN = 0 V  
7-5. IRCP vs Temperature Across VOUT With EN  
7-6. ISS vs Temperature Across VIN  
= 0 V  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS7H2211-SP  
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
0.641  
0.528  
0.527  
0.526  
0.525  
0.524  
0.523  
VIN = 4.5 V, 9 V, 12 V, 14 V  
VIN = 4.5 V, 9 V, 12 V, 14 V  
0.639  
0.637  
0.635  
0.633  
0.631  
0.629  
0.627  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (°C)  
Temperature (°C)  
There was no observed VIN dependency across these  
measured values  
There was no observed VIN dependency across these  
measured values  
7-7. VIHEN vs Temperature Across VIN  
7-8. VILEN vs Temperature Across VIN  
1.155  
1.135  
VIN = 4.5 V, 9 V, 12 V, 14 V  
VIN = 4.5 V, 9 V, 12 V, 14 V  
1.153  
1.133  
1.151  
1.149  
1.147  
1.145  
1.143  
1.141  
1.139  
1.137  
1.135  
1.131  
1.129  
1.127  
1.125  
1.123  
1.121  
1.119  
1.117  
1.115  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (°C)  
Temperature (°C)  
There was no observed VIN dependency across these  
measured values  
There was no observed VIN dependency across these  
measured values  
7-9. VOVPR vs Temperature Across VIN  
7-10. VOVPF vs Temperature Across VIN  
80  
80  
IOUT = 1 A  
IOUT = 1 A  
76  
72  
68  
64  
60  
56  
52  
48  
44  
40  
76  
72  
68  
64  
60  
56  
52  
48  
44  
40  
IOUT = 3 A  
IOUT = 3.5 A  
IOUT = 3 A  
IOUT = 3.5 A  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (°C)  
Temperature (°C)  
7-11. On-Resistance vs Temperature Across  
7-12. On-Resistance vs Temperature Across  
Loads at VIN = 4.5 V  
Loads at VIN = 6 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS7H2211-SP  
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
80  
80  
76  
72  
68  
64  
60  
56  
52  
48  
44  
40  
IOUT = 1 A  
IOUT = 3 A  
IOUT = 3.5 A  
IOUT = 1 A  
IOUT = 3 A  
IOUT = 3.5 A  
76  
72  
68  
64  
60  
56  
52  
48  
44  
40  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (°C)  
Temperature (°C)  
7-13. On-Resistance vs Temperature Across  
7-14. On-Resistance vs Temperature Across  
Loads at VIN = 9 V  
Loads at VIN = 12 V  
80  
IOUT = 1 A  
76  
72  
68  
64  
60  
56  
52  
48  
44  
40  
IOUT = 3 A  
IOUT = 3.5 A  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (°C)  
7-15. On-Resistance vs Temperature Across Loads at VIN = 14 V  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS7H2211-SP  
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
8 Parameter Measurement Information  
VIN + 0.7 V  
VOUT  
VIN t ìXí V  
0.7 V  
VRCP_ENTER  
VOUT - VIN  
-0.1 V  
IOUT  
0 A  
IRCP  
tRCP  
A. VIN is held constant during the test.  
B. VRCP_ENTER is referenced from VOUT to VIN. It is the threshold that, when reached, will turn-off the main switch FETs to prevent reverse  
current flow.  
8-1. Reverse Current Protection Enter (VRCP_ENTER) Test Waveforms  
VIN + 0.7 V  
VOUT  
VIN t ìXí V  
0.7 V  
VRCP_EXIT  
-0.1 V  
VOUT - VIN  
IOUT  
IRCP  
0 A  
A. VIN is held constant during the test.  
B. VRCP_EXIT is referenced from VOUT to VIN. It is the threshold that, when reached, will turn-off the reverse current protection feature.  
8-2. Reverse Current Protection Exit (VRCP_EXIT) Test Waveforms  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS7H2211-SP  
 
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
90% × VIN  
IOUT  
tLOW_OFF  
EN  
VIHEN  
VIHEN  
VILEN  
VILEN  
t < tLOW_OFF  
t tLOW_OFF  
8-3. EN Signal Low Time to Restart Device (tLOW_OFF  
)
50%  
EN  
tF  
tOFF  
90%  
tON  
50%  
50%  
VOUT  
10%  
8-4. Turn-On Time (tON), Turn-Off Time (tOFF), and VOUT Fall Time (tF) Waveforms  
1.25 V  
1.00 V  
1.25 V  
1.00 V  
VOVPR(MAX)  
VOVPR(MIN)  
VOVPF(MAX)  
VOVPF(MIN)  
(OVP Rising  
Threshold)  
(OVP Falling  
Threshold)  
OVP  
tASSERT  
VOUT  
tDEASSERT  
90% × VOUT  
10% × VOUT  
A. The OVP test signal uses a typical rise time and fall time of 30 ns.  
8-5. OVP Assert (tASSERT) and OVP Deassert (tDEASSERT) Waveforms  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS7H2211-SP  
 
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TPS7H2211-SP device is a single channel, 3.5-A eFuse with a programmable turn-on slew rate (soft start)  
and overvoltage protection (OVP). Additionally, the TPS7H2211-SP features reverse current protection capability  
for power distribution applications. It is available as a radiation hardness assured device to 100 krad(Si).  
9.2 Functional Block Diagram  
VIN  
Linear  
regulator  
AVDD  
Current  
Sense  
Overcurrent  
Protection  
6 V regulator  
AVDD  
EN  
+
VIHEN  
VILEN  
-
CONTROL  
LOGIC  
Driver  
AVDD  
+
OVP  
VOVPR  
VOVPF  
-
VOUT  
SS  
Thermal  
Shutdown  
RAMP  
CONTROL  
GND  
ISS  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS7H2211-SP  
 
