TPS92660PWPR/NOPB [TI]

具有 I2C/EPROM 电流微调功能的 TPS92660 两串 LED 驱动器 | PWP | 20 | -40 to 125;
TPS92660PWPR/NOPB
型号: TPS92660PWPR/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 I2C/EPROM 电流微调功能的 TPS92660 两串 LED 驱动器 | PWP | 20 | -40 to 125

可编程只读存储器 电动程控只读存储器 驱动 光电二极管 接口集成电路 驱动器
文件: 总28页 (文件大小:842K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS92660  
www.ti.com.cn  
ZHCSB27 APRIL 2013  
具有 I2C 一次性可编程 (OTP) ROM 电流调整的两灯串发光二级管 (LED)  
查询样品: TPS92660  
1
特性  
应用范围  
2
输入电压:高达 80V  
专业照明  
两输出 LED 电流控制器  
通过带有 I2C 接口的一次性可编程 (OTP) ROM 来  
调整 LED 电流  
工业用和商用照明  
通用照明  
说明  
针对每个 LED 灯串脉宽调制 (PWM) 调光的可调  
SADJ LADJ 引脚  
TPS92660 是一款双输出 LED 驱动器,此驱动器具有  
用于 LED 电流调整的一次性可编程 (OTP) ROM 和  
I2C 接口。 此电流调整为 LED 灯具制造商提供了一个  
生产 LED 照明灯具的方法,这个方法可在不对 LED  
灯进行颜色分级的情况下保持恒定的流明输出。  
输入欠压闭锁和输出过压保护  
使能接通/关闭  
精确的 3.0V 基准电压  
效率大于 95%  
热关断保护  
此器件的一个输出是非同步降压控制器,此控制器被用  
来调节较高功率白光 LED 的电流。 此器件的另外一个  
输出是线性稳压器控制器,此控制器被用来调节较低功  
率红光 LED 的电流。 通过将白光 LED 与红光 LED 混  
用,TPS92660 被用于受控 CCT(相关色温)LED 灯  
应用。  
20 引脚薄型小尺寸 (TSSOP) 外露垫封装  
此器件采用 20 引脚,TSSOP 外露垫封装。  
典型应用  
VOUT1  
VIN  
EN/UVLO  
VOUT2  
LED2+  
AC/DC  
Front End  
VCC  
GATE  
LED1+  
RON  
VO  
LED1+  
LED2+  
SW  
TPS92660  
GND  
BOOT  
CS  
VCC  
REF  
SVDD  
SCL  
COMP  
GND  
LNG  
I2C  
Interface  
SDA  
SADJ  
LADJ  
Dimming  
Signal  
LNCS  
UDG-12217  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
2
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2013, Texas Instruments Incorporated  
English Data Sheet: SLUSBC2  
TPS92660  
ZHCSB27 APRIL 2013  
www.ti.com.cn  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
ORDERING INFORMATION(1) (2)  
ORDERABLE  
DEVICE NUMBER  
MINIMUM ORDER  
QUANTITY  
TJ  
PACKAGE  
PINS  
OUTPUTSUPPLY  
TPS92660PWP  
Tube  
73  
–40°C to 125°C  
TSSOP exposed pad  
20  
TPS92660PWPR  
Tape and Reel  
2500  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the TI  
website at www.ti.com.  
(2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at  
www.ti.com/sc/package.  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
UNIT  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–2.0  
–0.3  
–0.3  
MAX  
14  
Supply voltage  
VCC  
VIN, UVLO/EN  
80  
BOOT to SW  
14  
SADJ, LADJ, RON, VO, COMP, CS, LNCS  
6
V
Input voltage range(2)  
SW  
80  
BOOT  
90  
SVDD, SCL, SDA  
5.5  
2000  
750  
165  
150  
260  
Human body model (HBM) QSS 009-105 (JESD22-A114A)  
V
Electrostatic discharge  
Charged device model (CDM) QSS 009-147 (JESD22-C101B.01)  
(3)  
Junction temperature range, TJ  
°C  
Storage temperature range, Tstg  
Lead temperature range, soldering, 10 s  
–55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the network ground terminal unless otherwise noted.  
(3) Maximum junction temperature is internally limited  
2
Copyright © 2013, Texas Instruments Incorporated  
TPS92660  
www.ti.com.cn  
ZHCSB27 APRIL 2013  
THERMAL INFORMATION  
TPS92660  
TSSOP exposed  
pad (PWP)  
THERMAL METRIC(1)  
UNITS  
20 PINS  
36.9  
22.7  
18.6  
0.6  
θJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance(3)  
Junction-to-board thermal resistance(4)  
Junction-to-top characterization parameter(5)  
Junction-to-board characterization parameter(6)  
Junction-to-case (bottom) thermal resistance(7)  
θJCtop  
θJB  
°C/W  
ψJT  
ψJB  
18.4  
1.9  
θJCbot  
(1) 有关传统和新的热 度量的更多信息,请参阅IC 封装热度量应用报告, SPRA953。  
(2) JESD51-2a 描述的环境中,按照 JESD51-7 的指定,在一个 JEDEC 标准高 K 电路板上进行仿真,从而获得自然 对流条件下的结至环  
境热阻。  
(3) 通过在封装顶部模拟一个冷板测试来获得结至芯片外壳(顶部)的热阻。 不存在特定的 JEDEC 标准测试,但 可在 ANSI SEMI 标准 G30-  
88 中能找到内容接近的说明。  
(4) 按照 JESD51-8 中的说明,通过 在配有用于控制 PCB 温度的环形冷板夹具的环境中进行仿真,以获得结板热阻。  
(5) 结至顶部特征参数, ψJT,估算真实系统中器件的结温,并使用 JESD51-2a(第 6 章和第 7 章)中 描述的程序从仿真数据中 提取出该参  
数以便获得 θJA  
(6) 结至电路板特征参数, ψJB,估算真实系统中器件的结温,并使用 JESD51-2a(第 6 章和第 7 章)中 描述的程序从仿真数据中 提取出该  
参数以便获得 θJA  
(7) 通过在外露(电源)焊盘上进行冷板测试仿真来获得 结至芯片外壳(底部)热阻。 不存在特定的 JEDEC 标准 测试,但可在 ANSI SEMI  
标准 G30-88 中能找到内容接近的说明。  
空白  
.
.
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
MIN  
8.6  
2.7  
0
MAX  
80  
UNIT  
V
VVIN  
Input Voltage  
I2C VDD  
VSVDD  
VVO  
5.5  
2.5  
5.5  
5.5  
5.5  
5.5  
125  
V
Output voltage sense for control and protection  
Enable/Under Voltage lock-out  
V
VUVLO/EN  
VSADJ  
VLADJ  
VRON  
TJ  
0
V
Switching regulator analog or PWM LED current adjust  
Linear regulator analog or PWM LED current adjust  
Resistor and capacitor sets switching frequency of device  
Operating junction temperature  
0
V
0
V
0
V
–40  
°C  
Copyright © 2013, Texas Instruments Incorporated  
3
TPS92660  
ZHCSB27 APRIL 2013  
www.ti.com.cn  
MAX UNITS  
ELECTRICAL CHARACTERISTICS  
Unless otherwise specified VIN = 48 V, –40°C <TA = TJ< 125°C .  
PARAMETER  
VCC REGULATOR (VCC)  
CONDITIONS  
MIN  
TYP  
VCC  
IVCC  
VCC Voltage  
7.75  
14  
8.2  
20  
8.55  
27  
V
VCC current limit  
Rising threshold  
Falling threshold  
Quiescent current  
VCC = 0  
mA  
6.4  
6.1  
2.2  
VCCUVLO  
IQ  
V
VIN = 80 V  
VEN increasing  
VEN = 0  
mA  
UVLO/DEVICE ENABLE (EN/UV)  
VEN  
Device enable voltage threshold  
1.14  
2.4  
1.2  
20  
10  
1.26  
V
VEN_HYS  
IEN  
Enable input hysteresis  
Enable source current  
mV  
µA  
ON/OFF TIMER/OVER VOLTAGE PROTECTION (RON, VO)  
RPD_RON  
VOV  
RON pull-down resistance  
VO pin overvoltage threshold  
VO pin overvoltage hysteresis  
RON pin to GATE delay  
Minimum off-time  
60  
2.5  
0.1  
58  
83  
Ω
V
2.6  
VOV_HYS  
tON_DLY  
tOFF(min)  
tON(min)  
V
ns  
ns  
ns  
VCS = 0 V  
200  
80  
255  
120  
340  
180  
Minimum on-time  
I2C LOGIC INTERFACE (SCL, SDA) (2.7V VSVDD 5.5V)  
VIL  
VIH  
IL  
Low-level input voltage  
High-level input voltage  
Logic input current  
0.2 × VSVDD  
V
V
