TB2906HQ [TOSHIBA]

Maximum Power 43 W BTL x 4-ch Audio Power IC; 最大功率43 W¯¯ BTL ×4通道音频功率IC
TB2906HQ
型号: TB2906HQ
厂家: TOSHIBA    TOSHIBA
描述:

Maximum Power 43 W BTL x 4-ch Audio Power IC
最大功率43 W¯¯ BTL ×4通道音频功率IC

消费电路 商用集成电路 音频放大器 视频放大器 信息通信管理 局域网
文件: 总16页 (文件大小:282K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TB2906HQ  
TOSHIBA Bi-CMOS Digital Integrated Circuit Silicon Monolithic  
TB2906HQ  
Maximum Power 43 W BTL × 4-ch Audio Power IC  
The TB2906HQ is 4-ch BTL audio amplifier for car audio  
applications.  
This IC can generate higher power: P  
MAX = 43 W as it  
OUT  
includes the pure complementary P-ch and N-ch DMOS output  
stage.  
It is designed to yield low distortion ratio for 4-ch BTL audio  
power amplifier, built-in standby function, muting function, and  
various kinds of protectors.  
Additionally, Off-set detector is built in.  
Weight: 7.7 g (typ.)  
Features  
High power output  
MAX (1) = 43 W (typ.)  
:
:
:
:
P
OUT  
P (V  
= 14.4 V, f = 1 kHz, JEITA max, R = 4 )  
L
CC  
P
OUT  
MAX (2) = 39 W (typ.)  
(V  
CC  
= 13.7 V, f = 1 kHz, JEITA max, R = 4 )  
L
P
OUT  
(1) = 26 W (typ.)  
(V  
CC  
= 14.4 V, f = 1 kHz, THD = 10%, R = 4 )  
L
P
OUT  
(2) = 23 W (typ.)  
(V  
CC  
= 13.2 V, f = 1 kHz, THD = 10%, R = 4 )  
L
Low distortion ratio: THD = 0.015% (typ.)  
(V = 13.2 V, f = 1 kHz, P  
= 5 W, R = 4 )  
CC  
OUT  
L
Low noise: V  
= 180 µVrms (typ.)  
NO  
(V  
CC  
= 13.2 V, Rg = 0 , BW = 20 Hz to 20 kHz, R = 4 )  
L
Built-in standby switch function (pin 4)  
Built-in muting function (pin 22)  
Built-in Off-set detection function (pin 25)  
Built-in various protection circuits:  
Thermal shut down, overvoltage, out to GND, out to V , out to out short  
CC  
Operating supply voltage: V (opr) = 9 to 18 V (R = 4 )  
CC L  
Note 1: Since this device’s pins have a low withstanding voltage, please handle it with care.  
Note 2: Install the product correctly. Otherwise, it may result in break down, damage and/or degradation to the  
product or equipment.  
Note 3: These protection functions are intended to avoid some output short circuits or other abnormal conditions  
temporarily. These protect functions do not warrant to prevent the IC from being damaged.  
In case of the product would be operated with exceeded guaranteed operating ranges, these protection  
features may not operate and some output short circuits may result in the IC being damaged.  
1
2004-03-23  
TB2906HQ  
Block Diagram  
1
20  
6
TAB  
V
V
CC2  
CC1  
OUT1 (+)  
9
8
7
IN1  
IN2  
11  
12  
PW-GND1  
R
R
L
C
C
1
OUT1 ()  
OUT2 (+)  
5
2
3
PW-GND2  
L
1
OUT2 ()  
AC-GND  
IN3  
16  
15  
C
C
6
OUT3 (+)  
17  
18  
19  
PW-GND3  
R
R
L
1
OUT3 ()  
OUT4 (+)  
21  
24  
23  
IN4  
14  
13  
PW-GND4  
L
C
1
OUT4 ()  
PRE-GND  
OFF-SET  
DET  
RIP  
10  
STBY  
MUTE  
22  
5 V  
4
25  
PLAY  
R
1
MUTE  
: PRE-GND  
: PW-GND  
Note:  
Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for  
explanatory purpose.  
2
2004-03-23  
TB2906HQ  
Caution and Application Method (Description is made only on the single channel)  
1. Voltage Gain Adjustment  
This IC has no NF (negative feedback) Pins. Therefore, the voltage gain can not be adjusted, but it makes  
the device a space and total costs saver.  
Amp. 2A  
Amp. 1  
Input  
Amp. 2B  
Figure 1 Block Diagram  
The voltage gain of amp.1  
: G = 8dB  
V1  
The voltage gain of amp.2A, B  
: G = 20dB  
V2  
The voltage gain of BTL connection: G  
= 6dB  
V (BTL)  
Therefore, the total voltage gain is decided by expression below.  