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Enable and Overvoltage Protection  
9-1 shows how resistor dividers from VIN connected to the EN and OVP pins can be used to set the enable  
and overvoltage trip points.  
TPS7H2211-SP  
VIN  
RTOP_OVP  
EN  
RTOP_EN  
EN  
ON  
+
OFF  
VIHEN  
VILEN  
-
OVP  
OVP  
+
VOVPR  
VOVPF  
-
RBOT_EN  
RBOT_OVP  
GND  
9-1. Enable and OVP Thresholds Set by Resistor Dividers  
The EN pin turns on or turns off the internal switch FETs. An EN voltage greater than VIHEN turns on the switch,  
and a voltage less than VILEN turns off the switch. The external resistor divider allows the enable threshold to be  
configured for a different enable rising voltage (VINEN_RISE) and a disable falling voltage (VINEN_FALL) based on  
the VIHEN and VILEN specifications respectively. Generally, applications are optimized to configure the enable  
rising voltage. However, if desired the falling voltage can be configured to use the EN pin as an under voltage  
protection (UVP) feature.  
Typically RTOP_EN is set to 100 kΩand a value for RBOT_EN is calculated. 10.2.2.2.2 shows how these resistor  
values could be calculated. The enable rising and falling threshold parameters are shown in 9-2, and  
equations to calculate the resulting rising and falling voltages are shown in 方程式 1 and 方程式 2 respectively.  
These equations do not take into account the small EN leakage current which has minimal effect on the results.  
Additionally, ensure EN is not asserted before VIN is 75% of its final value as indicated in the electrical  
characteristics footnote (see 7.5). This is only required if VINSR > VOUTSR. This requirement is to prevent a  
false overcurrent trigger event.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS7H2211-SP  
 
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
VINEN_RISE(MAX)  
VINEN_RISE(MIN)  
VINEN_FALL(MAX)  
VINEN_FALL(MIN)  
VIN  
VIHEN(MAX)  
VIHEN(MIN)  
VILEN(MAX)  
VILEN(MIN)  
EN  
9-2. Enable Rising and Falling Thresholds  
RTOP _EN + RBOT _EN  
VINEN_RISE = V  
IHEN  
RBOT _EN  
(1)  
(2)  
RTOP _EN + RBOT _EN  
VINEN_FALL = V  
ILEN  
RBOT _EN  
Similarly, the overvoltage protection (OVP) feature can be configured using a resistor divider from VIN connected  
to the OVP pin. A voltage at the OVP pin greater than VOVPR will turn off the switch FETs, and a voltage less  
than VOVPF will keep the switch FETs on. If this feature is not desired, the OVP pin must be grounded.  
The OVP feature is intended to protect downstream devices from an overvoltage condition (by turning off the  
eFuse if the OVP threshold is reached). The OVP feature does not protect the TPS7H2211-SP eFuse itself from  
higher values of VIN. Follow the 14-V maximum VIN value and the 7-V maximum OVP value in the  
recommended operating conditions.  
Typically RTOP_OVP is set to 100 kΩ and a value for RBOT_OVP is calculated. 10.2.1.2.3 shows how these  
resistor values could be calculated. The OVP rising and falling threshold parameters are shown in 9-3, and  
equations to calculate the resulting rising and falling voltages are shown in 方程式 3 and 方程式 4 respectively.  
These equations do not take into account the small OVP leakage current which has minimal effect on the results.  
VINOVP_RISE(MAX)  
VINOVP_RISE(MIN)  
VINOVP_FALL(MAX)  
VINOVP_FALL(MIN)  
VIN  
VOVPR(MAX)  
VOVPR(MIN)  
VOVPF(MAX)  
VOVPF(MIN)  
OVP  
9-3. OVP Rising and Falling Thresholds  
RTOP _ OVP + RBOT _ OVP  
VINOVP _RISE = VOVPR  
RBOT _ OVP  
(3)  
RTOP _ OVP + RBOT _ OVP  
VINOVP _FALL = VOVPF  
RBOT _ OVP  
(4)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS7H2211-SP  
 
 
 
 
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
9.3.2 Current Limit  
There is an internal current limit intended to protect the TPS7H2211-SP against hard short circuit conditions. 图  
9-4 shows a short circuit condition followed by an immediate recovery. The TPS7H2211-SP internal short circuit  
protection trips at IL_trip. It takes time tftr, for the internal circuitry to respond to the short circuit condition. Before  
the current limit circuitry responds, the current through the switch will continue to rise to a peak value, IL_peak. At  
this point the current limit circuitry responds and quickly turns off the switch. As there is no active discharge on  
VOUT, the rate of discharge will depend on external factors such as the short condition and COUT. The switch  
will stay off for time tfto, before turning-on again.  
tftr  
tSS  
IL_peak  
tfto  
IL_trip  
TIME  
Normal operation  
Fast trip mode  
Normal Operation  
Startup  
Fault is no longer present  
TIME  
Startup  
Normal operation  
Fast trip mode  
Normal Operation  
A. The following values were measured at VIN = 12 V, a parasitic switch inductance nominal value of 270 nH, and ROUT changing from 10  
Ωto 10 mΩin 1 μs:  
IL_trip(typ) = 8.5 A  
tftr(typ) = 2.3 μs  
IL_peak(typ) = 25 A  
tfto(typ) = 51 μs  
9-4. Single Hard Short and Recovery  
As shown in 9-4, the TPS7H2211-SP is designed to quickly respond to a hard fault condition to minimize the  
current peak. IL_trip and tftr are highly dependent upon the actual fault conditions.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS7H2211-SP  
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
While 9-4 shows a hard short condition that immediately recovers, 9-5 shows a hard short condition that  
does not immediately recover. Instead, the device twice enters the fast trip mode before the fault is removed.  
CAUTION  
A short will repeat indefinitely until the short is removed or until the device is disabled. The  
TPS7H2211-SP is not intended to remain in this mode indefinitely.  
tftr  
tSS  
IL_peak  
Fault is still  
present  
tfto  
tfto  
IL_trip  
TIME  
Normal operation  
Fast trip mode  
Fast trip mode  
Normal Operation  
Startup  
Startup  
Fault is no longer present  
TIME  
Normal operation  
Fast trip mode  
Fast trip mode  
Startup  
Normal Operation  
Startup  
9-5. Two Hard Shorts and Recovery  
9.3.3 Soft Start (Adjustable Rise Time)  
An external capacitor, CSS, connected between the VOUT and SS pins, sets tSS, the soft start time. tSS is defined  
as the time it takes VOUT to rise from 10% to 90% of its final value. 方程式 5 calculates the needed CSS  
capacitor where ISS is the soft start current (typically 65 μA) and VOUT is the final output voltage reached (for  
example, 12 V).  
tSS × ISS  
Css  
=
VOUT × 0.8  
(5)  
In order to avoid false trips due to the internal current limit being triggered during startup, the slew rate VOUTSR  
,
must satisfy 方程式 6 where IL_trip is the internal current limit trip point (typically 8.5 A), IOUT is the final output  
current (max of 3.5 A), and COUT is the output capacitance. In the Application and Implementation Soft Start  
Time section, a suggested derated value for IL_TRIP is shown.  
If external current limit circuitry is used, it is recommended to replace the IL_trip value with the minimum trip-point  
value of the external current limit (assuming this trip-point is less than IL_trip). This is in order to ensure the  
external current limit circuitry isn't tripped during startup.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS7H2211-SP  
 
