T6L76E [TOSHIBA]

IC LIQUID CRYSTAL DISPLAY DRIVER, UUC461, TCP-461, Display Driver;
T6L76E
型号: T6L76E
厂家: TOSHIBA    TOSHIBA
描述:

IC LIQUID CRYSTAL DISPLAY DRIVER, UUC461, TCP-461, Display Driver

驱动 接口集成电路
文件: 总20页 (文件大小:384K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
T6L76E  
TOSHIBA CMOS Digital Integrated Circuits Silicon Monolithic  
T6L76E  
Source Driver for TFT LCD Panels  
The T6L76E is a 256-gray-level and 384-channel-output source  
driver for TFT LCD panels. The device accepts 8 bit × 6 dot  
digital data inputs, for which the direction of data transfer can be  
selected by the U/D pin. The 12 (6 × 2) external power supply and  
the internal DA converter realize display 16,700,000 colors, on  
which reference analog voltage inputs is made.  
Unit: mm  
User Pitch Area  
IN OUT  
T6L76E  
Since the T6L76E supports a dot line inversion system, it  
eliminates the need for inversion of the LCD panel’ s counter  
electrode, allowing for high picture quality.  
Please contact Toshiba or an authorized  
Toshiba dealer TCP specification and  
product lineup.  
Moreover, its output dynamic range is a large 12.8 Vp-p (max).  
Based on high-speed CMOS, the T6L76E offers both low power  
consumption and high-speed operation. To configure an SXGA or  
XGA-compatible TFT-LCD module, it allows a maximum  
operating frequency of 37.5 MHz.  
TCP (tape carrier package)  
Features  
Grayscale data  
Panel drive outputs  
Fast operation  
Power supply voltage : Digital power supply voltage3.0 to 3.6 V  
Analog power supply voltage7.5 to 13.0 V  
: Digital CMOS-level 48-bit (8 bits × 6 outputs) parallel transfer method, selectable  
transfer direction  
: 384 outputs, 256 gray levels, R-DAC system, reference analog voltage, 12 (6 × 2)  
external reference analog voltage inputs, dot/line inversion drive  
: max 37.5 MHz  
Operating temperature : 20 to 75°C  
Package  
: Tape carrier package (TCP)  
Cascading of multiple devices  
1
2002-04-03  
T6L76E  
Block Diagram  
DI/O  
CPH  
U/D  
DO/I  
Data control unit  
D00 to D07  
D10 to D17  
D20 to D27  
D30 to D37  
D40 to D47  
D50 to D57  
Sampling register (REG1)  
DINV1  
DINV2  
LOAD  
POL  
Load register (REG2)  
DA converter  
V0 to V11  
Output circuit  
AV  
DV  
DD  
DD  
AV  
DV  
SS  
SS  
OUT1  
OUT3  
OUT382  
OUT384  
OUT2  
OUT383  
2
2002-04-03  
T6L76E  
Pin Assignment  
OUT1 78  
OUT2 79  
OUT3 80  
OUT4 81  
OUT5 82  
OUT6 83  
OUT7 84  
OUT8 85  
OUT9 86  
OUT10 87  
77 AV  
76 AV  
SS  
DD  
75 D07  
68 D00  
67 D47  
60 D40  
59 D27  
52 D20  
51 DI/O  
50 DINV1  
49 DV  
48 DV  
SS  
DD  
47 CPH  
46 TEST  
45 V0  
44 V1  
43 V2  
42 V3  
41 V4  
T6L76E  
(chip top view)  
40 V5  
39 V6  
38 V7  
37 V8  
36 V9  
35 V10  
34 V11  
33 DO/I  
32 LOAD  
31 POL  
30 D37  
23 D30  
22 D17  
15 D10  
14 D57  
7
6
5
4
3
2
1
D50  
DINV2  
OUT375 452  
OUT376 453  
OUT377 454  
OUT378 455  
OUT379 456  
OUT380 457  
OUT381 458  
OUT382 459  
OUT383 460  
OUT384 461  
DV  
SS  
U/D  
DV  
AV  
AV  
DD  
DD  
SS  
The above diagram shows the device’ pin configuration only and does not necessarily correspond to the pad layout  
on the chip.  
Please contact Toshiba or our distributors for the latest TCP specification.  
3
2002-04-03  
T6L76E  
Pin Function  
Pin Name  
I/O  
I/O  
Function  
Data transfer enable pins  
These pins are used to input/output grayscale data.  
Input and output are switched as shown below according to the setting of the U/D pin.  
U/D  
DI/O  
DO/I  
H
L
Input  
Output  
Output  
Input  
DI/O  
DO/I  
When set for input  
A high on DI/O or DO/I is latched into the internal logic synchronously with the rising edge of  
CPH. When the internal circuit is in standby state, the device is ready to transfer data. The  
grayscale data are latched in sequentially, starting at the next rise of CPH.  
When set for output  
