10-FZ07BIA030SM02-P894E58 [VINCOTECH]

High efficiency in hard switching and resonant topologies;High speed switching;Low gate charge;
10-FZ07BIA030SM02-P894E58
型号: 10-FZ07BIA030SM02-P894E58
厂家: VINCOTECH    VINCOTECH
描述:

High efficiency in hard switching and resonant topologies;High speed switching;Low gate charge

文件: 总32页 (文件大小:1780K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
flowSOL 0 BI (TL)  
650 V / 30 A  
Features  
flow 0 12 mm housing  
● High efficiency  
● Ultra fast switching frequency  
● Low inductive design  
● IGBT H5 + ultrafast Si diode in Boost and H-bridge  
Solder pin  
Press-fit pin  
Schematic  
Target applications  
● Transformerless solar inverters  
Types  
● 10-FZ07BIA030SM02-P894E58  
● 10-PZ07BIA030SM02-P894E58Y  
Maximum Ratings  
T
j
= 25 °C, unless otherwise specified  
Parameter  
Symbol  
Condition  
Value  
Unit  
H-Bridge Switch  
VCES  
IC  
ICRM  
Ptot  
VGES  
Tjmax  
Collector-emitter voltage  
650  
29  
V
A
Collector current  
Tj = Tjmax  
Ts = 80 °C  
Ts = 80 °C  
Repetitive peak collector current  
Total power dissipation  
Gate-emitter voltage  
tp limited by Tjmax  
Tj = Tjmax  
90  
A
57  
W
V
±20  
175  
Maximum junction temperature  
°C  
Copyright Vincotech  
1
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
Maximum Ratings  
Tj = 25 °C, unless otherwise specified  
Parameter  
Symbol  
Condition  
Value  
Unit  
H-Bridge Diode  
VRRM  
IF  
Ptot  
Tjmax  
Peak repetitive reverse voltage  
650  
13  
V
A
Continuous (direct) forward current  
Total power dissipation  
Tj = Tjmax  
Tj = Tjmax  
Ts = 80 °C  
Ts = 80 °C  
25  
W
°C  
Maximum junction temperature  
175  
Boost Switch  
VCES  
IC  
ICRM  
Ptot  
VGES  
Tjmax  
Collector-emitter voltage  
650  
29  
V
A
Collector current  
Tj = Tjmax  
Ts = 80 °C  
Ts = 80 °C  
Repetitive peak collector current  
Total power dissipation  
Gate-emitter voltage  
tp limited by Tjmax  
Tj = Tjmax  
90  
A
57  
W
V
±20  
175  
Maximum junction temperature  
°C  
Boost Diode  
VRRM  
IF  
Ptot  
Tjmax  
Peak repetitive reverse voltage  
650  
13  
V
A
Continuous (direct) forward current  
Total power dissipation  
Tj = Tjmax  
Tj = Tjmax  
Ts = 80 °C  
Ts = 80 °C  
25  
W
°C  
Maximum junction temperature  
175  
Boost Sw.Prot. Diode  
VRRM  
IF  
IFRM  
Ptot  
Peak repetitive reverse voltage  
650  
10  
V
A
Continuous (direct) forward current  
Repetitive peak forward current  
Total power dissipation  
Tj = Tjmax  
Ts = 80 °C  
Ts = 80 °C  
20  
A
Tj = Tjmax  
39  
W
°C  
Tjmax  
Maximum junction temperature  
175  
Copyright Vincotech  
2
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
Maximum Ratings  
Tj = 25 °C, unless otherwise specified  
Parameter  
Symbol  
Condition  
Value  
Unit  
ByPass Diode  
VRRM  
IF  
IFSM  
I2t  
Ptot  
Tjmax  
Peak repetitive reverse voltage  
1600  
35  
V
A
Continuous (direct) forward current  
Surge (non-repetitive) forward current  
Surge current capability  
Tj = Tjmax  
Ts = 80 °C  
60 Hz Single Half Sine Wave  
tp = 10 ms 50 Hz sine  
Tj = Tjmax  
270  
370  
60  
A
Tj = 150 °C  
Ts = 80 °C  
A2s  
W
°C  
Total power dissipation  
Maximum junction temperature  
150  
Module Properties  
Thermal Properties  
Tstg  
Tjop  
Storage temperature  
-40…+125  
°C  
°C  
Operation temperature under switching condition  
Isolation Properties  
-40…(Tjmax - 25)  
DC Test Voltage*  
AC Voltage  
tp = 2 s  
6000  
2500  
V
Visol  
Isolation voltage  
tp = 1 min  
V
Creepage distance  
min. 12,7  
mm  
mm  
Solder pin  
8,66  
9,17  
Clearance  
Press-fit pin  
Comparative Tracking Index  
*100 % tested in production  
CTI  
> 200  
Copyright Vincotech  
3
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
Characteristic Values  
Parameter  
Symbol  
Conditions  
Value  
Typ  
Unit  
VCE [V] IC [A]  
VGE [V]  
VGS [V]  
VDS [V] ID [A] Tj [°C]  
VF [V] IF [A]  
Min  
Max  
H-Bridge Switch  
Static  
VGE(th)  
VCEsat  
ICES  
IGES  
rg  
Gate-emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off current  
Gate-emitter leakage current  
Internal gate resistance  
Input capacitance  
VGE = VCE  
0,0003 25  
3,3  
4
4,7  
V
V
25  
1,63  
1,65  
2,22  
15  
0
30  
125  
650  
0
25  
25  
40  
µA  
nA  
Ω
20  
120  
none  
1800  
45  
Cies  
Coes  
Cres  
Qg  
Output capacitance  
f = 1 Mhz  
0
25  
25  
25  
pF  
Reverse transfer capacitance  
Gate charge  
7
15  
520  
30  
70  
nC  
Thermal  
λpaste = 3,4 W/mK  
(PSX)  
Rth(j-s)  
Thermal resistance junction to sink  
1,67  
K/W  
Dynamic  
25  
66  
66  
67  
Turn-on delay time  
td(on)  
125  
150  
25  
7
Rise time  
tr  
125  
150  
25  
9
10  
70  
Rgon = 16 Ω  
Rgoff = 16 Ω  
ns  
Turn-off delay time  
Fall time  
td(off)  
125  
150  
25  
125  
150  
25  
125  
150  
25  
86  
88  
4
10  
±15  
400  
30  
tf  
13  
0,659  
0,963  
1,04  
0,142  
0,253  
Qr  
FWD  
Qr  
FWD  
Qr  
FWD  
= 1,1 μC  
= 2,4 μC  
= 3,5 μC  
Turn-on energy (per pulse)  
Eon  
mWs  
125  
Eoff  
Turn-off energy (per pulse)  
150  
0,281  
Copyright Vincotech  
