UCC12040 [TI]

500mW、高效 3kVrms 隔离式直流/直流转换器;
UCC12040
型号: UCC12040
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

500mW、高效 3kVrms 隔离式直流/直流转换器

转换器
文件: 总36页 (文件大小:2393K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UCC12040
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
UCC12040 High-Density, Low-EMI, 3-kVRMS Basic Isolation DC/DC Module  
1 Features  
2 Applications  
High-density DC/DC module with optimized  
integrated transformer technology  
Input voltage range: 4.5 V to 5.5 V  
Output voltages (selectable): 5.4 V, 5.0 V, 3.7 V,  
3.3 V  
Output power: 500 mW  
Peak efficiency: 60%  
Line regulation (typical): 1%  
Load regulation (typical): 1.5%  
Meets CISPR32 Class B EMI limits without ferrite  
beads on a 2-layer PCB  
Spread spectrum modulation (SSM)  
Robust isolation barrier:  
PLC analog input & output modules  
Grid protection relays & smart breakers  
Medical patient monitors  
Isolated bias for digital isolators  
Isolated bias for RS-485/RS-422/CAN transceivers  
Isolated bias for voltage and current sensors  
3 Description  
UCC12040 is a DC/DC power module with 3-kVRMS  
basic isolation rating designed to provide efficient,  
isolated power to isolated circuits that require a  
bias supply with a well-regulated output voltage. The  
device integrates a transformer and DC/DC controller  
with a proprietary architecture to provide 500 mW  
(typical) of isolated power with low EMI.  
– Isolation rating: 3 kVRMS  
– Surge capability: 6.5 kVPK  
– Working voltage: 850 VRMS  
– CMTI (typical): ±100 V/ns  
Short circuit recovery  
Thermal shutdown  
16-pin wide-body SOIC package with > 8-mm  
creepage and clearance  
Extended temperature range: –40°C to 125°C  
Safety-related certifications:  
– 5657-VPK basic isolation per DIN V VDE V  
0884-11:2017- 01  
The UCC12040 integrates protection features for  
increased system robustness. The device also has an  
enable pin, synchronization capability, and regulated  
5-V or 3.3-V output options with headroom. The  
UCC12040 is a low-profile, miniaturized solution  
offered in a wide-body SOIC package with 2.65-mm  
height.  
Device Information(1)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
UCC12040  
DVE SOIC (16)  
10.30 mm × 7.50 mm  
– 3000-VRMS isolation for 1 minute per UL 1577  
– UL certification per IEC 60950-1, IEC 62368- 1  
and IEC 60601-1 end equipment standards  
– CQC approval per GB4943.1-2011  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
70  
60  
50  
40  
30  
VINP  
VISO  
GNDS  
SEL  
ON  
CIN  
COUT  
EN  
OFF  
GNDP  
SYNC  
SYNC_OK  
20  
VISO = 5.4 V  
VISO = 5.0 V  
VISO = 3.7 V  
VISO = 3.3 V  
Simplified Application  
10  
0
0
20  
40  
60 80  
Load Current (mA)  
100  
120 140  
D021  
VINP = 5.0 V  
TA = 25°C  
Typical Efficiency vs. Load  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
UCC12040  
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Power Ratings.............................................................5  
6.6 Insulation Specifications............................................. 5  
6.7 Safety-Related Certifications...................................... 6  
6.8 Safety Limiting Values.................................................6  
6.9 Electrical Characteristics.............................................7  
6.10 Switching Characteristics..........................................8  
6.11 Insulation Characteristics Curves..............................9  
6.12 Typical Characteristics............................................10  
7 Detailed Description......................................................15  
7.1 Overview...................................................................15  
7.2 Functional Block Diagram.........................................15  
7.3 Feature Description...................................................15  
7.4 Device Functional Modes..........................................18  
8 Application and Implementation..................................19  
8.1 Application Information............................................. 19  
8.2 Typical Application.................................................... 19  
9 Power Supply Recommendations................................25  
10 Layout...........................................................................25  
10.1 Layout Guidelines................................................... 25  
10.2 Layout Example...................................................... 26  
11 Device and Documentation Support..........................27  
11.1 Device Support........................................................27  
11.2 Documentation Support.......................................... 27  
11.3 Receiving Notification of Documentation Updates..27  
11.4 Support Resources................................................. 27  
11.5 Trademarks............................................................. 27  
11.6 Electrostatic Discharge Caution..............................27  
11.7 Glossary..................................................................27  
12 Mechanical and Packaging Information....................27  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision A (April 2020) to Revision B (May 2021)  
Page  
Added Safety Certification Information. ............................................................................................................. 1  
Updated ESD values. ........................................................................................................................................ 4  
Updated voltage isolation specs per DIN V VDE V 0884-11:2017-01................................................................ 5  
Updated Switching Characteristics (non-sync)...................................................................................................8  
Changes from Revision * (December 2019) to Revision A (April 2020)  
Page  
Updated IVINO Typical Values in Electrical Characteristics Table .......................................................................7  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: UCC12040  
 
UCC12040  
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
www.ti.com  
5 Pin Configuration and Functions  
DVE Package 16-Pin SOIC Top View  
1
16  
15  
14  
13  
12  
11  
10  
9
GNDS  
GNDS  
VISO  
SEL  
EN  
GNDP  
VINP  
2
3
4
5
6
7
8
SYNC  
SYNC_OK  
NC  
NC  
NC  
NC  
NC  
NC  
GNDS  
Table 5-1. Pin Functions  
PIN  
TYPE (1)  
DESCRIPTION  
NAME  
NO.  
Enable pin. Forcing EN low disables the device. Pull high to enable normal device  
functionality.  
EN  
1
I
GNDP  
2
9
P
Power ground return connection for VINP.  
Connect to GNDS plane on printed circuit board. Do not use as only ground connection for  
VISO. Ensure pin 15 is connected to circuit ground.  
GNDS  
GNDS  
P
P
16  
Secondary side ground return connection for VISO. Connect bypass capacitor from VISO to  
this pin.  
15  
6
7
Pins internally connected together. No other electrical connection. Pins belong to primary-  
side voltage domain. Connect to GNDP on printed circuit board.  
8
NC  
10  
11  
12  
No internal connection. Pin belongs to isolated voltage domain. Connect to GNDS on printed  
circuit board.  
I
Synchronous clock input pin. Provide a clock signal to synchronize multiple devices or  
connect to GNDP for standalone operation using the internal oscillator. If the SYNC pin is left  
open make sure to it separate it from any switching noise to avoid false clock coupling.  
SYNC  
4
5
Active-low, open-drain diagnostic output. Pin is asserted LOW if there is no external SYNC  
clock or one that is outside of the operating range of the UCC12040 is detected. In this state,  
the external clock is ignored and the DC-DC converter is clocked by the internal oscillator.  
The pin is in high-impedance if a clock is applied on SYNC.  
SYNC_OK  
O
VISO selection pin. VISO setpoint is 5.0 V when SEL is shorted to VISO, 5.4 V when SEL is  
connected to VISOthrough a 100-kΩ resistor, 3.3 V when SEL is shorted to GNDS, and 3.7  
V when SEL is connected to GNDS through a 100-kΩ resistor. For more information see the  
Section 7.4 section.  
SEL  
13  
I
Primary side input supply voltage pin. A 10-μF ceramic capacitor to GNDP on pin 2, placed  
close to the device pins, is required.  
VINP  
VISO  
3
P
P
Isolated supply voltage pin. A 10-μF ceramic capacitor to GNDS on pin 15, placed close to  
the device pins, is required. See Section 8.2.2.1 section.  
14  
(1) P = Power, G = Ground, I = Input, O = Output  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: UCC12040  
 