0.8 × VSVDD  
–1  
0
100  
0.2  
1
200  
0.38  
1
µA  
kHz  
V
fSCL  
VOL  
IL  
SCL input frequency  
Low-level output voltage  
Output leakage current  
ISDA = 3 mA  
VSDA = 5 V  
µA  
SWITCHER LED CURRENT SENSE (CS, COMP)  
Switcher LED current reference  
VSW_REF  
voltage  
Non-programmed  
196  
202  
209  
1
mV  
mV  
Switcher LED current reference  
VSW_REF  
±40  
–40  
voltage adjust range  
ICS  
CS bias current  
µA  
µA/V  
V
gM  
CS amplifier transconductance  
CS to COMP offset voltage  
COMP source current  
COMP sink current  
600  
1.8  
75  
VCS_COMP  
µA  
ICOMP  
75  
µA  
HIGH SIDE SWITCH CURRENT LIMIT (VIN, SW)  
High side switch current limit  
VSW_LIM  
232  
275  
280  
200  
329  
mV  
µS  
nS  
(referenced from VIN)  
tLIM_OFF  
tLEB  
Current limit OFF time  
Switch current sense leading edge  
blank time  
4
Copyright © 2013, Texas Instruments Incorporated  
TPS92660  
www.ti.com.cn  
ZHCSB27 APRIL 2013  
ELECTRICAL CHARACTERISTICS (continued)  
Unless otherwise specified VIN = 48 V, –40°C <TA = TJ< 125°C .  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
LINEAR LED CURRENT SENSE (LNCS)  
VLN_REF  
VLN_REF  
ILNCS  
Linear LED current reference voltage Non-programmed  
190  
200  
209  
1
mV  
mV  
µA  
LinearLED current reference voltage  
adjust range  
+44  
–50  
LNCS Input bias current  
SWITCHING GATE DRIVER (GATE, BOOT, SW)  
RSRC_GATE  
RSNK_GATE  
VBOOT  
Gate sourcing resistance  
Gate sinking resistance  
BOOT UVLO threshold  
BOOT UVLO threshold  
SW node pull down current  
GATE = High  
GATE = Low  
2
2
Ω
Ω
BOOT-SW rising  
4.2  
5.6  
750  
60  
7.0  
5.5  
V
VBOOT_HYS  
ISW_PD  
mV  
mA  
LINEAR GATE DRIVER (LNG)  
VLNG_MAX  
VLNG_MIN  
ILNG_MAX  
LNG Maximum output voltage  
6.3  
1.4  
V
V
LNG Minimum output voltage  
LNG Maximum output current  
mA  
ANALOG/PWM DIMMING (SADJ, LADJ)  
fDIM  
Internal PWM dimming frequency  
500  
2.5  
0.1  
2.5  
0.1  
10  
Hz  
V
High  
Low  
High  
Low  
SADJ triangle voltage for analog input  
Vtri  
LADJ triangle voltage for analog input  
V
ms  
V
SADJ Pulse detect timer  
LADJ Pulse detect timer  
SADJ PWM input threshold  
LADJ PWM input threshold  
SADJ PWM input hysteresis  
LADJ PWM input hysteresis  
SADJ Pull up current  
tTIMER  
10  
2.7  
2.7  
500  
500  
5
VADJ  
VADJ_HYS  
IADJ_PU  
tSADJ  
mV  
µA  
µs  
µs  
LADJ Pull up current  
5
Rising  
Falling  
Rising  
Falling  
1.2  
1.2  
1.2  
1.2  
SADJ to GATE delay  
LADJ to LNG delay  
tLADJ  
REFERENCE VOLTAGE (REF)  
VREF  
IREF  
Voltage reference  
2.92  
1.6  
3
3.08  
V
VREF maximum source current  
mA  
THERMAL SHUTDOWN  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
165  
25  
°C  
°C  
TSD  
Copyright © 2013, Texas Instruments Incorporated  
5
TPS92660  
ZHCSB27 APRIL 2013  
www.ti.com.cn  
DEVICE INFORMATION  
TSSOP PACKAGE  
20-PINS  
(TOP VIEW)  
1
2
3
4
5
6
7
8
9
10  
SVDD  
SCL  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
EN/UVLO  
VIN  
SDA  
REF  
SADJ  
LADJ  
RON  
VO  
VCC  
BOOT  
GATE  
SW  
Exposed  
Thermal  
Pad  
LNG  
LNCS  
CS  
COMP  
NC  
GND  
NC – No internal connection  
PIN FUNCTIONS(1)  
NAME  
SVDD  
NO.  
1
I/O  
P
I
DESCRIPTION  
I2C VDD input.  
I2C clock input.  
SCL  
2
SDA  
REF  
3
I/O  
O
I
I2C data input/output.  
3.0V output reference.  
Switching regulator dimming input.  
Linear regulator dimming input.  
4
SADJ  
LADJ  
RON  
VO  
5
6
I
7
I
Connect to resistor and capacitor which sets the switching frequency of the switching regulator.  
Output voltage sense for control and protection.  
8
I
COMP  
NC  
9
O
-
Switching regulator error amplifier (EA) compensation connection.  
No internal connection.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
-
GND  
CS  
G
I
System ground connection.  
Switching regulator LED Current sense input.  
LNCS  
LNG  
SW  
I
Linear regulator current sense input.  
O
I
Linear FET gate driver output.  
Connect to the switch node of the switching regulator.  
Switching controller high-side N-channel FET driver output.  
MOSFET drive bootstrap pin.  
GATE  
BOOT  
VCC  
VIN  
O
I
O
P
I
Output of internal regulator. Bypass it with 1µFminimum ceramic capacitor to GND.  
Input voltage supply for device. Maximum of 80V operating voltage.  
This pin is a multi function input. Enable of device, Under-voltage lock-out (UVLO).  
Exposed thermal pad. Connected to the system ground. Place vias on DAP.  
EN/UVLO  
DAP  
-
(1) I=Input, O=Output, P=Power, G=Ground  
6
Copyright © 2013, Texas Instruments Incorporated  
TPS92660  
www.ti.com.cn  
ZHCSB27 APRIL 2013  
FUNCTIONAL BLOCK DIAGRAM  
Supply  
VIN 19  
18 VCC  
Regulator  
Voltage  
Reference  
VCC  
UVLO  
17 BOOT  
Thermal  
On-Timer  
RON Complete  
Shutdown  
RON  
VO  
7
8
Start  
16 GATE  
15 SW  
Level  
Shift  
Current Limit  
10 mA  
+
Logic  
VIN - 275 mV  
+
9
COMP  
+
EN/UVLO 20  
+
12 CS  
REF  
1.8 V  
4
+
1.2 V  
+
3.0 V  
LNG  
Control  
SADJ  
5
SW Dim Control  
LDO Dim Control  
13 LNCS  
+
LADJ  
6
1
VVCC  
SVDD  
SW VREF  
14 LNG  
11 GND  
SCL  
SDA  
2
3
I2C  
I/O  
I2C  
OTP ROM  
LDO VREF  
UDG-12211  
Copyright © 2013, Texas Instruments Incorporated  
7
TPS92660  
ZHCSB27 APRIL 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS  
Unless otherwise stated, –40°C TA = TJ +125°C, VIN = 48 V, RT= 51.1 kΩ, CT = 1000 pF, CVCC = 1 μF, CCOMP = 1 μF  
7.0  
6.9  
6.8  
6.7  
6.6  
6.5  
6.4  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
2.6  
2.5  
2.5  
2.5  
2.4  
2.4  
2.3  
2.2  
2.2  
2.1  
2.1  
2.0  
2.0  
VIN = 80 V  
VCC UVLO Rising  
VCC UVLO Falling  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
G000  
G000  
G000  