The pin is used to transfer the enable signal to the T6L76E at the next stage of the LCD driver.  
The pin enters standby state after outputting a high.  
Transfer direction select pin  
This pin controls the direction in which the data are transferred into the sampling register. Data  
are transferred synchronously with each rising edge of CPH in one of the following sequences:  
When U/D is high, data is transferred in the order OUT1 to OUT6, OUT7 to OUT12, and so  
on.  
U/D  
I
When U/D is low, the direction is reversed to the order OUT379 to OUT384, OUT373 to  
OUT378, and so on.  
The voltage applied to this pin must be a DC-level voltage that is either high or low.  
Data transfer clock input  
This clock input is used to transfer the grayscale data.  
The result of logical operation between grayscale data and polarity inverting pin is latched into  
the REG1 sequentially at each rising edge of CPH.  
CPH  
I
I
Always make sure that a constant-period clock is input to this pin.  
Grayscale data bus  
D00 to D07  
D10 to D17  
D20 to D27  
D30 to D37  
D40 to D47  
D50 to D57  
The data inputs consist of 8-bit words for each of the six channels, that are transferred in  
parallel at the rising edge of CPH. The relationship between the grayscale data and the the  
output pins is as follows:  
Grayscale data = 128 × Dn7 + 64 × Dn6 + 32 × Dn5 + 16 × Dn4 + 8 × Dn3 + 4 × Dn2 +  
2 × Dn1 + Dn0  
(*) where n = 0, 1, 2, 3, 4, 5  
Data polarity inverting pin  
These pins select whether or not the polarity of input data be inverted.  
Logic operation: Data bus (Dxx) XOR DINV1, 2  
when DINV1, 2 = high: data is inverted.  
DINV1  
DINV2  
I
when DINV1, 2 = low: data is not inverted.  
DINV1 chooses whether or not to invert grayscale data  
(D00 to D07, D10 to D17, D20 to D27).  
DINV2 chooses whether or not to invert grayscale data  
(D30 to D37, D40 to D47, D50 to D57).  
Data load input pin  
When a high voltage is supplied to the load input, the data are transferred from the sampling  
register to the load register synchronously at the rising edge of CPH. The selected analog  
voltage corresponding to the data is sent the LCD.  
LOAD  
POL  
I
I
Polarity inverting pin  
The signal of this pin is latched into the internal logic when a high voltage is supplied to the load  
input.  
When POL = high, the reference voltages for odd number outputs are V6 to V11 and  
those for even-number outputs are V0 to V5.  
When POL = low, the reference voltages for odd-number outputs are V0 to V5 and  
those for even-number outputs are V6 to V11.  
Reference analog input pins  
These pins are used to input the voltages used for the DAC.  
V0 to V11  
I
>
>
>
>
>
>
>
>
>
>
>
Conditions: AV  
AV  
> V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 >  
=
=
=
=
=
=
=
=
=
=
=
DD  
SS  
OUT1 to OUT384  
O
LCD panel drive pins  
AV  
AV  
DV  
DV  
Analog power supply pin  
Analog GND pin  
DD  
SS  
DD  
SS  
This pin must be at the same potential level as the digital GND pin.  
Digital power supply pin.  
Digital GND pin  
This pin must be at the same potential level as the analog GND pin.  
Test pin  
TEST  
I
Leave this pin open.  
4
2002-04-03  
T6L76E  
Device Operation  
(1) Starting data transfer  
A high input to the data transfer enable pin (DI/O or DO/I) is latched into the internal logic synchronously  
with the rising edge of CPH, setting the device ready to transfer data.  
Data transfer starts at the next rise of CPH.  
This enable pin must not be held high for more than one CPH period.  
(2) Data transfer method  
The data in the grayscale data bus is latched to the sampling register (REG1) synchronously with each rising  
edge of CPH.  
Grayscale data for six outputs are latched into the device simultaneously in one transfer. Therefore, 64  
transfers are performed to latch the data. When the data loading is completed, the device enters a standby state.  