 
UCC12040  
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VINP to GNDP  
–0.3  
6.0  
V
VINP + 0.3,  
≤ 6.0  
EN, SYNC, SYNC_OK, to GNDP  
VISO to GNDS  
–0.3  
–0.3  
–0.3  
V
V
V
6.0  
VISO + 0.3,  
≤ 6.0  
SEL to GNDS  
(2)  
VISO output power at Ta = 25°C, POUT_MAX  
675  
150  
150  
mW  
°C  
Operating junction temperature range, TJ  
Storage temperature, Tstg  
–40  
–65  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) See the Section 7.3.3 section for maximum rated values across temperature and VINP conditions for each different VISO output mode.  
6.2 ESD Ratings  
VALUE  
±3000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
0
NOM  
MAX  
5.5  
UNIT  
V
VINP  
Primary side supply voltage  
EN pin input voltage  
5.0  
VEN  
5.5  
V
VSYNC  
VSYNC-OK  
VISO  
VSEL  
fSYNC  
PVISO  
Ta  
SYNC pin input voltage  
0
5.5  
V
SYNC_OK pen drain pin voltage  
Isolated power supply voltage  
Input voltage  
0
5.5  
V
0
5.7  
V
0
5.7  
V
External DC/DC converter synchronization signal frequency  
VISO output power at Ta = 25°C (1)  
Ambient temperature  
14.4  
16.0  
17.6  
500  
125  
150  
MHz  
mW  
°C  
°C  
–40  
–40  
TJ  
Junction temperature  
(1) See the Section 7.3.3 section for maximum rated values across temperature and VINP conditions for each different VISO output mode.  
6.4 Thermal Information  
DVE (SOIC)  
THERMAL METRIC(1)  
UNIT  
16 PINS  
RθJA  
Junction-to-ambient thermal resistance  
63.8  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
21.4  
38.5  
10.2  
37.2  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ψJB  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: UCC12040  
 
 
 
 
 
 
 
 
 
 
UCC12040  
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
www.ti.com  
DVE (SOIC)  
UNIT  
16 PINS  
THERMAL METRIC(1)  
Junction-to-case (bottom) thermal resistance  
RθJC(bot)  
°C/W  
(1) The value of RθJA given in this table is only valid for comparison with other packages and can not be used for design purposes. This  
value was calculated in accordance with JESD 51-7, and simulated on a 4-layer JEDEC board when PDP = 129 mW, PDC = 142 mW  
and PDT = 129 mW. The board temperature is taken from Pin 12. For more information about traditional and new thermal metrics, see  
the Semiconductor and IC Package Thermal Metrics application report.  
6.5 Power Ratings  
VINP = 5.0V, CINP = COUT = 10 uF, TJ = 150°C, Internal Clock mode  
PARAMETER  
TEST CONDITIONS  
VALUE  
460  
UNIT  
mW  
mW  
mW  
mW  
PD  
Power dissipation  
PDP  
PDS  
PDT  
Power dissipation by driver side (primary)  
Power dissipation by rectifier side (secondary)  
Power dissipation by transformer  
148  
SEL connected to GNDS (3.3-V VISO output mode), IISO  
135 mA  
=
164  
148  
6.6 Insulation Specifications  
PARAMETER  
GENERAL  
TEST CONDITIONS  
VALUE  
UNIT  
CLR  
CPG  
External clearance(1)  
Shortest terminal-to-terminal distance through air  
> 8  
> 8  
mm  
mm  
Shortest terminal-to-terminal distance across the package  
surface  
External creepage(1)  
DTI  
CTI  
Distance through the insulation  
Comparative tracking index  
Material group  
Minimum internal gap (internal clearance)  
DIN EN 60112 (VDE 0303-11); IEC 60112  
According to IEC 60664-1  
> 120  
> 600  
I
µm  
V
Rated mains voltage ≤ 300 VRMS  
Rated mains voltage ≤ 600 VRMS  
Rated mains voltage ≤ 1000 VRMS  
I-IV  
I-IV  
I-III  
Overvoltage Category  
DIN V VDE V 0884-11:2017-01(2)  
VIORM Maximum repetitive peak isolation voltage  
AC voltage (bipolar)  
1202  
850  
VPK  
VRMS  
VDC  
AC voltage (sine wave) Time dependent dielectric  
breakdown (TDDB) test  
VIOWM  
Maximum working isolation voltage  
DC voltage  
1202  
4243  
VTEST = VIOTM, t = 60s (qualification);  
VTEST = 1.2 × VIOTM, t = 1s (100% production)  
VIOTM  
VIOSM  
Maximum transient isolation voltage  
Maximum surge isolation voltage(3)  
VPK  
Test method per IEC 62368-1, 1.2/50 µs waveform,  
VTEST = 1.3 × VIOSM = 6500 VPK (qualification)  
5000  
≤ 5  
VPK  
Method a: After I/O safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.2 × VIORM = 1442 VPK, tm = 10 s  
Method a: After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.2 × VIORM = 1442 VPK, tm = 10 s  
≤ 5  
≤ 5  
qpd  
Apparent charge(4)  
pC  
Method b1: At routine test (100% production) and  
preconditioning (type test)  
Vini = 1.2 × VIOTM, tini = 1 s;  
Vpd(m) = 1.5 × VIORM = 1803 VPK, tm = 1 s  
CIO  
RIO  
Barrier capacitance, input to output(5)  
Isolation resistance, input to output(5)  
VIO = 0.4 sin (2πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
~3.5  
> 1012  
> 1011  
> 109  
pF  
Ω
VIO = 500 V, 100°C ≤ TA ≤ 125°C  
VIO = 500 V at TS = 150°C  
Pollution degree  
Climatic category  
2
40/125/21  
UL 1577  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: UCC12040  
 
 
 