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
IL_trip F IOUT  
VOUTSR  
<
COUT  
(6)  
The output slew rate of the eFuse, VOUTSR, can be calculated as shown in 方程式 7. To determine the worst  
case slew rate, it is recommended to use the maximum value of ISS, 83 μA, and the minimum value of the  
selected capacitor. These worst case conditions may also be used to calculate the worst case (fastest) tSS time.  
ISS  
VOUT × 0.8  
tSS  
VOUTSR  
=
=
CSS  
(7)  
9.3.4 Parallel Operation  
The TPS7H2211-SP can be configured in parallel operation either to increase the current capability, up to nearly  
7 A, or to reduce the on-state resistance. In this case, all pins are shared as shown in 9-6.  
Since the SS pin sinks current, the combined pins result in a doubled current sink value; consequently the  
calculated capacitance values must be doubled. The EN and OVP pins have no additional changes from the  
non-parallel case as they are high impedance inputs.  
VIN  
VOUT  
COUT  
VIN  
VOUT  
SS  
RTOP_EN  
RTOP_OVP  
CSS  
EN  
EN  
SS  
TPS7H2211-SP  
OVP  
OVP  
RBOT_EN  
RBOT_OVP  
GND  
VIN  
EN  
VOUT  
SS  
EN  
SS  
OVP  
OVP  
TPS7H2211-SP  
GND  
9-6. Parallel Configuration to Reduce Resistance or Increase Current Capability  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS7H2211-SP  
 
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
9.3.5 Reverse Current Protection  
The TPS72211-SP eFuse features back to back FETs to prevent current flow from VIN to VOUT and from VOUT  
to VIN when the switch is disabled (excluding leakage currents). This supports cold sparing (redundancy)  
applications. For example, VOUT may be up to 14 V while VIN is between 0 V and 14 V. In all cases, only small  
leakage current will result.  
Additionally, the eFuse features active reverse current protection when the switch is enabled. This protection  
feature is activated when VOUT rises above VIN by VRCP_ENTER (typically 363 mV at VIN = 14 V) which causes  
the switch to turn-off. After VRCP_ENTER is reached, it will take time, tRCP (typically 247 μs at VIN = 14 V) for the  
switch to turn off. Until the switch responds and turns off, there may be high reverse current through the switch.  
After this time, only a small amount of leakage current, IRCP, will result from VOUT to VIN (typically 40 μA). The  
switch will again be enabled after VOUT VIN falls to less than or equal to VRCP_EXIT (typically 249 mV at VIN =  
14 V).  
The test waveforms for VRCP_ENTER and VRCP_EXIT can be found in 8-1 and 8-2 respectively.  
9.3.6 Forward Leakage Current  
When VIN is powered but the TPS7H2211-SP is disabled (EN is low), the internal FETs are disabled, creating a  
high impedance path from VIN to VOUT. However, there are parasitic leakage paths that could cause VOUT to  
slowly charge. The forward leakage current, IF, indicates how much current flows from VIN to VOUT during this  
situation. This is typically 0.65 mA at VIN = 12 V but could be a maximum of 1.3 mA at 14 V.  
Some applications may tolerate these leakage mechanisms while some applications may need to pay particular  
attention to this behavior. It is particularly relevant when VOUT is a high impedance node (and therefore the  
leakage current goes entirely to charging VOUT instead of being dissipated). By using the basic capacitor  
equation shown in 方程8, the time for the voltage to rise to a given value can be theoretically calculated.  
Δt = ΔVOUT × COUT / IF  
(8)  
where  
• Δt = time to charge to final value  
• ΔVOUT = change in output voltage; for a 0 V starting voltage, use VIN  
For example, with a 12-V input voltage and a 220-µF output capacitance, VOUT will typically charge to 12 V in  
4.1 seconds (using IF = 0.65 mA, ΔVOUT = 12 V, COUT = 220 µF).  
If the output voltage must remain below a certain value, a pull-down resistor can be utilized with a value as  
calculated by 方程9.  
VOUTLKG_MAX = IF × RPULL_DOWN  
(9)  
where  
VOUTLKG_MAX = maximum output voltage due to leakage current, IF  
RPULL_DOWN = external pull-down resistor from VOUT to GND  
For example, placing a 1-kresistor between VOUT and ground will ensure VOUT does not rise above 0.65-V  
typically or 1.3-V worse case due to the IF current. It is recommended to ensure the resistor can handle the worst  
case power dissipation when the switch is enabled and VOUT VIN.  
9.4 Device Functional Modes  
9-1 lists the state of the eFuse for a given EN input voltage.  
9-1.  
EN PIN  
SWITCH STATUS  
VEN < VILEN  
OFF: VOUT = Open  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS7H2211-SP  
 