The data written into REG1 is the result of logical operation between the grayscale data bus and DINV.  
Note 1: Make sure that a clock of the same period as applied during data transfer is input even while in standby  
state. The LOAD input must not be driven high during data transfer.  
(3) Terminating data transfer  
The data transfer enable pin (DO/I or DI/O) output goes high synchronously with the rising edge of CPH, one  
clock period before the last data item is latched in. It is held high until the next rise of CPH.  
(4) Panel drive output  
After the data transfer enable pin (DO/I, DI/O) = H outputs, when a high voltage is supplied to the load input,  
the data in the sampling register (REG1) are transferred to the load register (REG2), and the device starts  
updating output to the LCD panel drive pins.  
Note 2: Make sure the LOAD input is held high for more than 2 clock periods.  
(5) Output offset correction function  
The T6L76E incorporates a function which corrects offset to reduce output offset (see page 19).  
Number of output offset crrection timing pulses can be selected (126, 196, 208, 224, 280, 288, 378 or 490).  
Note 3: When t  
> t  
depending on the frequency of the CPH used, consult Toshiba.  
pdDX2  
pdDX1  
5
2002-04-03  
T6L76E  
(6) Reference power supply circuit  
The DA converter is comprised of ladder resistors and switches.  
Unit: ()  
V0  
V1  
V00H  
V01H  
V02H  
V1FH  
V20H  
V21H  
V7FH  
V80H  
V81H  
VDFH  
VE0H  
VE1H  
VFEH  
VFFH  
VFFH’  
VFEH’  
VE1H’  
VE0H’  
VDFH’  
V81H’  
V80H’  
V7FH’  
V21H’  
V20H’  
V1FH’  
Resistor Resistance Resistor Resistance Resistor Resistance Resistor Resistance  
Name  
Value  
200  
Name  
Value  
100  
Name  
Value  
50  
Name  
Value  
25  
R
0
R
1
R
2
R
3
R
4
R
5
R
6
R
7
R
8
R
9
R
32  
R
33  
R
34  
R
35  
R
36  
R
37  
R
38  
R
39  
R
40  
R
41  
R
42  
R
43  
R
44  
R
45  
R
46  
R
47  
R
48  
R
49  
R
50  
R
51  
R
52  
R
53  
R
54  
R
55  
R
56  
R
57  
R
58  
R
59  
R
60  
R
61  
R
62  
R
63  
R
64  
R
65  
R
66  
R
67  
R
68  
R
69  
R
70  
R
71  
R
72  
R
73  
R
74  
R
75  
R
76  
R
77  
R
78  
R
79  
R
80  
R
81  
R
82  
R
83  
R
84  
R
85  
R
86  
R
87  
R
88  
R
89  
R
90  
R
91  
R
92  
R
93  
R
94  
R
95  
R
R
R
R
96  
97  
98  
99  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
175  
175  
175  
175  
175  
175  
175  
175  
150  
150  
150  
150  
150  
150  
150  
150  
100  
100  
100  
100  
100  
100  
100  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
R
100  
R
101  
R
102  
R
103  
R
104  
R
105  
R
106  
R
107  
R
108  
R
109  
R
110  
R
111  
R
112  
R
113  
R
114  
R
115  
R
116  
R
117  
R
118  
R
119  
R
120  
R
121  
R
122  
R
123  
R
124  
R
125  
R
126  
R
127  
V2  
V3  
V4  
R
10  
R
11  
R
12  
R
13  
R
14  
R
15  
R
16  
R
17  
R
18  
R
19  
R
20  
R
21  
R
22  
R
23  
R
24  
R
25  
R
26  
R
27  
R
28  
R
29  
R
30  
R
31  
V5  
V6  
V7  
V8  
V9  
V02H’  
V01H’  
V10  
V11  
V00H’  
6
2002-04-03  
T6L76E  
Unit: ()  
Resistor Resistance Resistor Resistance Resistor Resistance Resistor Resistance  
Name  
Value  
25  
Name  
Value  
25  
Name  
Value  
25  
Name  
Value  
50  
R
128  
R
129  
R
130  
R
131  
R
132  
R
133  
R
134  
R
135  
R
136  
R
137  
R
138  
R
139  
R
140  
R
141  
R
142  
R
143  
R
144  
R
145  
R
146  
R
147  
R
148  
R
149  
R
150  
R
151  
R
152  
R
153  
R
154  
R
155  
R
156  
R
157  
R
158  
R
159  
R
160  
R
161  
R
162  
R
163  
R
164  
R
165  
R
166  
R
167  
R
168  
R
169  
R
170  
R
171  
R
172  
R
173  
R
174  
R
175  
R
176  
R
177  
R
178  
R
179  
R
180  
R
181  
R
182  
R
183  
R
184  
R
185  
R
186  
R
187  
R
188  
R
189  
R
190  
R
191  
R
192  
R
193  
R
194  
R
195  
R
196  
R
197  
R
198  
R
199  
R
200  
R
201  
R
202  
R
203  
R
204  
R
205  
R
206  
R
207  
R
208  
R
209  
R
210  
R
211  
R