UCC12040  
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
www.ti.com  
PARAMETER  
TEST CONDITIONS  
VALUE  
UNIT  
VTEST = VISO = 3000 VRMS, t = 60 s (qualification); VTEST  
1.2 × VISO = 3600 VRMS, t = 1 s (100% production)  
=
VISO  
Withstand isolation voltage  
3000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application.  
Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of  
the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become  
equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these  
specifications.  
(2) This coupler is suitable for safe electrical insulation only within the maximum operating ratings. Compliance with the safety ratings shall  
be ensured by means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-terminal device  
6.7 Safety-Related Certifications  
VDE  
UL  
CQC  
Recognized under UL 1577  
Component Recognition  
Program  
Certified according to IEC  
60601-1  
Certified according to DIN V  
VDE V 0884-11:2017- 01  
Certified according to IEC  
60950-1 and IEC 62368- 1  
Certified according to  
GB4943.1-2011  
Basic insulation per UL  
60601- 1:14 and IEC  
60601-1 Ed.3+A1,AAMI ES  
60601-1:2005/(R)2012 and  
A1:2012, C1:2009/(R)2012  
and A2:2010/(R)2012 CSA  
C22.2 No. 60601-1:2014  
IEC 60601-1:2012, 1  
Basic insulation per UL  
60950-1-07+A1+A2, IEC  
60950-1 2nd Ed.+A1+A2,  
UL 62368-1- 14 and IEC  
62368-1 2nd Ed., 850  
VRMS maximum working  
voltage (pollution degree 1,  
material group I)  
Basic insulation Maximum  
transient isolation voltage,  
4243 VPK; Maximum  
repetitive peak isolation  
voltage, 1202 VPK;  
Basic insulation, Altitude ≤ 5000  
m, Tropical Climate, 800 VRMS  
maximum working voltage  
Single protection, 3000  
VRMS  
Maximum surge isolation  
voltage, 5000 VPK  
MOPP (Means of Patient  
Protection), 250 VRMS  
maximum working voltage  
Certificate number:  
US-36706-UL, US-36707-  
UL  
Certificate number:  
US-36773-A1-UL  
Certificate number:  
40047657  
Certificate number:  
CQC20001268791  
File number: E181974  
6.8 Safety Limiting Values  
Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
TEST CONDITIONS  
RθJA = 63.8°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C  
RθJA = 63.8°C/W, VI = 4.5 V, TJ = 150°C, TA = 25°C  
RθJA = 63.8°C/W, TJ = 150°C, TA = 25°C  
MAX  
UNIT  
356  
IS  
Safety input current (1)  
mA  
435  
PS  
TS  
Safety input power  
1960  
150  
mW  
°C  
Safety temperature (1)  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The  
IS and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be  
exceeded. These limits vary with the ambient temperature, TA. The junction-to-air thermal resistance, RθJA, in the Thermal Information  
table is that of a device installed on a high-K test board for leaded surface-mount packages. Use these equations to calculate the value  
for each parameter: TJ = TA + RθJA × P, where P is the power dissipated in the device. TJ(max) = TS = TA + RθJA × PS, where TJ(max) is  
the maximum allowed junction temperature. PS = IS × VI, where VI is the maximum input voltage.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: UCC12040  
 
 
 
 
 
 
 
 
UCC12040  
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
www.ti.com  
6.9 Electrical Characteristics  
Over operating temperature range (TJ = –40°C to 150°C), VINP = 4.5V to 5.5V, CINP = COUT = 10 µF, SEL connected to VISO  
internal clock mode, unless otherwise noted. All typical values at TJ = 25°C and VINP = 5.0V.  
,
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
INPUT SUPPLY  
IVINQ  
VINP quiescent current,disabled  
EN=LOW  
100  
uA  
EN=HI; SEL shorted to VISO (5.0V output)  
EN=HI; SEL 100kΩ to VISO (5.4V output)  
EN=HI; SEL shorted to GNDS (3.3V output)  
EN=HI; SEL 100kΩ to GNDS (3.7V output)  
50  
45  
90  
80  
IVINO  
VINP operating current, no load  
mA  
DC current from VINP supplyunder  
short circuit on VISO  
IVIN_SC  
VUVPR  
VUVPF  
VUVPH  
VISO short to GNDS  
245  
4.2  
3.7  
0.5  
mA  
V
VINP under-voltage lockout rising  
threshold  
VINP under-voltage lockout falling  
threshold  
V
VINP under-voltage lockout  
hysteresis  
V
EN, SYNC INPUT PINS  
VIR  
Input voltage threshold, logic HIGH Rising edge  
Input voltage threshold, logic LOW Falling edge  
2.2  
V
V
VIF  
0.8  
IEN  
Enable Pin Input Current  
SYNC Pin Input Current  
VEN = 5.0 V  
5
10  
1
uA  
uA  
ISYNC  
VSYNC = 5.0 V  
0.02  
SYNC_OK PIN  
VOL  
SYNC_OK output low voltage  
SYNC_OK pin leakage current  
ISYNC_OK = - 2 mA  
VSYNC_OK = 5.0 V  
0.15  
V
ILKG_SYNC_OK  
1
uA  
DC/DC CONVERTER  
SEL shorted to VISO (5.0V output); IISO = 55  
mA (2)  
4.7  
5.1  
3.1  
3.5  
5
5.4  
3.3  
3.7  
5.3  
5.7  
3.5  
3.9  
V
V
V
V
SEL 100kΩ to VISO (5.4 V output); IISO = 45  
mA (2)  
VISO  
Isolated supply output voltage  
SEL shorted to GNDS (3.3V output); IISO  
100 mA (2)  
=
SEL 100kΩ to GNDS (3.7 V output); IISO = 90  
mA (2)  
20-MHz bandwidth, CLOAD = 10 uF || 0.1  
uF, SEL shorted to VISO (5.0V output); IISO  
100 mA  
=
50  
50  
50  
50  
mV  
mV  
mV  
mV  
20-MHz bandwidth, CLOAD = 10 uF || 0.1 uF,  
SEL 100kΩ to VISO (5.4V output); IISO = 90  
mA  
Voltage ripple on isolated supply  
output (pk-pk)  
VISO(RIP)  
20-MHz bandwidth, CLOAD = 10 uF || 0.1 uF,  
SEL shorted to GNDS (3.3V output); IISO  
145 mA  
=
20-MHz bandwidth, CLOAD = 10 uF || 0.1 uF,  
SEL shorted to GNDS (3.7V output); IISO  
130 mA  
=
SEL shorted to VISO (5.0 V output); IISO = 50  
mA, VINP = 4.5 V to 5.5 V  
1%  
1%  
VISO(LINE)  
VISO DC line regulation  
SEL shorted to GNDS (3.3 V output); IISO  
75 mA, VINP = 4.5 V to 5.5 V  
=
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: UCC12040  
 