G000  
Figure 1. Supply Voltage (VCC) UVLO Threshold  
vs Junction Temperature  
Figure 2. Quiescent Current  
vs Junction Temperature  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Temperature (°C)  
G000  
Figure 3. Enable Threshold Voltage  
vs Junction Temperature  
Figure 4. Boot UVLO Threshold  
vs Junction Temperature  
9.0  
8.8  
8.6  
8.4  
8.2  
8.0  
7.8  
7.6  
7.4  
7.2  
7.0  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
2.95  
2.90  
2.85  
2.80  
2.75  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Temperature (°C)  
G000  
Figure 5. Supply Voltage (VCC)  
vs Junction Temperature  
Figure 6. Voltage Reference  
vs Junction Temperature  
8
Copyright © 2013, Texas Instruments Incorporated  
TPS92660  
www.ti.com.cn  
ZHCSB27 APRIL 2013  
TYPICAL CHARACTERISTICS  
Unless otherwise stated, –40°C TA = TJ +125°C, VIN = 48 V, RT= 51.1 kΩ, CT = 1000 pF, CVCC = 1 μF, CCOMP = 1 μF  
250  
240  
230  
220  
210  
200  
190  
180  
170  
160  
150  
250  
240  
230  
220  
210  
200  
190  
180  
170  
160  
150  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
−40 −25 −10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
G000  
G000  
Figure 7. Linear Current Voltage Regulation  
vs Junction Temperature  
Figure 8. Switching Current Voltage Regulation  
vs Junction Temperature  
840  
830  
820  
810  
800  
790  
780  
770  
760  
20.5  
20.4  
20.3  
20.2  
20.1  
20.0  
19.9  
19.8  
19.7  
19.6  
19.5  
Load = 8 LEDs  
Load = 4 LEDs  
25 30 35 40 45 50 55 60 65 70 75 80  
Input Voltage (V)  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
Input Voltage (V)  
G000  
G000  
Figure 9. Switching Regulator LED Current  
vs Input Voltage  
Figure 10. Linear Regulator LED Current  
vs Input Voltage  
1000  
920  
840  
760  
680  
600  
80  
75  
70  
65  
60  
55  
50  
45  
40  
RS = 0.25  
RS =3.32  
0
8
16  
24  
32  
40  
48  
56  
64  
0
3
6
9
12  
15  
Trim Step  
Trim Step  
G000  
G000  
Figure 11. Switching Regulator LED Current  
vs I2C Trim Step  
Figure 12. Linear Regulator LED Current  
vs I2C Trim Step  
Copyright © 2013, Texas Instruments Incorporated  
9
TPS92660  
ZHCSB27 APRIL 2013  
www.ti.com.cn  
TYPICAL CHARACTERISTICS (continued)  
Unless otherwise stated, –40°C TA = TJ +125°C, VIN = 48 V, RT= 51.1 kΩ, CT = 1000 pF, CVCC = 1 μF, CCOMP = 1 μF  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
9.0  
8.8  
8.6  
8.4  
8.2  
8.0  
7.8  
7.6  
7.4  
7.2  
7.0  
fSW = 200 kHz  
ILED = 800 mA  
Load = 12 LEDs  
45  
50  
55  
60  
65  
70  
75  
80  
10  
20  
30  
40  
50  
60  
70  
80  
Input Voltage (V)  
Input Voltage (V)  
G000  
G000  
Figure 13. Switching Regulator Efficiency  
vs Input Voltage  
Figure 14. VCC vs Input Voltage  
10  
Copyright © 2013, Texas Instruments Incorporated  
TPS92660  
www.ti.com.cn  
ZHCSB27 APRIL 2013  
APPLICATION INFORMATION  
Theory of Operation  
The TPS92660 is a dual-channel LED current controller. It has a high-voltage, non-synchronous buck controller  
capable of driving an N-channel high-side MOSFET and a linear controller capable of driving an N-channel low-  
side MOSFET. The buck controller uses a controlled on-time (COT) control scheme to regulate the LED current.  
The controlled on-time varies with input and output voltage to produce pseudo-fixed frequency operation.  
The TPS92660 buck controller also employs a transconductance error amplifier that regulates average the LED  
current. When the buck converter operates in continuous conduction mode (CCM) the controlled on-time  
maintains a relatively constant switching frequency over the change of input and output voltages. The linear  
controller regulates the LED current by controlling the gate voltage of the N-channel low side MOSFET. This  
MOSFET is connected in series with the LED string and operates in the linear region when LED current is in  
regulation. The linear controller senses the LED current and compares it with the internal reference voltage  
(default 200 mV without OTP trim) to generate the MOSFET gate-drive voltage.  
Figure 15 shows a simplified version of the feedback system used to control the current through the LED string  
connected to the buck converter. The LED current flows through the current sense resistor RSNS and generates  
the current sense voltage. This voltage is fed to the CS pin. Inside the IC, the current sense voltage is internally  
integrated and compared to a reference voltage. The error amplifier is a transconductance (gM) amplifier which  
sorces/sinks current to/from the comp pin and effectively maintains the voltage at the CS pin to be equal to the  
voltage VSW_REF ( default 202 mV without OTP trim). The comparator turns on the high-side MOSFET of the buck  
converter when the CS voltage falls below the COMP pin voltage minus 1.8V level shift.  
VOUT  
Gate ON  
1.8 V  
+
CS  
+
VSW_REF  
RSNS  
COMP  
UDG-12206  
Figure 15. Current Control Circuitry  
Figure 16 shows how the MOSFET conducts for a controlled on-time (tON), set by the external resistor RT, the  
external capacitor CT, the input voltage and the output voltage. At the conclusion of the controlled on-time period,  
the MOSFET turns off and must remain off for a minimum of 255 ns. Once the minimum off-time period is  
complete, the comparator compares the CS voltage with the COMP pin voltage again to start the next cycle.  
A capacitor with a value of 0.1 µF or higher is recommended between the COMP pin and GND. This  
compensation capacitor provides a dominant pole in the feedback loop and makes the control loop stable.  
Copyright © 2013, Texas Instruments Incorporated  
11  
 