 
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
9-1. (continued)  
EN PIN  
SWITCH STATUS  
VEN > VIHEN  
ON: VOUT VIN  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS7H2211-SP  
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
10 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
The TPS7H2211-SP device is a single channel, 3.5-A eFuse with configurable features such as overvoltage  
protection, soft start, and enable. Additionally, the TPS7H2211-SP features reverse current protection for power  
distribution applications.  
10.2 Typical Applications  
The following list shows just a few of the multiple applications for the TPS7H2211-SP eFuse. The first two are  
discussed in further detail.  
Cold sparing (redundancy) for primary and secondary (redundant) voltage rails (common in satellites)  
Protection of loads from upstream latch-up sensitive converters  
Power rail sequencing  
Power multiplexing  
Power system ORing  
10.2.1 Application 1: Cold Sparing  
In applications where a primary and secondary (redundant) power rails are present, the TPS7H2211-SP readily  
implements cold sparing because of its reverse current blocking capability. Generally, the primary eFuse will be  
enabled. If there is a reason to switch to the secondary rail, the primary eFuse will be turned-off and the  
secondary eFuse will be turned-on. In this cold sparing application, since the eFuse is placed at the input of the  
point of load regulator, the on-resistance of the switch is not highly critical.  
5 V  
12 V  
12 V Primary  
VIN  
EN  
VOUT  
SS  
TPS7A4501-SP  
CSS  
COUT  
CIN  
EN  
Primary  
TPS7H2211-SP  
RTOP_OVP  
OVP  
GND  
RBOT_OVP  
12 V Secondary  
CIN  
VIN  
EN  
VOUT  
SS  
COUT  
CSS  
EN  
Secondary  
TPS7H2211-SP  
RTOP_OVP  
OVP  
GND  
RBOT_OVP  
10-1. Cold Sparing Example Using the TPS7H2211-SP  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS7H2211-SP  
 
 
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
10.2.1.1 Design Requirements  
10-1 shows the design parameters used for this example.  
10-1. Design Parameters  
DESIGN PARAMETER  
REQUIREMENT  
VIN, input voltage  
12 V ± 5%  
Not applicable - will control EN pin from central  
controller  
VINEN, turn-on voltage  
VINOVP_RISE, overvoltage protection set point  
IOUT, switch current  
13.5 V  
3 A  
tSS, VOUT soft start time  
10 ms  
10.2.1.2 Detailed Design Procedure  
10.2.1.2.1 Capacitance  
At least a 10-µF output capacitor is recommended on VOUT. Additionally, a capacitor on VIN is recommended in  
order to keep the input stable. However, it is generally advisable to use higher capacitance values to align with  
the TI EVM (evaluation module) and the radiation testing configuration (mostly relevant for SETs on VOUT as a  
higher capacitance generally reduces the SETs). A good higher capacitance value is 170.1 µFspecifically, 1 ×  
150-μF tantalum, 2 × 10-μF ceramic, and 1 × 0.1-μF ceramic capacitors. This is what is selected for this  
design for both the input and output capacitance.  
10.2.1.2.2 Enable Control  
The EN pin controls the state of the eFuse. Bringing EN high turns on the switch and bringing EN low turns off  
the switch. In a cold sparing application, only one of the switches is to be enabled at a given time. This EN signal  
can be controlled from external circuitry. For example, a microcontroller or FPGA may interface to the eFuses  
through two GPIO pins. The TPS7H2211-SP is compatible with a variety of logic levels such as 1.1-V logic.  
When the primary 12-V rail is to be used, EN of the primary eFuse is set high while the EN of the secondary  
eFuse remains low. If there is an issue with the primary rail, the secondary rail can instead be used. To make this  
change, first deassert the EN pin of the primary eFuse. Then assert the EN pin of the secondary eFuse. If both  
pins are enabled at the same time, reverse current flow in one of the eFuses may result. While there is internal  
reverse current protection circuitry in the eFuses, it is simple to avoid this problem through proper EN  
sequencing.  
10.2.1.2.3 Overvoltage Protection  
The overvoltage protection is set by configuring the RBOT_OVP and RTOP_OVP resistors. The overvoltage  
protection feature turns off the switch if the input voltage exceeds a predetermined value as described in 节  
9.3.1. For this design, the goal is to have the overvoltage protection activate at a nominal voltage of 13.5 V. First  
set RTOP_OVP = 100 kΩ with a 0.1% tolerance resistor, then use 方程式 10 to calculate the nominal value of  
R
BOT_OVP. A nominal 9.31-kΩ0.1% tolerance resistor best satisfies the equation.  
VOVPR TYP ìRTOP _ OVP  
(
)
RBOT _ OVP  
=
VINOVP _RISE - VOVPR TYP  
(
)
(10)  
where  
VOVPR(TYP) = 1.15 V  
RTOP_OVP = 100 kΩ  
VINOVP_RISE = 13.5 V  
In order to ensure the selected RBOT_OVP value is acceptable for both the minimum and maximum OVP rising  
threshold, use 方程式 11. VINOVP_RISE(MIN) is selected as the highest possible value that VIN will reach during  
nominal operation (to prevent false OVP trips). VINOVP_RISE(MAX) may be selected by the user as long as it is  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS7H2211-SP  
 