UCC12040  
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
www.ti.com  
Over operating temperature range (TJ = –40°C to 150°C), VINP = 4.5V to 5.5V, CINP = COUT = 10 µF, SEL connected to VISO  
internal clock mode, unless otherwise noted. All typical values at TJ = 25°C and VINP = 5.0V.  
,
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SEL shorted to VISO (5.0 V output); IISO = 0  
to 100 mA  
VISO DC load regulation  
1.5%  
VISO(LOAD)  
SEL shorted to GNDS (3.3 V output); IISO = 0  
to 145 mA  
VISO DC load regulation  
1.5%  
60%  
60%  
50%  
53%  
750  
SEL shorted to VISO (5.0 V output); IISO  
100 mA  
=
SEL 100kΩ to VISO (5.4V output); IISO = 90  
mA  
Efficiency at maximum  
recommended load (1)  
EFF  
SEL shorted to GNDS (3.3V output); IISO  
145 mA  
=
SEL 100kΩ to GNDS (3.7V output); IISO  
130 mA  
=
EN = change from LO to HI, SEL shorted to  
VISO (5.0V output); IISO = 1 mA  
µs  
µs  
tRISE  
VISO rise time, 10% - 90%  
EN = change from LO to HI, SEL 100kΩ to  
GNDS (3.3V output); IISO = 1 mA  
300  
THERMAL SHUTDOWN  
TSDTHR  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
Junction Temperature, Rising  
Junction Temperature, Falling  
165  
27  
°C  
°C  
TSDHYST  
(1) Efficiency calculation: EFF = (VISO x IISO) / (VINP x IINP  
)
(2) See the Section 7.3.3 section for discussion of VISO regulation across load and temperature conditions for all output voltage settings.  
6.10 Switching Characteristics  
Over operating temperature range (TJ = –40°C to 150°C), VINP = 4.5V to 5.5V, CINP = COUT = 10 µF, SEL connected to VISO  
internal clock mode, unless otherwise noted. All typical values at TJ = 25°C and VINP = 5.0V.  
,
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
fSW_INT  
CMTI  
DC/DC Converter Clock  
Internal clock mode  
7.2  
8
8.8 MHz  
V/ns  
Static common-mode transient  
immunity  
Slew Rate of GNDP versus GNDS, VCM  
1000 V  
=
100  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: UCC12040  
 
 
 
UCC12040  
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
www.ti.com  
6.11 Insulation Characteristics Curves  
>>100 Yrs  
1.E+12  
>>100  
1.E+11  
Yrs  
87.5%  
1.E+10  
1.E+09  
1.E+08  
1.E+07  
1.E+06  
TDDB Line (< 1 ppm fail rate)  
Operating Zone  
VDE Safety Margin Zone  
20 %  
1.E+05  
1.E+04  
1.E+03  
1.E+02  
1.E+01  
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500  
Applied Voltage (VRMS  
)
Working isolation voltage = 850 VRMS  
TA up to 150°C  
Projected insulation lifetime = 11840 years  
Applied voltage frequency = 60 Hz  
Figure 6-1. Insulation Lifetime Projection Data  
450  
400  
350  
300  
250  
200  
150  
100  
50  
2000  
1750  
1500  
1250  
1000  
750  
VINP = 4.5 V  
VINP = 5.5 V  
500  
250  
0
0
0
20  
40  
60  
80  
100  
Ambient Temperature (ºC)  
120  
140  
160  
0
20  
40  
60  
80  
100  
Ambient Temperature (ºC)  
120  
140  
160  
D031  
D029  
Figure 6-3. Thermal Derating Curve for Safety  
Limiting Power per VDE  
Figure 6-2. Thermal Derating Curve for Safety  
Limiting Current per VDE  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: UCC12040  
 
UCC12040  
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
www.ti.com  
6.12 Typical Characteristics  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
150  
VINP = 5.5 V  
VINP = 5.0 V  
VINP = 4.5 V  
VINP = 5.5 V  
VINP = 5.0 V  
VINP = 4.5 V  
100  
50  
0
0
-40 -20  
0
20  
Ambient Temperature (ºC)  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
Ambient Temperature (ºC)  
40  
60  
80 100 120 140 160  
D022  
D023  
VISO = 5.0 V  
VISO = 5.4 V  
Figure 6-4. Maximum VISO Output Power vs.  
Temperature  
Figure 6-5. Maximum VISO Output Power vs.  
Temperature  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
VINP = 5.5 V  
VINP = 5.0 V  
VINP = 4.5 V  
VINP = 5.5 V  
VINP = 5.0 V  
VINP = 4.5 V  
100  
50  
0
100  
50  
0
-40 -20  
0
20  
Ambient Temperature (ºC)  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
Ambient Temperature (ºC)  
40  
60  
80 100 120 140 160  
D024  
D025  
VISO = 3.3 V  
VISO = 3.7 V  
Figure 6-6. Maximum VISO Output Power vs.  
Temperature  
Figure 6-7. Maximum VISO Output Power vs.  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: UCC12040  
 
UCC12040  
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
www.ti.com  
140  
120  
100  
80  
140  
120  
100  
80  
60  
60  
40  
40  
VINP = 5.5 V  
VINP = 5.0 V  
VINP = 4.5 V  
VINP = 5.5 V  
VINP = 5.0 V  
VINP = 4.5 V  
20  
20  
0
0
-40 -20  
0
20  
Ambient Temperature (ºC)  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
Ambient Temperature (ºC)  
40  
60  
80 100 120 140 160  
D026  
D027  
VISO = 5.0 V  
VISO = 5.4 V  
Figure 6-8. Maximum VISO Output Current vs.  
Temperature  
Figure 6-9. Maximum VISO Output Current vs.  
Temperature  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
60  
60  
40  
40  
VINP = 5.5 V  
VINP = 5.0 V  
VINP = 4.5 V  
VINP = 5.5 V  
VINP = 5.0 V  
VINP = 4.5 V  
20  
0
20  
0
-40 -20  
0
20  
Ambient Temperature (ºC)  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
Ambient Temperature (ºC)  
40  
60  
80 100 120 140 160  
D028  
D029  
VISO = 3.3 V  
VISO = 3.7 V  
Figure 6-10. Maximum VISO Output Current vs.  
Temperature  
Figure 6-11. Maximum VISO Output Current vs.  
Temperature  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
0
10  
20  
30  
40  
Load Current (mA)  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
Load Current (mA)  
50  
60  
70  
80  
90 100  
D006  
D008  
VINP = 5.0 V  
VISO = 5.0 V  
TA = 25°C  
VINP = 5.0 V  
VISO = 5.4 V  
TA = 25°C  
Figure 6-12. Power Supply Efficiency vs Load  
Figure 6-13. Power Supply Efficiency vs Load  
Current (IISO  
Current (IISO  
)
)
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: UCC12040  
 
