UCC12051-Q1 [TI]

具有集成变压器的汽车类 500mW 5kVrms 隔离式直流/直流模块;
UCC12051-Q1
型号: UCC12051-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成变压器的汽车类 500mW 5kVrms 隔离式直流/直流模块

变压器
文件: 总31页 (文件大小:2046K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UCC12051-Q1  
ZHCSM92A JANUARY 2021 REVISED JUNE 2021  
UCC12051-Q1 高效、EMI5kVRMS 隔离直流/直流转换器  
1 特性  
2 应用  
• 采用集成变压器技术的高效直流/直流转换器  
• 具有符AEC-Q100 标准的下列特性  
– 器件温度等140°C 125°C 的工作环境  
温度范围  
提供功能安全型  
• 车载充电器  
• 电池管理系统  
• 牵引逆变器  
• 用HEV/EV 的直流/直流转换器  
3 说明  
可帮助进行功能安全系统设计的文档  
• 输出功率典型值):500mW  
5V 3.3V 稳压输出利用可选400mV 净空电  
LDO 供电  
• 输入电压4.5V 5.5V  
• 稳健可靠的隔离栅:  
UCC12051-Q1 是一款具有 5kVRMS 隔离额定值的汽车  
级直流/直流电源模块旨在为需要偏置电源及稳压输  
出电压的隔离电路提供有效的隔离电源。该器件集成了  
具有专有架构的变压器和直流/直流控制器可提供  
500mW典型值的隔离功率并具有EMI。  
UCC12051-Q1 集成了保护功能以增强系统稳健性。该  
器件还具有使能引脚、同步功能以及 5V 3.3V 稳压  
输出选项带净空电压UCC12051-Q1 是一种薄  
型、小型化解决方案采用高度为 2.65mm典型值)  
的宽SOIC 封装。  
– 隔离等级5kVRMS  
– 浪涌能力10kVPK  
– 工作电压1.2kVRMS  
– 最CMTI100V/ns  
• 短路恢复  
• 热关断保护  
16 引脚宽SOIC 封装爬电距离和间隙大于  
8mm  
器件信息(1)  
封装尺寸标称值)  
器件型号  
封装  
UCC12051-Q1  
DVE SOIC (16)  
10.30mm × 7.50mm  
• 安全相关认证计划):  
– 符DIN V VDE V 0884-11:2017-01 标准的  
7071VPK 增强型隔离  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 符UL 1577 标准且长1 分钟5000VRMS  
隔离  
– 符IEC 60950-1 IEC 62368-1 终端设备标  
UL 认证  
– 根GB4943.1-2011 标准进行CQC 认证  
70  
60  
50  
40  
30  
VINP  
VISO  
GNDS  
SEL  
ON  
CIN  
COUT  
EN  
OFF  
GNDP  
SYNC  
SYNC_OK  
20  
VISO = 5.4 V  
VISO = 5.0 V  
VISO = 3.7 V  
VISO = 3.3 V  
简化版应用  
10  
0
0
20  
40  
60 80  
Load Current (mA)  
100  
120 140  
D021  
VINP = 5.0V  
TA = 25°C  
典型效率与负载间的关系  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNVSBY2  
 
 
 
 
UCC12051-Q1  
ZHCSM92A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
Table of Contents  
7.2 Functional Block Diagram.........................................14  
7.3 Feature Description...................................................14  
7.4 Device Functional Modes..........................................16  
8 Application and Implementation..................................17  
8.1 Application Information............................................. 17  
8.2 Typical Application.................................................... 17  
9 Power Supply Recommendations................................23  
10 Layout...........................................................................23  
10.1 Layout Guidelines................................................... 23  
10.2 Layout Example...................................................... 24  
11 Device and Documentation Support..........................25  
11.1 Device Support........................................................25  
11.2 Documentation Support.......................................... 25  
11.3 接收文档更新通知................................................... 25  
11.4 支持资源..................................................................25  
11.5 Trademarks............................................................. 25  
11.6 Electrostatic Discharge Caution..............................25  
11.7 术语表..................................................................... 25  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Power Ratings.............................................................5  
6.6 Insulation Specifications............................................. 5  
6.7 Safety-Related Certifications...................................... 6  
6.8 Safety Limiting Values.................................................6  
6.9 Electrical Characteristics.............................................7  
6.10 Switching Characteristics..........................................8  
6.11 Insulation Characteristics Curves..............................9  
6.12 Typical Characteristics............................................10  
7 Detailed Description......................................................14  
7.1 Overview...................................................................14  
Information.................................................................... 25  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (January 2021) to Revision A (June 2021)  
Page  
• 将状态从“预告信息”更改为“量产数据”....................................................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: UCC12051-Q1  
 
UCC12051-Q1  
ZHCSM92A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
1
16  
15  
14  
13  
12  
11  
10  
9
GNDS  
EN  
GNDP  
VINP  
GNDS  
VISO  
SEL  
2
3
4
5
6
7
8
SYNC  
SYNC_OK  
NC  
NC  
NC  
NC  
NC  
NC  
GNDS  
5-1. DVE Package 16-Pin SOIC Top View  
5-1. Pin Functions  
PIN  
TYPE (1)  
DESCRIPTION  
NAME  
EN  
NO.  
Enable pin. Forcing EN low disables the device. Pull high to enable normal device  
functionality.  
1
I
GNDP  
2
9
P
Power ground return connection for VINP.  
Connect to GNDS plane on printed circuit board. Do not use as only ground connection for  
VISO. Ensure pin 15 is connected to circuit ground.  
GNDS  
GNDS  
P
P
16  
Secondary side ground return connection for VISO. Connect bypass capacitor from VISO to  
this pin.  
15  
6
7
Pins internally connected together. No other electrical connection. Pins belong to primary-  
side voltage domain. Connect to GNDP on printed circuit board.  
8
NC  
10  
11  
12  
No internal connection. Pin belongs to isolated voltage domain. Connect to GNDS on printed  
circuit board.  
Synchronous clock input pin. Provide a clock signal to synchronize multiple devices or  
connect to GNDP for standalone operation using the internal oscillator. If the SYNC pin is left  
open make sure to it separate it from any switching noise to avoid false clock coupling.  
SYNC  
4
5
I
Active-low, open-drain diagnostic output. Pin is asserted LOW if there is no external SYNC  
clock or one that is outside of the operating range of the is detected. In this state, the  
external clock is ignored and the DC/DC converter is clocked by the internal oscillator. The  
pin is in high-impedance if a clock is applied on SYNC.  
SYNC_OK  
O
I
VISO selection pin. VISO setpoint is 5.0 V when SEL is shorted to VISO, 5.4 V when SEL is  
connected to VISOthrough a 100-kΩresistor, 3.3 V when SEL is shorted to GNDS, and 3.7 V  
when SEL is connected to GNDS through a 100-kΩresistor. For more information see the  
7.4 section.  
SEL  
13  
Primary side input supply voltage pin. A 10-μF ceramic capacitor to GNDP on pin 2, placed  
close to the device pins, is required.  
VINP  
VISO  
3
P
P
Isolated supply voltage pin. A 10-μF ceramic capacitor to GNDS on pin 15, placed close to  
the device pins, is required. See 8.2.2.1 section.  
14  
(1) P = Power, G = Ground, I = Input, O = Output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: UCC12051-Q1  
 