212  
R
213  
R
214  
R
215  
R
216  
R
217  
R
218  
R
219  
R
220  
R
221  
R
222  
R
223  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
75  
100  
100  
100  
100  
100  
100  
100  
100  
200  
200  
200  
ΣR  
= 0.2 kΩ  
= 5.2 kΩ  
= 4.0 kΩ  
= 2.7 kΩ  
= 2.7 kΩ  
= 14.8 kΩ  
0
ΣR to R  
31  
1
ΣR to R  
32 127  
ΣR  
to R  
128  
224  
223  
254  
ΣR  
to R  
Total  
7
2002-04-03  
T6L76E  
(7) Grayscale data and output voltages  
The device’ s LCD drive output voltages are determined by the grayscale data values and the 12 (6 × 2)  
reference analog inputs corresponding to the the range of possible line voltages (V0 to V11). Note that since the  
T6L76E is corresponding to the dot inversion drive system, it can generate different grayscale voltages for  
even-numbered and odd-numbered outputs.  
Schematic representation of reference analog voltage inputs  
AVDD  
Number of  
divisions  
V0  
1
V1  
31  
V2  
96  
V3  
V4  
96  
31  
V5  
V6  
31  
V7  
96  
V8  
96  
V9  
31  
V10  
1
V11  
Number of  
divisions  
AVSS  
“00”  
“20”  
“40”  
“60”  
“80”  
“A0”  
“C0”  
“E0”  
“FF”  
Grayscale data input (HEX)  
8
2002-04-03  
T6L76E  
Grayscale Data and Output Voltages  
(positive polarity output: V0 > V1 > V2 > V3 > V4 > V5)  
Note 4: The output voltage (anticipated value) below is calculated using the voltage input to V0 to V11 and  
reference analog voltage.  
Grayscale  
Output Voltage (anticipated value)  
Dn7 Dn6 Dn5 Dn4 Dn3 Dn2 Dn1 Dn0  
Data  
00H  
01H  
02H  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
V00H V0  
V01H V1  
V02H V1 + (V2 V1) × (200 × 1)/5200  
0CH  
0DH  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
1
V0CH V1 + (V2 V1) × (200 × 11)/5200  
V0DH V1 + (V2 V1) × (2200 + 175 × 1)/5200  
14H  
15H  
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
V14H V1 + (V2 V1) × (2200 + 175 × 8)/5200  
V15H V1 + (V2 V1) × (3600 + 150 × 1)/5200  
18H  
19H  
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
1
V18H V1 + (V2 V1) × (3600 + 150 × 4)/5200  
V19H V1 + (V2 V1) × (4200 + 150 × 1)/5200  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
0
0
0
1
0
1
0
1
V1CH V1 + (V2 V1) × (4200 + 150 × 4)/5200  
V1DH V1 + (V2 V1) × (4800 + 100 × 1)/5200  
V1EH V1 + (V2 V1) × (4800 + 100 × 2)/5200  
V1FH V1 + (V2 V1) × (4800 + 100 × 3)/5200  
V20H V2  
V21H V2 + (V3 V2) × (100 × 1)/4000  
24H  
25H  
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
1
V24H V2 + (V3 V2) × (100 × 4)/4000  
V25H V2 + (V3 V2) × (400 + 75 × 1)/4000  
34H  
35H  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
0
1
V34H V2 + (V3 V2) × (400 + 75 × 16)/4000  
V35H V2 + (V3 V2) × (1600 + 50 × 1)/4000  
3FH  
40H  
0
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
V3FH V2 + (V3 V2) × (1600 + 50 × 11)/4000  
V40H V2 + (V3 V2) × (1600 + 50 × 12)/4000  
48H  
49H  
0
0
1
1
0
0
0
0
1
1
0
0
0
0
0
1
V48H V2 + (V3 V2) × (1600 + 50 × 20)/4000  
V49H V2 + (V3 V2) × (2600 + 25 × 1)/4000  
5FH  
60H  
0
0
1
1
0
1
1
0
1
0
1
0
1
0
1
0
V5FH V2 + (V3 V2) × (2600 + 25 × 23)/4000  
V60H V2 + (V3 V2) × (2600 + 25 × 24)/4000  
7FH  
0
1
1
1
1
1
1
1
V7FH V2 + (V3 V2) × (2600 + 25 × 55)/4000  
9
2002-04-03  
T6L76E  
Grayscale  
Data  
Output Voltage (anticipated value)  
Dn7 Dn6 Dn5 Dn4 Dn3 Dn2 Dn1 Dn0  
80H  
81H  
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
V80H V3  
V81H V3 + (V4 V3) × (25 × 1)/2700  
9FH  
A0H  
1
1
0
0
0
1
1
0
1
0
1
0
1
0
1
0
V9FH V3 + (V4 V3) × (25 × 31)/2700  
VA0H V3 + (V4 V3) × (25 × 32)/2700  
BFH  
C0H  
1
1
0
1
1
0
1
0
1
0
1
0
1
0
1
0
VBFH V3 + (V4 V3) × (25 × 63)/2700  
VC0H V3 + (V4 V3) × (25 × 64)/2700  
D4H  
D5H  
1
1
1
1
0
0
1
1
0
0
1
1
0
0
0
1
VD4H V3 + (V4 V3) × (25 × 84)/2700  
VD5H V3 + (V4 V3) × (2100 + 50 × 1)/2700  
DFH  
E0H  
E1H  
1
1
1
1
1
1
0
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
VDFH V3 + (V4 V3) × (2100 + 50 × 11)/2700  
VE0H V4  