 
UCC12040  
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
www.ti.com  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
0
20  
40  
60  
Load Current (mA)  
80  
100  
120  
140  
0
20  
40  
60  
Load Current (mA)  
80  
100  
120  
140  
D007  
D009  
VINP = 5.0 V  
VISO = 3.3 V  
TA = 25°C  
VINP = 5.0 V  
VISO = 3.7 V  
TA = 25°C  
Figure 6-14. Power Supply Efficiency vs Load  
Current (IISO  
Figure 6-15. Power Supply Efficiency vs Load  
Current (IISO  
)
)
5.1  
5.05  
5
5.5  
5.45  
5.4  
VINP = 4.5 V  
VINP = 5.0 V  
VINP = 5.5 V  
VINP = 4.5 V  
VINP = 5.0 V  
VINP = 5.5 V  
4.95  
4.9  
5.35  
5.3  
0
10  
20  
30  
40  
Load Current (mA)  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
Load Current (mA)  
50  
60  
70  
80  
90 100  
D012  
D013  
VISO = 5.0 V  
TA = 25°C  
VISO = 5.4 V  
TA = 25°C  
Figure 6-16. Isolated Supply Voltage (VISO) vs Load Figure 6-17. Isolated Supply Voltage (VISO) vs Load  
Current (IISO Current (IISO  
)
)
3.4  
3.35  
3.3  
3.8  
3.75  
3.7  
VINP = 4.5 V  
VINP = 5.0 V  
VINP = 5.5 V  
VINP = 4.5 V  
VINP = 5.0 V  
VINP = 5.5 V  
3.65  
3.6  
3.25  
3.2  
0
20  
40  
60  
80  
Load Current (mA)  
100  
120  
140  
0
20  
40  
60  
80  
Load Current (mA)  
100  
120  
140  
D010  
D011  
VISO = 3.7 V  
TA = 25°C  
VISO = 3.3 V  
TA = 25°C  
Figure 6-19. Isolated Supply Voltage (VISO) vs Load  
Figure 6-18. Isolated Supply Voltage (VISO) vs Load  
Current (IISO  
Current (IISO  
)
)
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: UCC12040  
UCC12040  
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
www.ti.com  
5.20  
5.60  
5.50  
5.40  
5.30  
5.20  
5.10  
5.00  
4.90  
4.80  
-40  
-20  
0
20  
Free-Air Temperature (ºC)  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
Free-Air Temperature (ºC)  
40  
60  
80  
100 120 140  
D014  
D015  
VINP = 5.0 V  
VISO = 5.0 V  
IISO = 50 mA  
VINP = 5.0 V  
VISO = 5.4 V  
IISO = 50 mA  
Figure 6-20. Isolated Supply Voltage (VISO) vs Free- Figure 6-21. Isolated Supply Voltage (VISO) vs Free-  
Air Temperature Air Temperature  
3.50  
3.40  
3.30  
3.20  
3.10  
3.90  
3.80  
3.70  
3.60  
3.50  
-40  
-20  
0
20  
Free-Air Temperature (ºC)  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
Free-Air Temperature (ºC)  
40  
60  
80  
100 120 140  
D016  
D017  
VINP = 5.0 V  
VISO = 3.3 V  
IISO = 75 mA  
VINP = 5.0 V  
VISO = 3.7 V  
IISO = 75 mA  
Figure 6-22. Isolated Supply Voltage (VISO) vs Free- Figure 6-23. Isolated Supply Voltage (VISO) vs Free-  
Air Temperature Air Temperature  
280  
260  
240  
220  
200  
250  
200  
150  
100  
50  
VISO = 3.3 V  
VISO = 3.7 V  
VISO = 5.0 V  
VISO = 5.4 V  
0
4.5 4.6 4.7 4.8 4.9  
5
Input Suppy Voltage (V)  
5.1 5.2 5.3 5.4 5.5  
0
20  
40  
60  
80  
100  
Load Current (mA)  
120  
140  
160  
D018  
D019  
TA = 25°C  
VINP = 5.0 V  
TA = 25°C  
Figure 6-24. Short-Circuit Supply Current (IVIN_SC  
)
Figure 6-25. Input Supply Current (IVINP) vs Load  
Current (IISO  
vs Supply Voltage (VINP  
)
)
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: UCC12040  
UCC12040  
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
www.ti.com  
4.5  
4.4  
4.3  
4.2  
4.1  
4
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3
Falling Threshold  
RisingThreshold  
-40  
-20  
0
20  
40 60  
Temperature (ºC)  
80  
100 120 140  
Figure 6-26. Typical VINP UVLO Threshold vs Junction Temperature (TJ)  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: UCC12040  
UCC12040  
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The UCC12040 device integrates a high-efficiency, low-emissions isolated DC/DC converter. This approach  
provides typically 500 mW of clean, steady power across a 3000VRMS basic isolation barrier.  
The integrated DC/DC converter uses switched mode operation and proprietary circuit techniques to reduce  
power losses and boost efficiency. Specialized control mechanisms, clocking schemes, and the use of an  
on-chip transformer provide high efficiency and low radiated emissions.  
The VINP supply is provided to the primary power controller that switches the power stage connected to the  
integrated transformer. Power is transferred to the secondary side, rectified, and regulated to a level set by the  
SEL pin condition.  
A fast feedback control loop monitors VISO and the output load, and ensures low overshoots and undershoots  
during load transients. Undervoltage lockout (UVLO) with hysteresis is integrated on the VINP supply, which  
ensures robust system performance under noisy conditions.  
UCC12040 is suitable for applications that have limited board space and require more integration. These devices  
are also suitable for very-high voltage applications, where power transformers meeting the required isolation  
specifications are bulky and expensive.  
7.2 Functional Block Diagram  
VINP  
Control  
SEL  
UVLO  
EN  
VISO  
Transformer  
Rectifier  
OSC  
÷ 2  
Driver  
GNDS  
SYNC  
SYNC_OK  
GNDP  
Ext CLK  
Detect  
7.3 Feature Description  
7.3.1 Enable and Disable  
Forcing EN low disables the device, which greatly reduces the VINP power consumption. Pull the EN pin high to  
enable normal device functionality. The EN pin has a weak internal pull-down resistor, so the device floats to the  
disable state if the pin is left open.  
7.3.2 UVLO, Power-Up, and Power-Down Behavior  
The UCC12040 has an undervoltage lockout (UVLO) on the VINP power supply. Upon power-up, while the VINP  
voltage is below the threshold voltage VUVPR, the primary side transformer driver is disabled, and VISO output  
is off. The output powers up once the threshold is met. Likewise, if VINP falls below VUVPF, the converter is  
disabled and there is no output at VISO. Both UVLO threshold voltages have hysteresis to avoid chattering.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: UCC12040  
 