 
UCC12051-Q1  
ZHCSM92A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VINP to GNDP  
6.0  
V
V
V
V
0.3  
VINP + 0.3,  
EN, SYNC, SYNC_OK, to GNDP  
VISO to GNDS  
0.3  
0.3  
0.3  
6.0  
6.0  
VISO + 0.3,  
SEL to GNDS  
6.0  
(2)  
VISO output power at Ta = 25°C, POUT_MAX  
675  
150  
150  
mW  
°C  
Operating junction temperature range, TJ  
Storage temperature, Tstg  
40  
65  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) See the VISO Load Recommended Operating Area section for maximum rated values across temperature and VINP conditions for  
each different VISO output mode.  
6.2 ESD Ratings  
VALUE  
±3000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
0
NOM  
MAX  
5.5  
UNIT  
V
VINP  
Primary side supply voltage  
EN pin input voltage  
5.0  
VEN  
5.5  
V
VSYNC  
VSYNC-OK  
VISO  
VSEL  
fSYNC  
PVISO  
Ta  
SYNC pin input voltage  
0
5.5  
V
SYNC_OK pen drain pin voltage  
Isolated power supply voltage  
Input voltage  
0
5.5  
V
0
5.7  
V
0
5.7  
V
External DC/DC converter synchronization signal frequency  
VISO output power at Ta = 25°C (1)  
Ambient temperature  
14.4  
16.0  
17.6  
500  
125  
150  
MHz  
mW  
°C  
°C  
40  
40  
TJ  
Junction temperature  
(1) See the VISO Load Recommended Operating Area section for maximum rated values across temperature and VINP conditions for  
each different VISO output mode.  
6.4 Thermal Information  
UCC12051-Q1  
THERMAL METRIC(1)  
DVE (SOIC)  
16 PINS  
57.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
21.6  
33.8  
10.2  
ψJT  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: UCC12051-Q1  
 
 
 
 
 
 
 
 
 
 
UCC12051-Q1  
ZHCSM92A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
6.4 Thermal Information (continued)  
UCC12051-Q1  
THERMAL METRIC(1)  
DVE (SOIC)  
16 PINS  
33.7  
UNIT  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
°C/W  
°C/W  
ψJB  
RθJC(bot)  
(1) The value of RθJA given in this table is only valid for comparison with other packages and can not be used for design purposes. This  
value was calculated in accordance with JESD 51-7, and simulated on a 4-layer JEDEC board when PDP = 129 mW, PDS = 142 mW  
and PDT = 129 mW. The board temperature is taken from Pin 12. For more information about traditional and new thermal metrics, see  
the Semiconductor and IC Package Thermal Metrics application report.  
6.5 Power Ratings  
VINP = 5.0V, CINP = COUT = 10 uF, TJ = 150°C, Internal Clock mode  
PARAMETER  
TEST CONDITIONS  
VALUE  
460  
UNIT  
mW  
mW  
mW  
mW  
PD  
Power dissipation  
PDP  
PDS  
PDT  
Power dissipation by driver side (primary)  
Power dissipation by rectifier side (secondary)  
Power dissipation by transformer  
148  
SEL connected to GNDS (3.3-V VISO output mode), IISO  
135 mA  
=
164  
148  
6.6 Insulation Specifications  
PARAMETER  
TEST CONDITIONS  
VALUE  
UNIT  
GENERAL  
CLR  
CPG  
External clearance(1)  
External creepage(1)  
Shortest terminal-to-terminal distance through air  
> 8  
> 8  
mm  
mm  
Shortest terminal-to-terminal distance across the package  
surface  
DTI  
CTI  
Distance through the insulation  
Comparative tracking index  
Material group  
Minimum internal gap (internal clearance)  
DIN EN 60112 (VDE 0303-11); IEC 60112  
According to IEC 60664-1  
> 120  
> 600  
I
µm  
V
I-IV  
I-IV  
I-III  
Rated mains voltage 300 VRMS  
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
Overvoltage Category  
DIN V VDE V 0884-11:2017-01(2) (Planned Certification Targets)  
VIORM  
Maximum repetitive peak isolation voltage  
AC voltage (bipolar)  
1697  
1200  
1697  
7071  
VPK  
VRMS  
VDC  
AC voltage (sine wave) Time dependent dielectric  
breakdown (TDDB) test  
VIOWM  
Maximum working isolation voltage  
DC voltage  
VTEST = VIOTM, t = 60s (qualification);  
VTEST = 1.2 × VIOTM, t = 1s (100% production)  
VIOTM  
VIOSM  
Maximum transient isolation voltage  
Maximum surge isolation voltage(3)  
VPK  
Test method per IEC 62368-1, 1.2/50 µs waveform,  
VTEST = 1.6 × VIOSM = 10000 VPK (qualification)  
6250  
VPK  
Method a: After I/O safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s;  
5  
Vpd(m) = 1.2 × VIORM = 1696 VPK, tm = 10 s  
Method a: After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.6 × VIORM = 2262 VPK, tm = 10 s  
5  
5  
qpd  
Apparent charge(4)  
pC  
Method b1: At routine test (100% production) and  
preconditioning (type test)  
Vini = 1.2 × VIOTM, tini = 1 s;  
Vpd(m) = 1.875 × VIORM = 2651 VPK, tm = 1 s  
CIO  
RIO  
Barrier capacitance, input to output(5)  
Isolation resistance, input to output(5)  
Pollution degree  
~3.5  
> 1012  
> 1011  
> 109  
2
pF  
VIO = 0.4 sin (2πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
VIO = 500 V, 100°C TA 125°C  
VIO = 500 V at TS = 150°C  
Ω
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: UCC12051-Q1  
 
 
 