TPS92660  
ZHCSB27 APRIL 2013  
www.ti.com.cn  
VIN  
VOUT  
RT  
RON  
RVO1  
Gate OFF  
+
VO  
CT  
Reset  
RVO2  
UDG-12207  
Figure 16. On-Time Circuitry  
Switching Frequency  
The TPS92660 does not contain a clock, however the on-time is modulated in proportion to both the input  
voltage and the output voltage in order to maintain a relatively constant switching frequency.  
The on-time circuitry is shown in Figure 16. Estimate the switching frequency based on timing resistor RT, timing  
capacitor CT and the resistor divider of RVO1 and RVO2. Equation 1 and Equation 2 show how to derive the  
switching frequency estimation.  
D
f
=
SW  
t
ON  
(1)  
V
OUT  
D =  
V
IN  
(2)  
The on-time period ends when the voltage at the capacitor CT is charged to the voltage on the VO pin. The  
charging current ratio is shown in Equation 3.  
V
IN  
I
=
CHRG  
R
T
where  
VIN >> VVO  
RT ´ CT  
(3)  
(4)  
RVO2  
tON  
=
´
´ VOUT  
V
R
(
VO1 + RVO2  
)
IN  
Use Equation 3 and Equation 4 to derive Equation 5.  
R
+ R  
VO2  
(
R
)
VO1  
f
=
SW  
´R ´ C  
T
VO2  
T
(5)  
LED Current Setting  
The current sense resistor (RSNS), which is connected between the CS pin and GND, sets the LED current of the  
switching regulator. The current sense resistor (RSNSLN), which is connected between the LNCS pin and GND,  
sets the LED current of the linear regulator. The average LED current is calculated using Equation 6 and  
Equation 7.  
Equation 6 shows the calculation for the switching regulator current.  
12  
Copyright © 2013, Texas Instruments Incorporated  
 