VE1H V4 + (V5 V4) × (50 × 1)/2700  
E8H  
E9H  
1
1
1
1
1
1
0
0
1
1
0
0
0
0
0
1
VE8H V4 + (V5 V4) × (50 × 8)/2700  
VE9H V4 + (V5 V4) × (400 + 75 × 1)/2700  
F4H  
F5H  
1
1
1
1
1
1
1
1
0
0
1
1
0
0
0
1
VF4H V4 + (V5 V4) × (400 + 75 × 12)/2700  
VF5H V4 + (V5 V4) × (1300 + 100 × 1)/2700  
FCH  
FDH  
FEH  
FFH  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
VFCH V4 + (V5 V4) × (1300 + 100 × 8)/2700  
VFDH V4 + (V5 V4) × (2100 + 200 × 1)/2700  
VFEH V4 + (V5 V4) × (2100 + 200 × 2)/2700  
VFFH V5  
10  
2002-04-03  
T6L76E  
Grayscale Data and Output Voltages  
(negative polarity output: V11 < V10 < V9 < V8 < V7 < V6)  
Grayscale  
Output Voltage (anticipated value)  
Dn7 Dn6 Dn5 Dn4 Dn3 Dn2 Dn1 Dn0  
Data  
00H  
01H  
02H  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
V00H’ V11  
V01H’ V10  
V02H’ V10 + (V9 V10) × (200 × 1)/5200  
0CH  
0DH  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
1
V0CH’ V10 + (V9 V10) × (200 × 11)/5200  
V0DH’ V10 + (V9 V10) × (2200 + 175 × 1)/5200  
14H  
15H  
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
V14H’ V10 + (V9 V10) × (2200 + 175 × 8)/5200  
V15H’ V10 + (V9 V10) × (3600 + 150 × 1)/5200  
18H  
19H  
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
1
V18H’ V10 + (V9 V10) × (3600 + 150 × 4)/5200  
V19H’ V10 + (V9 V10) × (4200 + 150 × 1)/5200  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
0
0
0
1
0
1
0
1
V1CH’ V10 + (V9 V10) × (4200 + 150 × 4)/5200  
V1DH’ V10 + (V9 V10) × (4800 + 100 × 1)/5200  
V1EH’ V10 + (V9 V10) × (4800 + 100 × 2)/5200  
V1FH’ V10 + (V9 V10) × (4800 + 100 × 3)/5200  
V20H’ V9  
V21H’ V9 + (V8 V9) × (100 × 1)/4000  
24H  
25H  
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
1
V24H’ V9 + (V8 V9) × (100 × 4)/4000  
V25H’ V9 + (V8 V9) × (400 + 75 × 1)/4000  
34H  
35H  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
0
1
V34H’ V9 + (V8 V9) × (400 + 75 × 16)/4000  
V35H’ V9 + (V8 V9) × (1600 + 50 × 1)/4000  
3FH  
40H  
0
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
V3FH’ V9 + (V8 V9) × (1600 + 50 × 11)/4000  
V40H’ V9 + (V8 V9) × (1600 + 50 × 12)/4000  
48H  
49H  
0
0
1
1
0
0
0
0
1
1
0
0
0
0
0
1
V48H’ V9 + (V8 V9) × (1600 + 50 × 20)/4000  
V49H’ V9 + (V8 V9) × (2600 + 25 × 1)/4000  
5FH  
60H  
0
0
1
1
0
1
1
0
1
0
1
0
1
0
1
0
V5FH’ V9 + (V8 V9) × (2600 + 25 × 23)/4000  
V60H’ V9 + (V8 V9) × (2600 + 25 × 24)/4000  
7FH  
0
1
1
1
1
1
1
1
V7FH’ V9 + (V8 V9) × (2600 + 25 × 55)/4000  
11  
2002-04-03  
T6L76E  
Grayscale  
Data  
Output Voltage (anticipated value)  
Dn7 Dn6 Dn5 Dn4 Dn3 Dn2 Dn1 Dn0  
80H  
81H  
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
V80H’ V8  
V81H’ V8 + (V7 V8) × (25 × 1)/2700  
9FH  
A0H  
1
1
0
0
0
1
1
0
1
0
1
0
1
0
1
0
V9FH’ V8 + (V7 V8) × (25 × 31)/2700  
VA0H’ V8 + (V7 V8) × (25 × 32)/2700  
BFH  
C0H  
1
1
0
1
1
0
1
0
1
0
1
0
1
0
1
0
VBFH’ V8 + (V7 V8) × (25 × 63)/2700  
VC0H’ V8 + (V7 V8) × (25 × 64)/2700  
D4H  
D5H  
1
1
1
1
0
0
1
1
0
0
1
1
0
0
0
1
VD4H’ V8 + (V7 V8) × (25 × 84)/2700  
VD5H’ V8 + (V7 V8) × (2100 + 50 × 1)/2700  
DFH  
E0H  
E1H  
1
1
1
1
1
1
0
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
VDFH’ V8 + (V7 V8) × (2100 + 50 × 11)/2700  
VE0H’ V7  
VE1H’ V7 + (V6 V7) × (50 × 1)/2700  
E8H  
E9H  
1
1
1
1
1
1
0
0
1
1
0
0
0
0
0
1
VE8H’ V7 + (V6 V7) × (50 × 8)/2700  
VE9H’ V7 + (V6 V7) × (400 + 75 × 1)/2700  
F4H  
F5H  
1
1
1
1
1
1
1
1
0
0
1
1
0
0
0
1
VF4H’ V7 + (V6 V7) × (400 + 75 × 12)/2700  
VF5H’ V7 + (V6 V7) × (1300 + 100 × 1)/2700  
FCH  
FDH  
FEH  
FFH  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
VFCH’ V7 + (V6 V7) × (1300 + 100 × 8)/2700  
VFDH’ V7 + (V6 V7) × (2100 + 200 × 1)/2700  
VFEH’ V7 + (V6 V7) × (2100 + 200 × 2)/2700  
VFFH’ V6  
12  
2002-04-03  
T6L76E  
LOAD, POL, and output waveforms  
CPH  
LOAD  
POL  
OUT  
2N-1  
OUT  
2N  
POL  
OUT  
OUT  
2N  
2N-1  
L
V0 to V5  
V6 to V11  
V0 to V5  
H
V6 to V11  