UCC12051-Q1  
ZHCSM92A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
UNIT  
6.6 Insulation Specifications (continued)  
PARAMETER  
TEST CONDITIONS  
VALUE  
Climatic category  
40/125/21  
UL 1577 (Planned Certification Target)  
VTEST = VISO = 5000 VRMS, t = 60 s (qualification); VTEST  
1.2 × VISO = 6000 VRMS, t = 1 s (100% production)  
=
VISO  
Withstand isolation voltage  
5000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application.  
Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the  
isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in  
certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these  
specifications.  
(2) This coupler is suitable for safe electrical insulation only within the maximum operating ratings. Compliance with the safety ratings shall  
be ensured by means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-terminal device  
6.7 Safety-Related Certifications  
VDE  
UL  
UL  
CQC  
Plan to certify according to DIN V  
VDE V 0884-11:2017- 01  
Plan to certify according to IEC  
60950-1 and IEC 62368-1  
Plan to certify under UL 1577  
Component Recognition Program  
Plan to certify according to  
GB4943.1-2011  
Reinforced insulation per UL  
Reinforced insulation  
60950-1-07+A1+A2, IEC 60950-1  
2nd Ed.+A1+A2, UL 62368-1-14 and  
IEC 62368-1 2nd Ed., 800 VRMS  
maximum working voltage (pollution  
degree 2, material group I)  
Maximum transient isolation voltage,  
7071 VPK; Maximum repetitive peak  
isolation voltage, 1697 VPK; Maximum  
surge isolation voltage, 6250 VPK  
Reinforced insulation, Altitude 5000  
m, Tropical Climate, 700 VRMS maximum  
working voltage  
Single protection, 5000 VRMS  
File number: (planned)  
Certificate number: (planned)  
Master contract number: (planned)  
Certificate number: (planned)  
6.8 Safety Limiting Values  
Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
TEST CONDITIONS  
θJA = 57.5°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C  
θJA = 57.5°C/W, VI = 4.5 V, TJ = 150°C, TA = 25°C  
MAX  
UNIT  
R
R
395  
IS  
Safety input current (1)  
mA  
483  
PS  
TS  
Safety input power  
RθJA = 57.5°C/W, TJ = 150°C, TA = 25°C  
2174  
150  
mW  
°C  
Safety temperature (1)  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be  
exceeded. These limits vary with the ambient temperature, TA. The junction-to-air thermal resistance, RθJA, in the Thermal Information  
table is that of a device installed on a high-K test board for leaded surface-mount packages. Use these equations to calculate the value  
for each parameter: TJ = TA + RθJA × P, where P is the power dissipated in the device. TJ(max) = TS = TA + RθJA × PS, where TJ(max) is  
the maximum allowed junction temperature. PS = IS × VI, where VI is the maximum input voltage.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: UCC12051-Q1  
 
 
 
 
 
 
 
 
UCC12051-Q1  
ZHCSM92A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
6.9 Electrical Characteristics  
Over operating temperature range (TJ = 40°C to 150°C), VINP = 4.5V to 5.5V, CINP = COUT = 10 µF, internal clock mode,  
unless otherwise noted. All typical values at TA = 25°C and VINP = 5.0V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
INPUT SUPPLY  
IVINQ  
VINP quiescent current,disabled  
EN=LOW  
100  
80  
uA  
EN=HI; SEL shorted to VISO (5.0V output)  
EN=HI; SEL 100kΩto VISO (5.4V output)  
EN=HI; SEL shorted to GNDS (3.3V output)  
EN=HI; SEL 100kΩto GNDS (3.7V output)  
52  
48  
96  
82  
70  
IVINO  
VINP operating current, no load  
mA  
140  
120  
DC current from VINP supplyunder  
short circuit on VISO  
IVIN_SC  
VUVPR  
VUVPF  
VUVPH  
VISO short to GNDS  
245  
4.25  
3.75  
0.5  
mA  
V
VINP under-voltage lockout rising  
threshold  
4.45  
VINP under-voltage lockout falling  
threshold  
3.5  
0.8  
V
VINP under-voltage lockout  
hysteresis  
V
EN, SYNC INPUT PINS  
VIR  
Input voltage threshold, logic HIGH Rising edge  
Input voltage threshold, logic LOW Falling edge  
2.2  
V
V
VIF  
IEN  
Enable Pin Input Current  
SYNC Pin Input Current  
VEN = 5.0 V  
5
10  
1
uA  
uA  
ISYNC  
VSYNC = 5.0 V  
0.02  
SYNC_OK PIN  
VOL  
SYNC_OK output low voltage  
SYNC_OK pin leakage current  
ISYNC_OK = - 2 mA  
VSYNC_OK = 5.0 V  
0.15  
V
ILKG_SYNC_OK  
1
uA  
DC/DC CONVERTER  
SEL shorted to VISO (5.0V output); IISO = 55  
mA (3)  
4.8  
5.18  
3.17  
3.55  
5
5.4  
3.3  
3.7  
5.2  
5.62  
3.43  
3.85  
V
V
V
V
SEL 100kΩto VISO (5.4 V output); IISO = 45  
mA (3)  
VISO  
Isolated supply output voltage  
SEL shorted to GNDS (3.3V output); IISO  
100 mA (3)  
=
=
SEL 100kΩto GNDS (3.7 V output); IISO  
90 mA (3)  
20-MHz bandwidth, CLOAD = 10 uF || 0.1 uF,  
SEL shorted to VISO (5.0V output); IISO  
100 mA  
=
50  
50  
50  
50  
mV  
mV  
mV  
mV  
20-MHz bandwidth, CLOAD = 10 uF || 0.1 uF,  
SEL 100kto VISO (5.4V output); IISO = 90  
mA  
Voltage ripple on isolated supply  
output (pk-pk)(1)  
VISO(RIP)  
20-MHz bandwidth, CLOAD = 10 uF || 0.1 uF,  
SEL shorted to GNDS (3.3V output); IISO  
145 mA  
=
20-MHz bandwidth, CLOAD = 10 uF || 0.1 uF,  
SEL shorted to GNDS (3.7V output); IISO  
130 mA  
=
SEL shorted to VISO (5.0 V output); IISO = 55  
mA, VINP = 4.5 V to 5.5 V  
1%  
1%  
VISO(LINE)  
VISO DC line regulation  
SEL shorted to GNDS (3.3 V output); IISO  
100 mA, VINP = 4.5 V to 5.5 V  
=
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: UCC12051-Q1  
 