4
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
Characteristic Values  
Parameter  
Symbol  
Conditions  
Value  
Typ  
Unit  
VCE [V] IC [A]  
VGE [V]  
VGS [V]  
VDS [V] ID [A] Tj [°C]  
VF [V] IF [A]  
Min  
Max  
H-Bridge Diode  
Static  
25  
1,44  
1,20  
1,14  
VF  
IR  
Forward voltage  
15  
125  
150  
V
Reverse leakage current  
650  
25  
5
µA  
Thermal  
λpaste = 3,4 W/mK  
(PSX)  
Rth(j-s)  
Thermal resistance junction to sink  
1,81  
K/W  
Dynamic  
25  
33  
48  
54  
IRRM  
125  
150  
25  
Peak recovery current  
A
89  
trr  
Qr  
Reverse recovery time  
125  
150  
25  
125  
150  
25  
125  
150  
25  
125  
150  
115  
129  
ns  
di/dt = 3260 A/μs  
di/dt = 2940 A/μs  
di/dt = 3459 A/μs  
1,08  
2,37  
3,50  
0,198  
0,481  
0,888  
2649  
1253  
1360  
±15  
400  
30  
Recovered charge  
μC  
Erec  
Reverse recovered energy  
Peak rate of fall of recovery current  
mWs  
A/µs  
(dirf/dt)max  
Copyright Vincotech  
5
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
Characteristic Values  
Parameter  
Symbol  
Conditions  
Value  
Typ  
Unit  
VCE [V] IC [A]  
VGE [V]  
VGS [V]  
VDS [V] ID [A] Tj [°C]  
VF [V] IF [A]  
Min  
Max  
Boost Switch  
Static  
VGE(th)  
VCEsat  
ICES  
IGES  
rg  
Gate-emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off current  
Gate-emitter leakage current  
Internal gate resistance  
Input capacitance  
VGE = VCE  
0,0003 25  
3,3  
4
4,7  
V
V
25  
1,63  
1,65  
2,22  
15  
0
30  
125  
650  
0
25  
25  
40  
µA  
nA  
Ω
20  
120  
none  
1800  
45  
Cies  
Coes  
Cres  
Qg  
f = 1 Mhz  
Output capacitance  
0
25  
25  
25  
pF  
Reverse transfer capacitance  
Gate charge  
7
15  
520  
30  
70  
nC  
Thermal  
λpaste = 3,4 W/mK  
(PSX)  
Rth(j-s)  
Thermal resistance junction to sink  
1,67  
K/W  
Dynamic  
25  
20  
19  
17  
Turn-on delay time  
td(on)  
125  
150  
25  
8
Rise time  
tr  
125  
150  
25  
125  
150  
25  
125  
150  
25  
125  
150  
25  
9
10  
137  
155  
159  
4
Rgon = 16 Ω  
Rgoff = 16 Ω  
ns  
Turn-off delay time  
Fall time  
td(off)  
0 / 15  
400  
30  
tf  
9
10  
0,618  
0,894  
0,962  
0,172  
0,305  
Qr  
FWD  
Qr  
FWD  
Qr  
FWD  
= 1,1 μC  
= 2,3 μC  
= 2,7 μC  
Turn-on energy (per pulse)  
Eon  
mWs  
125  
Eoff  
Turn-off energy (per pulse)  
150  
0,326  
Copyright Vincotech  
6
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
Characteristic Values  
Parameter  
Symbol  
Conditions  
Value  
Typ  
Unit  
VCE [V] IC [A]  
VGE [V]  
VGS [V]  
VDS [V] ID [A] Tj [°C]  
VF [V] IF [A]  
Min  
Max  
Boost Diode  
Static  
25  
1,44  
1,20  
1,14  
VF  
IR  
Forward voltage  
15  
125  
150  
V
Reverse leakage current  
650  
25  
5
µA  
Thermal  
λpaste = 3,4 W/mK  
(PSX)  
Rth(j-s)  
Thermal resistance junction to sink  
1,81  
K/W  
Dynamic  
25  
33  
50  
56  
IRRM  
125  
150  
25  
Peak recovery current  
A
92  
trr  
Qr  
Reverse recovery time  
125  
150  
25  
125  
150  
25  
125  
150  
25  
125  
150  
113  
121  
ns  
di/dt = 2879 A/μs  
di/dt = 2826 A/μs  
di/dt = 2747 A/μs  
1,10  
2,28  
2,72  
0,213  
0,489  
0,605  
2721  
1492  
1645  
0 / 15  
400  
30  
Recovered charge  
μC  
Erec  
Reverse recovered energy  
Peak rate of fall of recovery current  
mWs  
A/µs  
(dirf/dt)max  
Boost Sw.Prot. Diode  
Static  
25  
1,67  
1,56  
1,87  
0,14  
Forward voltage  
Reverse leakage current  
Thermal  
VF  
IR  
10  
V
125  
650  
25  
µA  
λpaste = 3,4 W/mK  
(PSX)  
Rth(j-s)  
Thermal resistance junction to sink  
2,44  
K/W  
ByPass Diode  
Static  
25  
0,99  
0,90  
1,21  
Forward voltage  
Reverse leakage current  
Thermal  
VF  
IR  
13  
V
125  
25  
50  
1600  
µA  
150  
1100  
λpaste = 3,4 W/mK  
(PSX)  
Rth(j-s)  
Thermal resistance junction to sink  
1,16  
K/W  
Copyright Vincotech  
7
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
Characteristic Values  
Parameter  
Symbol  
Conditions  
Value  
Typ  
Unit  
VCE [V] IC [A]  
VGE [V]  
VGS [V]  
VDS [V] ID [A] Tj [°C]  
VF [V] IF [A]  
Min  
Max  
Thermistor  
Rated resistance  
R
ΔR/R  
P
25  
100  
25  
25  
25  
25  
22  
kΩ  
%
Deviation of R100  
Power dissipation  
Power dissipation constant  
B-value  
R100 = 1486 Ω  
-12  
+14  
200  
2
mW  
mW/K  
K
B(25/50) Tol. ±3%  
B(25/100) Tol. ±3%  
3950  
3998  
B-value  
K
Vincotech NTC Reference  
B
Copyright Vincotech  
8
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
H-Bridge Switch Characteristics  
figure 1.  
IGBT  
figure 2.  
IGBT  
Typical output characteristics  
Typical output characteristics  
IC = f(VCE  
)
I C = f(VCE)  
100  
90  
VGE  
:
7 V  
I
I
I
I
I
I
I
I
8 V  
75  
60  
45  
30  
15  
0
9 V  
80  
60  
40  
20  
0
10 V  
11 V  
12 V  
13 V  
14 V  
15 V  
16 V  
17 V  
0
1
2
3
4
5
0
1
2
3
4
5
VC E (V)  
VC E (V)  
tp  
=
250  
15  
μs  
V
25 °C  
125 °C  
tp  
Tj  
=
=
250  
125  
μs  
°C  
Tj:  
VGE  
=
VGE from  
7 V to 17 V in steps of 1 V  
figure 3.  
IGBT  
figure 4.  
IGBT  
Typical transfer characteristics  
Transient thermal impedance as function of pulse duration  