 
 
 
UCC12040  
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
www.ti.com  
7.3.3 VISO Load Recommended Operating Area  
Figure 7-1 depicts the device VISO regulation behavior across the output load range, including when the output  
is overloaded. For proper device operation, ensure that the device VISO output load does not exceed the  
maximum output current (IOUT_MAX). The value for IOUT_MAX over different temperature and VINP conditions are  
shown from Figure 6-8 to Figure 6-11. The following protection mechanisms will be engaged if the UCC12040 is  
loaded beyond the recommended operating area:  
1. The device limits the maximum output power. If a load exceeding IOUT_MAX is applied, VISO drops accordingly  
to meet the maximum power limit.  
2. If VISO drops below nominal 3.8 V while operating in the constant power limit region, the over-power  
fold-back feature will switch the power converter from active rectification to passive rectification, and the  
built-in recovery hysteresis will ensure the UCC12040 recovers at a lower output power. The device returns  
to active rectification when load drops and VISO increases above nominal 4.3V.  
3. The device triggers a soft-start reset if VISO drops below the nominal 1.8-V threshold. This reset is designed  
to protect the device during VISO short-circuit conditions.  
4. Thermal shutdown protection disables the converter if the device is operated in any of the above regions  
long enough to raise the silicon junction temperature above the thermal shutdown threshold. See the Section  
7.3.4 section for more details on this device feature.  
VISO  
1
Constant Power Limit  
VISO_SET  
Active Rectification  
2
Passive Rectification  
Recommended  
Operating  
Area  
Reset Threshold  
3
Overload  
Protection  
IOUT_MAX  
IOUT  
Figure 7-1. VISO Load Recommended Operating Area Description  
7.3.4 Thermal Shutdown  
Thermal protection is also integrated to help prevent the device from getting damaged during overload and short-  
circuit conditions on the isolated output. Under these conditions, the device temperature starts to increase. When  
the silicon junction temperature Tj sensed at the primary side die goes above the threshold TSDTHR(typical  
165°C), thermal shutdown activates and the primary controller turns off which removes the energy supplied  
to the VISO load, which causes the device to cool off. When the junction temperature drops approximately  
27°C (TSDHYST) from the shutdown point, the device starts to function normally. If an overload or output short-  
circuit condition prevails, this protection cycle is repeated. Make sure the design prevents the device junction  
temperatures from reaching such high values.  
7.3.5 External Clocking and Synchronization  
The UCC12040 has an internal oscillator trimmed to drive the transformer at 8.0 MHz. An external clock may be  
applied at the SYNC pin to override the internal oscillator. This external clock will be divided by 2, so the target  
range for the external clock signal at SYNC is 16 MHz ±10%. When a valid external clock signal is detected,  
the internal spread spectrum modulation (SSM) algorithm is disabled. This allows an external clock signal with a  
unique SSM to be applied. The depth and frequency of SSM is a tradeoff verses low frequency modulated VISO  
voltage ripple. The SYNC_OK pin is asserted LOW if there is no external SYNC clock or one that is outside of  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: UCC12040  
 
 
 
UCC12040  
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
www.ti.com  
the operating range of the device is detected. In this state, the external clock is ignored and the DC/DC converter  
is clocked by the internal oscillator. The pin is in high impedance if a valid clock is applied on SYNC.  
7.3.6 VISO Output Voltage Selection  
The SEL pin is monitored during power-up — within the first 1 ms after applying VINP above the UVLO rising  
threshold or enabling via the EN pin — to detect the desired regulation voltage for the VISO output. Note that  
after this initial monitoring, the SEL pin no longer affects the VISO output level. In order to change the output  
mode selection, either the EN pin must be toggled or the VINP power supply must be cycled off and back on.  
Section6.4 provides more details on the SEL pin functionality.  
7.3.7 Electromagnetic Compatibility (EMC) Considerations  
UCC12040 devices use spread spectrum modulation algorithm for the internal oscillator and advanced internal  
layout scheme to minimize radiated emissions at the system level.  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 32. Although system-level  
performance and reliability depends, to a large extent, on the application board design and layout, the device  
incorporates many chip-level design improvements for overall system robustness.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: UCC12040  
UCC12040  
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
www.ti.com  
7.4 Device Functional Modes  
Table 7-1 lists the supply functional modes for this device.  
Table 7-1. Device Functional Modes  
INPUTS  
Isolated Supply Output Voltage (VISO) Setpoint  
EN  
SEL  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
Shorted to VISO  
100 kΩ to VISO  
Shorted to GNDS  
100 kΩ to GNDS  
OPEN(1)  
5.0 V  
5.4 V  
3.3 V  
3.7 V  
UNSUPPORTED  
0 V  
X
(1) The SEL pin has an internal weak pull-down resistance to ground, but leaving this pin open is not recommended.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: UCC12040  
 
 
 
UCC12040  
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
www.ti.com  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The UCC12040 device is suitable for applications that have limited board space and desire more integration.  
This device is also suitable for very high voltage applications, where power transformers meeting the required  
isolation specifications are bulky and expensive.  
8.2 Typical Application  
Figure 8-1 shows the typical application schematic for the UCC12040 device supplying an isolated load.  
5 V  
10 F 0.1 F  
0.1 F  
10 F  
Load  
1
2
3
4
5
6
7
8
EN  
GNDS 16  
GNDS 15  
VISO 14  
SEL 13  
NC 12  
RPU  
GNDP  
VINP  
SYNC  
SYNC_OK  
NC  
RSEL  
PWM  
RSYNC  
NC 11  
NC  
NC 10  
NC  
GNDS  
9
Figure 8-1. Typical Application  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: UCC12040  
 
 
 