UCC12051-Q1  
ZHCSM92A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
6.9 Electrical Characteristics (continued)  
Over operating temperature range (TJ = 40°C to 150°C), VINP = 4.5V to 5.5V, CINP = COUT = 10 µF, internal clock mode,  
unless otherwise noted. All typical values at TA = 25°C and VINP = 5.0V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SEL shorted to VISO (5.0 V output); IISO = 0  
to 100 mA  
1.5%  
VISO(LOAD)  
VISO DC load regulation  
SEL shorted to GNDS (3.3 V output); IISO = 0  
to 145 mA  
1.5%  
60%  
60%  
50%  
53%  
750  
SEL shorted to VISO (5.0 V output); IISO  
100 mA  
=
SEL 100kΩto VISO (5.4V output); IISO = 90  
mA  
Efficiency at maximum  
recommended load (2)  
EFF  
SEL shorted to GNDS (3.3V output); IISO  
145 mA  
=
SEL 100kΩto GNDS (3.7V output); IISO  
=
130 mA  
EN = change from LO to HI, SEL shorted to  
VISO (5.0V output); IISO = 1 mA  
1000  
500  
µs  
µs  
tRISE  
VISO rise time, 10% - 90%  
EN = change from LO to HI, SEL 100kΩto  
GNDS (3.3V output); IISO = 1 mA  
300  
THERMAL SHUTDOWN  
TSDTHR  
Thermal shutdown threshold(1)  
Thermal shutdown hysteresis(1)  
Junction Temperature, Rising  
Junction Temperature, Falling  
165  
27  
°C  
°C  
TSDHYST  
(1) Not tested in production. Ensured by characterization.  
(2) Efficiency calculation: EFF = (VISO × IISO) / (VINP × IINP  
)
(3) See the VISO Load Recommended Oeprating Area section for discussion of VISO regulation across load and temperature conditions  
for all output voltage settings.  
6.10 Switching Characteristics  
Over operating temperature range (TJ = 40°C to 150°C), VINP = 4.5V to 5.5V, CINP = COUT = 10 µF, internal clock mode,  
unless otherwise noted. All typical values at TA = 25°C and VINP = 5.0V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
fSW_INT  
CMTI  
DC/DC Converter Clock  
Internal clock mode  
8
MHz  
Static common-mode transient  
immunity(1)  
Slew Rate of GNDP versus GNDS, VCM  
1000 V  
=
100  
V/ns  
(1) Not tested in production. Ensured by characterization.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: UCC12051-Q1  
 
 
 
 
 
UCC12051-Q1  
ZHCSM92A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
6.11 Insulation Characteristics Curves  
1E+12  
TDDB Line ( < 1 PPM Failure Rate)  
Safety Margin Zone: 1440 VRMS, 143 Years  
Operating Zone: 1200 VRMS, 76 Years  
1E+11  
1E+10  
1E+9  
1E+8  
1E+7  
1E+6  
1E+5  
1E+4  
1E+3  
1E+2  
1E+1  
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
4500  
5000  
5500  
6000  
D057  
Stress Voltage (VRMS  
)
Working isolation voltage = 1200 VRMS  
TA up to 150°C  
Projected lifetime = 76 years  
Stress voltage frequency = 60 Hz  
6-1. Insulation Lifetime Projection Data  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
2250  
VINP=4.5V  
VINP=5.5V  
2000  
1750  
1500  
1250  
1000  
750  
500  
250  
0
0
0
20  
40  
60  
80  
100  
Ambient Temperature (ºC)  
120  
140  
160  
0
20  
40  
60  
80  
100  
Ambient Temperature (ºC)  
120  
140  
160  
6-2. Thermal Derating Curve for Safety Limiting  
6-3. Thermal Derating Curve for Safety Limiting  
Current per VDE  
Power per VDE  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: UCC12051-Q1  
 
UCC12051-Q1  
ZHCSM92A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
6.12 Typical Characteristics  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
150  
VINP = 5.5 V  
VINP = 5.0 V  
VINP = 4.5 V  
VINP = 5.5 V  
VINP = 5.0 V  
VINP = 4.5 V  
100  
50  
0
0
-40 -20  
0
20  
Ambient Temperature (ºC)  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
Ambient Temperature (ºC)  
40  
60  
80 100 120 140 160  
D022  
D024  
D026  
D023  
VISO = 5.0 V  
VISO = 5.4 V  
6-4. Maximum VISO Output Power vs. Temperature  
6-5. Maximum VISO Output Power vs. Temperature  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
VINP = 5.5 V  
VINP = 5.0 V  
VINP = 4.5 V  
VINP = 5.5 V  
VINP = 5.0 V  
VINP = 4.5 V  
100  
50  
0
100  
50  
0
-40 -20  
0
20  
Ambient Temperature (ºC)  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
Ambient Temperature (ºC)  
40  
60  
80 100 120 140 160  
D025  
VISO = 3.3 V  
VISO = 3.7 V  
6-6. Maximum VISO Output Power vs. Temperature  
6-7. Maximum VISO Output Power vs. Temperature  
140  
140  
120  
100  
80  
120  
100  
80  
60  
60  
40  
40  
VINP = 5.5 V  
VINP = 5.0 V  
VINP = 4.5 V  
VINP = 5.5 V  
VINP = 5.0 V  
VINP = 4.5 V  
20  
20  
0
-40 -20  
0
-40 -20  
0
20  
Ambient Temperature (ºC)  
40  
60  
80 100 120 140 160  
0
20  
Ambient Temperature (ºC)  
40  
60  
80 100 120 140 160  
D027  
VISO = 5.0 V  
VISO = 5.4 V  
6-8. Maximum VISO Output Current vs. Temperature  
6-9. Maximum VISO Output Current vs. Temperature  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: UCC12051-Q1  
 
 
UCC12051-Q1  
ZHCSM92A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
6.12 Typical Characteristics (continued)  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
60  
60  
40  
40  
VINP = 5.5 V  
VINP = 5.0 V  
VINP = 4.5 V  
VINP = 5.5 V  
VINP = 5.0 V  
VINP = 4.5 V  
20  
0
20  
0
-40 -20  
0
20  
Ambient Temperature (ºC)  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
Ambient Temperature (ºC)  
40  
60  
80 100 120 140 160  
D028  
D029  
VISO = 3.3 V  
VISO = 3.7 V  
6-10. Maximum VISO Output Current vs. Temperature  
6-11. Maximum VISO Output Current vs. Temperature  
70  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
0
10  
20  
30  
40  
Load Current (mA)  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
Load Current (mA)  
50  
60  
70  
80  
90 100  
D006  
D008  
VINP = 5.0 V  
VISO = 5.0 V  
TA = 25°C  
VINP = 5.0 V  
VISO = 5.4 V  
TA = 25°C  
6-12. Power Supply Efficiency vs Load Current (IISO  
)
6-13. Power Supply Efficiency vs Load Current (IISO  
)
60  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
0
20  
40  
60  
Load Current (mA)  
80  
100  
120  
140  
0
20  
40  
60  
Load Current (mA)  
80  
100  
120  
140  
D007  
D009  
VINP = 5.0 V  
VISO = 3.3 V  
TA = 25°C  
VINP = 5.0 V  
VISO = 3.7 V  
TA = 25°C  
6-14. Power Supply Efficiency vs Load Current (IISO  
)
6-15. Power Supply Efficiency vs Load Current (IISO)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: UCC12051-Q1  
 