 
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
within the VIN Recommended Operating Conditions. These selections result in an allowable value of RBOT_OVP  
between 9.214 kΩ and 9.650 kΩ. The selected 9.31-kΩ 0.1% tolerance resistor satisfies these constraints,  
even when taking into account its tolerance.  
VOVPR MAX ìRTOP _OVP ì 1+ R  
VOVPR MIN ìRTOP _OVP ì 1-R  
tolerance  
(
)
(
)
tolerance  
(
)
(
)
Ç RBOT _OVP  
Ç
VINOVP _RISE MAX - VOVPR MAX  
VINOVP _RISE MIN - VOVPR MIN  
(
)
(
)
(
)
(
)
(11)  
where  
VOVPR(MAX) = 1.18 V  
RTOP_OVP = 100 kΩ  
Rtolerance = 0.01% = 0.001  
VINOVP_RISE(MAX) = 14 V  
VOVPR(MIN) = 1.11 V  
VINOVP_RISE(MIN) = VIN × (1 + tolerance) = 12.6 V  
Since the OVP pin has hysteresis, the OVP falling threshold will be different than the rising threshold. Therefore,  
in order to ensure the selected RBOT_OVP value is acceptable for the OVP falling threshold, use 方程式 12.  
VINOVP_FALL(MIN) and VINOVP_FALL(MAX) values may be selected using the same method as for VINOVP_RISE(MIN)  
and VINOVP_RISE(MAX). These selections results in an allowable RBOT_OVP value between of 9.129 kΩ and 9.460  
kΩ. The selected 9.31-kΩ 0.1% tolerance resistor also satisfies these constraints, even when taking into  
account its tolerance.  
VOVPF MAX ìRTOP _ OVP ì 1+ R  
VOVPF MIN ìRTOP _ OVP ì 1-R  
tolerance  
(
)
(
)
tolerance  
(
)
(
)
Ç RBOT _ OVP  
Ç
VINOVP _FALL MAX - VOVPF MAX  
VINOVP _FALL MIN - VOVPF MIN  
(
)
(
)
(
)
(
)
(12)  
where  
VOVPF(MAX) = 1.17 V  
RTOP_OVP = 100 kΩ  
Rtolerance = 0.001  
VINOVP_FALL(MAX) = 14 V  
VOVPF(MIN) = 1.09 V  
VINOVP_FALL(MIN) = VIN × (1 + tolerance) = 12.6 V  
To summarize, using 方程式 3 and 方程式 4 with RTOP_OVP = 100 kΩ and RBOT_OVP = 9.31 kΩ, the eFuse will  
nominally go into overvoltage protection mode at 13.50 V and exit at 13.38 V. Taking into account the minimum  
and maximum OVP pin threshold and resistor tolerances, the switch will enter over voltage protection mode  
between 13.01 V and 13.88 V and exit between 12.77 V and 13.76 V.  
CAUTION  
The eFuse input voltage must remain within the recommended operating conditions (which contain a  
maximum VIN of 14 V). If OVP is configured above 14 V, then the OVP mode should only be used  
as a last resort feature. The eFuse is not intended to be above 14 V.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS7H2211-SP  
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
10.2.1.2.4 Soft Start Time  
The desired 10-ms soft start time is achieved following the procedure in 9.3.3. The procedure is replicated  
below for convenience.  
First, use 方程式 13 to determine the needed value of CSS. This results in a calculated CSS value of 67.7 nF. A  
68-nF ±10% capacitor is selected.  
tSS × ISS  
Css  
=
VOUT × 0.8  
(13)  
where  
tSS = 10 ms = 10 × 103 s  
ISS(TYP) = 65 μA = 65 × 106 A  
VOUT(NOM) = 12 V  
Next determine the resulting slew rate using 方程式 14. Using the minimum value for the 10% tolerance CSS and  
the maximum value for ISS results in the worst case (fastest) slew rate of 1,356 V/s.  
ISS  
VOUT × 0.8  
tSS  
VOUTSR  
=
=
CSS  
(14)  
where  
ISS(MAX) = 83 μA = 83 × 106 A  
CSS = 68 nF × (1 10%) = 61.2 × 109 F  
Finally, determine if the resulting slew rate is less than the maximum allowed by 方程式 15. IL_trip is typically 8.5  
A, but in order to select a conservative value it is suggested to let IL_trip = 5.4 A (which is also the absolute  
maximum rating for continuous switch current). The 1,356-V/s slew rate is less than the maximum acceptable  
slew rate of 14,109 V/s. Therefore, this soft start capacitor is acceptable.  
IL_trip F IOUT  
VOUTSR  
<
COUT  
(15)  
where  
IL_trip = 5.4 A  
IOUT(NOM) = 3.0 A  
COUT = 170.1 μF = 170.1 × 106 F  
While it is typically trivial to meet the slew rate restrictions, note that for space applications a large output  
capacitor is often utilized. This results in a lower maximum acceptable slew rate and additional care must be  
taken in order to ensure the expected slew rate is not too fast.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS7H2211-SP  
 