= G + G + G = 8 + 20 + 6 = 34dB  
G
V
V1  
V2  
V (BTL)  
2. Standby SW Function (pin 4)  
By means of controlling pin 4 (standby pin) to  
High and Low, the power supply can be set to ON  
and OFF. The threshold voltage of pin 4 is set at  
V
CC  
about 3 V  
about 2 µA (typ.) in the standby state.  
(typ.), and the power supply current is  
BE  
ON  
Power  
10 kΩ  
4
2 V  
BE  
OFF  
to BIAS  
CUTTING CIRCUIT  
Control Voltage of Pin 4: V  
SB  
Stand-by  
Power  
V
(V)  
SB  
ON  
OFF  
ON  
0 to 1.5  
OFF  
3.5 to 6 V  
Figure 2 With pin 4 set to High,  
Power is turned ON  
When changing the time constant of pin 4, check the  
pop noise.  
Advantage of Standby SW  
(1) Since V  
CC  
can directly be controlled to ON or OFF by the microcomputer, the switching relay can be  
omitted.  
(2) Since the control current is microscopic, the switching relay of small current capacity is satisfactory  
for switching.  
3
2004-03-23  
TB2906HQ  
Relay  
Large current capacity switch  
Battery  
Battery  
From  
microcomputer  
V
V
CC  
CC  
– Conventional Method –  
From microcomputer  
Small current capacity switch  
Battery  
Battery  
Stand-By  
V
Stand-By V  
CC  
CC  
– Standby Switch Method –  
Figure 3  
3. Muting Function (pin 22)  
Audio muting function is enabled when pin 22 is Low. When the time constant of the muting function is  
determined by R and C it should take into account the pop noise. The pop noise, which is generated when  
,
1
4
the power or muting function is turned ON/OFF, will vary according to the time constant. (Refer to Figure 4  
and Figure 5.)  
The pin 22 is designed to operate off 5 V so that the outside pull-up resistor R is determined on the basic  
1
of this value:  
ex) When control voltage is changed in to 6 V from 5 V.  
6 V/5 V × 47 k = 56 k  
Additionally, as the V  
is rapidly falling, the IC internal low voltage muting operates to eliminate the  
CC  
large pop noise basically.  
The low voltage muting circuit pull 200 µA current into the IC so that the effect of the internal low  
voltage muting does not become enough if the R is too small value.  
1
To obtain enough operation of the internal low voltage muting, a series resistor, R at pin 22 should be  
1
47 kor more.  
ATT – V  
MUTE  
20  
0
V
= 13.2 V  
CC  
f = 1 kHz  
= 4 Ω  
R
L
V
= 7.75 Vrms  
out  
(20dBm)  
20  
40  
60  
5 V  
1 kΩ  
22  
80  
100  
120  
R
1
C
4
Mute ON/OFF  
control  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Pin 22 control voltage  
V
(V)  
MUTE  
Figure 4 Muting Function  
Figure 5 Mute Attenuation V  
(V)  
MUTE  
4
2004-03-23  
TB2906HQ  
4. Off-set detection function  
In case of Appearing output offset voltage by Generating a Large Leakage Current on the input  
Capacitor etc.  
V
DC Voltage (+) Amp (at leak) (R  
)
S1  
V
(normal DC voltage)  
CC/2  
Leak or short  
V
ref  
DC Voltage () Amp (at short) (R  
)
S2  
+
R
S1  
Offset voltage (at leak or short)  
Elec. vol  
5 V  
V
V
bias  
ref/2  
25  
L.P.F.  
To CPU  
A
B
Figure 6 Application and Detection Mechanism  
Threshold level (R  
)
)
S1  
(+) Amp output  
V
CC/2  
Threshold level (R  
S2  
GND  
t
t
t
Voltage of  
point (A)  
GND  
Voltage of  
point (B)  
GND  
R
S2  
Figure 7 Wave Form  
5
2004-03-23  
TB2906HQ  
5. Prevention of speaker burning accident (in case of rare short circuit of speaker)  
When the direct current resistance between OUT+ and OUTterminal becomes 1 or less and output  
current over 4 A flows, this IC makes a protection circuit operate and suppresses the current into a speaker.  