UCC12051-Q1  
ZHCSM92A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
6.12 Typical Characteristics (continued)  
5.1  
5.5  
5.45  
5.4  
VINP = 4.5 V  
VINP = 5.0 V  
VINP = 5.5 V  
VINP = 4.5 V  
VINP = 5.0 V  
VINP = 5.5 V  
5.05  
5
4.95  
4.9  
5.35  
5.3  
0
10  
20  
30  
40  
Load Current (mA)  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
Load Current (mA)  
50  
60  
70  
80  
90 100  
D012  
D013  
VISO = 5.0 V  
TA = 25°C  
VISO = 5.4 V  
TA = 25°C  
6-16. Isolated Supply Voltage (VISO) vs Load Current (IISO  
)
6-17. Isolated Supply Voltage (VISO) vs Load Current (IISO  
)
3.4  
3.8  
VINP = 4.5 V  
VINP = 5.0 V  
VINP = 5.5 V  
VINP = 4.5 V  
VINP = 5.0 V  
VINP = 5.5 V  
3.35  
3.3  
3.75  
3.7  
3.65  
3.6  
3.25  
3.2  
0
20  
40  
60  
80  
Load Current (mA)  
100  
120  
140  
0
20  
40  
60  
80  
Load Current (mA)  
100  
120  
140  
D010  
D011  
VISO = 3.7 V  
TA = 25°C  
VISO = 3.3 V  
TA = 25°C  
6-19. Isolated Supply Voltage (VISO) vs Load Current (IISO  
)
6-18. Isolated Supply Voltage (VISO) vs Load Current (IISO  
)
5.20  
5.60  
5.50  
5.40  
5.30  
5.20  
5.10  
5.00  
4.90  
4.80  
-40  
-20  
0
20  
Free-Air Temperature (ºC)  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
Free-Air Temperature (ºC)  
40  
60  
80  
100 120 140  
D014  
D015  
VINP = 5.0 V  
VISO = 5.0 V  
IISO = 50 mA  
VINP = 5.0 V  
VISO = 5.4 V  
IISO = 50 mA  
6-20. Isolated Supply Voltage (VISO) vs Free-Air Temperature 6-21. Isolated Supply Voltage (VISO) vs Free-Air Temperature  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: UCC12051-Q1  
UCC12051-Q1  
ZHCSM92A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
6.12 Typical Characteristics (continued)  
3.50  
3.90  
3.80  
3.70  
3.60  
3.50  
3.40  
3.30  
3.20  
3.10  
-40  
-20  
0
20  
Free-Air Temperature (ºC)  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
Free-Air Temperature (ºC)  
40  
60  
80  
100 120 140  
D016  
D017  
VINP = 5.0 V  
VISO = 3.3 V  
IISO = 75 mA  
VINP = 5.0 V  
VISO = 3.7 V  
IISO = 75 mA  
6-22. Isolated Supply Voltage (VISO) vs Free-Air Temperature 6-23. Isolated Supply Voltage (VISO) vs Free-Air Temperature  
280  
260  
240  
220  
200  
250  
200  
150  
100  
50  
VISO = 3.3 V  
VISO = 3.7 V  
VISO = 5.0 V  
VISO = 5.4 V  
0
4.5 4.6 4.7 4.8 4.9  
5
Input Suppy Voltage (V)  
5.1 5.2 5.3 5.4 5.5  
0
20  
40  
60  
80  
100  
Load Current (mA)  
120  
140  
160  
D018  
D019  
TA = 25°C  
6-24. Short-Circuit Supply Current (IVIN_SC) vs Supply Voltage  
VINP = 5.0 V  
TA = 25°C  
6-25. Input Supply Current (IVINP) vs Load Current (IISO  
)
(VINP  
)
4.5  
4.4  
4.3  
4.2  
4.1  
4
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3
Falling Threshold  
RisingThreshold  
-40  
-20  
0
20  
40 60  
Temperature (ºC)  
80  
100 120 140  
6-26. Typical VINP UVLO Threshold vs Junction Temperature (TJ)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: UCC12051-Q1  
UCC12051-Q1  
ZHCSM92A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The UCC12051-Q1 device integrates a high-efficiency, low-emissions isolated DC/DC converter. This approach  
provides typically 500 mW of clean, steady power across a 5000-VRMS isolation barrier.  
The integrated DC/DC converter uses switched mode operation and proprietary circuit techniques to reduce  
power losses and boost efficiency. Specialized control mechanisms, clocking schemes, and the use of an on-  
chip transformer provide high efficiency and low radiated emissions.  
The VINP supply is provided to the primary power controller that switches the power stage connected to the  
integrated transformer. Power is transferred to the secondary side, rectified, and regulated to a level set by the  
SEL pin condition.  
A fast feedback control loop monitors VISO and the output load, and ensures low overshoots and undershoots  
during load transients. Undervoltage lockout (UVLO) with hysteresis is integrated on the VINP supply, which  
ensures robust system performance under noisy conditions.  
UCC12051-Q1 is suitable for applications that have limited board space and require more integration. These  
devices are also suitable for very-high voltage applications, where power transformers meeting the required  
isolation specifications are bulky and expensive.  
7.2 Functional Block Diagram  
VINP  
Control  
SEL  
UVLO  
EN  
VISO  
Transformer  
Rectifier  
OSC  
÷ 2  
Driver  
GNDS  
SYNC  
SYNC_OK  
GNDP  
Ext CLK  
Detect  
7.3 Feature Description  
7.3.1 Enable and Disable  
Forcing EN low disables the device, which greatly reduces the VINP power consumption. Pull the EN pin high to  
enable normal device functionality. The EN pin has a weak internal pull-down resistor, so the device floats to the  
disable state if the pin is left open.  
7.3.2 UVLO, Power-Up, and Power-Down Behavior  
The UCC12051-Q1 has an undervoltage lockout (UVLO) on the VINP power supply. Upon power-up, while the  
VINP voltage is below the threshold voltage VUVPR, the primary side transformer driver is disabled, and VISO  
output is off. The output powers up once the threshold is met. Likewise, if VINP falls below VUVPF, the converter  
is disabled and there is no output at VISO. Both UVLO threshold voltages have hysteresis to avoid chattering.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: UCC12051-Q1  
 