(*) OUT  
2N-1  
(odd-numbered outputs); OUT (even-numbered outputs)  
2N  
13  
2002-04-03  
T6L76E  
Timing Diagrams 1  
Start pulse and data sequence  
DI/O, DO/I  
(input)  
0
1
2
3
62  
63  
64  
CPH  
(*)  
D00 to D07  
XOR DINV1  
OUT1/  
OUT7/  
OUT13/  
OUT367  
OUT373/  
OUT7  
OUT379/  
OUT1  
OUT379  
OUT373  
D10 to D17  
XOR DINV1  
OUT2/  
OUT8/  
OUT14/  
OUT368  
OUT374/  
OUT8  
OUT380/  
OUT2  
OUT380  
OUT374  
D20 to D27  
XOR DINV1  
OUT3/  
OUT9/  
OUT15/  
OUT369  
OUT375/  
OUT9  
OUT381/  
OUT3  
OUT381  
OUT375  
D30 to D37  
XOR DINV2  
OUT4/  
OUT10/  
OUT376  
OUT16/  
OUT370  
OUT376/  
OUT10  
OUT382/  
OUT4  
OUT382  
D40 to D47  
XOR DINV2  
OUT5/  
OUT11/  
OUT377  
OUT17/  
OUT371  
OUT377/  
OUT11  
OUT383/  
OUT5  
OUT383  
D50 to D57  
XOR DINV2  
OUT6/  
OUT12/  
OUT378  
OUT18/  
OUT372  
OUT378/  
OUT12  
OUT384/  
OUT6  
OUT384  
DO/I, DI/O  
(output)  
(*) Upper stage: OUT1 U/D = high  
Lower stage: OUT379 U/D = low  
14  
2002-04-03  
T6L76E  
Timing Diagrams 2  
Load and cascaded operations  
0
1
2
3
4
63  
64  
0
1
CPH  
DI/O  
DO/I  
Grayscale  
data bus  
First DATA  
Last DATA  
First data at  
next stage  
LOAD  
POL  
OUT1 to  
OUT384  
15  
2002-04-03  
T6L76E  
Absolute Maximum Ratings (AV = DV = 0 V)  
SS  
SS  
Characteristics  
Analog supply voltage  
Symbol  
Rating  
Unit  
AV  
DV  
0.3 to 15.0  
0.5 to 6.0  
V
V
DD  
Digital supply voltage  
Reference analog voltage  
Digital input voltage  
DD  
V0 to V11  
0.3 to AV  
+ 0.3  
V
DD  
DD  
V
0.3 to DV  
+ 0.3  
V
IN  
Storage temperature  
T
55 to 125  
°C  
stg  
Recommended Operating Conditions (AV = DV = 0 V)  
SS  
SS  
Characteristics  
Analog supply voltage  
Symbol  
Rating  
Unit  
Remarks  
AV  
DV  
7.5 to 13.0  
3.0 to 3.6  
V
V
DD  
Digital supply voltage  
DD  
V0 to V5  
0.5 × AV  
to AV  
0.1  
DD  
DD  
Reference analog voltage  
V
V6 to V11  
0.1 to 0.5 × AV  
20 to 75  
DD  
Operating temperature  
T
°C  
OP  
Maximum operating frequency  
f
37.5 (max)  
MHz  
CPH  
CPH  
OUT1 to  
OUT384  
Output load capacitance  
C
L
200  
pF/PIN  
16  
2002-04-03  
T6L76E  
Electrical Characteristics  
DC Characteristics  
(AV = 7.5 to 13.0 V, DV = 3.0 to 3.6 V, AV = DV = 0 V, Ta = −20 to 75°C)  
DD  
DD  
SS  
SS  
Test  
Relevant  
Pin  
Characteristics  
Symbol  
Test Condition  
= 3.3 ± 0.3 V  
= 3.3 ± 0.3 V  
Min  
Typ.  
Max  
Unit  
V
Circuit  
0.3 ×  
Low level  
V
DV  
DV  
0
IL  
DD  
DD  
DV  
DD  
Logic  
input  
Input voltage  
0.7 ×  
High level  
Low level  
High level  
V
DV  
IH  
OL  
OH  
DD  
DV  
DD  
V
I
I
=1 mA  
0
0.5  
OL  
Logic  
Output voltage  
V
V
DV  
output  
DD  
V
= −1 mA  
DV  
AV  
OH  
DD  
0.5  
OUT1 to  
OUT384  
DD  
Output voltage range  
VDO  
0.2  
0.2  
±20  
±15  
±10  
±15  
0 G/S  
1 to 31 G/S  
32 to 224 G/S  
225 to 255 G/S  
OUT1 to  
OUT384  
Output voltage deviation  
V  
(Note 5)  
mV  
O
Logic  
input  
Input leakage current  
Standby current  
I
1
µA  
µA  
IN  
ID  
STB  
1
20  
5
DV  
AV  
DV  
DD  
DD  
DD  
AI  
DD  
DD  
Current consumption  
(Note 6)  
mA  
DI  
Note 5: Output voltage after offset correction (Typ. 208 CPH)  
Please refer to Page 19 output offset timing chart.  
>
AV  
DD  
V0 1.0 V  
=
Note 6: CPH = 33 MHz, 1H = 20 µs, no load  
17  
2002-04-03  
T6L76E  
AC Characteristics  
(AV = 7.5 to 13.0 V, DV = 3.0 to 3.6 V, AV = DV = 0 V, Ta = −20 to 75°C)  
DD  
DD  
SS  
SS  
Test  
Characteristics  
Symbol  
Test Condition  
Min  
Typ.  
Max  
Unit  
Circuit  
CPH pulse width H  
CPH pulse width L  
Enable setup time  
Enable hold time  
Data setup time  
Data hold time  
t
4
4
4
0
4
0
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CWH  
t
CWL  
t
t
sDI  
hDI  
t
sDD  
hDD  
t
LOAD setup time  
t
sDL  
CPH  
LOAD high duration  
t
2
2
1
wDL  
period  
CPH  
LOAD to enable input duration  
LOAD to enable output duration  