This system makes the burning accident of the speaker prevent as below mechanism.  
<The guess mechanism of a burning accident of the speaker>  
Abnormal output offset voltage (voltage between OUT+ and OUT) over 4 V is made by the external  
circuit failure.(Note 1)  
The speaker imepedance becomes 1 or less as it is in a rare short circuit condition.  
The current more than 4 A flows into the speaker and the speaker is burned.  
Current into a speaker  
Operating point of protector  
Less than 4A  
Speaker Impedance  
About 1 Ω  
4 Ω  
Figure 8  
Note 1: It is appeared by biased input DC voltage  
(For example, large leakage of the input capacitor, short-circuit between copper patterns of PCB.)  
6
2004-03-23  
TB2906HQ  
6. Pop Noise Suppression  
Since the AC-GND pin (pin 16) is used as the NF pin for all amps, the ratio between the input  
capacitance (C1) and the AC-to-GND capacitance (C6) should be 1:4.  
Also, if the power is turned OFF before the C1 and C6 batteries have been completely charged, pop noise  
will be generated because of the DC input unbalance.  
To counteract the noise, it is recommended that a longer charging time be used for C2 as well as for C1  
and C6. Note that the time which audio output takes to start will be longer, since the C2 makes the muting  
time (the time from when the power is turned ON to when audio output starts) is fix.  
The pop noise which is generated when the muting function is turned ON/OFF will vary according to the  
time constant of C4.  
The greater the capacitance, the lower the pop noise. Note that the time from when the mute control  
signal is applied to C4 to when the muting function is turned ON/OFF will be longer.  
7. External Component Constants  
Effect  
Component Recommended  
Purpose  
Notes  
Lower than recommended  
value  
Higher than recommended  
value  
Name  
Value  
Pop noise is  
Cut-off frequency is  
increased  
C1  
C2  
C3  
0.22 µF  
10 µF  
To eliminate DC  
To reduce ripple  
Cut-off frequency is reduced generated when  
is ON  
V
CC  
Powering ON/OFF takes  
longer  
Powering ON/OFF is faster  
To provide  
sufficient  
0.1 µF  
Reduces noise and provides sufficient oscillation margin  
oscillation margin  
High pop noise. Duration until Low pop noise. Duration until  
To reduce pop  
noise  
C4  
C5  
C6  
1 µF  
3900 µF  
1 µF  
muting function is turned  
ON/OFF is short  
muting function is turned  
ON/OFF is long  
Ripple filter  
Power supply ripple filtering  
Pop noise is  
generated when  
NF for all outputs Pop noise is suppressed when C1:C6 = 1:4  
V
is ON  
CC  
Note:  
If recommended value is not used.  
7
2004-03-23  
TB2906HQ  
Maximum Ratings (Ta = 25°C)  
Characteristics  
Symbol  
Rating  
Unit  
Peak supply voltage (0.2 s)  
DC supply voltage  
V
50  
V
V
CC (surge)  
V
28  
18  
CC (DC)  
CC (opr)  
O (peak)  
Operation supply voltage  
Output current (peak)  
Power dissipation  
V
V
I
9
A
P
(Note 2)  
125  
W
°C  
°C  
D
Operation temperature  
Storage temperature  
T
opr  
40 to 85  
55 to 150  
T
stg  
Note 2: Package thermal resistance θ = 1°C/W (typ.) (Ta = 25°C, with infinite heat sink)  
j-T  
The absolute maximum ratings of a semiconductor device are a set of specified parameter values, which must not  
be exceeded during operation, even for an instant. If any of these rating would be exceeded during operation, the  
device electrical characteristics may be irreparably altered and the reliability and lifetime of the device can no  