 
 
 
UCC12051-Q1  
ZHCSM92A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
7.3.3 VISO Load Recommended Operating Area  
7-1 depicts the device VISO regulation behavior across the output load range, including when the output is  
overloaded. For proper device operation, ensure that the device VISO output load does not exceed the  
maximum output current (IOUT_MAX). The value for IOUT_MAX over different temperature and VINP conditions are  
shown from 6-8 to 6-11. The following protection mechanisms will be engaged if the UCC12051-Q1 is  
loaded beyond the recommended operating area:  
1. The device limits the maximum output power. If a load exceeding IOUT_MAX is applied, VISO drops accordingly  
to meet the maximum power limit.  
2. If VISO drops below nominal 3.8 V while operating in the constant power limit region, the over-power fold-  
back feature will switch the power converter from active rectification to passive rectification, and the built-in  
recovery hysteresis will ensure the UCC12051-Q1 recovers at a lower output power. The device returns to  
active rectification when load drops and VISO increases above nominal 4.3 V.  
3. The device triggers a soft-start reset if VISO drops below the nominal 1.8-V threshold. This reset is designed  
to protect the device during VISO short-circuit conditions.  
4. Thermal shutdown protection disables the converter if the device is operated in any of the above regions  
long enough to raise the silicon junction temperature above the thermal shutdown threshold. See the 节  
7.3.4 section for more details on this device feature.  
VISO  
1
Constant Power Limit  
VISO_SET  
Active Rectification  
2
Passive Rectification  
Recommended  
Operating  
Area  
Reset Threshold  
3
Overload  
Protection  
IOUT_MAX  
IOUT  
7-1. VISO Load Recommended Operating Area Description  
7.3.4 Thermal Shutdown  
Thermal protection is also integrated to help prevent the device from getting damaged during overload and  
short-circuit conditions on the isolated output. Under these conditions, the device temperature starts to increase.  
When the silicon junction temperature Tj sensed at the primary side die goes above the threshold  
TSDTHR(typical 165°C), thermal shutdown activates and the primary controller turns off which removes the  
energy supplied to the VISO load, which causes the device to cool off. When the junction temperature drops  
approximately 27°C (TSDHYST) from the shutdown point, the device starts to function normally. If an overload or  
output short-circuit condition prevails, this protection cycle is repeated. Make sure the design prevents the device  
junction temperatures from reaching such high values.  
7.3.5 External Clocking and Synchronization  
The UCC12051-Q1 has an internal oscillator trimmed to drive the transformer at 8.0 MHz. An external clock may  
be applied at the SYNC pin to override the internal oscillator. This external clock will be divided by 2, so the  
target range for the external clock signal at SYNC is 16 MHz ±10%. When a valid external clock signal is  
detected, the internal spread spectrum modulation (SSM) algorithm is disabled. This allows an external clock  
signal with a unique SSM to be applied. The depth and frequency of SSM is a tradeoff verses low frequency  
modulated VISO voltage ripple. The SYNC_OK pin is asserted LOW if there is no external SYNC clock or one  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: UCC12051-Q1  
 
 
 
UCC12051-Q1  
ZHCSM92A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
that is outside of the operating range of the device is detected. In this state, the external clock is ignored and the  
DC/DC converter is clocked by the internal oscillator. The pin is in high-impedance if a valid clock is applied on  
SYNC.  
7.3.6 VISO Output Voltage Selection  
The SEL pin is monitored during power-up within the first 1 ms after applying VINP above the UVLO rising  
threshold or enabling via the EN pin to detect the desired regulation voltage for the VISO output. Note that  
after this initial monitoring, the SEL pin no longer affects the VISO output level. In order to change the output  
mode selection, either the EN pin must be toggled or the VINP power supply must be cycled off and back on.  
Section6.4 provides more details on the SEL pin functionality.  
7.3.7 Electromagnetic Compatibility (EMC) Considerations  
UCC12051-Q1 devices use spread spectrum modulation algorithm for the internal oscillator and advanced  
internal layout scheme to minimize radiated emissions at the system level.  
Many applications in harsh environment are sensitive to disturbances such as electrostatic discharge (ESD),  
electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances are  
regulated by international standards such as CISPR 25. Although system-level performance and reliability  
depends, to a large extent, on the application board design and layout, the device incorporates many chip-level  
design improvements for overall system robustness.  
7.4 Device Functional Modes  
7-1 lists the supply functional modes for this device.  
7-1. Device Functional Modes  
INPUTS  
Isolated Supply Output Voltage (VISO) Setpoint  
EN  
SEL  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
Shorted to VISO  
100 kΩto VISO  
Shorted to GNDS  
100 kΩto GNDS  
OPEN(1)  
5.0 V  
5.4 V  
3.3 V  
3.7 V  
UNSUPPORTED  
0 V  
X
(1) The SEL pin has an internal weak pull-down resistance to ground, but leaving this pin open is not recommended.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: UCC12051-Q1  
 
 
 
UCC12051-Q1  
ZHCSM92A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
The UCC12051-Q1 device is suitable for applications that have limited board space and desire more integration.  
This device is also suitable for very high voltage applications, where power transformers meeting the required  
isolation specifications are bulky and expensive.  
8.2 Typical Application  
8-1 shows the typical application schematic for the UCC12051-Q1 device supplying an isolated load.  
10 mF 0.1 mF  
0.1 mF  
10 mF  
Load  
1
2
3
4
5
6
7
8
EN  
GNDS 16  
GNDS 15  
VISO 14  
SEL 13  
NC 12  
RPU  
GNDP  
VINP  
SYNC  
SYNC_OK  
NC  
RSEL  
RSYNC  
NC 11  
NC  
NC 10  
NC  
GNDS  
9
8-1. Typical Application  
8.2.1 Design Requirements  
To design using UCC12051-Q1, a few simple design considerations must be evaluated. 8-1 shows some  
recommended values for a typical application. See Power Supply Recommendations and Layout sections to  
review other key design considerations for the UCC12051-Q1 .  
8-1. Design Parameters  
PARAMETER  
RECOMMENDED VALUE  
4.5 V to 5.5 V  
Input supply voltage, VINP  
Decoupling capacitance between VINP and GNDP  
10 µF, 16 V, ± 10%, X7R  
10 µF, 16 V, ± 10%, X7R  
0.1 µF, 50 V, ± 10%, X7R  
100 kΩ  
Decoupling capacitance between VISO and GNDS (1)  
Optional additional capacitance on VISO or VINP to reduce high-frequency ripple  
Pull-up resistor from SYNC_OK to VINP, RPU  
Pull-up resistor from SEL to VISO for 5.0-V output voltage mode, RSEL  
Pull-up resistor from SEL to VISO for 5.4-V output voltage mode, RSEL  
0 Ω  
100 kΩ  
Match source typical values are 50 Ω, 75 Ω,  
100 Ω, or 1 kΩ  
Optional SYNC signal impedance-matching resistor, RSYNC  
External clock signal applied on SYNC  
16 MHz  
(1) See VISO Output Capacitor Selection section.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: UCC12051-Q1  
 