 
 
 
 
 
TPS92660  
www.ti.com.cn  
ZHCSB27 APRIL 2013  
V
=
SW _REF  
I
LED _SW  
R
SNS  
where  
VSW_REF is the switching regulator reference voltage which is default 202 mV without OTP trim  
(6)  
Equation 7 shows the linear regulator current calculation.  
VLN_REF  
=
ILED _LN  
RSNS _LN  
where  
VLN_REF is the linear regulator reference voltage which is default 200mV without OTP trim  
(7)  
High Voltage Bias Regulator (VCC)  
The TPS92660 contains an internal low dropout linear regulator (LDO), with an 8.2V output, connected between  
the VIN and the VCC pins. Bypass the VCC pin to the GND pin with a 1µF ceramic capacitor connected close to  
the pins of the device. VCC tracks VIN until VIN reaches 8.2 V and then regulates at 8.2V as VIN increases. The  
TPS92660 comes out of UVLO and begins operating when VCC rises above 6.4V. The TPS92660 shuts down  
when VCC falls below 6.1V. The VCC regulator current limit is 20mA.  
Peak Switching Current Limit  
The TPS92660 contains a current limit comparator to limit the peak current of the high-side switching MOSFET.  
When the high-side switching MOSFET turns on, there is a 200ns leading edge blank time. After that if the  
voltage difference between the VIN pin and the SW pin exceeds 275 mV, the switching MOSFET is turned off for  
a cool down period of approximately 280µs. In the meanwhile, the COMP pin is pulled low. If the current limit  
condition persists, this cycle of cool down period and restarting continues, creating a low-power hiccup mode,  
and minimizes the thermal stress on the switching MOSFET. Equation 8 shows the peak current limit calculation.  
275mV  
IPEAK  
=
RDS on  
( )  
where  
RDS(on) is the on resistance of the switching MOSFET  
(8)  
Output Open Circuit Protection  
The most common failure mode for power LEDs is a broken bond wire, and the result is an open circuit. When  
this happens the feedback path is disconnected, and the output voltage of the switching regulator begins to rise.  
The VO pin voltage (which senses the output voltage of the switching regulator through a resistor divider) rises  
with it. When the VO pin voltage reaches 2.5 V, it triggers the output OV protection and the high-side gate driver  
turns off. During this time, the COMP pin is also pulled low. There is 0.1 V hysteresis on the OVP. The converter  
does not resume switching until the voltage on the OV pin falls below 2.4 V.  
BOOT Under Voltage Lockout (UVLO)  
The TPS92660 has a BOOT UVLO circuit. The switching regulator starts switching once the BOOT-SW voltage  
rises to 5.6 V. There is 750 mV of hysteresis on the BOOT UVLO. It stops switching when the BOOT-SW voltage  
falls to 4.85V. Once the BOOT UVLO is triggered, the SW pin is pulled down by an internal MOSFET, such that  
the boot capacitor can be recharged. The maximum pull-down current is 60mA. When the BOOT-SW voltage is  
charged above 5.6 V, the pull-down circuit is disabled.  
Linear Regulator LED Current Control Overview  
Figure 17 shows the TPS92660 linear regulator control circuit. The voltage drop across the current sense resistor  
RSNSLN is applied on the LNCS pin. An internal operational amplifier compares this voltage with the linear  
regulator reference voltage. The output of the operational amplifier drives the gate of an external N-channel  
MOSFET. This MOSFET operates in the linear region when the LED current is in regulation.  
Copyright © 2013, Texas Instruments Incorporated  
13  
 
 
TPS92660  
ZHCSB27 APRIL 2013  
www.ti.com.cn  
The gate-drive voltage controls the drain-to-source voltage of the MOSFET by changing the MOSFET on-  
resistance. Applications must minimize the voltage difference between the linear regulator input voltage and the  
LED string forward voltage in order to limit the power dissipation on the MOSFET.  
VOUT  
LNG  
LNG  
LNCS  
Control  
EA  
+
VLN_REF  
RSNSLN  
UDG-12208  
Figure 17. Linear Regulator Control  
SADJ and LADJ Pins for Dimming  
The SADJ pin controls the switching regulator dimming and the LADJ pin controls the linear regulator dimming.  
There are two different types of dimming that can be performed on those two pins.  
Analog to PWM Dimming  
When a DC voltage is applied on the SADJ pin, the switching regulator LED current is PWM dimmed at a fixed  
frequency of approximately 500 Hz. As shown in Figure 18, the PWM dimming duty cycle is linearly dependent  
on the input voltage level, from 0% duty cycle at 0.1 V to 100% duty cycle at 2.5 V. Similarly when a DC voltage  
is applied on the LADJ pin, the linear regulator LED current is PWM dimmed in the same way.  
SADJ/LADJ  
Input Voltage  
2.5 V  
500 Hz  
Ramp  
0.1 V  
Ideal LED Current  
UDG-12209  
Figure 18. SADJ/LADJ Input to PWM Dimming  
14  
Copyright © 2013, Texas Instruments Incorporated  
 
TPS92660  
www.ti.com.cn  
ZHCSB27 APRIL 2013  
PWM Dimming  
During PWM dimming, the signal applied on the pin is a PWM signal instead of a DC voltage. The LED current is  
PWM dimmed at the same frequency and duty cycle as the input PWM signal. To implement PWM dimming, the  
rising edges of two consecutive pulses of the input PWM signal must be less than 10ms. Once the device  
detects two consecutive rising edges, the regulator goes into PWM dimming mode. It turns on when the input  
PWM signal rises above the 2.7-V threshold and turns off when the PWM signal falls below the 2.2V threshold.  
For the switching regulator, when the input PWM signal is low, the regulator turns off the gate of the MOSFET  
and the COMP pin capacitor is disconnected. When the input PWM signal is high, the regulator starts again and  
the COMP pin capacitor is reconnected.  
A low gate charge MOSFET is recommended for the linear regulator to prevent LED current overshoot during  
PWM dimming.  
Input Undervoltage Lockout (UVLO)  
The TPS92660 enable pin (EN/UVLO) can also be used to implement input undervoltage lockout. The input  
UVLO voltage is set by a resistor divider from VIN to ground and is compared against a 1.2 V threshold shown in  
Figure 19. As soon as the input voltage is above the preset UVLO rising threshold, the internal circuitry becomes  
active and a 1-µA current source at the UVLO pin is turned on. This extra current provides hysteresis to create a  
lower input UVLO falling threshold.  
VIN  
10 mA  
RUV1  
EN/UVLO  
ON/OFF  
+
1.2 V  
RUV2  
UDG-12210  
Figure 19. Input UVLO Circuit  
The VIN turn-on threshold is defined by Equation 9.  
1.2V ´ R  
+ R  
UV2  
(
)
UV1  
V
=
IN_ON  
R
UV2  
(9)  
V
= R  
´10mA  
HYS  
UV1  
(10)  
I2C OTP ROM LED Current Trim  
I2C Compatible Interface  
Interface Bus Overview  
The I2C compatible synchronous serial interface provides access to the programmable functions and registers on  
the device. This protocol uses a two-wire interface for bi-directional communications between the devices  
connected to the bus. The two interface lines are the serial data line (SDA), and the serial clock line (SCL).  
These lines should be connected to a positive supply, via a pull-up resistor, and remain HIGH even when the bus  
is idle. Every device on the bus is assigned a unique address and acts as either a master or a slave depending  
on whether it generates or receives the serial clock (SCL).  
Copyright © 2013, Texas Instruments Incorporated  
15  
 