IC = f(VGE  
)
Z th(j-s) = f(tp)  
101  
30  
I
I
I
I
25  
20  
15  
10  
5
Z
Z
Z
Z
100  
10-1  
10-2  
10-3  
0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0
0
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
tp(s)  
102  
0
2
4
6
8
VG E (V)  
tp  
=
100  
10  
μs  
V
25 °C  
125 °C  
D =  
R th(j-s)  
tp / T  
Tj:  
VCE  
=
=
1,67  
K/W  
IGBT thermal model values  
R (K/W)  
τ (s)  
1,80E-01  
3,72E-01  
6,39E-01  
3,20E-01  
1,54E-01  
1,06E+00  
1,72E-01  
5,52E-02  
1,27E-02  
3,03E-03  
Copyright Vincotech  
9
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
H-Bridge Switch Characteristics  
figure 5.  
IGBT  
figure 6.  
IGBT  
Gate voltage vs gate charge  
Safe operating area  
VGE = f(Q G  
)
I C = f(VCE)  
15  
100  
130 V  
V
V
V
V
I I  
I I  
520 V  
12,5  
10  
7,5  
5
10  
1
0,1  
2,5  
0
0,01  
0
10  
20  
30  
40  
50  
60  
70  
80  
QG (nC)  
1
10  
100  
1000  
VC E (V)  
D =  
single pulse  
80 ºC  
IC  
=
30  
A
Ts  
=
VGE  
=
±15  
V
Tj =  
Tjmax  
figure 7.  
Power dissipation as a  
IGBT  
figure 8.  
IGBT  
Collector current as a  
function of heatsink temperature  
I C = f(T h)  
function of heatsink temperature  
P tot = f(T h)  
120  
100  
80  
60  
40  
20  
0
35  
30  
25  
20  
15  
10  
5
0
T h  
(
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
T j  
At  
T j  
=
=
175  
°C  
175  
15  
°C  
V
V GE  
=
Copyright Vincotech  
10  
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
H-Bridge Diode Characteristics  
figure 1.  
FWD  
figure 2.  
FWD  
Typical forward characteristics  
Transient thermal impedance as a function of pulse width  
IF = f(VF)  
Z th(j-s) = f(tp)  
101  
50  
40  
30  
20  
10  
0
Z
Z
Z
Z
100  
0,5  
10-1  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0
10-2  
10-4  
=
10-3  
10-2  
10-1  
100  
101  
102  
tp (s)  
0
0,5  
1
1,5  
2
2,5  
3
VF (V)  
tp  
=
250  
μs  
25 °C  
125 °C  
150 °C  
D =  
R th(j-s)  
tp / T  
1,81  
Tj:  
K/W  
FWD thermal model values  
R (K/W)  
τ
(s)  
7,18E-02  
2,48E-01  
8,26E-01  
3,94E-01  
2,67E-01  
2,84E+00  
2,83E-01  
5,02E-02  
8,85E-03  
1,33E-03  
figure 3.  
Power dissipation as a  
FWD  
figure 4.  
FWD  
Forward current as a  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T h)  
I F = f(T h)  
120  
100  
80  
60  
40  
20  
0
20  
15  
10  
5
0
T h  
(
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
°C  
175  
°C  
Copyright Vincotech  
11  
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
Boost Switch Characteristics  
figure 1.  
IGBT  
figure 2.  
IGBT  
Typical output characteristics  
Typical output characteristics  
IC = f(VCE  
)
I C = f(VCE)  
100  
90  
VGE  
:
7 V  
I
I
I
I
I
I
I
I
8 V  
75  
60  
45  
30  
15  
0
9 V  
80  
60  
40  
20  
0
10 V  
11 V  
12 V  
13 V  
14 V  
15 V  
16 V  
17 V  
0
1
2
3
4
5
0
1
2
3
4
5
VC E (V)  
VC E (V)  
tp  
=
250  
15  
μs  
V
25 °C  
125 °C  
tp  
Tj  
=
=
250  
125  
μs  
°C  
Tj:  
VGE  
=
VGE from  
7 V to 17 V in steps of 1 V  
figure 3.  
IGBT  
figure 4.  
IGBT  
Typical transfer characteristics  
Transient thermal impedance as function of pulse duration  
IC = f(VGE  
)
Z th(j-s) = f(tp)  
101  
30  
I
I
I
I
25  
20  
15  
10  
5
Z
Z
Z
Z
100  
10-1  
10-2  
10-3  
0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0
0
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
tp(s)  
102  
0
2
4
6
8
VG E (V)  
tp  
=
100  
10  
μs  
V
25 °C  
125 °C  
D =  
R th(j-s)  
tp / T  
Tj:  
VCE  
=
=
1,67  
K/W  
IGBT thermal model values  
R (K/W)  
τ (s)  
1,80E-01  
3,72E-01  
6,39E-01  
3,20E-01  
1,54E-01  
1,06E+00  
1,72E-01  
5,52E-02  
1,27E-02  
3,03E-03  
Copyright Vincotech  
12  
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
Boost Switch Characteristics  
figure 5.  
IGBT  
figure 6.  
IGBT  
Gate voltage vs gate charge  
Safe operating area  
VGE = f(Q G  
)
I C = f(VCE)  
15  
100  
130 V  
V
V
V
V
I I  
I I  
520 V  
12,5  
10  
7,5  
5
10  
1
0,1  
2,5  
0
0,01  
0
10  
20  
30  
40  
50  
60  
70  
80  
QG (nC)  
1
10  
100  
1000  
VC E (V)  
D =  
single pulse  
80 ºC  
I C  
=
30  
A
Ts  
=
VGE  
=
±15  
V
Tj =  
Tjmax  
figure 7.  
Power dissipation as a  
IGBT  
figure 8.  
IGBT  
Collector current as a  
function of heatsink temperature  
I C = f(T h)  
function of heatsink temperature  
P tot = f(T h)  
120  
100  
80  
60  
40  
20  
0
35  
30  
25  
20  
15  
10  
5
0
T h  
(
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
°C  
175  
15  
°C  
V
V GE  
=
Copyright Vincotech  
13  
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
Boost Diode Characteristics  
figure 1.  
FWD  
figure 2.  
FWD  
Typical forward characteristics  
Transient thermal impedance as a function of pulse width  
IF = f(VF)  
Z th(j-s) = f(tp)  
101  
50  
40  
30  
20  
10  
0
Z
Z
Z
Z
100  
0,5  
10-1  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0
10-2  
10-4  
=
10-3  
10-2  
10-1  
100  
101  
102  
tp (s)  
0
0,5  
1
1,5  
2
2,5  
3
VF (V)  
tp  
=
250  
μs  
25 °C  
125 °C  