longer be guaranteed. Moreover, these operations with exceeded ratings may cause break down, damage and/or  
degradation to any other equipment. Applications using the device should be designed such that each maximum  
rating will never be exceeded in any operating conditions. Before using, creating and/or producing designs, refer to  
and comply with the precautions and conditions set forth in this documents.  
Electrical Characteristics  
(unless otherwise specified, V = 13.2 V, f = 1 kHz, R = 4 , Ta = 25°C)  
CC  
L
Test  
Circuit  
Characteristics  
Quiescent current  
Symbol  
Test Condition  
Min  
Typ.  
Max  
Unit  
mA  
I
V
V
V
V
= 0  
170  
43  
340  
CCQ  
IN  
P
P
MAX (1)  
MAX (2)  
= 14.4 V, max POWER  
= 13.7 V, max POWER  
= 14.4 V, THD = 10%  
OUT  
OUT  
CC  
CC  
CC  
39  
Output power  
W
P
P
(1)  
(2)  
26  
OUT  
OUT  
THD = 10%  
21  
23  
Total harmonic distortion  
Voltage gain  
THD  
P
V
V
= 5 W  
0.015  
34  
0.15  
36  
%
OUT  
OUT  
OUT  
G
V
= 0.775 Vrms  
= 0.775 Vrms  
32  
1.0  
dB  
dB  
Voltage gain ratio  
G  
0
1.0  
V
V
(1)  
Rg = 0 , DIN45405  
160  
180  
NO  
NO  
Output noise voltage  
µVrms  
V
(2)  
Rg = 0 , BW = 20 Hz~20 kHz  
300  
f
V
= 100 Hz, R = 620 Ω  
g
rip  
Ripple rejection ratio  
Cross talk  
R.R.  
C.T.  
40  
50  
60  
dB  
dB  
= 0.775 Vrms  
rip  
R
V
= 620 Ω  
g
= 0.775 Vrms  
OUT  
Output offset voltage  
Input resistance  
V
(150)  
0
(150)  
mV  
kΩ  
µA  
OFFSET  
R
30  
2
IN  
Standby current  
I
Standby condition  
POWER: ON  
POWER: OFF  
MUTE: OFF  
10  
SB  
V
H
L
3.5  
0
6.0  
1.5  
6.0  
0.5  
SB  
Standby control voltage  
V
V
SB  
V
H
3.0  
0
M
Mute control voltage  
Mute attenuation  
V
V
L
MUTE: ON, R = 47 kΩ  
M
1
MUTE: ON  
ATT M  
85  
100  
dB  
V
= 7.75 VrmsMute: OFF  
OUT  
8
2004-03-23  
TB2906HQ  
Offset detection  
Rpull-up = 47 k, +V = 5.0V  
Based on output DC voltage  
Detection threshold voltage  
Voff-set  
±1.0  
±1.5  
±2.0  
V
Test Circuit  
1
20  
6
TAB  
V
V
CC2  
CC1  
OUT1 (+)  
9
0.22 µF  
IN1  
IN2  
11  
12  
PW-GND1  
R
R
8
7
L
C
1
OUT1 ()  
OUT2 (+)  
5
2
3
0.22 µF  
PW-GND2  
L
C
1
OUT2 ()  
1 µF  
AC-GND  
IN3  
16  
15  
C
6
OUT3 (+)  
17  
18  
19  
0.22 µF  
PW-GND3  
R
R
L
C
1
OUT3 ()  
OUT4 (+)  
21  
24  
23  
0.22 µF  
IN4  
14  
13  
PW-GND4  
L
C
1
OUT4 ()  
PRE-GND  
OFF-SET  
DET  
RIP  
10  
STBY  
MUTE  
22  
5 V  
4
25  
47 kΩ  
PLAY  
R
1
MUTE  
: PRE-GND  
: PW-GND  
Components in the test circuits are only used to obtain and confirm the device characteristics.  
These components and circuits do not warrant to prevent the application equipment from malfunction or failure.  
9
2004-03-23  
TB2906HQ  
THD – P  
(ch1)  
THD – P  
(ch2)  
OUT  
OUT  
100  
100  
V
= 13.2 V  
V
= 13.2 V  
CC  
CC  
R = 4 Ω  
L
50  
30  
50  
30  
R
= 4 Ω  
L
Filter  
Filter  
100 Hz : ~30 kHz  
100 Hz : ~30 kHz  
1kHz : 400 Hz~30 kHz  
10 kHz : 400 Hz~  
20 kHz : 400 Hz~  
1kHz : 400 Hz~30 kHz  
10 kHz : 400 Hz~  
20 kHz : 400 Hz~  
10  
10  
5
3
5
3
1
1
0.5  
0.3  
20 kHz  
10 kHz  
0.5  
0.3  
20 kHz  
10 kHz  
0.1  
0.1  
1 kHz  
1 kHz  
0.05  
0.03  
0.05  
0.03  
f = 100 Hz  
f = 100 Hz  
0.01  
0.01  
0.005  
0.003  
0.005  
0.003  
0.001  
0.001  
0.1  
0.3 0.5  
1
3
5
10  
30 50 100  
0.1  
0.3 0.5  
1
3
5
10  
30 50 100  
Output power  
P
(W)  
Output power  
P
(W)  
OUT  
OUT  
THD – P  
(ch3)  
THD – P  
(ch4)  
OUT  
OUT  
100  
100  
V
= 13.2 V  
V
= 13.2 V  
CC  
CC  
R = 4 Ω  
L
50  
30  
50  
30  
R
= 4 Ω  
L
Filter  
Filter  
100 Hz : ~30 kHz  