 
TPS92660  
ZHCSB27 APRIL 2013  
www.ti.com.cn  
Data Transactions  
One data bit is transferred during each clock pulse. Data is sampled during the high state of the serial clock  
(SCL). Consequently, throughout the high period, the data should remain stable. Any changes on the SDA line  
during the high state of SCL and in the middle of a transaction aborts the current transaction. New data should  
be sent during the low SCL state. This protocol permits a single data line to transfer both command/control  
information and data using the synchronous serial clock.  
I2C Data Validity  
The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, the state  
of the data line can only be changed when SCL is LOW.  
SCL  
SDA  
Data  
change  
allowed  
Data  
change  
allowed  
Data  
change  
allowed  
Data  
valid  
Data  
valid  
UDG-12224  
Figure 20. I2C Signals: Data Validity  
I2C Start and Stop Conditions  
START and STOP bits classify the beginning and the end of the I2C session. START condition is defined as SDA  
transitioning from HIGH to LOW while SCL is HIGH. STOP condition is defined as SDA transitioning from LOW  
to HIGH while SCL is HIGH. The I2C master always generates START and STOP bits. Consider the I2C bus as  
busy after a START condition and free after a STOP condition. During data transmission, the I2C master can  
generate repeated START conditions. First START and repeated START conditions are functionally equivalent.  
SDA  
SCL  
S
P
STOP condition  
START condition  
UDG-12222  
Figure 21. I2C Start and Stop Conditions  
16  
Copyright © 2013, Texas Instruments Incorporated  
TPS92660  
www.ti.com.cn  
ZHCSB27 APRIL 2013  
I2C Addresses and Transferring Data  
Every data value put on the SDA line must be eight bits long with the most significant bit (MSB) being transferred  
first. Each byte of data has to be followed by an acknowledge bit. The master generates the clock pulse for the  
acknowledge bit. The transmitter releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver  
must pull down the SDA line during the 9th clock pulse, signifying an acknowledgement. A receiver which has  
been addressed must generate an acknowledge bit after each byte has been received. After the START  
condition, the I2C master sends a slave address. This address is seven bits long followed by an eighth bit which  
is a data direction bit (R/W). The I2C slave address (7 bits) for TPS92660 is 28H. For the eighth bit, a “0”  
indicates a WRITE and a “1” indicates a READ. The second byte selects the register to which the data is written.  
The third byte contains data to write to the selected register.  
MSB  
LSB  
ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 ADR0 R/W  
bit2  
bit7  
bit6  
bit5  
bit4  
bit3  
bit1  
bit0  
I2C Slave Address (Chip Address)  
UDG-12215  
Figure 22. I2C Chip Address  
Register changes take effect at the SCL rising edge during the last ACK from the slave as shown in Figure 23.  
ack from slave  
ack from slave  
ack from slave  
msb Chip Address lsb  
w
ack  
msb Register Add lsb  
ack  
msb  
DATA  
lsb  
ack  
stop  
start  
SCL  
SDA  
start  
id = 28h  
w
ack  
addr = 02h  
ack  
address 02h data  
ack  
stop  
UDG-12223  
w = write (SDA = “0”)  
r = read (SDA = “1”)  
ack = acknowledge (SDA pulled down by either master or slave)  
rs = repeated start  
id = 7-bit chip address, 28H for TPS92660.  
Figure 23. I2C Write Cycle  
A WRITE function must precede the READ function, as shown in the read cycle waveform in Figure 24.  
Copyright © 2013, Texas Instruments Incorporated  
17  
 