 
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
10.2.1.2.5 Summary  
The final component values are shown in 10-2.  
12 V Primary  
12 V  
5 V  
VIN  
VOUT  
SS  
2x0.1µF 2x10µF  
TPS7A4501-SP  
150µF  
150µF 2x10µF 2x0.1µF  
68nF  
EN  
Primary  
EN  
TPS7H2211-SP  
100kQ  
OVP  
GND  
9.31kQ  
12 V Secondary  
VIN  
VOUT  
SS  
2x0.1µF 2x10µF  
150µF  
150µF 2x10µF 2x0.1µF  
68nF  
EN  
Secondary  
EN  
TPS7H2211-SP  
100kQ  
OVP  
GND  
9.31kQ  
10-2. Cold Sparing Example With Calculated Component Values  
10.2.1.3 Application Curve  
10-3 shows the first eFuse being enabled. 10-4 shows the first eFuse being powered down and the second  
device being powered up (switch from primary to secondary power). The less time both switches are turned-off,  
the less droop on VOUT.  
10-3. Power-Up Behavior of Primary TPS7H2211-  
10-4. Switch From Primary to Secondary  
SP in a Cold Sparing Application  
TPS7H2211-SP in a Cold Sparing Application  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS7H2211-SP  
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
10.2.2 Application 2: Protection  
The TPS7H2211-SP can be used to protect a load from an upstream latchup sensitive regulator. The eFuse will  
provide overvoltage protection (OVP) and under-voltage protection (by using the EN pin). If the upstream  
regulator fails, the eFuse will disconnect the load from the regulator. The load could then be powered by a  
redundant supply (see the Application 1: Cold Sparing section).  
In this configuration, the on-resistance of the switch is more important as it is placed after the point of load  
regulator. Two eFuses can be placed in parallel to further reduce the on-resistance. In the design example  
shown here, it was determined only one eFuse was needed.  
12 V  
5 V  
5 V  
VIN  
VIN  
VOUT  
SS  
Latchup  
Sensitive  
Regulator  
CSS  
Load  
RTOP_EN  
RTOP_OVP  
TPS7H2211-SP  
EN  
RBOT_EN  
OVP  
GND  
RBOT_OVP  
10-5. Protection Example Using the TPS7H2211-SP  
10.2.2.1 Design Requirements  
10-2 shows the design parameters used for this example.  
10-2. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
VIN, input voltage  
5 V ± 2%  
4.5 V  
5.4 V  
3 A  
VINEN, turn-on voltage  
VINOVP_RISE, overvoltage protection set point  
IOUT, switch current  
tSS, VOUT soft start time  
1 ms  
10.2.2.2 Detailed Design Procedure  
10.2.2.2.1 Capacitance  
Similarly to 10.2.1.2.1, 170.1 µF of input and output capacitance is selectedspecifically, 1 × 150-μF  
tantalum, 2 × 10-μF ceramic, and 1 × 0.1-μF ceramic capacitors.  
10.2.2.2.2 Enable Control  
The enable threshold is set by configuring the RBOT_EN and RTOP_EN resistors in order to turn on the switch at the  
desired input voltage as described in 9.3.1. For this design, the goal is to turn on the switch when VIN  
reaches 4.5 V. First we set RTOP_EN = 100 kΩ with a 0.1% tolerance resistor, and then use 方程式 16 to  
calculate the nominal RBOT_EN. A 16.2-kΩ0.1% tolerance resistor is found to best satisfy the equation.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS7H2211-SP  
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
V
) ìRTOP _EN  
IHEN TYP  
(
RBOT _EN  
=
VINEN_RISE - V  
IHEN TYP  
(
)
(16)  
where  
VIHEN(TYP) = 0.63 V  
RTOP_EN = 100 kΩ  
VINEN_RISE = 4.5 V  
Additionally, it should be ensured the worst case minimum and maximum turn-on voltages are acceptable. The  
minimum turn-on voltage would ideally be above 4.5 V (the minimum operating voltage). However, in this case  
that is not possible to achieve, and it is acceptable to allow the minimum turn-on voltage to be lower than 4.5 V  
(such as 4.2 V). Note however that the device will not be fully operational until at least 4.5 V is reached. This is  
okay in this case since the VIN voltage will quickly rise to above 4.5 V which puts the device in a fully operational  
state. The eFuse maximum turn-on voltage must be less than the minimum final VIN value (which is 4.9 V as  
determined by the 2% tolerance on the 5-V rail). The maximum turn-on voltage can be calculated using 方程式  
17. It is determined that VINEN_RISE(MAX) = 4.89 V which is under 4.9 V.  
:
;
:
RTOP _EN × 1 + Rtolerance + RBOT _EN × 1 F Rtolerance  
;
VINEN_RISE (MAX ) = V  
×
IHEN (MAX )  
:
RBOT _EN × 1 F Rtolerance  
;
(17)  
where  
VIHEN(MAX) = 0.68 V  
RTOP_EN = 100 kΩ  
RBOT_EN = 16.2 kΩ  
Rtolerance = 0.1% = 0.001  
An alternative method to ensure the selected RBOT_EN value is acceptable for both the minimum and maximum  
enable thresholds is to select minimum and maximum values for VINEN_RISE and VINEN_FALL and ensure 方程式  
18 and 方程19 are satisfied.  
V
ìRTOP _EN ì 1+ R  
V
ìRTOP _EN ì 1-R  
(
)
(
)
tolerance  
tolerance  
VINEN_RISE MIN - V  
IHEN MIN  
IHEN MAX  
(
IHEN MIN  
)
(
)
Ç RBOT _EN  
Ç
VINEN_RISE MAX - V  
IHEN MAX  
(
(
)
)
(
)
(
)
(18)  
V
ìRTOP _EN ì 1+ R  
V
ìRTOP _EN ì 1-R  
(
)
(
)
tolerance  
tolerance  
VINEN_FALL MIN - V  
ILEN MIN  
ILEN MAX  
(
ILEN MIN  
)
(
)
Ç RBOT _EN  
Ç
VINEN_FALL MAX - V  
IHLN MAX  
(
(
)
)
(
)
(
)
(19)  
To summarize, using 方程式 1 and 方程式 2 with RTOP_EN = 100 kΩ and RBOT_EN = 16.2 kΩ, shows the eFuse  
will nominally turn on at 4.52 V and turn off at 3.73 V. The turn-off voltage is different due to the enable pin  
hysteresis. Taking into account the maximum and minimum EN pin thresholds and resistor tolerances the switch  
will turn on between 4.30 V and 4.89 V and turn off between 3.58 V and 4.10 V. To change the turn-off levels  
requires changing the turn-on levels. The turn-off level will act as an under voltage protection (UVP) feature to  
protect the downstream circuitry from receiving a sustained voltage under 3.58 V (which could potentially put the  
circuit in an undefined state).  
Additionally, as the turn-on voltage minimum is 4.30 V, this is greater than 75% of the final VIN value (4.30 V >  
4.9 V × 0.75 = 3.68 V). Therefore, there is no EN and slew rate related requirements as indicated in the electrical  
characteristics footnote (see 7.5). If the device was enabled under 3.68 V (not advised; this is less than the  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS7H2211-SP  
 
 
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
recommended operating VIN voltage of 4.5 V), the output voltage slew rate must be less than the input voltage  
slew rate or a false overcurrent trigger may occur.  
10.2.2.2.3 Overvoltage Protection  
The TPS7H2211-SP eFuse is exceptionally well suited to provide overvoltage protection in this application. This  
is because even if the upstream regulator fails in a manner that shorts its input to output (12 V), the TPS7H2211-  
SP eFuse is able to handle up to 14 V at the input with full data sheet specified performance.  
The overvoltage protection is set by configuring the RBOT_OVP and RTOP_OVP resistors similarly to 10.2.1.2.3.  
The overvoltage protection feature turns off the switch if the input voltage exceeds a predetermined value. For  
this design, the goal is to have the overvoltage protection activate at a nominal voltage of 5.4 V. First set  
RTOP_OVP = 100 kΩ with a 0.1% tolerance resistor, then use 方程式 20 to calculate the nominal value of  
RBOT_OVP. A nominal 27-kΩ0.1% tolerance resistor best satisfies the equation.  
VOVPR TYP ìRTOP _ OVP  
(
)
RBOT _ OVP  
=
VINOVP _RISE - VOVPR TYP  
(
)
(20)  
where  
VOVPR(TYP) = 1.15 V  
RTOP_OVP = 100 kΩ  
VINOVP_RISE = 5.4 V  
In order to ensure the selected RBOT_OVP value is acceptable for both the minimum and maximum OVP rising  
threshold, use 方程式 21. VINOVP_RISE(MIN) is selected as the highest possible value that VIN will reach during  
nominal operation. VINOVP_RISE(MAX) may be selected by the user as long as it is within the VIN Recommended  
Operating Conditions. These selections result in an allowable value of RBOT_OVP between 9.214 kΩ and 27.791  
kΩ. The selected 27 kΩ-0.1% tolerance resistor satisfies these constraints, even when taking into account its  
tolerance.  
VOVPR MAX ìRTOP _OVP ì 1+ R  
VOVPR MIN ìRTOP _OVP ì 1-R  
tolerance  
(
)
(
)
tolerance  
(
)
(
)
Ç RBOT _OVP  
Ç
VINOVP _RISE MAX - VOVPR MAX  
VINOVP _RISE MIN - VOVPR MIN  
(
)
(
)
(
)
(
)
(21)  
where  
VOVPR(MAX) = 1.18 V  
RTOP_OVP = 100 kΩ  
Rtolerance = 0.01% = 0.001  
VINOVP_RISE(MAX) = 14 V  
VOVPR(MIN) = 1.11 V  
VINOVP_RISE(MIN) = VIN × (1 + tolerance) = 5.1 V  
Since the OVP pin has hysteresis, the OVP falling threshold will be different than the rising threshold. Therefore,  
in order to ensure the selected RBOT_OVP value is acceptable for the OVP falling threshold, use 方程式 22.  
VINOVP_FALL(MIN) and VINOVP_FALL(MAX) values may be selected using the same method as for VINOVP_RISE(MIN)  
and VINOVP_RISE(MAX). These selections results in an allowable RBOT_OVP value between of 9.128 kΩ and  
27.154 kΩ. The selected 27 kΩ-0.1% tolerance resistor also satisfies these constraints, even when taking into  
account its tolerance.  
VOVPF MAX ìRTOP _ OVP ì 1+ R  
VOVPF MIN ìRTOP _ OVP ì 1-R  
tolerance  
(
)
(
)
tolerance  
(
)
(
)
Ç RBOT _ OVP  
Ç
VINOVP _FALL MAX - VOVPF MAX  
VINOVP _FALL MIN - VOVPF MIN  
(
)
(
)
(
)
(
)
(22)  
where  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS7H2211-SP  
 