 
 
 
 
 
UCC12051-Q1  
ZHCSM92A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
Place ceramic decoupling capacitors as close as possible to the device pins. For the input supply, place the  
capacitor(s) between pin 3 (VINP) and pin 2 (GNDP). For the isolated output supply, place the capacitor(s)  
between pin 14 (VISO) and pin 15 (GNDS). This location is of particular importance to the input decoupling  
capacitor, because this capacitor supplies the transient current associated with the fast switching waveforms of  
the power drive circuits. The recommended capacitor value is 10 µF. Ensure the capacitor dielectric material is  
compatible with the target application temperature.  
8.2.2.1 VISO Output Capacitor Selection  
The UCC12051-Q1 is optimized to run with an effective output capacitance of 5 µF to 20 µF. A ceramic capacitor  
is recommended. Ceramic capacitors have DC-Bias and temperature derating effects, which both have influence  
the final effective capacitance. Choose the right capacitor carefully in combination with considering its package  
size, dielectric and voltage rating. It is good design practice to include one 0.1-µF capacitor close to the device  
for high-frequency noise reduction.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: UCC12051-Q1  
 
UCC12051-Q1  
ZHCSM92A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
8.2.3 Application Curves  
Time (2.0 ms/div)  
VISO = 5.4 V  
Time (2.0 ms/div)  
D033  
D034  
VINP = 5.0 V  
Bandwidth = 20 MHz  
VINP = 5.0 V  
VISO = 5.4 V  
Bandwidth = 20 MHz  
8-2. VISO Ripple, 5.4-V Output, 10% Load  
8-3. VISO Ripple, 5.4-V Output, 90% Load  
Time (2.0 ms/div)  
Time (2.0 ms/div)  
D035  
D036  
VINP = 5.0 V  
VISO = 5.0 V  
Bandwidth = 20 MHz  
VINP = 5.0 V  
VISO = 5.0 V  
Bandwidth = 20 MHz  
8-4. VISO Ripple, 5.0-V Output, 10% Load  
8-5. VISO Ripple, 5.0-V Output, 90% Load  
Time (2.0 ms/div)  
Time (2.0 ms/div)  
D037  
D038  
VINP = 5.0 V  
VISO = 3.7 V  
Bandwidth = 20 MHz  
VINP = 5.0 V  
VISO = 3.7 V  
Bandwidth = 20 MHz  
8-6. VISO Ripple, 3.7-V Output, 10% Load  
8-7. VISO Ripple, 3.7-V Output, 90% Load  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: UCC12051-Q1  
UCC12051-Q1  
ZHCSM92A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
Time (2.0 ms/div)  
Time (2.0 ms/div)  
VISO = 3.3 V Bandwidth = 20 MHz  
D039  
D040  
VINP = 5.0 V  
VISO = 3.3 V  
Bandwidth = 20 MHz  
VINP = 5.0 V  
8-8. VISO Ripple, 3.3-V Output, 10% Load  
8-9. VISO Ripple, 3.3-V Output, 90% Load  
VISO  
IISO load  
VISO  
IISO load  
Time (200 ms/div)  
Time (200 ms/div)  
D041  
D042  
8-10. VISO Load Transient Response, 10% to  
8-11. VISO Load Transient Response, 90% to 10%  
90% Load Step, 5.0-V Input, 5.4-V Output  
Load Step, 5.0-V Input, 5.4-V Output  
VISO  
IISO load  
VISO  
IISO load  
Time (200 ms/div)  
Time (200 ms/div)  
D043  
D044  
8-12. VISO Load Transient Response, 10% to  
8-13. VISO Load Transient Response, 90% to  
90% Load Step, 5.0-V Input, 5.0-V Output  
10% Load Step, 5.0-V Input, 5.0-V Output  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: UCC12051-Q1  
UCC12051-Q1  
ZHCSM92A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
VISO  
IISO load  
VISO  
IISO load  
Time (200 ms/div)  
Time (200 ms/div)  
D045  
D046  
8-14. VISO Load Transient Response, 10% to  
8-15. VISO Load Transient Response, 90% to  
90% Load Step, 5.0-V Input, 3.7-V Output  
10% Load Step, 5.0-V Input, 3.7-V Output  
VISO  
IISO load  
VISO  
IISO load  
Time (200 ms/div)  
Time (200 ms/div)  
D047  
D047  
8-16. VISO Load Transient Response, 10% to  
8-17. VISO Load Transient Response, 90% to  
90% Load Step, 5.0-V Input, 3.3-V Output  
10% Load Step, 5.0-V Input, 3.3-V Output  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
-1  
-1  
Time (400 ms/div)  
Time (400 ms/div)  
D049  
8-18. VISO Soft Start at 10% Rated Load, 5.0-V  
Input, 5.4-V Output  
D050  
8-19. VISO Soft Start at 90% Rated Load, 5.0-V  
Input, 5.4-V Output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: UCC12051-Q1  
UCC12051-Q1  
ZHCSM92A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
-1  
-1  
Time (400 ms/div)  
Time (400 ms/div)  
D051  
D052  
8-20. VISO Soft Start at 10% Rated Load, 5.0-V  
8-21. VISO Soft Start at 90% Rated Load, 5.0-V  
Input, 5.0-V Output  
Input, 5.0-V Output  
5
4
3
2
1
0
5
4
3
2
1
0
-1  
-1  
Time (400 ms/div)  
Time (400 ms/div)  
D053  
8-22. VISO Soft Start at 10% Rated Load, 5.0-V  
Input, 3.7-V Output  
D054  
8-23. VISO Soft Start at 90% Rated Load, 5.0-V  
Input, 3.7-V Output  
5
4
3
2
1
0
5
4
3
2
1
0
-1  
-1  
Time (400 ms/div)  
Time (400 ms/div)  
D055  
8-24. VISO Soft Start at 10% Rated Load, 5.0-V  
Input, 3.3-V Output  
D056  
8-25. VISO Soft Start at 90% Rated Load, 5.0-V  
Input, 3.3-V Output  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: UCC12051-Q1  
UCC12051-Q1  
ZHCSM92A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
9 Power Supply Recommendations  
The recommended input supply voltage (VINP) for the UCC12051-Q1 is between 4.5 V and 5.5 V. To help  
ensure reliable operation, adequate decoupling capacitors must be located as close to supply pins as possible.  
Place local bypass capacitors between the VINP and GNDP pins at the input, and between VISO and GNDS at  
the isolated output supply. Low ESR, ceramic surface mount capacitors are recommended. It is further  
suggested that one place two such capacitors: one with a value of 10 µF for supply bypassing, and an additional  
100-nF capacitor in parallel for high frequency filtering. The input supply must have an appropriate current rating  
to support output load required by the end application.  
10 Layout  
10.1 Layout Guidelines  
The UCC12051-Q1 integrated isolated power solution simplifies system design and reduces board area usage.  
Proper PCB layout is important in order to achieve optimum performance. Here is a list of recommendations:  
1. Place decoupling capacitors as close as possible to the device pins. For the input supply, place the  
capacitor(s) between pin 3 (VINP) and pin 2 (GNDP). For the isolated output supply, place the capacitor(s)  
between pin 14 (VISO) and pin 15 (GNDS). This location is of particular importance to the input decoupling  
capacitor, because this capacitor supplies the transient current associated with the fast switching waveforms  
of the power drive circuits.  
2. Because the device does not have a thermal pad for heat-sinking, the device dissipates heat through the  
respective GND pins. Ensure that enough copper (preferably a connection to the ground plane) is present on  
all GNDP and GNDS pins for best heat-sinking.  
3. If space and layer count allow, it is also recommended to connect the VINP, GNDP, VISO and GNDS pins to  
internal ground or power planes through multiple vias of adequate size. Alternatively, make traces for these  
nets as wide as possible to minimize losses.  
4. TI also recommends grounding the no-connect pins (NC) to their respective ground planes. For pins 6, 7,  
and 8, connect to GNDP. For pins 10, 11, and 12, connect to GNDS. This will allow more continuous ground  
planes and larger thermal mass for heat-sinking.  
5. A minimum of four layers is recommended to accomplish a low-EMI PCB design. Inner layers can be spaced  
closer than outer layers and used to create a high-frequency bypass capacitor between GNDP and GNDS to  
reduce radiated emissions. Ensure proper spacing, both inter-layer and layer-to-layer, is implemented to  
avoid reducing isolation capabilities. These spacings will vary based on the printed circuit board construction  
parameters, such as dielectric material and thickness.  
6. Pay close attention to the spacing between primary ground plane (GNDP) and secondary ground plane  
(GNDS) on the PCB outer layers. The effective creepage and or clearance of the system will be reduced if  
the two ground planes have a lower spacing than that of the device package.  
7. To ensure isolation performance between the primary and secondary side, avoid placing any PCB traces or  
copper below the UCC12051-Q1 device on the outer copper layers.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: UCC12051-Q1  
 