TPS92660  
ZHCSB27 APRIL 2013  
www.ti.com.cn  
ack from slave  
repeated start  
ack from slave  
data from slave nack from master  
ack from slave  
start  
msb Chip Address lsb  
w
msb Register Add lsb  
rs  
msb Chip Address lsb  
r
msb  
DATA  
lsb  
stop  
SCL  
SDA  
start  
id = 28h  
w
ack  
addr = 00h  
ack rs  
id = 28h  
r
ack  
Address 00h data  
nack stop  
UDG-12214  
Figure 24. I2C Read Cycle  
I2C Timing Parameters (VSVDD = 5 V)  
SDA  
10  
8
7
6
1
7
8
2
SCL  
5
1
4
9
3
UDG-12221  
Figure 25. I2C Timing Diagram  
LIMIT  
TIME  
PERIOD  
PARAMETER(1)  
UNITS  
MIN  
0.6  
MAX  
1
2
Hold time (repeated) START condition  
Clock low time  
μs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
pF  
1.3  
3
Clock high time  
600  
4
Setup time for a repeated START condition  
Data hold time (output direction)  
Data hold time (input direction)  
Data setup time  
600  
5
300  
5
0
6
100  
7
Rise time of SDA and SCL  
20+0.1Cb  
15+0.1Cb  
600  
300  
300  
8
Fall time of SDA and SCL  
9
Set-up time for STOP condition  
Bus free time between a STOP and a START condition  
Capacitive load for each bus line  
10  
Cb  
1.3  
10  
200  
(1) Data specified by design. Not production tested.  
I2C Register Details  
The I2C bus interacts with the TPS92660 to realize the features of LED current trim. The operation of these  
functions requires the writing and reading of the internal registers of the TPS92660. Table 1 is the master  
register map of the device.  
18  
Copyright © 2013, Texas Instruments Incorporated  
TPS92660  
www.ti.com.cn  
ZHCSB27 APRIL 2013  
Table 1. Master Register Map  
ADDR  
01h  
REGISTER  
D7  
D6  
D5  
D4  
D3  
STRIM[5:0]  
D2  
LTRIM[3:0]  
D1  
D0  
DEFAULT  
0001 1111  
0000 0111  
0000 1000  
STRIM  
LTRIM  
RSV  
RSV  
RSV  
RSV  
RSV  
RSV  
02h  
RSV  
RSV  
RSV  
FFh  
OTP ROM  
BURNED  
RSV  
WRITE  
RSV  
READ  
Register Definitions  
STRIM Register Definition  
ADDR  
REG  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DEFAULT  
01h  
STRIM  
RSV  
RSV  
STRIM[5:0]  
0001_1111  
Bits  
5:0  
Description  
The STRIM register is meant to be programmed with possible trim values. When the best values  
have been found, the contents of this register may then be made permanent by burning them to OTP  
ROM using the OTP ROM write cycle (described below).  
Upon power-up, the values in OTP ROM are loaded into this register.  
Switching Regulator LED Current Trim Table  
CURRENT  
CURRENT  
CHANGE  
CURRENT  
CHANGE  
CURRENT  
CHANGE  
STRIM[5:0]  
STRIM[5:0]  
STRIM[5:0]  
STRIM[5:0]  
CHANGE  
–20.0%  
–19.4%  
–18.8%  
–18.1%  
–17.5%  
–16.9%  
–16.3%  
–15.6%  
–15.0%  
–14.4%  
–13.8%  
–13.1%  
–12.5%  
–11.9%  
–11.3%  
–10.6%  
XX11 1111  
XX11 1110  
XX11 1101  
XX11 1100  
XX11 1011  
XX11 1010  
XX11 1001  
XX11 1000  
XX11 0111  
XX11 0110  
XX11 0101  
XX11 0100  
XX11 0011  
XX11 0010  
XX11 0001  
XX11 0000  
XX10 1111  
XX10 1110  
XX10 1101  
XX10 1100  
XX10 1011  
XX10 1010  
XX10 1001  
XX10 1000  
XX10 0111  
XX10 0110  
XX10 0101  
XX10 0100  
XX10 0011  
XX10 0010  
XX10 0001  
XX10 0000  
–10.0%  
–9.38%  
–8.75%  
–8.13%  
–7.50%  
–6.88%  
–6.25%  
–5.63%  
–5.00%  
–4.38%  
–3.75%  
–3.13%  
–2.50%  
–1.88%  
–1.25%  
–0.625%  
XX01 1111  
XX01 1110  
XX01 1101  
XX01 1100  
XX01 1011  
XX01 1010  
XX01 1001  
XX01 1000  
XX01 0111  
XX01 0110  
XX01 0101  
XX01 0100  
XX01 0011  
XX01 0010  
XX01 0001  
XX01 0000  
0%  
XX00 1111  
XX00 1110  
XX00 1101  
XX00 1100  
XX00 1011  
XX00 1010  
XX00 1001  
XX00 1000  
XX00 0111  
XX00 0110  
XX00 0101  
XX00 0100  
XX00 0011  
XX00 0010  
XX00 0001  
XX00 0000  
10.0%  
10.6%  
11.3%  
11.9%  
12.5%  
13.1%  
13.8%  
14.4%  
15.0%  
15.6%  
16.3%  
16.9%  
17.5%  
18.1%  
18.8%  
19.4%  
0.625%  
1.25%  
1.88%  
2.50%  
3.13%  
3.75%  
4.38%  
5.00%  
5.63%  
6.25%  
6.88%  
7.50%  
8.13%  
8.75%  
9.38%  
LTRIM Register Definition  
ADDR  
REG  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DEFAULT  
02h  
LTRIM  
RSV  
RSV  
RSV  
RSV  
LTRIM[3:0]  
0000_0111  
Bits  
3:0  
Description  
The LTRIM register is meant to be programmed with possible trim values. When the best values have  
been found, the contents of this register may then be made permanent by burning them to OTP ROM  
using the OTP ROM write cycle (described below).  
Upon power-up, the values in OTP ROM are loaded into this register.  
Copyright © 2013, Texas Instruments Incorporated  
19  
TPS92660  
ZHCSB27 APRIL 2013  
www.ti.com.cn  
Linear Regulator LED Current Trim Table  
CURRENT  
CURRENT  
CHANGE  
CURRENT  
CHANGE  
CURRENT  
CHANGE  
LTRIM[3:0]  
LTRIM[3:0]  
LTRIM[3:0]  
LTRIM[3:0]  
CHANGE  
-25.0%  
-21.9%  
-18.8%  
-15.6%  
XXXX 1111  
XXXX 1110  
XXXX 1101  
XXXX 1100  
XXXX 1011  
XXXX 1010  
XXXX 1001  
XXXX 1000  
–12.5%  
–9.38%  
–6.25%  
–3.13%  
XXXX 0111  
XXXX 0110  
XXXX 0101  
XXXX 0100  
0%  
XXXX 0011  
XXXX 0010  
XXXX 0001  
XXXX 0000  
12.5%  
15.6%  
18.8%  
21.9%  
3.13%  
6.25%  
9.38%  
OTP ROM Register Definition  
ADDR  
REG  
D7  
D6  
D5  
D4  
BURNED  
D3  
D2  
D1  
RSV  
D0  
DEFAULT  
FFh  
OTP ROM  
RSV  
RSV  
RSV  
RSV  
WRITE  
READ  
0000_1000  
Bits  
Description  
7:5  
Reserved. These bits are reserved for future use. When writing to the OTP ROM register, always  
write ‘0’s to these bits.  
4
BURNED – This bit indicates that OTP ROM has been burned (when “BURNED” = 1). After burning  
OTP ROM, an OTP ROM read cycle must take place in order for the BURNED bit to be updated.  
This happens automatically upon power-up, or it can be accomplished manually by issuing an OTP  
ROM read command (see bit 0).  
3
2
RSV  
WRITE – Burning the LTRIM and STRIM register values to OTP ROM is accomplished by writing this  
bit to a ‘1’, waiting at least 25ms, and then writing this bit back to ‘0’.  
1
0
RSV  
READ – To reload the STRIM and LTRIM registers from OTP ROM, write this bit to a ‘1’. This bit  
always reads back as a ‘0’. Writing this bit to a ‘1’ temporarily enables the 500 kHz oscillator to  
perform the OTP ROM read. When the OTP ROM read is finished, the oscillator is disabled.  
OTP ROM Programming  
The programming of both the STRIM and the LTRIM registers to OTP ROM is performed in a single sequence as  
follows  
1. Write the STRIM and LTRIM registers with the desired values.  
2. Write a ‘1’ to the WRITE bit of the OTP ROM register (this switches the internal EVDD from 5V to 8V).  
3. Wait at least 25 ms.  
4. Write a ‘0’ to the WRITE bit (this returns EVDD to 5 V).  
20  
Copyright © 2013, Texas Instruments Incorporated  
TPS92660  
www.ti.com.cn  
ZHCSB27 APRIL 2013  
1
STRIM[5:0]  
LTRIM[3:0]  
must be valid  
must be valid  
8 V  
5 V  
EVDD  
2
4
00h  
04h  
00h  
OTP  
ROM[7:0]  
>25 ms  
3
UDG-12213  
Figure 26. OTP ROM Programming Sequence  
OTP ROM Reading  
The EPROM is read under either of the following conditions:  
Power-on reset. Note that power-on reset starts when both EN pin and VCC voltages cross the UVLO  
threshold. It takes apprimately 50µs to read the OTP ROM contents into the TRIM registers.  
Writing a ‘1’ to the READ bit of the OTP ROM register. It is not necessary to clear the READ bit after writing it  
to a ‘1’.  
The device temporarily enables the 500-kHz oscillator during the OTP ROM read cycle. This operation is  
necessary because the digital counters generate the timing for the OTP ROM read cycle. After the OTP ROM  
read cycle is finished, the oscillator is disabled.  
Figure 27 shows a power-on OTP ROM read cycle. The device reads all OTP ROM registers simultaneously. All  
timing values are approximate and based on a 500-kHz internal oscillator.  
POR  
50 ms  
STRIM [5:0]  
LTRIM [3:0]  
valid  
valid  
UDG-12212  
Figure 27. Power-ON OTP ROM Read Timing  
Reference Voltage  
The TPS92660 provides a 3.0V reference voltage which can be used in the AC/DC main power supply  
secondary-side control circuit.  
Thermal Shutdown  
Internal thermal shutdown circuitry protects the device in the event that the maximum junction temperature is  
exceeded. The threshold for thermal shutdown is 165°C with a 25°C hysteresis. Thermal shutdown protection  
disables the MOSFET drivers.  
Copyright © 2013, Texas Instruments Incorporated  
21  
 