100 Hz : ~30 kHz  
1kHz : 400 Hz~30 kHz  
10 kHz : 400 Hz~  
20 kHz : 400 Hz~  
1kHz : 400 Hz~30 kHz  
10 kHz : 400 Hz~  
20 kHz : 400 Hz~  
10  
10  
5
3
5
3
1
1
0.5  
0.3  
0.5  
0.3  
20 kHz  
20 kHz  
10 kHz  
10 kHz  
0.1  
0.1  
1 kHz  
0.05  
0.03  
0.05  
0.03  
1 kHz  
f = 100 Hz  
0.01  
0.01  
f = 100 Hz  
0.005  
0.003  
0.005  
0.003  
0.001  
0.001  
0.1  
0.3 0.5  
1
3
5
10  
30 50 100  
0.1  
0.3 0.5  
1
3
5
10  
30 50 100  
Output power  
P
(W)  
Output power  
P
(W)  
OUT  
OUT  
10  
2004-03-23  
TB2906HQ  
THD – P  
(ch1)  
THD – P  
(ch2)  
OUT  
OUT  
100  
100  
V
= 13.2 V  
V
= 13.2 V  
CC  
CC  
R = 4 Ω  
L
50  
30  
50  
30  
R
= 4 Ω  
L
13.2 V  
13.2 V  
f = 1 kHz  
f = 1 kHz  
Filter  
Filter  
400 Hz~30 kHz  
400 Hz~30 kHz  
10  
10  
5
3
5
3
1
1
0.5  
0.3  
0.5  
0.3  
V
= 9.0 V  
16.0 V  
V
= 9.0 V  
CC  
16.0 V  
CC  
0.1  
0.1  
0.05  
0.03  
0.05  
0.03  
0.01  
0.01  
0.005  
0.003  
0.005  
0.003  
0.001  
0.001  
0.1  
0.3 0.5  
1
3
5
10  
30 50 100  
0.1  
0.3 0.5  
1
3
5
10  
30 50 100  
Output power  
P
(W)  
Output power  
P
(W)  
OUT  
OUT  
THD – P  
(ch3)  
THD – P  
(ch4)  
OUT  
OUT  
100  
100  
V
= 13.2 V  
V
= 13.2 V  
CC  
CC  
R = 4 Ω  
L
50  
30  
50  
30  
R
= 4 Ω  
L
13.2 V  
13.2 V  
f = 1 kHz  
f = 1 kHz  
Filter  
Filter  
400 Hz~30 kHz  
400 Hz~30 kHz  
10  
10  
5
3
5
3
1
1
0.5  
0.3  
0.5  
0.3  
V
= 9.0 V  
16.0 V  
V
= 9.0 V  
CC  
16.0 V  
CC  
0.1  
0.1  
0.05  
0.03  
0.05  
0.03  
0.01  
0.01  
0.005  
0.003  
0.005  
0.003  
0.001  
0.001  
0.1  
0.3 0.5  
1
3
5
10  
30 50 100  
0.1  
0.3 0.5  
1
3
5
10  
30 50 100  
Output power  
P
(W)  
Output power  
P
(W)  
OUT  
OUT  
11  
2004-03-23  
TB2906HQ  
R.R. – f  
muteATT – f  
0
20  
0
20  
40  
60  
80  
V
= 13.2 V  
V
= 13.2 V  
CC  
CC  
R = 4 Ω  
L
R
= 4 Ω  
L
V
= 7.75 Vrms (20dBm)  
Vrip = 0.775 Vrms (0dBm)  
OUT  
40  
60  
2ch  
1ch  
3ch  
80  
4ch  
100  
120  
1 ch ~4ch  
10  
100  
1 k  
10 k  
0.01  
0.1  
1
10  
100 k  
100  
frequency  
f
(Hz)  
frequency  
f
(Hz)  
THD – f  
G
V
– f  
40  
30  
20  
10  
0
30  
10  
V
= 13.2 V  
CC  
R
= 4 Ω  
L
P
= 5 W  
OUT  
No filter  
3
1 ch ~4ch  
1
0.3  
0.1  
0.03  
0.01  
2ch  
3ch  
4ch  
V
= 13.2 V  
CC  
R
= 4 Ω  
L
1ch  
V
= 0.775 Vrms (0dBm)  
OUT  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
frequency  
f
(Hz)  
frequency  
f
(Hz)  
12  
2004-03-23  
TB2906HQ  
V
– P  
(ch1)  
V
– P  
(ch2)  
OUT  
IN  
OUT  
IN  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
100 Hz  
100 Hz  
1 kHz  
1 kHz  
10 kHz  
10 kHz  
f = 20 kHz  
f = 20 kHz  
V
= 13.2 V  
V
= 13.2 V  
CC  
R = 4 Ω  
L
CC  
R
L
= 4 Ω  
No filter  
No filter  
0
2
4
6
8
10  
10  
25  
0
2
4
6
8
10  
Input voltage  
V
IN  
(Vrms)  
Input voltage  
V
IN  
(Vrms)  
V
– P  
(ch3)  
V
– P  
(ch4)  
OUT  
IN  
OUT  
IN  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
100 Hz  
1 kHz  
100 Hz  
1 kHz  
10 kHz  
10 kHz  
f = 20 kHz  
f = 20 kHz  
V
R
= 13.2 V  
V
= 13.2 V  
CC  
CC  
= 4 Ω  
R
= 4 Ω  
L
L
No filter  
No filter  
0
2
4
6
8
0
2
4
6
8
10  
Input voltage  
V
IN  
(Vrms)  
Input voltage  
V
IN  
(Vrms)  
I
– V  
P MAX Ta  
D
CCQ  
CC  
2000  
160  
120  
80  
120  
100  
80  
60  
40  
20  
0
(1) INFINITE HEAT SINK  
R
= ∞  
L
RθJC = 1°C/W  
V
= 0 V  
IN  
(2) HEAT SINK (RθHS = 3.5°C/W  
RθJC + RθHS = 4.5°C/W  
(3) NO HEAT SINK  
RθJA = 39°C/W  
(1)  
40  
(2)  
(3)  
0
0
5
10  
15  
20  
0
25  
50  
75  
100  
125  
150  
Supply voltage  
V
CC  
(V)  
Ambient temperature Ta (°C)  
13  
2004-03-23  
TB2906HQ  