150 °C  
D =  
R th(j-s)  
tp / T  
1,81  
Tj:  
K/W  
FWD thermal model values  
R (K/W)  
τ
(s)  
7,18E-02  
2,48E-01  
8,26E-01  
3,94E-01  
2,67E-01  
2,84E+00  
2,83E-01  
5,02E-02  
8,85E-03  
1,33E-03  
figure 3.  
Power dissipation as a  
FWD  
figure 4.  
FWD  
Forward current as a  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T h)  
I F = f(T h)  
120  
100  
80  
60  
40  
20  
0
20  
15  
10  
5
0
T h  
(
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
T j =  
T j =  
175  
°C  
175  
°C  
Copyright Vincotech  
14  
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
Boost Sw.Prot. Diode Characteristics  
figure 1.  
FWD  
figure 2.  
FWD  
Typical forward characteristics  
Transient thermal impedance as a function of pulse width  
IF = f(VF)  
Z th(j-s) = f(tp)  
101  
30  
25  
20  
15  
10  
5
Z
Z
Z
Z
100  
0,5  
10-1  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0
10-2  
0
10-4  
=
10-3  
10-2  
10-1  
100  
101  
102  
tp (s)  
0
0,5  
1
1,5  
μs  
2
2,5  
3
3,5  
4
4,5  
VF (V)  
5
tp  
=
250  
25 °C  
125 °C  
D =  
R th(j-s)  
tp / T  
2,44  
Tj:  
K/W  
FWD thermal model values  
R (K/W)  
τ
(s)  
5,82E-02  
1,74E-01  
5,97E-01  
5,84E-01  
6,14E-01  
4,16E-01  
5,62E+00  
6,53E-01  
1,47E-01  
3,86E-02  
8,85E-03  
1,98E-03  
Figure 3  
Power dissipation as a  
FWD  
Figure 4  
FWD  
Forward current as a  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T h)  
I F = f(T h)  
80  
60  
40  
20  
0
16  
14  
12  
10  
8
6
4
2
0
T h  
(
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
T j  
=
T j  
=
175  
ºC  
175  
ºC  
Copyright Vincotech  
15  
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
ByPass Diode Characteristics  
figure 1.  
Rectifier Diode  
figure 2.  
Rectifier Diode  
Typical forward characteristics  
Transient thermal impedance as a function of pulse width  
IF = f(VF)  
Z th(j-s) = f(tp)  
101  
40  
Z
Z
Z
Z
30  
20  
10  
0
100  
0,5  
10-1  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0
10-2  
10-4  
=
10-3  
10-2  
10-1  
100  
101  
102  
tp (s)  
0
0,5  
1
1,5  
2
2,5  
3
VF (V)  
tp  
=
250  
μs  
25 °C  
125 °C  
D =  
R th(j-s)  
tp / T  
1,16  
Tj:  
K/W  
Diode thermal model values  
R (K/W)  
τ
(s)  
5,14E-02  
1,22E-01  
5,42E-01  
3,74E-01  
9,37E-02  
1,28E+01  
9,21E-01  
1,28E-01  
2,87E-02  
2,38E-03  
Figure 3  
Power dissipation as a  
Rectifier diode  
Figure 4  
Rectifier diode  
Forward current as a  
function of heatsink temperature  
function of heatsink temperature  
P tot = f(T h)  
I F = f(T h)  
160  
140  
120  
100  
80  
40  
30  
20  
10  
0
60  
40  
20  
0
T h  
(
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
T j  
=
T j  
=
175  
ºC  
175  
ºC  
Copyright Vincotech  
16  
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
Thermistor Characteristics  
Typical Thermistor resistance values  
figure 1.  
Thermistor  
Typical NTC characteristic  
as a function of temperature  
R = f(T)  
NTC-typical temperature characteristic  
25000  
20000  
15000  
10000  
5000  
0
25  
50  
75  
100  
125  
T (°C)  
Copyright Vincotech  
17  
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
H-Bridge Switching Characteristics  
figure 1.  
IGBT  
figure 2.  
IGBT  
Typical switching energy losses as a function of collector current  
Typical switching energy losses as a function of gate resistor  
E = f(R g)  
E = f(I C  
)
2
2
E
E
E
E
E E  
E E  
Eon  
Eon  
Eon  
Eon  
1,5  
1,5  
Eon  
Eon  
1
1
Eoff  
Eoff  
0,5  
0,5  
Eoff  
Eoff  
Eoff  
Eoff  
0
0
0
10  
20  
30  
40  
25 °C  
50  
60  
0
10  
20  
30  
40  
50  
60  
70  
Rg (Ω)  
IC (A)  
With an inductive load at  
With an inductive load at  
25 °C  
VCE  
VGE  
=
=
=
=
400  
±15  
16  
V
V
Ω
Ω
Tj:  
VCE  
VGE  
I C  
=
=
=
400  
±15  
30  
V
V
A
Tj:  
125 °C  
150 °C  
125 °C  
150 °C  
R gon  
R goff  
16  
figure 3.  
FWD  
figure 4.  
FWD  
Typical reverse recovered energy loss as a function of collector current  
Typical reverse recovered energy loss as a function of gate resistor  
Erec = f(I c)  
Erec = f(R g)  
1,2  
1,2  
Erec  
E
E
E
E
E
E
E
E
0,9  
0,6  
0,3  
0
0,9  
0,6  
0,3  
0
Erec  
Erec  
Erec  
Erec  
Erec  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
IC (A)  
Rg (Ω)  
With an inductive load at  
25 °C  
With an inductive load at  
25 °C  
400  
±15  
16  
V
V
Ω
400  
±15  
30  
V
V
A
VCE  
VGE  
=
=
=
Tj:  
VCE  
VGE  
I C  
=
=
=
Tj:  
125 °C  
150 °C  
125 °C  
150 °C  
R gon  
Copyright Vincotech  
18  
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
H-Bridge Switching Characteristics  
figure 5.  
IGBT  
figure 6.  
IGBT  
Typical switching times as a function of collector current  
Typical switching times as a function of gate resistor  
t = f(I C  
)
t = f(R g)  
1
1
t
t
t
t
t
t
t
t
td(on)  
td(off)  
td(off)  
0,1  
0,1  
td(on)  
tr  
tr  
tf  
0,01  
0,01  
tf  
0,001  
0,001  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
Rg (Ω)  
IC (A)  
With an inductive load at  
With an inductive load at  
150  
400  