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
VOVPF(MAX) = 1.17 V  
RTOP_OVP = 100 kΩ  
Rtolerance = 0.001  
VINOVP_FALL(MAX) = 14 V  
VOVPF(MIN) = 1.09 V  
VINOVP_FALL(MIN) = VIN × (1 + tolerance) = 5.1 V  
To summarize, using 方程式 3 and 方程式 4 with RTOP_OVP = 100 kΩ and RBOT_OVP = 27 kΩ, the eFuse will  
nominally go into overvoltage protection mode at 5.41 V and exit at 5.36 V. Taking into account the minimum and  
maximum OVP pin threshold and resistor tolerances, the switch will enter overvoltage protection mode between  
5.21 V and 5.56 V and exit between 5.12 V and 5.51 V.  
10.2.2.2.4 Soft Start Time  
The desired 1-ms soft start time is achieved following the procedure in 9.3.3. The procedure is replicated  
below for convenience.  
First, use 方程式 23 to determine the needed value of CSS. This results in a calculated CSS value of 16.3 nF. A  
22-nF ±10% capacitor is selected.  
tSS × ISS  
Css  
=
VOUT × 0.8  
(23)  
where  
tSS = 1 ms = 1 × 103 s  
ISS(TYP) = 65 μA = 65 × 106 A  
VOUT(NOM) = 5 V  
Next determine the resulting slew rate using 方程式 24. Using the minimum value for the 10% tolerance CSS and  
the maximum value for ISS results in the worst case (fastest) slew rate of 4,192 V/s.  
ISS  
VOUT × 0.8  
tSS  
VOUTSR  
=
=
CSS  
(24)  
where  
ISS(MAX) = 83 μA = 83 × 106 A  
CSS = 22 nF × (1 10%) = 19.8 × 109 F  
Finally, determine if the resulting slew rate is less than the maximum allowed by 方程式 25. IL_trip is typically 8.5  
A, but in order to select a conservative value it is suggested to let IL_trip = 5.4 A (which is also the absolute  
maximum rating for continuous switch current). The 2,955-V/s slew rate is less than the maximum acceptable  
slew rate of 4,192 V/s. Therefore, this soft start capacitor is acceptable.  
IL_trip F IOUT  
VOUTSR  
<
COUT  
(25)  
where  
IL_trip = 5.4 A  
IOUT(NOM) = 3.0 A  
COUT = 170.1 μF = 170.1 × 106 F  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS7H2211-SP  
 
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
While it is typically trivial to meet the slew rate restrictions (as demonstrated here by selecting a relatively fast  
soft start time), note that for space applications a large output capacitor is often utilized. This results in a lower  
maximum acceptable slew rate and additional care must be taken in order to ensure the expected slew rate is  
not too fast.  
10.2.2.2.5 Summary  
The final calculated values are shown in 10-6.  
12 V  
5 V  
22nF  
5 V  
VIN  
VIN  
VOUT  
SS  
2x0.1µF 2x10µF  
150µF  
150µF 2x10µF 2x0.1µF  
Latchup  
Sensitive  
Regulator  
Load  
100kQ  
16.2kQ  
100kQ  
TPS7H2211-SP  
EN  
OVP  
GND  
27kQ  
10-6. Final Schematic With Component Values for the Protection Application  
10.2.2.3 Application Curve  
10-7 shows how a 12 V overvoltage event trips the overvoltage protection (OVP) circuitry to protect the  
downstream load. 10-8 shows how the switch will turn-off if the voltage falls too far.  
10-7. Overvoltage Protection of TPS7H2211-SP  
10-8. Undervoltage Turn-Off of TPS7H2211-SP in  
in Protection Application  
Protection Application  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS7H2211-SP  
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
11 Power Supply Recommendations  
The TPS7H2211-SP is designed to operate from a wide input voltage supply range between 4.5 V to 14 V. This  
supply voltage must be well regulated and proper local bypass capacitors must be used for proper electrical  
performance from VIN to GND. Due to stringent requirements for space applications, typically numerous input  
bypass capacitors are used and the total capacitance is much larger than for commercial applications. The  
TPS7H2211-SP evaluation module uses 1 × 150-µF tantalum capacitor in parallel with 2 × 10-µF ceramic  
capacitors and 1 × 0.1-µF ceramic capacitor.  
12 Layout  
12.1 Layout Guidelines  
For best performance, make all traces as short as possible. Place the input and output capacitors close to the  
device to minimize the effects that parasitic trace inductances may have on normal operation. Use wide traces  
for VIN, VOUT, and GND to help minimize the parasitic electrical effects. Pay particular attention to minimizing  
the length of the CSS capacitor connection between VOUT and SS in order to minimize stray inductance.  
Use thermal vias for the thermal pad to ensure the device remains at allowable temperatures, especially during  
fault conditions (such as a short at VOUT). As the thermal pad is internally connected to GND, TI recommends  
the vias be connected to a large GND plane on the printed circuit board.  
12.2 Layout Example  
16  
15  
14  
13  
1
2
3
4
VOUT  
VOUT  
VOUT  
VOUT  
SS  
VIN  
VIN  
VIN  
VIN  
NC  
As close to the  
device as possible  
TPS7H2211-SP  
12  
11  
5
6
NC  
EN  
10  
9
7
8
NC  
OVP  
GND  
NC  
Thermal vias  
12-1. Layout Recommendation  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS7H2211-SP  
 