C.T. – f (ch1)  
C.T. – f (ch2)  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
V
R
V
R
= 13.2 V  
= 4 Ω  
V
R
V
R
= 13.2 V  
CC  
CC  
L
= 4 Ω  
L
= 0.775 Vrms (0dBm)  
= 0.775 Vrms (0dBm)  
OUT  
OUT  
= 620 Ω  
= 620 Ω  
G
G
ch2  
ch1  
ch3  
ch4  
ch3  
ch4  
10  
100  
1 k  
10 k  
10 k  
10 k  
100 k  
10  
100  
1 k  
10 k  
100 k  
frequency  
f
(Hz)  
frequency  
f
(Hz)  
C.T. – f (ch3)  
C.T. – f (ch4)  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
V
= 13.2 V  
= 4 Ω  
= 0.775 Vrms (0dBm)  
= 620 Ω  
V
R
V
R
= 13.2 V  
CC  
CC  
R
= 4 Ω  
L
L
V
= 0.775 Vrms (0dBm)  
OUT  
OUT  
R
= 620 Ω  
G
G
ch1  
ch2  
ch1  
ch2  
ch4  
ch3  
10  
100  
1 k  
100 k  
10  
100  
1 k  
10 k  
100 k  
frequency  
f
(Hz)  
frequency  
f
(Hz)  
V
– R  
P
– P  
OUT  
NO  
g
D
400  
80  
60  
40  
20  
0
f = 1 kHz  
= 4 Ω  
V
= 13.2 V  
CC  
R
L
18 V  
R
= 4 Ω  
L
4ch drive  
Filter:  
20 Hz~20 kHz  
300  
200  
100  
0
16 V  
1ch~4ch  
13.2 V  
9.0 V  
10  
10  
100  
1 k  
100 k  
0
5
15  
20  
25  
30  
Signal source resistance  
R
g
()  
Output power  
P
(W)  
OUT  
14  
2004-03-23  
TB2906HQ  
Package Dimensions  
Weight: 7.7 g (typ.)  
15  
2004-03-23  
TB2906HQ  
About solderability, following conditions were confirmed  
Solderability  
(1) Use of Sn-63Pb solder Bath  
· solder bath temperature = 230°C  
· dipping time = 5 seconds  
· the number of times = once  
· use of R-type flux  
(2) Use of Sn-3.0Ag-0.5Cu solder Bath  
· solder bath temperature = 245°C  
· dipping time = 5 seconds  
· the number of times = once  
· use of R-type flux  
RESTRICTIONS ON PRODUCT USE  
030619EBF  
The information contained herein is subject to change without notice.  
The information contained herein is presented only as a guide for the applications of our products. No  
responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of  
TOSHIBA or others.  
TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor  
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical  
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of  
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of  
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.  
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as  
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and  
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability  
Handbook” etc..  
The TOSHIBA products listed in this document are intended for usage in general electronics applications  
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,  
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires  
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or  
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or  
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,  
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this  
document shall be made at the customer’s own risk.  
The products described in this document are subject to the foreign exchange and foreign trade laws.  
TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced  
and sold, under any law and regulations.  
This product generates heat during normal operation. However, substandard performance or malfunction may  
cause the product and its peripherals to reach abnormally high temperatures.  
The product is often the final stage (the external output stage) of a circuit. Substandard performance or  
malfunction of the destination device to which the circuit supplies output may cause damage to the circuit or to the  
product.  
16  
2004-03-23  