±15  
16  
°C  
V
150  
400  
±15  
30  
°C  
V
Tj =  
Tj =  
VCE  
=
=
=
=
VCE  
=
=
=
VGE  
R gon  
R goff  
V
VGE  
I C  
V
Ω
Ω
A
16  
figure 7.  
FWD  
figure 8.  
FWD  
Typical reverse recovery time as a function of collector current  
Typical reverse recovery time as a function of IGBT turn on gate resistor  
t rr = f(I C  
)
trr = f(R gon)  
0,16  
0,25  
trr  
trr  
t
t
t
t
t
t
t
t
trr  
trr  
0,2  
0,15  
0,1  
0,05  
0
trr  
trr  
0,12  
0,08  
0,04  
0
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
70  
Rg on (Ω)  
IC (A)  
With an inductive load at  
25 °C  
With an inductive load at  
25 °C  
VCE  
=
=
=
400  
±15  
16  
V
V
Ω
Tj:  
VCE  
VGE  
I C  
=
=
=
400  
±15  
30  
V
V
A
Tj:  
125 °C  
150 °C  
125 °C  
150 °C  
VGE  
R gon  
Copyright Vincotech  
19  
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
H-Bridge Switching Characteristics  
figure 9.  
FWD  
figure 10.  
FWD  
Typical recovered charge as a function of collector current  
Typical recovered charge as a function of IGBT turn on gate resistor  
Q r = f(I C  
)
Q r = f(R gon)  
5
5
Qr  
Q
Q
Q
Q
Q
Q
Q
Q
4
3
2
1
0
4
3
2
1
0
Qr  
Qr  
Qr  
Qr  
Qr  
0
10  
20  
30  
40  
25 °C  
50  
60  
0
10  
20  
30  
40  
50  
60  
70  
Rg on (Ω)  
IC (A)  
With an inductive load at  
With an inductive load at  
25 °C  
400  
±15  
16  
V
V
Ω
400  
±15  
30  
V
V
A
VCE  
VGE  
=
=
=
Tj:  
VCE=  
VGE =  
I C=  
Tj:  
125 °C  
150 °C  
125 °C  
150 °C  
R gon  
figure 11.  
FWD  
figure 12.  
FWD  
Typical peak reverse recovery current current as a function of collector current  
Typical peak reverse recovery current as a function of IGBT turn on gate resistor  
I RM = f(I C  
)
I RM = f(R gon)  
100  
150  
I
I
I I  
I I  
I
I
80  
60  
40  
20  
0
120  
90  
60  
30  
0
IRM  
IRM  
IRM  
IRM  
IRM  
IRM  
0
10  
20  
30  
40  
50  
60  
70  
Rgo n (Ω)  
0
10  
20  
30  
40  
25 °C  
50  
60  
IC (A)  
With an inductive load at  
With an inductive load at  
25 °C  
400  
±15  
16  
V
V
Ω
400  
±15  
30  
V
V
A
VCE  
VGE  
=
=
=
Tj:  
VCE  
VGE  
I C  
=
=
=
Tj:  
125 °C  
150 °C  
125 °C  
150 °C  
R gon  
Copyright Vincotech  
20  
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
H-Bridge Switching Characteristics  
figure 13.  
FWD  
figure 14.  
FWD  
Typical rate of fall of forward and reverse recovery current as a function of collector current  
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor  
di F/dt, di rr/dt = f(I C  
)
di F/dt, di rr/dt = f(R gon  
)
12000  
8000  
diF/dt  
dirr/dt  
d
iF  
/
/
dt  
dt  
t
t
t t  
t t  
t
t
dirr  
i
i
i i  
i i  
i
i
9000  
6000  
3000  
0
6000  
4000  
2000  
0
0
10  
20  
30  
40  
50  
60  
70  
Rg on (Ω)  
0
10  
20  
30  
40  
50  
60  
IC (A)  
With an inductive load at  
25 °C  
With an inductive load at  
25 °C  
400  
±15  
16  
V
V
Ω
400  
±15  
30  
V
VCE  
VGE  
=
=
=
Tj:  
VCE  
VGE  
I C  
=
=
=
Tj:  
125 °C  
150 °C  
125 °C  
150 °C  
V
A
R gon  
figure 15.  
IGBT  
Reverse bias safe operating area  
I C = f(VCE  
)
70  
IC MAX  
I
I
I
I
60  
50  
40  
30  
20  
10  
0
I
I
I
I
I
I
I
I
V
V
V
V
0
100  
200  
300  
400  
500  
600  
700  
VC E (V)  
At  
Tj =  
125  
°C  
Ω
R gon  
R goff  
=
=
16  
16  
Ω
Copyright Vincotech  
21  
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
H-Bridge Switching Definitions  
General conditions  
=
=
=
125 °C  
16 Ω  
16 Ω  
T j  
Rgon  
R goff  
figure 1.  
IGBT  
figure 2.  
IGBT  
Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff  
)
Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon)  
tdoff  
%
%
VGE 90%  
VCE 90%  
IC  
IC  
VGE  
VGE  
VCE  
tdon  
tEoff  
IC 1%  
VCE 3%  
VCE  
IC 10%  
VGE 10%  
tEon  
t
(µs)  
t (µs)  
VGE (0%) =  
-15  
15  
V
VGE (0%) =  
-15  
V
VGE (100%) =  
VC (100%) =  
I C (100%) =  
V
VGE (100%) =  
VC (100%) =  
I C (100%) =  
15  
V
400  
30  
V
400  
30  
V
A
A
86  
ns  
66  
ns  
t doff  
=
tdon  
=
figure 3.  
IGBT  
figure 4.  
IGBT  
Turn-off Switching Waveforms & definition of tf  
Turn-on Switching Waveforms & definition of tr  
fitted  
%
%
IC  
IC  
IC 90%  
IC 60%  
IC 40%  
VCE  
IC 90%  
tr  
IC10%  
VCE  
IC 10%  
tf  
t
(µs)  
t
(µs)  
VC (100%) =  
I C (100%) =  
t f =  
400  
30  
V
VC (100%) =  
I C (100%) =  
400  
30  
9
V
A
A
10  
ns  
tr  
=
ns  
Copyright Vincotech  
22  
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
H-Bridge Switching Characteristics  
figure 5.  
FWD  
figure 6.  
FWD  
Turn-off Switching Waveforms & definition of trr  
Turn-on Switching Waveforms & definition of tQr (tQr = integrating time for Qr)  
%
%
Qr  
trr  
tQr  
IF  
IF  
fitted  
IRRM 10%  
VF  
IRRM 90%  
IRRM 100%  
t
(µs)  
t
(µs)  
400  
30  
V
30  
A
VF (100%) =  
I F (100%) =  
I RRM (100%) =  
I F (100%) =  
Q r (100%) =  
A
2,37  
μC  
48  
A
115  
ns  
t rr  
=
Copyright Vincotech  
23  
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
Boost Switching Characteristics  
figure 1.  
IGBT  
figure 2.  
IGBT  
Typical switching energy losses as a function of collector current  