t
t
sLD1  
sLD2  
period  
CPH  
period  
t
4
0
ns  
ns  
ns  
POL setup time  
sDP  
t
POL hold time  
hDP  
t
C
L
= 25 pF  
10.0  
Enable output delay time  
pdDO  
Target output voltage × 0.9  
(Note 7)  
Target output voltage ± ∆V  
t
3.0  
µs  
µs  
Output delay time 1  
pdDE  
O
t
7.0  
Output delay time 2  
pdDX1  
pdDX2  
(Note 7)  
CPH  
t
208  
Output offset correction time  
period  
Note 7: Output load condition  
R = 1 kΩ  
C = 40 pF  
LCD drive output pin  
R
R
R
R
R
C
C
C
C
C
Measured here  
Output Offset Correction Timing Chart  
LOAD  
t
pdDX2  
5
CPH  
0
1
2
3
4
206  
207  
208  
209  
210  
OUTPUT  
t
pdDX1  
(*) t  
: Output voltage before offset correction (max 7 µs)  
pdDX1  
pdDX2  
t
: Output voltage after offset correction (typ. 208 CPH)  
18  
2002-04-03  
T6L76E  
t
t
CWL  
CWH  
0.7 × DV  
DD  
CPH  
0.3 × DV  
DD  
DI/O  
(input)  
0.7 × DV  
DD  
t
t
hDI  
sDI  
t
sLD1  
0.7 × DV  
DD  
LOAD  
CPH  
0.7 × DV  
DD  
t
t
hDD  
sDD  
D00 to D57  
XOR DINV  
0.7 × DV /0.3 × DV  
DD  
DD  
0.7 × DV  
0.7 × DV  
DD  
DD  
0.7 × DV  
DD  
CPH  
t
pdDO  
t
pdDO  
0.7 × DV  
0.7 × DV  
DD  
DD  
DO/I  
(output)  
t
t
sDL  
sLD2  
0.7 × DV  
DD  
LOAD  
CPH  
0.7 × DV  
DD  
t
wDL  
0.7 × DV  
0.7 × DV  
DD  
DD  
LOAD  
POL  
t
t
hDP  
sDP  
0.7 × DV /0.3 × DV  
t
pdDE  
DD  
DD  
OUT1 to  
OUT384  
t
pdDX1  
t
pdDX2  
19  
2002-04-03  
T6L76E  
RESTRICTIONS ON PRODUCT USE  
000707EBE  
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor  
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical  
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of  
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of  
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as  
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and  
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability  
Handbook” etc..  
The TOSHIBA products listed in this document are intended for usage in general electronics applications  
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,  
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires  
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or  
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or  
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,  
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this  
document shall be made at the customer’s own risk.  
Polyimide base film is hard and thin. Be careful not to injure yourself on the film or to scratch any other parts with  
the film. Try to design and manufacture products so that there is no chance of users touching the film after  
assembly, or if they do , that there is no chance of them injuring themselves. When cutting out the film, try to  
ensure that the film shavings do not cause accidents. After use, treat the leftover film and reel spacers as  
industrial waste.  
Light striking a semiconductor device generates electromotive force due to photoelectric effects. In some cases  
this can cause the device to malfunction.  
This is especially true for devices in which the surface (back), or side of the chip is exposed. When designing  
circuits, make sure that devices are protected against incident light from external sources. Exposure to light both  
during regular operation and during inspection must be taken into account.  
The products described in this document are subject to the foreign exchange and foreign trade laws.  
The information contained herein is presented only as a guide for the applications of our products. No  
responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other  
rights of the third parties which may result from its use. No license is granted by implication or otherwise under  
any intellectual property or other rights of TOSHIBA CORPORATION or others.  
The information contained herein is subject to change without notice.  
20  
2002-04-03  