 
UCC12040  
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
www.ti.com  
8.2.1 Design Requirements  
To design using UCC12040, a few simple design considerations must be evaluated. Table 8-1 shows some  
recommended values for a typical application. See Section 9 and Section 10 sections to review other key design  
considerations for the UCC12040.  
Table 8-1. Design Parameters  
PARAMETER  
RECOMMENDED VALUE  
4.5 V to 5.5 V  
Input supply voltage, VINP  
Decoupling capacitance between VINP and GNDP  
10 µF, 16 V, ± 10%, X7R  
10 µF, 16 V, ± 10%, X7R  
0.1 µF, 50 V,± 10%, X7R  
100 kΩ  
Decoupling capacitance between VISO and GNDS (1)  
Optional additional capacitance on VISO or VINP to reduce high-frequency ripple  
Pull-up resistor from SYNC_OK to VINP, RPU  
Pull-up resistor from SEL to VISO for 5.0V output voltage mode, RSEL  
Pull-up resistor from SEL to VISO for 5.4V output voltage mode, RSEL  
0 Ω  
100 kΩ  
Match source — typical values are 50 Ω, 75 Ω,  
100 Ω, or 1 kΩ  
Optional SYNC signal impedance-matching resistor, RSYNC  
External clock signal applied on SYNC  
16 MHz  
(1) See Section 8.2.2.1 section.  
8.2.2 Detailed Design Procedure  
Place ceramic decoupling capacitors as close as possible to the device pins. For the input supply, place the  
capacitor(s) between pin 3 (VINP) and pin 2 (GNDP). For the isolated output supply, place the capacitor(s)  
between pin 14 (VISO) and pin 15 (GNDS). This location is of particular importance to the input decoupling  
capacitor, because this capacitor supplies the transient current associated with the fast switching waveforms of  
the power drive circuits. The recommended capacitor value is 10 µF. Ensure the capacitor dielectric material is  
compatible with the target application temperature.  
8.2.2.1 VISO Output Capacitor Selection  
The UCC12040 is optimized to run with an effective output capacitance of 5 µF to 20 µF. A ceramic capacitor is  
recommended. Ceramic capacitors have DC-Bias and temperature derating effects, which both have influence  
the final effective capacitance. Choose the right capacitor carefully in combination with considering its package  
size, dielectric and voltage rating. It is good design practice to include one 0.1-µF capacitor close to the device  
for high-frequency noise reduction.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: UCC12040  
 
 
 
UCC12040  
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
www.ti.com  
8.2.3 Application Curves  
Time (2.0 ms/div)  
Time (2.0 ms/div)  
D033  
D034  
VINP = 5.0 V  
VISO = 5.4 V  
Bandwidth = 20 MHz  
VINP = 5.0 V  
VISO = 5.4 V  
Bandwidth = 20 MHz  
Figure 8-2. VISO Ripple, 5.4-V Output, 10% Load  
Figure 8-3. VISO Ripple, 5.4-V Output, 90% Load  
Time (2.0 ms/div)  
Time (2.0 ms/div)  
D035  
D036  
VINP = 5.0 V  
VISO = 5.0 V  
Bandwidth = 20 MHz  
VINP = 5.0 V  
VISO = 5.0 V  
Bandwidth = 20 MHz  
Figure 8-4. VISO Ripple, 5.0-V Output, 10% Load  
Figure 8-5. VISO Ripple, 5.0-V Output, 90% Load  
Time (2.0 ms/div)  
Time (2.0 ms/div)  
D037  
D038  
VINP = 5.0 V  
VISO = 3.7 V  
Bandwidth = 20 MHz  
VINP = 5.0 V  
VISO = 3.7 V  
Bandwidth = 20 MHz  
Figure 8-6. VISO Ripple, 3.7-V Output, 10% Load  
Figure 8-7. VISO Ripple, 3.7-V Output, 90% Load  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: UCC12040  
UCC12040  
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
www.ti.com  
Time (2.0 ms/div)  
Time (2.0 ms/div)  
D039  
D040  
VINP = 5.0 V  
VISO = 3.3 V  
Bandwidth = 20 MHz  
VINP = 5.0 V  
VISO = 3.3 V  
Bandwidth = 20 MHz  
Figure 8-8. VISO Ripple, 3.3-V Output, 10% Load  
Figure 8-9. VISO Ripple, 3.3-V Output, 90% Load  
VISO  
IISO load  
VISO  
IISO load  
Time (200 ms/div)  
Time (200 ms/div)  
D041  
D042  
Figure 8-10. VISO Load Transient Response, 10% to Figure 8-11. VISO Load Transient Response, 90% to  
90% Load Step, 5.0-V Input, 5.4-V Output  
10% Load Step, 5.0-V Input, 5.4-V Output  
VISO  
IISO load  
VISO  
IISO load  
Time (200 ms/div)  
Time (200 ms/div)  
D043  
D044  
Figure 8-12. VISO Load Transient Response, 10% to Figure 8-13. VISO Load Transient Response, 90% to  
90% Load Step, 5.0-V Input, 5.0-V Output  
10% Load Step, 5.0-V Input, 5.0-V Output  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: UCC12040  
UCC12040  
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
www.ti.com  
VISO  
IISO load  
VISO  
IISO load  
Time (200 ms/div)  
Time (200 ms/div)  
D045  
D046  
Figure 8-14. VISO Load Transient Response, 10% to Figure 8-15. VISO Load Transient Response, 90% to  
90% Load Step, 5.0-V Input, 3.7-V Output  
10% Load Step, 5.0-V Input, 3.7-V Output  
VISO  
IISO load  
VISO  
IISO load  
Time (200 ms/div)  
Time (200 ms/div)  
D047  
D047  
Figure 8-16. VISO Load Transient Response, 10% to Figure 8-17. VISO Load Transient Response, 90% to  
90% Load Step, 5.0-V Input, 3.3-V Output  
10% Load Step, 5.0-V Input, 3.3-V Output  
7
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
-1  
-1  
Time (400 ms/div)  
Time (400 ms/div)  
D049  
D050  
Figure 8-18. VISO Soft Start at 10% Rated Load,  
5.0-V Input, 5.4-V Output  
Figure 8-19. VISO Soft Start at 90% Rated Load,  
5.0-V Input, 5.4-V Output  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: UCC12040  
UCC12040  
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
www.ti.com  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
-1  
-1  
Time (400 ms/div)  
Time (400 ms/div)  
D051  
D052  
Figure 8-20. VISO Soft Start at 10% Rated Load,  
5.0-V Input, 5.0-V Output  
Figure 8-21. VISO Soft Start at 90% Rated Load,  
5.0-V Input, 5.0-V Output  
5
4
3
2
1
0
5
4
3
2
1
0
-1  
-1  
Time (400 ms/div)  
Time (400 ms/div)  
D053  
Figure 8-22. VISO Soft Start at 10% Rated Load,  
5.0-V Input, 3.7-V Output  
D054  
Figure 8-23. VISO Soft Start at 90% Rated Load,  
5.0-V Input, 3.7-V Output  
5
4
3
2
1
0
5
4
3
2
1
0
-1  
-1  
Time (400 ms/div)  
Time (400 ms/div)  
D055  
Figure 8-24. VISO Soft Start at 10% Rated Load,  
5.0-V Input, 3.3-V Output  
D056  
Figure 8-25. VISO Soft Start at 90% Rated Load,  
5.0-V Input, 3.3-V Output  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: UCC12040  
UCC12040  
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
www.ti.com  
9 Power Supply Recommendations  
The recommended input supply voltage (VINP) for the UCC12040 is between 4.5 V and 5.5 V. To help ensure  
reliable operation, adequate decoupling capacitors must be located as close to supply pins as possible. Place  
local bypass capacitors between the VINP and GNDP pins at the input, and between VISO and GNDS at the  
isolated output supply. Low ESR, ceramic surface mount capacitors are recommended. It is further suggested  
that one place two such capacitors: one with a value of 10 µF for supply bypassing, and an additional 100-nF  
capacitor in parallel for high frequency filtering. The input supply must have an appropriate current rating to  
support output load required by the end application.  
10 Layout  
10.1 Layout Guidelines  
The UCC12040 integrated isolated power solution simplifies system design and reduces board area usage.  
Proper PCB layout is important in order to achieve optimum performance. Here is a list of recommendations:  
1. Place decoupling capacitors as close as possible to the device pins. For the input supply, place the  
capacitor(s) between pin 3 (VINP) and pin 2 (GNDP). For the isolated output supply, place the capacitor(s)  
between pin 14 (VISO) and pin 15 (GNDS). This location is of particular importance to the input decoupling  
capacitor, because this capacitor supplies the transient current associated with the fast switching waveforms  
of the power drive circuits.  
2. Because the device does not have a thermal pad for heat-sinking, the device dissipates heat through the  
respective GND pins. Ensure that enough copper (preferably a connection to the ground plane) is present on  
all GNDP and GNDS pins for best heat-sinking.  
3. If space and layer count allow, it is also recommended to connect the VINP, GNDP, VISO and GNDS pins to  
internal ground or power planes through multiple vias of adequate size. Alternatively, make traces for these  
nets as wide as possible to minimize losses.  
4. TI also recommends grounding the no-connect pins (NC) to their respective ground planes. For pins 6, 7,  
and 8, connect to GNDP. For pins 10, 11, and 12, connect to GNDS. This will allow more continuous ground  
planes and larger thermal mass for heat-sinking.  
5. A minimum of four layers is recommended to accomplish a low-EMI PCB design. Inner layers can be spaced  
closer than outer layers and used to create a high-frequency bypass capacitor between GNDP and GNDS  
to reduce radiated emissions. Ensure proper spacing, both inter-layer and layer-to-layer, is implemented to  
avoid reducing isolation capabilities. These spacings will vary based on the printed circuit board construction  
parameters, such as dielectric material and thickness.  
6. Pay close attention to the spacing between primary ground plane (GNDP) and secondary ground plane  
(GNDS) on the PCB outer layers. The effective creepage and or clearance of the system will be reduced if  
the two ground planes have a lower spacing than that of the device package.  
7. To ensure isolation performance between the primary and secondary side, avoid placing any PCB traces or  
copper below the UCC12040 device on the outer copper layers.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: UCC12040  
 