Typical switching energy losses as a function of gate resistor  
E = f(R g)  
E = f(I C  
)
2
2
E
E
E
Eon  
Eon  
E
E
E
E
E
1,6  
1,2  
0,8  
0,4  
0
Eon  
Eon  
1,5  
Eon  
Eon  
1
Eoff  
Eoff  
Eoff  
Eoff  
Eoff  
0,5  
Eoff  
0
0
10  
20  
30  
40  
25 °C  
50  
60  
0
10  
20  
30  
40  
50  
60  
70  
R
g (Ω)  
IC (A)  
With an inductive load at  
With an inductive load at  
25 °C  
VCE  
VGE  
=
=
=
=
400  
0 / 15  
16  
V
V
Ω
Ω
Tj:  
VCE  
VGE  
I C  
=
=
=
400  
0 / 15  
30  
V
V
A
Tj:  
125 °C  
150 °C  
125 °C  
150 °C  
R gon  
R goff  
16  
figure 3.  
FWD  
figure 4.  
FWD  
Typical reverse recovered energy loss as a function of collector current  
Typical reverse recovered energy loss as a function of gate resistor  
Erec = f(I c)  
Erec = f(R g)  
1
1,2  
E
E
E
E
E
E
E
E
Erec  
0,8  
0,6  
0,4  
0,2  
0
0,9  
0,6  
0,3  
0
Erec  
Erec  
Erec  
Erec  
Erec  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
IC (A)  
R
g (Ω)  
With an inductive load at  
25 °C  
With an inductive load at  
25 °C  
400  
0 / 15  
16  
V
V
Ω
400  
0 / 15  
30  
V
V
A
VCE  
VGE  
=
=
=
Tj:  
VCE  
VGE  
I C  
=
=
=
Tj:  
125 °C  
150 °C  
125 °C  
150 °C  
R gon  
Copyright Vincotech  
24  
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
Boost Switching Characteristics  
figure 5.  
IGBT  
figure 6.  
IGBT  
Typical switching times as a function of collector current  
Typical switching times as a function of gate resistor  
t = f(I C  
)
t = f(R g)  
1
1
td(off )  
t
t
t
t
t
t
t
t
td(off )  
0,1  
0,1  
td(on)  
tr  
td(on)  
tr  
tf  
0,01  
0,01  
tf  
0,001  
0,001  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
R
g (Ω)  
IC (A)  
With an inductive load at  
With an inductive load at  
150  
400  
0 / 15  
16  
°C  
V
150  
400  
°C  
V
Tj =  
Tj =  
VCE  
=
=
=
=
VCE  
=
=
=
VGE  
R gon  
R goff  
V
VGE  
I C  
0 / 15  
30  
V
Ω
Ω
A
16  
figure 7.  
FWD  
figure 8.  
FWD  
Typical reverse recovery time as a function of collector current  
Typical reverse recovery time as a function of IGBT turn on gate resistor  
t rr = f(I C  
)
trr = f(R gon)  
0,16  
0,2  
trr  
trr  
trr  
trr  
t
t
t
t
t
t
t
t
trr  
0,12  
0,08  
0,04  
0
0,15  
0,1  
0,05  
0
trr  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
70  
Rg on (Ω)  
IC (A)  
With an inductive load at  
25 °C  
With an inductive load at  
25 °C  
VCE  
=
=
=
400  
0 / 15  
16  
V
V
Ω
Tj:  
VCE  
VGE  
I C  
=
=
=
400  
0 / 15  
30  
V
V
A
Tj:  
125 °C  
150 °C  
125 °C  
150 °C  
VGE  
R gon  
Copyright Vincotech  
25  
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
Boost Switching Characteristics  
figure 9.  
FWD  
figure 10.  
FWD  
Typical recovered charge as a function of collector current  
Typical recovered charge as a function of IGBT turn on gate resistor  
Q r = f(I C  
)
Q r = f(R gon)  
5
4
Q
Q
Q
Q
Q
Q
Q
Q
Qr  
Qr  
4
3
2
1
0
3
2
1
0
Qr  
Qr  
Qr  
Qr  
0
10  
20  
30  
40  
25 °C  
50  
60  
0
10  
20  
30  
40  
50  
60  
70  
Rg on (Ω)  
IC (A)  
With an inductive load at  
With an inductive load at  
25 °C  
400  
0 / 15  
16  
V
V
Ω
400  
0 / 15  
30  
V
V
A
VCE  
VGE  
=
=
=
Tj:  
VCE=  
VGE =  
I C=  
Tj:  
125 °C  
150 °C  
125 °C  
150 °C  
R gon  
figure 11.  
FWD  
figure 12.  
FWD  
Typical peak reverse recovery current current as a function of collector current  
Typical peak reverse recovery current as a function of IGBT turn on gate resistor  
I RM = f(I C  
)
I RM = f(R gon)  
100  
120  
IRM  
I
I
I I  
I I  
I
I
80  
60  
40  
20  
0
90  
60  
30  
0
IRM  
IRM  
IRM  
IRM  
IRM  
0
10  
20  
30  
40  
50  
60  
70  
Rgo n (Ω)  
0
10  
20  
30  
40  
25 °C  
50  
60  
IC (A)  
With an inductive load at  
With an inductive load at  
25 °C  
400  
0 / 15  
16  
V
V
Ω
400  
0 / 15  
30  
V
V
A
VCE  
VGE  
=
=
=
Tj:  
VCE  
VGE  
I C  
=
=
=
Tj:  
125 °C  
150 °C  
125 °C  
150 °C  
R gon  
Copyright Vincotech  
26  
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
Boost Switching Characteristics  
figure 13.  
FWD  
figure 14.  
FWD  
Typical rate of fall of forward and reverse recovery current as a function of collector current  
Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor  
di F/dt, di rr/dt = f(I C  
)
di F/dt, di rr/dt = f(R gon  
)
12000  
8000  
diF/dt  
d
iF  
/
/
dt  
dt  
t
t
t t  
t t  
t
t
dirr/dt  
dirr  
i
i
i i  
i i  
i
i
10000  
8000  
6000  
4000  
2000  
0
6000  
4000  
2000  
0
0
10  
20  
30  
40  
50  
60  
70  
g on (Ω)  
0
10  
20  
30  
40  
50  
60  
R
IC (A)  
With an inductive load at  
25 °C  
With an inductive load at  
25 °C  
400  
0 / 15  
16  
V
V
Ω
400  
0 / 15  
30  
V
VCE  
VGE  
=
=
=
Tj:  
VCE  
VGE  
I C  
=
=
=
Tj:  
125 °C  
150 °C  
125 °C  
150 °C  
V
A
R gon  
figure 15.  
IGBT  
Reverse bias safe operating area  
I C = f(VCE  
)
70  
IC MAX  
I
I
I
I
60  
50  
40  
30  
20  
10  
0
I
I
I
I
I
I
I
I
V
V
V
V
0
100  
200  
300  
400  
500  
600  
700  
C E (V)  
V
At  
Tj =  
125  
°C  
Ω
R gon  
R goff  
=
=
16  
16  
Ω
Copyright Vincotech  
27  
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