相关型号:

T6L79

IC LIQUID CRYSTAL DISPLAY DRIVER, UUC443, TCP-443, Display Driver
TOSHIBA

T6L97

IC LIQUID CRYSTAL DISPLAY DRIVER, U, TCP, Display Driver
TOSHIBA

T6LA0B

IC LIQUID CRYSTAL DISPLAY DRIVER, UUC281, TCP-281, Display Driver
TOSHIBA

T6LD4

Gate Driver for TFT LCD Panels
TOSHIBA

T6LE2

Gate Driver for TFT LCD Panels
TOSHIBA

T6M14S

CMOS 1 CHIP LSI FOR LCD ELECTRONIC CALCULATOR
TOSHIBA

T6M19

CMOS 1 CHIP LSI FOR LCD ESECTRONIC CALCULATOR
TOSHIBA

T6M20F3

TRANSISTOR | BJT | NPN | 230V V(BR)CEO | 6A I(C) | TO-66VAR
ETC

T6M23A

CMOS 1 CHIP LSI FOR LCD ELECTRONIC CALCULATOR
TOSHIBA

T6M27S

CMOS 1 CHIP LSI FOR LCD ELECTRONIC CALCULATOR
TOSHIBA

T6M40F3

TRANSISTOR | BJT | NPN | 400V V(BR)CEO | 6A I(C) | TO-66VAR
ETC

T6M45

CMOS 1 CHIP LSI FOR LCD ELECTRONIC CALCULATOR
TOSHIBA