 
 
UCC12040  
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
www.ti.com  
10.2 Layout Example  
Figure 10-1. Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: UCC12040  
 
UCC12040  
SNVSBO5B – DECEMBER 2019 – REVISED MAY 2021  
www.ti.com  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
For development support, refer to:  
High-efficiency, low-emission, isolated DC/DC converter-based analog input module reference design  
Isolated delta-sigma modulator based AC/DC voltage and current measurement module reference design  
Isolated power architecture reference design for communication and analog input/output modules  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
UCC12050 Evaluation Module User Guide  
Isolation Glossary  
A Reinforced-isolated Analog Input Chain for Space-constrained Applications  
11.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
11.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical and Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: UCC12040  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Jan-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
UCC12040DVE  
ACTIVE  
ACTIVE  
SO-MOD  
SO-MOD  
DVE  
DVE  
16  
16  
40  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
UCC12040  
UCC12040  
UCC12040DVER  
2000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Jan-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
UCC12040DVER  
SO-MOD  
DVE  
16  
2000  
330.0  
16.4  
10.75 10.7  
2.7  
12.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SO-MOD DVE 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
UCC12040DVER  
2000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
DVE SO-MOD  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
UCC12040DVE  
16  
40  
506.98  
12.7  
4826  
6.6  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DVE0016A  
SO-MOD - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SMALL OUTLINE INTEGRATED CIRCUIT  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A B  
NOTE 4  
0.33  
0.10  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4224275/B 04/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DVE0016A  
SO-MOD - 2.65 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
SYMM  
SYMM  
16X (2)  
1
16X (1.65)  
SEE  
DETAILS  
SEE  
DETAILS  
1
16  
16  
16X (0.6)  
16X (0.6)  
(R0.05) TYP  
(R0.05) TYP  
SYMM  
SYMM  
14X (1.27)  
8
14X (1.27)  
9
9
8
(9.79)  
(9.3)  
HV / ISOLATION OPTION  
8.14 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:4X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4224275/A 04/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DVE0016A  
SO-MOD - 2.65 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
SYMM  
SYMM  
16X (1.65)  
16X (2)  
1
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
(R0.05) TYP  
(R0.05) TYP  
14X (1.27)  
8
14X (1.27)  
8
9
9
(9.79)  
(9.3)  
HV / ISOLATION OPTION  
8.14 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4224275/B 04/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

UCC12040DVE

500mW、高效 3kVrms 隔离式直流/直流转换器 | DVE | 16 | -40 to 125
TI

UCC12040DVER

500mW、高效 3kVrms 隔离式直流/直流转换器 | DVE | 16 | -40 to 125
TI

UCC12041-Q1

具有集成变压器的汽车类 500mW 3kVrms 隔离式直流/直流模块
TI

UCC12041QDVERQ1

具有集成变压器的汽车类 500mW 3kVrms 隔离式直流/直流模块 | DVE | 16 | -40 to 125
TI

UCC12050

500-mW、高效 5-kVrms 隔离式直流/直流转换器
TI

UCC12050DVE

500-mW、高效 5-kVrms 隔离式直流/直流转换器

| DVE | 16 | -40 to 125
TI

UCC12050DVER

500-mW、高效 5-kVrms 隔离式直流/直流转换器 | DVE | 16 | -40 to 125
TI

UCC12051-Q1

具有集成变压器的汽车类 500mW 5kVrms 隔离式直流/直流模块
TI

UCC12051QDVERQ1

具有集成变压器的汽车类 500mW 5kVrms 隔离式直流/直流模块 | DVE | 16 | -40 to 125
TI

UCC14131-Q1

汽车类、1.5W、12V 至 15V 输入电压、12V 至 15V 输出电压、高密度、> 5kVRMS 隔离式直流/直流模块
TI

UCC14141-Q1

具有集成变压器的汽车级、1.5W、12V 输入电压、稳压、5kVRMS 隔离式直流/直流模块
TI

UCC14240-Q1

汽车类 2.0W、24Vin、25Vout、高密度、> 3kVRMS、隔离式直流/直流模块
TI