相关型号:

TB2912HQ

IC 27 W, 4 CHANNEL, AUDIO AMPLIFIER, PZFM25, 1 MM PITCH, PLASTIC, HZIP-25, Audio/Video Amplifier
TOSHIBA

TB2913HQ

Maximum Power 47 W BTL × 4-ch Audio Power IC
TOSHIBA

TB2921HQ

IC 29 W, 4 CHANNEL, AUDIO AMPLIFIER, PZFM25, 1 MM PITCH, PLASTIC, HZIP-25, Audio/Video Amplifier
TOSHIBA

TB2922HQ

Dual Audio Power Amplifier
TOSHIBA

TB2923HQ

IC 29 W, 4 CHANNEL, AUDIO AMPLIFIER, PZFM25, 1 MM PITCH, PLASTIC, HZIP-25, Audio/Video Amplifier
TOSHIBA

TB2924AFG

IC 21 W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO36, 0.65 MM PITCH, PLASTIC, HSOP-36, Audio/Video Amplifier
TOSHIBA

TB2924FG

Class D, 20 W 】 2-channel (BTL) Low-Frequency Power Amplifier IC
TOSHIBA

TB2926HQ

IC 26 W, 4 CHANNEL, AUDIO AMPLIFIER, PZFM25, 1 MM PITCH, PLASTIC, HZIP-25, Audio/Video Amplifier
TOSHIBA

TB2929HQ

45W × 4-ch BTL Audio Power IC,The TB2929HQ is a four-channel BTL power amplifier for car audio applications.
TOSHIBA

TB2932HQ

Maximum Power 49 W BTL × 4-ch Audio Power IC
TOSHIBA

TB2933HQ

4×45W四声道晶体管功放厚膜电路
TOSHIBA

TB2934HQ

IC 41 W, 4 CHANNEL, AUDIO AMPLIFIER, PZFM25, 1 MM PITCH, PLASTIC, HZIP-25, Audio/Video Amplifier
TOSHIBA