Boost Switching Definitions  
General conditions  
=
=
=
125 °C  
16 Ω  
16 Ω  
T j  
Rgon  
R goff  
figure 1.  
IGBT  
figure 2.  
IGBT  
Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff  
)
Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon)  
tdoff  
%
%
VGE 90%  
VCE 90%  
IC  
IC  
VGE  
VGE  
VCE  
tdon  
tEoff  
IC 1%  
VCE 3%  
VCE  
IC 10%  
VGE 10%  
tEon  
t
(µs)  
t (µs)  
VGE (0%) =  
0
V
VGE (0%) =  
0
V
VGE (100%) =  
VC (100%) =  
I C (100%) =  
15  
400  
30  
155  
V
VGE (100%) =  
VC (100%) =  
I C (100%) =  
15  
V
V
400  
30  
V
A
A
ns  
19  
ns  
t doff  
=
tdon  
=
figure 3.  
IGBT  
figure 4.  
IGBT  
Turn-off Switching Waveforms & definition of tf  
Turn-on Switching Waveforms & definition of tr  
fitted  
%
%
IC  
IC  
IC 90%  
IC 60%  
IC 40%  
VCE  
IC 90%  
tr  
IC10%  
VCE  
IC 10%  
tf  
t
(µs)  
t
(µs)  
VC (100%) =  
I C (100%) =  
t f =  
400  
30  
9
V
VC (100%) =  
I C (100%) =  
400  
30  
9
V
A
A
ns  
tr  
=
ns  
Copyright Vincotech  
28  
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
Boost Switching Characteristics  
figure 5.  
FWD  
figure 6.  
FWD  
Turn-off Switching Waveforms & definition of trr  
Turn-on Switching Waveforms & definition of tQr (tQr = integrating time for Qr)  
%
%
Qr  
trr  
tQr  
IF  
IF  
fitted  
IRRM 10%  
VF  
IRRM 90%  
IRRM 100%  
t
(µs)  
t
(µs)  
400  
30  
V
30  
A
VF (100%) =  
I F (100%) =  
I RRM (100%) =  
I F (100%) =  
Q r (100%) =  
A
2,28  
μC  
50  
A
113  
ns  
t rr  
=
Copyright Vincotech  
29  
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
Ordering Code & Marking  
Version  
without thermal paste 12 mm housing with solder pins  
with thermal paste 12 mm housing with solder pins  
without thermal paste 12 mm housing with Press-fit pins  
with thermal paste 12 mm housing with Press-fit pins  
Ordering Code  
10-FZ07BIA030SM02-P894E58  
10-FZ07BIA030SM02-P894E58-/3/  
10-PZ07BIA030SM02-P894E58Y  
10-PZ07BIA030SM02-P894E58Y-/3/  
Name  
Date code  
WWYY  
Serial  
UL & VIN  
UL VIN  
Lot  
Serial  
NN-NNNNNNNNNNNNNN  
TTTTTTVV WWYY UL  
VIN LLLLL SSSS  
Text  
NN-NNNNNNNNNNNNNN-TTTTTTVV  
LLLLL  
SSSS  
Type&Ver  
Lot number  
Date code  
WWYY  
Datamatrix  
TTTTTTTVV  
LLLLL  
SSSS  
Outline  
Pin table  
Pin  
X
Y
0
Function  
G4  
28,7  
25,9  
23,1  
17,6  
12,1  
9,3  
2,8  
0
1
2
0
S4  
3
0
-INV  
+INV  
G3  
4
0
5
0
6
0
S3  
7
0
G5  
8
0
S5  
9
0
5,05  
10,55  
16,15  
22,6  
22,6  
22,6  
22,6  
22,6  
22,6  
22,6  
20,05  
14,55  
8,05  
2,55  
-DC  
+DC  
Sol  
Boost  
S1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
0
0
0
9,3  
12,1  
17,6  
23,1  
25,9  
28,7  
33,6  
33,6  
33,6  
33,6  
G1  
+INV  
-INV  
S2  
G2  
L1  
R1  
R2  
L2  
23  
Not assembled  
Copyright Vincotech  
30  
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
Pinout  
Identification  
ID  
Component  
IGBT  
Voltage  
650 V  
650 V  
650 V  
650 V  
650 V  
1600 V  
Current  
Function  
H-Bridge Switch  
H-Bridge Diode  
Boost Switch  
Boost Diode  
Comment  
T1, T2, T3, T4  
30 A  
15 A  
30 A  
15 A  
10 A  
35 A  
D1, D2, D3, D4  
FWD  
T5  
D8  
IGBT  
FWD  
D5  
FWD  
Boost Sw.Prot. Diode  
ByPass Diode  
D7  
Rectifier  
NTC  
NTC  
Thermistor  
Copyright Vincotech  
31  
17 Sep. 2018 / Revision 4  
10-FZ07BIA030SM02-P894E58  
10-PZ07BIA030SM02-P894E58Y  
datasheet  
Packaging instruction  
Handling instruction  
Standard packaging quantity (SPQ) 135  
>SPQ  
Standard  
<SPQ  
Sample  
Handling instructions for flow 0 packages see vincotech.com website.  
Package data  
Package data for flow 0 packages see vincotech.com website.  
UL recognition and file number  
This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.  
Document No.:  
Date:  
Modification:  
Pages  
Corrected Power dissipation graphs and max current ratings,  
Added boost dynamic parameters  
1,2,3,6,7,  
9-16,23-28  
10-FZ07BIA030SM02-P894E58-D4-14  
17 Sep. 2018  
DISCLAIMER  
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to  
reader in good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations  
that may exist or occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability,  
function or design. No representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said  
information or that the application or use of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons  
or property or that the same will not infringe third parties rights or give desired results. It is reader’s sole responsibility to test and determine  
the suitability of the information and the product for reader’s intended use.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval  
of Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or  
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be  
reasonably expected to result in significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause  
the failure of the life support device or system, or to affect its safety or effectiveness.  
Copyright Vincotech  
32  
17 Sep. 2018 / Revision 4  