 
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 Device Support  
13.2 Documentation Support  
13.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, TPS7H2211-SP Total Ionizing Dose (TID) radiation report  
Texas Instruments, TPS7H2211-SP Single-Event Effects (SEE) radiation report  
Texas Instruments, TPS7H2211EVM-CVAL Evaluation Module user's guide  
Texas Instruments, Basics of Load Switches application report  
Texas Instruments, Basics of eFuses application report  
13.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
13.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS7H2211-SP  
 
 
 
 
 
 
 
 
TPS7H2211-SP  
ZHCSOS3B AUGUST 2021 REVISED MAY 2022  
www.ti.com.cn  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS7H2211-SP  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
5962-1822001VXC  
ACTIVE  
CFP  
HKR  
16  
1
RoHS-Exempt  
& Green  
NIAU  
N / A for Pkg Type  
-55 to 125  
5962-1822001VXC  
TPS7H2211MHKRV  
Samples  
5962R1822001V9A  
5962R1822001VXC  
ACTIVE  
ACTIVE  
XCEPT  
CFP  
KGD  
HKR  
0
25  
1
RoHS & Green  
Call TI  
NIAU  
N / A for Pkg Type  
N / A for Pkg Type  
-55 to 125  
-55 to 125  
Samples  
Samples  
16  
RoHS-Exempt  
& Green  
5962R1822001VXC  
TPS7H2211MHKRV  
TPS7H2211HKR/EM  
TPS7H2211Y/EM  
ACTIVE  
ACTIVE  
CFP  
HKR  
KGD  
16  
0
1
5
RoHS-Exempt  
& Green  
NIAU  
N / A for Pkg Type  
N / A for Pkg Type  
25 to 25  
25 to 25  
TPS7H2211HKR/EM  
EVAL ONLY  
Samples  
Samples  
XCEPT  
RoHS & Green  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2022  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
5962-1822001VXC  
5962R1822001VXC  
TPS7H2211HKR/EM  
HKR  
HKR  
HKR  
CFP  
CFP  
CFP  
16  
16  
16  
1
1
1
506.98  
506.98  
506.98  
26.16  
26.16  
26.16  
6220  
6220  
6220  
NA  
NA  
NA  
Pack Materials-Page 1  
PACKAGE OUTLINE  
HKR0016A  
CFP - 2.416 mm max height  
S
C
A
L
E
0
.
7
0
0
CERAMIC DUAL FLATPACK  
9.88  
9.38  
B
METAL LID  
A
PIN 1 ID  
14X 1.27  
16  
1
11.26  
10.76  
(10.41)  
2X 8.89  
8
9
0.482  
16X  
0.382  
(9.14)  
0.2  
C A B  
METAL LID  
C
2.416  
1.850  
0.177  
0.097  
(6.59)  
1.04  
0.84  
25.142  
24.642  
HEATSINK  
8
9
8.95  
8.65  
16  
1
6.74  
6.44  
PIN 1 ID  
4226020/C 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This package is hermetically sealed with a metal lid. Lid is connected to Heatsink.  
4. The terminals are gold plated.  
5. Falls within MIL-STD-1835 CDFP-F11A.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
HKR0016A  
CFP - 2.416 mm max height  
CERAMIC DUAL FLATPACK  
(6.59)  
(1.2) TYP  
(0.6)  
(1.2) TYP  
(0.6)  
(8.8)  
PKG  
(
0.2) TYP  
(R0.05) TYP  
PKG  
HEATSINK LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:10X  
4226020/C 08/2022  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS7H2211Y/EM

耐辐射 QMLV、4.5V 至 14V 输入、3.5A 负载开关/电子保险丝 | KGD | 0 | 25 to 25
TI

TPS7H2221-SEP

抗辐射、1.6V 至 5.5V 输入、1.25A 负载开关
TI

TPS7H2221MDCKTSEP

抗辐射、1.6V 至 5.5V 输入、1.25A 负载开关 | DCK | 6 | -55 to 125
TI

TPS7H3301-SP

耐辐射 QMLV、2.3V 至 3.5V 输入、3A 灌电流和拉电流 DDR 终端 LDO 稳压器
TI

TPS7H3301HKR/EM

Radiation-hardened QMLV, 2.3-V to 3.5-V input, 3-A sink and source DDR termination LDO regulator | HKR | 16 | 25 to 25
TI

TPS7H3302-SEP

耐辐射、2.3V 至 3.5V 输入、3A 灌电流和拉电流 DDR 终端 LDO 稳压器
TI

TPS7H4001-SP

耐辐射 QMLV、3V 至 7V 输入、18A 同步降压转换器
TI

TPS7H4001HKY/EM

耐辐射 QMLV、3V 至 7V 输入、18A 同步降压转换器 | HKY | 34 | 25 to 25
TI

TPS7H4001MDDWTSHP

耐辐射 QMLV、3V 至 7V 输入、18A 同步降压转换器 | DDW | 44 | -55 to 125
TI

TPS7H4001Y/EM

耐辐射 QMLV、3V 至 7V 输入、18A 同步降压转换器 | KGD | 0 | 25 to 25
TI

TPS7H4002-SP

耐辐射 QMLV、3V 至 5.5V 输入、3A 同步降压转换器
TI

TPS7H4002HKH/EM

耐辐射 QMLV、3V 至 5.5V 输入、3A 同步降压转换器 | HKH | 20 | 25 to 25
TI