TPS92660  
ZHCSB27 APRIL 2013  
DESIGN EXAMPLE  
Specifications  
www.ti.com.cn  
Switching Regulator  
Switching Regulator: (fSW): 200 kHz  
Input voltage (VIN): 60 V  
Output voltage (VOUT): 48 V  
Charge current (ILED): 500 mA  
Output overvoltage protection threshold (VOVP): 60 V  
Linear Regulator  
Input voltage (VIN): 30 V  
Output voltage (VOUT): 24 V  
Charge current (ILED): 20 mA  
Design Procedure  
Step 1: Select Overvoltage and Timing Components ROV1, ROV2, RT and CT  
RVO2  
VOVP  
´
= 2.5V  
R
(
VO1 + RVO2  
)
(11)  
(12)  
VOVP = 60 V  
Choose RVO2 = 1.00 kΩ  
The calculated RVO1 = 23 kΩ, the standard resistor with the closest value (± 1%) is 23.2 kΩ  
R
+ R  
VO2  
(
R
)
VO1  
f
=
SW  
´R ´ C  
T
VO2  
T
fSW = 200 KHz  
RT × CT = 121 x 10-6, choose CT = 1000 pF  
the calculated RT = 121 kΩ  
Step 2: Select Current Sense Resistors RSNS and RSNS_LN  
The current sense resistor of the switching regulator RSNS = 202 mV/500 mA = 0.404 Ω.  
The current sense resistor of the linear regulator RSNS_LN = 200 mV/20 mA = 10 Ω.  
Step 3: Select Inductor  
Choose inductor current ripple ΔIL_PP = 0.15 A ( 30% of ILED  
)
V
48 V  
OUT  
t
=
=
= 4ms  
ON  
V
´ f  
60 V ´ 200kHz  
IN  
SW  
(13)  
(14)  
60V - 48V ´ 4ms  
)
(V - V  
)´ t  
ON  
(
IN  
OUT  
L =  
=
= 320mH  
DI  
0.15A  
L P-P  
(
)
The closest standard inductor value is 330 µH.  
22  
Copyright © 2013, Texas Instruments Incorporated  
TPS92660  
www.ti.com.cn  
ZHCSB27 APRIL 2013  
Figure 28. Design Example Application Schematic  
Copyright © 2013, Texas Instruments Incorporated  
23  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS92660PWP/NOPB  
TPS92660PWPR/NOPB  
ACTIVE  
HTSSOP  
HTSSOP  
PWP  
20  
20  
73  
RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
TP92660  
PWP  
ACTIVE  
PWP  
2500 RoHS & Green  
SN  
TP92660  
PWP  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
MECHANICAL DATA  
PWP0020A  
MXA20A (Rev C)  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS92661-Q1

适用于汽车前照灯系统的高亮度 LED 矩阵管理器
TI

TPS92661QPHPRQ1

适用于汽车前照灯系统的高亮度 LED 矩阵管理器 | PHP | 48 | -40 to 125
TI

TPS92662-Q1

适用于汽车前照灯系统的 12 通道高亮度 LED 矩阵管理器
TI

TPS92662A-Q1

适用于汽车前照灯系统的 12 通道高亮度 LED 矩阵管理器
TI

TPS92662AQPHPRQ1

适用于汽车前照灯系统的 12 通道高亮度 LED 矩阵管理器 | PHP | 48 | -40 to 125
TI

TPS92662QPHPRQ1

适用于汽车前照灯系统的 12 通道高亮度 LED 矩阵管理器 | PHP | 48 | -40 to 125
TI

TPS92662QPHPTQ1

适用于汽车前照灯系统的 12 通道高亮度 LED 矩阵管理器 | PHP | 48 | -40 to 125
TI

TPS92663-Q1

适用于汽车前照灯系统的 6 通道高亮度 LED 矩阵管理器
TI

TPS92663A-Q1

适用于汽车前照灯系统的高亮度 LED 矩阵管理器
TI

TPS92663AQPWPRQ1

适用于汽车前照灯系统的高亮度 LED 矩阵管理器 | PWP | 24 | -40 to 125
TI

TPS92663QPWPRQ1

适用于汽车前照灯系统的 6 通道高亮度 LED 矩阵管理器 | PWP | 24 | -40 to 125
TI

TPS92663QPWPTQ1

适用于汽车前照灯系统的 6 通道高亮度 LED 矩阵管理器 | PWP | 24 | -40 to 125
TI