相关型号:

10-FZ07BVA020SM-LD44E08

High efficiency in hard switching and resonant topologies;High speed switching;Low gate charge
VINCOTECH

10-FZ07BVA030S5-LD45E08

High speed and smooth switching;Low gate charge;Very low collector emitter saturation voltage
VINCOTECH

10-FZ07LBA100SM01-L705L18

High efficiency in hard switching and resonant topologies;High speed switching;Low gate charge
VINCOTECH

10-FZ07NBA050SM-P915L58

High efficiency in hard switching and resonant topologies;High speed switching;Low gate charge
VINCOTECH

10-FZ07NBA075SM-P916L58

High efficiency in hard switching and resonant topologies;High speed switching;Low gate charge
VINCOTECH

10-FZ07NBA100SM10-M305L68

High efficiency in hard switching and resonant topologies;High speed switching;Low gate charge
VINCOTECH

10-FZ07NIA050SM-P925F58

High efficiency in hard switching and resonant topologies;High speed switching;Low gate charge
VINCOTECH

10-FZ07NIA075S5-P926F53

High speed and smooth switching;Low gate charge;Very low collector emitter saturation voltage
VINCOTECH

10-FZ07NIA075SM-P926F58

High efficiency in hard switching and resonant topologies;High speed switching;Low gate charge
VINCOTECH

10-FZ07NIA100S502-P927F58

High speed and smooth switching;Low gate charge;Very low collector emitter saturation voltage
VINCOTECH

10-FZ07NMA100SM-M265F58

High efficiency in hard switching and resonant topologies;High speed switching;Low gate charge
VINCOTECH

10-FZ122PA150SC-P990F08

Insulated Gate Bipolar Transistor
VINCOTECH