 
 
 
 
UCC12051-Q1  
ZHCSM92A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
10.2 Layout Example  
10-1. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: UCC12051-Q1  
 
UCC12051-Q1  
ZHCSM92A JANUARY 2021 REVISED JUNE 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
For development support, refer to:  
Isolated 5-V bias supply for automotive CISPR 25, class 5 emissions, reference design  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
UCC12050 Evaluation Module User Guide  
Isolation Glossary  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: UCC12051-Q1  
 
 
 
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jul-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
UCC12051QDVERQ1  
ACTIVE  
SO-MOD  
DVE  
16  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
UCC12051Q1  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
DVE0016A  
SO-MOD - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SMALL OUTLINE INTEGRATED CIRCUIT  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A B  
NOTE 4  
0.33  
0.10  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4224275/B 04/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DVE0016A  
SO-MOD - 2.65 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
SYMM  
SYMM  
16X (2)  
1
16X (1.65)  
SEE  
DETAILS  
SEE  
DETAILS  
1
16  
16  
16X (0.6)  
16X (0.6)  
(R0.05) TYP  
(R0.05) TYP  
SYMM  
SYMM  
14X (1.27)  
8
14X (1.27)  
9
9
8
(9.79)  
(9.3)  
HV / ISOLATION OPTION  
8.14 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:4X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4224275/A 04/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DVE0016A  
SO-MOD - 2.65 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
SYMM  
SYMM  
16X (1.65)  
16X (2)  
1
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
(R0.05) TYP  
(R0.05) TYP  
14X (1.27)  
8
14X (1.27)  
8
9
9
(9.79)  
(9.3)  
HV / ISOLATION OPTION  
8.14 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4224275/B 04/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

UCC12051QDVERQ1

具有集成变压器的汽车类 500mW 5kVrms 隔离式直流/直流模块 | DVE | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC14131-Q1

汽车类、1.5W、12V 至 15V 输入电压、12V 至 15V 输出电压、高密度、> 5kVRMS 隔离式直流/直流模块

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC14141-Q1

具有集成变压器的汽车级、1.5W、12V 输入电压、稳压、5kVRMS 隔离式直流/直流模块

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC14240-Q1

汽车类 2.0W、24Vin、25Vout、高密度、> 3kVRMS、隔离式直流/直流模块

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC14240QDWNRQ1

汽车类 2.0W、24Vin、25Vout、高密度、> 3kVRMS、隔离式直流/直流模块

| DWN | 36 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC14241-Q1

Automotive, 2.0-W, 24-Vin, 25-Vout high-density > 5-kVRMS isolated DC/DC module

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC14341-Q1

具有集成变压器的汽车级、1.5W、15V 输入电压、稳压、5kVRMS 隔离式直流/直流模块

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC1570

Low Power Pulse Width Modulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC15701

Advanced Voltage Mode Pulse Width Modulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC15701J

Advanced Voltage Mode Pulse Width Modulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC15701L

Advanced Voltage Mode Pulse Width Modulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

UCC15701_05

Advanced Voltage Mode Pulse Width Modulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI