30-FT12NMA200SH-M660F08 [VINCOTECH]

Easy paralleling;High speed switching;Low switching losses;
30-FT12NMA200SH-M660F08
型号: 30-FT12NMA200SH-M660F08
厂家: VINCOTECH    VINCOTECH
描述:

Easy paralleling;High speed switching;Low switching losses

文件: 总32页 (文件大小:1411K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
flow 2 MNPC  
1200 V / 200 A  
Features  
flow 2 13mm housing  
● Mixed voltage NPC topology  
● Reactive power capability  
● Low inductance layout  
● High speed IGBT and split output  
● Common collector neutral connection  
Target Applications  
Schematic  
● Solar inverter  
● UPS  
● Active frontend  
Types  
● 30-FT12NMA200SH-M660F08  
● 30-PT12NMA200SH-M660F08Y  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Half Bridge Sw. Protection Diode  
Repetitive peak reverse voltage  
DC forward current  
V RRM  
I F  
I FRM  
P tot  
1200  
25  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
t p = 10 ms  
Maximum repetitive forward current  
Power dissipation  
30  
A
52  
W
°C  
T jmax  
Maximum Junction Temperature  
150  
Half Bridge Switch  
V CE  
I C  
Collector-emitter breakdown voltage  
1200  
171  
600  
400  
434  
±20  
V
A
T j = T jmax  
T s = 80 °C  
DC collector current  
I CRM  
t p limited by T jmax  
Repetitive peak collector current  
Turn off safe operation area  
Power dissipation  
A
V CEmax = 1200V, T vj ≤ 150°C  
T j = T jmax  
A
P tot  
V GE  
T s = 80 °C  
W
V
Gate-emitter peak voltage  
Short circuit ratings  
t SC  
V CC  
T j ≤ 150 °C  
V GE = 15 V  
10  
µs  
V
800  
T jmax  
Maximum Junction Temperature  
175  
°C  
copyright Vincotech  
1
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Neutral Point FWD  
V RRM  
I F  
I FRM  
P tot  
Peak Repetitive Reverse Voltage  
700  
87  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
DC forward current  
t p limited by T jmax  
T j = T jmax  
Diode maximum forward current  
Power dissipation  
300  
109  
150  
A
W
°C  
T jmax  
Maximum Junction Temperature  
Neutral Point Switch  
V CE  
I C  
Collector-emitter breakdown voltage  
600  
124  
450  
450  
198  
±20  
V
A
T j = T jmax  
T s = 80 °C  
DC collector current  
I CRM  
t p limited by T jmax  
Repetitive peak collector current  
Turn off safe operation area  
Power dissipation  
A
V CE ≤ 600V, T j ≤ 175°C  
T j = T jmax  
A
P tot  
V GE  
T s = 80 °C  
W
V
Gate-emitter peak voltage  
Short circuit ratings  
t SC  
V CC  
T j ≤ 150 °C  
V GE = 15 V  
6
µs  
V
360  
T jmax  
Maximum Junction Temperature  
175  
°C  
Neutral Point Sw. Protection Diode  
V RRM  
I F  
I FRM  
P tot  
Peak Repetitive Reverse Voltage  
600  
49  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
DC forward current  
t p limited by T jmax  
T j = T jmax  
Maximum repetitive forward current  
Power dissipation  
100  
82  
A
W
°C  
T jmax  
Maximum Junction Temperature  
175  
Half Bridge FWD  
V RRM  
I F  
Peak Repetitive Reverse Voltage  
1200  
84  
V
A
T j = T jmax  
T s = 80 °C  
T s = 80 °C  
DC forward current  
I FSM  
P tot  
T jmax  
t p limited by T jmax  
T j = T jmax  
Nonrepetitive peak surge current  
Power dissipation  
540  
186  
175  
A
W
°C  
Maximum Junction Temperature  
copyright Vincotech  
2
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Maximum Ratings  
T j = 25 °C, unless otherwise specified  
Condition  
Parameter  
Symbol  
Value  
Unit  
Thermal Properties  
Storage temperature  
T stg  
T op  
-40…+125  
°C  
°C  
-40…+(T jmax - 25)  
Operation temperature under switching condition  
Isolation Properties  
Isolation voltage  
V is  
t = 2 s  
DC Test Voltage  
4000  
min 12,7  
min 12,7  
>200  
V
Creepage distance  
Clearance  
mm  
mm  
Comparative tracking index  
CTI  
copyright Vincotech  
3
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V] I C [A]  
V GE [V]  
V GS [V]  
V CE [V] I F [A]  
V DS [V] I D [A]  
T j [°C]  
Min  
Max  
Half Bridge Sw. Protection Diode  
25  
125  
1,6  
2,12  
1,74  
2,6  
V F  
Forward voltage  
15  
V
Thermal grease  
thickness ≤ 50um  
λ = 1 W/mK  
R th(j-s)  
Thermal resistance junction to sink  
1,35  
K/W  
Half Bridge Switch  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off current incl. Diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
V GE(th)  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
V CE = V GE  
0,0068  
25  
5,2  
2
5,8  
6,4  
2,4  
V
V
25  
125  
2,17  
2,58  
15  
0
200  
1200  
0
25  
25  
24  
µA  
nA  
Ω
20  
480  
1
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
124  
126  
27  
Rise time  
32  
ns  
190  
234  
41  
t d(off)  
t f  
Turn-off delay time  
R goff = 2 Ω  
R gon = 2 Ω  
±15  
350  
200  
Fall time  
61  
2,38  
4,20  
5,02  
7,97  
E on  
Turn-on energy loss  
mWs  
pF  
E off  
C ies  
C oss  
C rss  
Q G  
Turn-off energy loss  
125  
Input capacitance  
11080  
1150  
640  
Output capacitance  
f
= 1 MHz  
0
25  
25  
Reverse transfer capacitance  
Gate charge  
15  
960  
160  
960  
nC  
Thermal grease  
thickness ≤ 50um  
λ = 1 W/mK  
R th(j-s)  
Thermal resistance junction to sink  
0,22  
K/W  
*additional value stands for built-in capacitor  
Neutral Point FWD  
Diode forward voltage  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
1,4  
1,80  
1,61  
130  
169  
93  
3,3  
V F  
I RRM  
150  
200  
V
A
Peak reverse recovery current  
Reverse recovery time  
t rr  
ns  
118  
4,47  
11,00  
5241  
1766  
0,91  
2,39  
Q rr  
R gon = 2 Ω  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovered energy  
±15  
350  
µC  
( di rf/dt )max  
E rec  
A/µs  
mWs  
125  
Thermal grease  
thickness ≤ 50um  
λ = 1 W/mK  
R th(j-s)  
Thermal resistance junction to sink  
0,64  
K/W  
copyright Vincotech  
4
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
V r [V] I C [A]  
V GE [V]  
V GS [V]  
V CE [V] I F [A]  
V DS [V] I D [A]  
T j [°C]  
Min  
Max  
Neutral Point Switch  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off incl diode  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
V GE(th)  
V CEsat  
I CES  
I GES  
R gint  
t d(on)  
t r  
V CE = V GE  
0,0024  
25  
5
5,8  
6,5  
V
V
25  
125  
1,05  
1,57  
1,68  
1,85  
15  
0
150  
600  
0
25  
25  
7,6  
µA  
nA  
Ω
20  
1200  
none  
25  
125  
25  
125  
25  
125  
25  
125  
25  
125  
25  
123  
114  
21  
Rise time  
21  
ns  
168  
177  
38  
t d(off)  
t f  
Turn-off delay time  
R goff = 2 Ω  
R gon = 2 Ω  
±15  
350  
150  
Fall time  
59  
1,18  
1,72  
3,59  
5,13  
E on  
Turn-on energy loss  
µWs  
pF  
E off  
C ies  
C oss  
C rss  
Q G  
Turn-off energy loss  
125  
Input capacitance  
9240  
576  
274  
940  
Output capacitance  
f
= 1 MHz  
15  
15  
480  
480  
150  
150  
25  
Reverse transfer capacitance  
Gate charge  
nC  
Thermal grease  
thickness ≤ 50um  
λ = 1 W/mK  
R th(j-s)  
Thermal resistance junction to sink  
0,48  
K/W  
Neutral Point Sw. Protection Diod  
25  
1,20  
1,78  
1,70  
1,90  
V F  
Diode forward voltage  
50  
V
125  
Thermal grease  
thickness ≤ 50um  
λ = 1 W/mK  
R th(j-s)  
Thermal resistance junction to sink  
1,16  
K/W  
Half Bridge FWD  
Diode forward voltage  
25  
150  
1,50  
2,23  
2,34  
2,54  
120  
V F  
100  
100  
V
μA  
I r  
I RRM  
Reverse leakage current  
Peak reverse recovery current  
Reverse recovery time  
1200  
350  
25  
25  
150  
25  
150  
25  
150  
25  
150  
25  
150  
184  
216  
48  
A
t rr  
ns  
114  
6,62  
12,94  
11659  
9489  
1,62  
3,42  
Q rr  
R gon = 2 Ω  
Reverse recovered charge  
Peak rate of fall of recovery current  
Reverse recovery energy  
±15  
µC  
( di rf/dt )max  
E rec  
A/µs  
mWs  
Thermal grease  
thickness ≤ 50um  
λ = 1 W/mK  
R th(j-s)  
Thermal resistance junction to sink  
0,51  
K/W  
Thermistor  
Rated resistance  
Deviation of R 100  
Power dissipation  
Power dissipation constant  
B-value  
R
Δ R/R  
P
25  
100  
25  
25  
25  
25  
22000  
Ω
%
R 100 = 1486 Ω  
-5  
+5  
200  
2
mW  
mW/K  
K
B (25/50)  
Tol. ±3%  
Tol. ±3%  
3950  
3998  
B (25/100)  
B-value  
K
Vincotech NTC Reference  
B
copyright Vincotech  
5
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Half Bridge  
Half Bridge IGBT and Neutral Point FWD  
figure 1.  
IGBT  
figure 2.  
IGBT  
Typical output characteristics  
Typical output characteristics  
IC = f(VCE  
)
IC = f(VCE)  
600  
600  
500  
400  
300  
200  
100  
500  
400  
300  
200  
100  
0
0
0
0
1
2
3
4
5
1
2
3
4
5
VCE (V)  
VCE (V)  
At  
At  
tp  
=
tp =  
250  
25  
μs  
°C  
250  
125  
μs  
°C  
Tj =  
Tj =  
VGE from  
VGE from  
7 V to 17 V in steps of 1 V  
7 V to 17 V in steps of 1 V  
figure 3.  
IGBT  
figure 4.  
FWD  
Typical transfer characteristics  
Typical FWD forward current as  
a function of forward voltage  
IF = f(VF)  
IC = f(VGE  
)
200  
500  
400  
300  
200  
100  
160  
120  
80  
Tj = Tjmax-25°C  
Tj = 25°C  
40  
Tj = 25°C  
Tj = Tjmax-25°C  
0
0
0
0
0,5  
1
1,5  
2
2,5  
3
2
4
6
8
10  
12  
VGE (V)  
VF (V)  
At  
At  
tp  
VCE  
Tj =  
=
tp  
=
250  
10  
25/150  
μs  
V
250  
μs  
°C  
=
Tj =  
25/150  
°C  
copyright Vincotech  
6
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Half Bridge  
Half Bridge IGBT and Neutral Point FWD  
figure 5.  
IGBT  
figure 6.  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(IC)  
Typical switching energy losses  
as a function of gate resistor  
E = f(RG)  
16  
12  
8
16  
12  
8
Eoff High T  
Eon High T  
Eoff Low T  
Eon Low  
T
Eoff High T  
Eon High T  
Eoff Low T  
4
4
Eon Low T  
0
0
0
100  
200  
300  
400  
I C (A)  
R G ( Ω)  
0
2
4
6
8
10  
With an inductive load at  
With an inductive load at  
Tj =  
Tj =  
25/125  
350  
±15  
2
°C  
V
25/125  
350  
°C  
V
VCE  
=
VCE  
VGE  
=
VGE  
Rgon  
Rgoff  
=
=
V
±15  
V
=
IC =  
Ω
Ω
198  
A
=
2
figure 7.  
FWD  
figure 8.  
FWD  
Typical reverse recovery energy loss  
as a function of collector current  
Erec = f(Ic)  
Typical reverse recovery energy loss  
as a function of gate resistor  
Erec = f(RG)  
4
3
2
1
0
3,0  
2,5  
2,0  
1,5  
1,0  
0,5  
0,0  
Erec High T  
Erec High T  
Erec Low T  
Erec Low T  
0
100  
200  
300  
400  
0
2
4
6
8
10  
I C (A)  
R G ( Ω)  
With an inductive load at  
With an inductive load at  
Tj =  
Tj =  
25/125  
350  
±15  
2
°C  
V
25/125  
350  
°C  
V
VCE  
VGE  
Rgon  
=
VCE  
VGE  
=
=
=
V
±15  
V
=
IC =  
Ω
198  
A
copyright Vincotech  
7
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Half Bridge  
Half Bridge IGBT and Neutral Point FWD  
figure 9.  
IGBT  
figure 10.  
IGBT  
Typical switching times as a  
function of collector current  
t = f(IC)  
Typical switching times as a  
function of gate resistor  
t = f(RG)  
1,00  
1,00  
µ
µ
µ
µ
µ µ  
µ µ  
tdoff  
tdon  
tdoff  
tdon  
tf  
0,10  
0,01  
0,00  
0,10  
0,01  
0,00  
tr  
tf  
tr  
0
100  
200  
300  
400  
0
2
4
6
8
10  
I C (A)  
R G ( Ω)  
With an inductive load at  
With an inductive load at  
Tj =  
Tj =  
125  
350  
±15  
2
°C  
V
125  
350  
±15  
198  
°C  
V
VCE  
=
VCE  
VGE  
=
VGE  
Rgon  
Rgoff  
=
=
V
V
=
IC =  
Ω
Ω
A
=
2
figure 11.  
FWD  
figure 12.  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
FWD  
Typical reverse recovery time as a  
function of collector current  
trr = f(Ic)  
trr = f(Rgon  
)
0,25  
0,20  
0,15  
0,10  
0,05  
0,00  
0,25  
trr High T  
0,20  
0,15  
0,10  
0,05  
trr High T  
trr Low T  
trr Low T  
0,00  
0
2
4
6
8
10  
0
100  
200  
300  
400  
I C (A)  
R gon ( Ω)  
At  
At  
Tj =  
Tj =  
VR  
25/125  
350  
±15  
2
°C  
V
25/125  
350  
°C  
V
VCE  
VGE  
=
=
=
IF =  
V
198  
A
Rgon  
=
VGE =  
Ω
±15  
V
copyright Vincotech  
8
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Half Bridge  
Half Bridge IGBT and Neutral Point FWD  
figure 13.  
FWD  
figure 14.  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Qrr = f(IC)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Qrr = f(Rgon  
)
20  
12  
µ
µ
µ
µ
µ
µ
µ
µ
Qrr High T  
Qrr High T  
10  
8
16  
12  
8
6
Qrr Low T  
4
Qrr Low T  
4
2
0
0
0
100  
200  
300  
400  
0
2
4
6
8
10  
R gon ( Ω)  
I C (A)  
At  
Tj =  
At  
Tj =  
25/125  
°C  
V
25/125  
350  
°C  
V
VCE  
VGE  
Rgon  
=
VR =  
350  
±15  
2
=
IF =  
V
198  
A
=
VGE  
=
Ω
±15  
V
figure 15.  
FWD  
figure 16.  
FWD  
Typical reverse recovery current as a  
function of collector current  
IRRM = f(IC)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
IRRM = f(Rgon  
)
250  
250  
200  
150  
100  
50  
IRRM High T  
200  
150  
100  
50  
IRRM Low T  
IRRM High T  
IRRM Low T  
0
0
0
0
100  
200  
300  
400  
2
4
6
8
10  
I C (A)  
R gon ( Ω)  
At  
Tj =  
At  
Tj =  
VR  
25/125  
°C  
V
25/125  
350  
°C  
V
VCE  
VGE  
Rgon  
=
=
350  
±15  
2
=
IF =  
V
198  
A
=
VGE =  
Ω
±15  
V
copyright Vincotech  
9
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Half Bridge  
Half Bridge IGBT and Neutral Point FWD  
figure 17.  
FWD  
figure 18.  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI0/dt,dIrec/dt = f(Ic)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI0/dt,dIrec/dt = f(Rgon  
)
12000  
12000  
dIo/dt T  
dI0/dt T  
dIrec/dt T  
dIrec/dt T  
10000  
10000  
8000  
6000  
4000  
2000  
0
8000  
6000  
4000  
2000  
0
0
100  
200  
300  
400  
0
2
4
6
8
10  
R
gon ( Ω)  
I
C (A)  
At  
At  
Tj =  
Tj =  
25/125  
350  
±15  
2
°C  
25/125  
350  
°C  
VCE  
VGE  
Rgon  
=
VR =  
V
V
Ω
V
A
V
=
IF =  
198  
=
VGE =  
±15  
figure 19.  
IGBT  
figure 20.  
FWD  
IGBT transient thermal impedance  
FWD transient thermal impedance  
as a function of pulse width  
as a function of pulse width  
Zth(j-s) = f(tp)  
Zth(j-s) = f(tp)  
101  
100  
100  
10-1  
10-2  
10-3  
10-1  
10-2  
10-3  
D = 0,5  
0,2  
D = 0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
t p (s)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
At  
At  
tp / T  
tp / T  
D =  
D =  
Rth(j-s)  
=
Rth(j-s) =  
0,22  
K/W  
0,64  
K/W  
IGBT thermal model values  
FWD thermal model values  
R (K/W) Tau (s)  
R (K/W) Tau (s)  
0,04  
0,05  
0,04  
0,07  
0,02  
0,01  
4,0E+00  
9,4E-01  
2,3E-01  
5,4E-02  
1,6E-02  
2,8E-03  
0,09  
0,11  
0,16  
0,23  
0,03  
0,03  
4,6E+00  
1,2E+00  
1,8E-01  
3,8E-02  
5,8E-03  
7,4E-04  
copyright Vincotech  
10  
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Half Bridge  
Half Bridge IGBT and Neutral Point FWD  
figure 21.  
IGBT  
figure 22.  
IGBT  
Power dissipation as a  
function of heatsink temperature  
Ptot = f(Ts)  
Collector current as a  
function of heatsink temperature  
IC = f(Ts)  
800  
600  
400  
200  
0
250  
200  
150  
100  
50  
0
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
T h  
(
At  
At  
Tj =  
Tj =  
175  
°C  
175  
15  
°C  
V
VGE  
=
figure 23.  
Power dissipation as a  
FWD  
figure 24.  
Forward current as a  
FWD  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Ts)  
IF = f(Ts)  
250  
200  
150  
100  
50  
150  
125  
100  
75  
50  
25  
0
0
0
50  
100  
150  
200  
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
T h  
(
At  
At  
Tj =  
Tj =  
150  
°C  
150  
°C  
copyright Vincotech  
11  
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Half Bridge  
Half Bridge IGBT and Neutral Point FWD  
figure 25.  
IGBT  
figure 26.  
IGBT  
Safe operating area as a function  
of collector-emitter voltage  
Gate voltage vs Gate charge  
IC = f(VCE  
)
VGE = f(Qg)  
20  
18  
103  
240V  
16  
14  
12  
10  
8
100uS  
960V  
1mS  
102  
10mS  
100mS  
101  
DC  
100  
6
4
10-1  
2
0
0
400  
800  
1200  
1600  
2000  
102  
103  
Q g (nC)  
101  
100  
VCE (V)  
At  
At  
D =  
single pulse  
ID  
=
160  
25  
A
Ts  
=
80  
ºC  
Tj=  
ºC  
VGE  
=
±15  
Tjmax  
V
Tj =  
ºC  
figure 27.  
IGBT  
figure 28.  
IGBT  
Short circuit withstand time as a function of  
gate-emitter voltage  
Typical short circuit collector current as a function of  
gate-emitter voltage  
tsc = f(VGE  
)
IC(sc) = f(VGE)  
16  
2400  
14  
12  
10  
8
2000  
1600  
1200  
800  
6
4
400  
2
0
0
12  
13  
14  
15  
16  
17  
12  
14  
16  
18  
20  
V GE (V)  
VGE (V)  
At  
At  
VCE  
=
1200  
175  
V
VCE  
1200  
175  
V
Tj ≤  
Tj =  
ºC  
ºC  
copyright Vincotech  
12  
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Half Bridge  
Half Bridge IGBT and Neutral Point FWD  
figure 27.  
IGBT  
Reverse bias safe operating area  
IC = f(VCE  
)
450  
IC MAX  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
200  
400  
600  
800  
1000  
1200  
VCE (V)  
1400  
At  
Tj =  
Tjmax-25  
ºC  
Uccminus=Uccplus  
Switching mode :  
3 level switching  
copyright Vincotech  
13  
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Neutral Point  
Neutral Point IGBT and Half Bridge FWD  
figure 1.  
IGBT  
figure 2.  
IGBT  
Typical output characteristics  
Typical output characteristics  
IC = f(VCE  
)
IC = f(VCE)  
450  
450  
375  
300  
225  
150  
75  
375  
300  
225  
150  
75  
0
0
0
0
1
2
3
4
5
1
2
3
4
5
VCE (V)  
VCE (V)  
At  
At  
tp  
=
tp =  
250  
μs  
°C  
7 V to 17 V in steps of 1 V  
250  
μs  
°C  
7 V to 17 V in steps of 1 V  
Tj =  
Tj =  
25  
150  
VGE from  
VGE from  
figure 3.  
IGBT  
figure 4.  
FWD  
Typical transfer characteristics  
Typical FWD forward current as  
a function of forward voltage  
IF = f(VF)  
IC = f(VGE  
)
150  
300  
250  
200  
150  
100  
125  
100  
75  
50  
Tj = 25°C  
Tj = Tjmax-25°C  
25  
50  
Tj = Tjmax-25°C  
Tj = 25°C  
0
0
0
2
4
6
8
10  
12  
0
1
2
3
4
5
VGE (V)  
VF (V)  
At  
At  
tp  
VCE  
Tj =  
=
tp  
=
250  
μs  
V
250  
25/150  
μs  
°C  
=
Tj =  
0
25/150  
°C  
copyright Vincotech  
14  
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Neutral Point  
Neutral Point IGBT and Half Bridge FWD  
figure 5.  
IGBT  
figure 6.  
IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(IC)  
Typical switching energy losses  
as a function of gate resistor  
E = f(RG)  
8
6
4
2
0
8
6
4
2
0
Eoff High T  
Eon High T  
Eoff Low T  
Eoff High T  
Eon Low T  
Eoff Low T  
Eon High T  
Eon Low T  
0
50  
100  
150  
200  
250  
300  
0
2
4
6
8
10  
I
C (A)  
R G ( Ω)  
With an inductive load at  
With an inductive load at  
Tj =  
Tj =  
25/126  
350  
±15  
2
°C  
V
25/126  
350  
°C  
V
VCE  
=
VCE  
VGE  
=
VGE  
Rgon  
Rgoff  
=
=
V
±15  
V
=
IC =  
Ω
Ω
151  
A
=
2
figure 7.  
FWD  
figure 8.  
FWD  
Typical reverse recovery energy loss  
as a function of collector current  
Erec = f(Ic)  
Typical reverse recovery energy loss  
as a function of gate resistor  
Erec = f(RG)  
5
4
3
2
1
0
5
4
3
2
1
0
Erec High T  
Erec High T  
Erec Low T  
Erec Low T  
0
50  
100  
150  
200  
250  
300  
0
2
4
6
8
10  
I C (A)  
R G ( Ω)  
With an inductive load at  
With an inductive load at  
Tj =  
Tj =  
25/126  
350  
±15  
2
°C  
V
25/126  
350  
°C  
V
VCE  
VGE  
Rgon  
=
VCE  
VGE  
=
=
=
V
±15  
V
=
IC =  
Ω
151  
A
copyright Vincotech  
15  
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Neutral Point  
Neutral Point IGBT and Half Bridge FWD  
figure 9.  
IGBT  
figure 10.  
IGBT  
Typical switching times as a  
function of collector current  
t = f(IC)  
Typical switching times as a  
function of gate resistor  
t = f(RG)  
1
1
tdoff  
tdon  
tdoff  
tdon  
0,1  
0,1  
tf  
tr  
tf  
0,01  
0,01  
tr  
0,001  
0,001  
0
2
4
6
8
10  
0
50  
100  
150  
200  
250  
300  
I C (A)  
R G ( Ω)  
With an inductive load at  
With an inductive load at  
Tj =  
Tj =  
126  
350  
±15  
2
°C  
V
126  
350  
±15  
151  
°C  
V
VCE  
=
VCE  
VGE  
=
VGE  
Rgon  
Rgoff  
=
=
V
V
=
IC =  
Ω
Ω
A
=
2
figure 11.  
FWD  
figure 12.  
Typical reverse recovery time as a  
function of IGBT turn on gate resistor  
FWD  
Typical reverse recovery time as a  
function of collector current  
trr = f(Ic)  
trr = f(Rgon  
)
0,15  
0,12  
0,09  
0,06  
0,03  
0,00  
0,4  
trr High T  
trr High T  
0,3  
0,2  
0,1  
trr Low T  
trr Low T  
0
0
2
4
6
8
10  
0
50  
100  
150  
200  
250  
300  
I C (A)  
R gon ( Ω)  
At  
Tj =  
At  
Tj =  
VR  
25/126  
350  
±15  
2
°C  
25/126  
350  
°C  
V
VCE  
VGE  
Rgon  
=
=
V
V
Ω
=
IF =  
151  
A
=
VGE =  
±15  
V
copyright Vincotech  
16  
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Neutral Point  
Neutral Point IGBT and Half Bridge FWD  
figure 13.  
FWD  
figure 14.  
FWD  
Typical reverse recovery charge as a  
function of collector current  
Qrr = f(IC)  
Typical reverse recovery charge as a  
function of IGBT turn on gate resistor  
Qrr = f(Rgon  
)
18  
15  
12  
9
15  
Qrr High T  
Qrr High T  
12  
9
Qrr Low T  
Qrr Low T  
6
6
3
3
0
0
0
0
50  
100  
150  
200  
250  
300  
2
4
6
8
10  
I C (A)  
R gon ( Ω)  
At  
At  
Tj =  
Tj =  
VR  
25/126  
350  
±15  
2
°C  
V
25/126  
350  
°C  
V
VCE  
VGE  
Rgon  
=
=
=
IF =  
V
151  
A
=
VGE =  
Ω
±15  
V
figure 15.  
FWD  
figure 16.  
FWD  
Typical reverse recovery current as a  
function of collector current  
IRRM = f(IC)  
Typical reverse recovery current as a  
function of IGBT turn on gate resistor  
IRRM = f(Rgon  
)
300  
250  
200  
150  
100  
50  
250  
IRRM High T  
200  
150  
100  
50  
IRRM Low T  
IRRM High T  
IRRM Low T  
0
0
0
0
50  
100  
150  
200  
250  
300  
2
4
6
8
10  
I C (A)  
R gon ( Ω)  
At  
At  
Tj =  
Tj =  
VR  
25/126  
350  
±15  
2
°C  
25/126  
350  
°C  
V
VCE  
VGE  
=
=
=
V
V
Ω
IF =  
151  
A
Rgon  
=
VGE =  
±15  
V
copyright Vincotech  
17  
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Neutral Point  
Neutral Point IGBT and Half Bridge FWD  
figure 17.  
FWD  
figure 18.  
FWD  
Typical rate of fall of forward  
and reverse recovery current as a  
function of collector current  
dI0/dt,dIrec/dt = f(Ic)  
Typical rate of fall of forward  
and reverse recovery current as a  
function of IGBT turn on gate resistor  
dI0/dt,dIrec/dt = f(Rgon  
)
15000  
18000  
dIrec/dt T  
dIrec/dtT  
dIo/dt T  
dI0/dtT  
15000  
12000  
12000  
9000  
6000  
3000  
0
9000  
6000  
3000  
0
0
50  
100  
150  
200  
250  
300  
0
2
4
6
8
10  
R gon ( Ω)  
I C (A)  
At  
At  
Tj =  
Tj =  
25/126  
350  
±15  
2
°C  
V
25/126  
350  
°C  
VCE  
VGE  
Rgon  
=
VR =  
V
A
V
=
IF =  
V
151  
=
VGE =  
Ω
±15  
figure 19.  
IGBT  
figure 20.  
FWD  
IGBT transient thermal impedance  
FWD transient thermal impedance  
as a function of pulse width  
as a function of pulse width  
Zth(j-s) = f(tp)  
Zth(j-s) = f(tp)  
101  
101  
100  
100  
10-1  
10-2  
10-3  
10-1  
10-2  
10-3  
D = 0,5  
0,2  
D = 0,5  
0,2  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
0,05  
0,02  
0,01  
0,005  
0.000  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
1
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
1
t p (s)  
t p (s)  
At  
At  
tp / T  
tp / T  
D =  
D =  
Rth(j-s)  
=
Rth(j-s) =  
0,48  
K/W  
0,51  
K/W  
IGBT thermal model values  
FWD thermal model values  
R (K/W) Tau (s)  
R (K/W) Tau (s)  
0,09  
0,11  
0,10  
0,15  
0,02  
4,40  
0,76  
0,13  
0,03  
0,01  
0,06  
0,08  
0,20  
0,14  
0,04  
3,05  
0,45  
0,09  
0,03  
0,004  
copyright Vincotech  
18  
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Neutral Point  
Neutral Point IGBT and Half Bridge FWD  
figure 21.  
IGBT  
figure 22.  
IGBT  
Power dissipation as a  
function of heatsink temperature  
Ptot = f(Ts)  
Collector current as a  
function of heatsink temperature  
IC = f(Ts)  
400  
300  
200  
100  
0
200  
150  
100  
50  
0
0
50  
100  
150  
200  
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
T h  
(
At  
At  
Tj =  
Tj =  
175  
ºC  
175  
15  
ºC  
V
VGE  
=
figure 23.  
Power dissipation as a  
FWD  
figure 24.  
Forward current as a  
FWD  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Ts)  
IF = f(Ts)  
350  
300  
250  
200  
150  
100  
50  
150  
125  
100  
75  
50  
25  
0
0
0
50  
100  
150  
200  
(
o C)  
Th  
(
o C)  
Th  
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
175  
ºC  
175  
ºC  
copyright Vincotech  
19  
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Neutral Point  
neutral point IGBT  
figure 25.  
IGBT  
figure 26.  
IGBT  
Reverse bias safe operating area  
Gate voltage vs Gate charge  
IC = f(VCE  
)
VGE = f(Qg)  
500  
16  
14  
12  
10  
8
IC MAX  
400  
300  
200  
100  
120V  
480V  
6
4
2
0
0
0
100  
200  
300  
400  
500  
600  
700  
0
200  
400  
600  
800  
1000  
Q g (nC)  
V
CE (V)  
At  
At  
Tj =  
Tjmax-25  
ºC  
3 level switching  
ID  
=
150  
25  
A
Uccminus=Uccplus  
Tj=  
ºC  
Switching mode :  
figure 27.  
IGBT  
figure 28.  
IGBT  
Short circuit withstand time as a function of  
gate-emitter voltage  
Typical short circuit collector current as a function of  
gate-emitter voltage  
tsc = f(VGE  
)
IC(sc) = f(VGE)  
12  
2500  
10  
8
2000  
1500  
1000  
500  
6
4
2
0
0
10  
11  
12  
13  
14  
15  
12  
14  
16  
18  
20  
V GE (V)  
VGE (V)  
At  
At  
VCE  
400  
150  
V
VCE  
400  
150  
V
Tj ≤  
Tj =  
ºC  
ºC  
copyright Vincotech  
20  
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Neutal Point IGBT Inverse Diode  
figure 25.  
IGBT  
figure 26.  
IGBT  
Typical FWD forward current as  
a function of forward voltage  
IF = f(VF)  
FWD transient thermal impedance  
as a function of pulse width  
Zth(j-s) = f(tp)  
101  
100  
10-1  
10-2  
200  
160  
120  
80  
D = 0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
40  
Tj = Tjmax-25°C  
Tj = 25°C  
0
0
1
2
3
4
10-5  
10-4  
10-3  
10-2  
10-1  
100  
1011  
VF (V)  
t p (s)  
At  
At  
tp  
=
tp / T  
250  
μs  
D =  
Rth(j-s)  
=
1,16  
K/W  
figure 27.  
Power dissipation as a  
IGBT  
figure 28.  
Forward current as a  
IGBT  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Ts)  
IF = f(Ts)  
80  
60  
40  
20  
0
175  
150  
125  
100  
75  
50  
25  
0
0
50  
100  
150  
200  
o C)  
Th (  
o C)  
0
50  
100  
150  
200  
Th  
(
At  
At  
Tj =  
Tj =  
175  
ºC  
175  
ºC  
copyright Vincotech  
21  
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Half Bridge Inverse Diode  
figure 1.  
IGBT  
figure 2.  
IGBT  
Typical FWD forward current as  
a function of forward voltage  
IF= f(VF)  
FWD transient thermal impedance  
as a function of pulse width  
Zth(j-s) = f(tp)  
101  
100  
10-1  
10-2  
75  
60  
45  
30  
D = 0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
15  
Tj = Tjmax-25°C  
Tj = 25°C  
0
0.000  
0
1
2
3
4
VF (V)  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
1011  
At  
At  
tp  
=
tp / T  
250  
μs  
D =  
Rth(j-s)  
=
1,35  
K/W  
figure 3.  
Power dissipation as a  
IGBT  
figure 4.  
Forward current as a  
IGBT  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Ts)  
IF = f(Ts)  
120  
100  
80  
60  
40  
20  
0
35  
30  
25  
20  
15  
10  
5
0
0
50  
100  
150  
200  
o C)  
T h (  
o C)  
0
50  
100  
150  
200  
T h  
(
At  
At  
Tj =  
Tj =  
150  
ºC  
150  
ºC  
copyright Vincotech  
22  
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Thermistor  
figure 1.  
Thermistor  
Typical NTC characteristic  
as a function of temperature  
RT = f(T)  
NTC-typical temperature characteristic  
24000  
20000  
16000  
12000  
8000  
4000  
0
25  
50  
75  
100  
T (°C)  
125  
copyright Vincotech  
23  
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Switching Definitions Half Bridge  
General conditions  
T j  
=
=
=
125 °C  
2 Ω  
2 Ω  
R gon  
R goff  
figure 1.  
IGBT  
figure 2.  
IGBT  
Turn-off Switching Waveforms & definition of t doff, t Eoff  
Turn-on Switching Waveforms & definition of t don, t Eon  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on)  
125  
200  
IC  
tdoff  
%
%
100  
150  
VGE 90%  
IC  
75  
VGE  
100  
50  
0
VGE  
VCE 90%  
VCE  
50  
25  
0
tdon  
tEoff  
VCE  
IC 1%  
VCE5%  
VGE10%  
IC10%  
tEon  
-25  
-50  
-0,2  
0
0,2  
0,4  
0,6  
2,95  
3,05  
3,15  
3,25  
3,35  
3,45  
time(us)  
time (us)  
VGE (0%) =  
-15  
15  
V
VGE (0%) =  
-15  
15  
V
V
V
A
VGE (100%) =  
VC (100%) =  
IC (100%) =  
V
VGE (100%) =  
VC (100%) =  
IC (100%) =  
700  
198  
0,23  
0,61  
V
700  
198  
0,13  
0,30  
A
tdoff  
=
μs  
μs  
tdon  
=
μs  
μs  
tE off  
=
tE on =  
figure 3.  
IGBT  
figure 4.  
IGBT  
Turn-off Switching Waveforms & definition of t f  
Turn-on Switching Waveforms & definition of t r  
130  
200  
Ic  
fitted  
%
%
IC  
100  
150  
IC 90%  
70  
40  
100  
IC 60%  
IC90%  
VCE  
tr  
VCE  
50  
IC 40%  
IC10%  
10  
0
IC10%  
tf  
-20  
-50  
0,1  
0,15  
0,2  
0,25  
0,3  
0,35  
0,4  
3,1  
3,15  
3,2  
3,25  
3,3  
time (us)  
time(us)  
VC (100%) =  
IC (100%) =  
tf =  
700  
198  
0,06  
V
VC (100%) =  
IC (100%) =  
tr =  
700  
198  
0,03  
V
A
A
μs  
μs  
copyright Vincotech  
24  
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Switching Definitions Half Bridge  
figure 5.  
IGBT  
figure 6.  
IGBT  
Turn-off Switching Waveforms & definition of t Eoff  
Turn-on Switching Waveforms & definition of t Eon  
125  
%
125  
%
IC  
1%  
Eon  
Eoff  
100  
75  
50  
25  
0
100  
75  
50  
25  
Pon  
Poff  
VCE3%  
VGE90%  
VGE10%  
0
tEoff  
tEon  
-25  
-25  
2,9  
3
3,1  
3,2  
3,3  
3,4  
3,5  
-0,2  
0
0,2  
0,4  
0,6  
0,8  
time (us)  
time(us)  
Poff (100%) =  
Eoff (100%) =  
138,85  
7,97  
kW  
Pon (100%) =  
Eon (100%) =  
138,85  
4,20  
kW  
mJ  
μs  
mJ  
μs  
tE off  
=
0,61  
tE on  
=
0,30  
figure 7.  
FWD  
figure 8.  
FWD  
Turn-off Switching Waveforms & definition of t rr  
Turn-on Switching Waveforms & definition of t Qrr  
(tQrr = integrating time for Qrr)  
150  
%
150  
%
Id  
Qrr  
Id  
100  
100  
trr  
50  
tQrr  
50  
Vd  
0
I
10%  
RRM  
fitted  
0
-50  
IRRM 90%  
IRRM100%  
-50  
-100  
-100  
-150  
3,1  
3,14  
3,18  
3,22  
3,26  
3,3  
3,34  
3,1  
3,2  
3,3  
3,4  
3,5  
time(us)  
time(us)  
Vd (100%) =  
Id (100%) =  
IRRM (100%) =  
700  
V
Id (100%) =  
Qrr (100%) =  
198  
A
198  
A
11,00  
0,24  
μC  
μs  
-169  
0,12  
A
tQ rr =  
trr  
=
μs  
copyright Vincotech  
25  
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Switching Definitions Half Bridge  
figure 9.  
FWD  
Turn-on Switching Waveforms & definition of t Erec  
(t Erec= integrating time for E rec  
)
150  
%
Erec  
100  
tErec  
50  
Prec  
0
-50  
3,1  
3,2  
3,3  
3,4  
3,5  
time(us)  
Prec (100%) =  
Erec (100%) =  
138,85  
2,39  
kW  
mJ  
μs  
tE rec  
=
0,24  
Half Bridge switching measurement circuit  
figure 11.  
IGBT  
copyright Vincotech  
26  
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Switching Definitions Neutral Point IGBT  
General conditions  
T j  
=
=
=
125 °C  
4 Ω  
4 Ω  
R gon  
R goff  
figure 1.  
Neutral Point IGBT  
figure 2.  
Neutral Point IGBT  
Turn-off Switching Waveforms & definition of t doff, t Eoff  
Turn-on Switching Waveforms & definition of t don, t Eon  
(t E off = integrating time for E off  
)
(t E on = integrating time for E on)  
125  
250  
%
tdoff  
%
IC  
200  
150  
100  
100  
VGE 90%  
IC  
75  
VGE  
VCE  
VGE  
50  
VCE 90%  
tEoff  
VCE  
tdon  
50  
0
25  
0
IC 1%  
VCE3%  
VGE 10%  
IC 10%  
tEon  
-50  
-25  
3,95  
4
4,05  
4,1  
4,15  
4,2  
4,25  
-0,2  
0
0,2  
0,4  
0,6  
time (us)  
time(us)  
VGE (0%) =  
-15  
15  
V
VGE (0%) =  
-15  
15  
V
VGE (100%) =  
VC (100%) =  
IC (100%) =  
V
VGE (100%) =  
VC (100%) =  
IC (100%) =  
V
700  
151  
0,18  
0,46  
V
700  
151  
0,11  
0,19  
V
A
A
tdoff  
=
μs  
μs  
tdon  
=
μs  
μs  
tE off  
=
tE on =  
figure 3.  
Neutral Point IGBT  
figure 4.  
Neutral Point IGBT  
Turn-off Switching Waveforms & definition of t f  
Turn-on Switching Waveforms & definition of t r  
125  
250  
fitted  
Ic  
%
%
100  
200  
Ic  
90%  
75  
150  
VCE  
Ic  
60%  
50  
100  
IC90%  
Ic 40%  
tr  
VCE  
25  
50  
IC  
Ic 10%  
IC10%  
0
0
tf  
-25  
-50  
0,05  
0,10  
0,15  
0,20  
0,25  
0,30  
4,05  
4,1  
4,15  
4,2  
4,25  
time (us)  
time(us)  
VC (100%) =  
IC (100%) =  
tf =  
700  
151  
V
VC (100%) =  
IC (100%) =  
tr =  
700  
V
A
151  
A
0,064  
μs  
0,019  
μs  
copyright Vincotech  
27  
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Switching Definitions Neutral Point IGBT  
figure 5.  
Neutral Point IGBT  
figure 6.  
Neutral Point IGBT  
Turn-off Switching Waveforms & definition of t Eoff  
Turn-on Switching Waveforms & definition of t Eon  
125  
125  
%
%
Ic 1%  
Eoff  
100  
100  
75  
75  
Eon  
50  
50  
25  
25  
Poff  
Pon  
Uge 90%  
Uge 10%  
Uce 3%  
0
0
tEoff  
tEon  
-25  
-25  
-0,2  
0
0,2  
0,4  
0,6  
3,95  
4
4,05  
4,1  
4,15  
4,2  
4,25  
time(us)  
time (us)  
Poff (100%) =  
Eoff (100%) =  
69,93  
3,32  
0,44  
kW  
mJ  
μs  
Pon (100%) =  
Eon (100%) =  
69,93  
1,52  
0,18  
kW  
mJ  
μs  
tE off  
=
tE on =  
figure 7.  
Half Bridge FWD  
figure 8.  
Half Bridge FWD  
Turn-on Switching Waveforms & definition of t Qrr  
Turn-off Switching Waveforms & definition of t rr  
150  
150  
%
%
Qrr  
Id  
Id  
100  
100  
trr  
tQint  
50  
50  
Ud  
fitted  
0
0
-50  
IRRM 10%  
-50  
-100  
-100  
-150  
IRRM 90%  
IRRM 100%  
-150  
4,05  
4,1  
4,15  
4,2  
4,25  
4,3  
4
4,1  
4,2  
4,3  
4,4  
time(us)  
time(us)  
Vd (100%) =  
Id (100%) =  
IRRM (100%) =  
700  
V
Id (100%) =  
Qrr (100%) =  
151  
A
151  
A
12,71  
1,00  
μC  
μs  
-142  
0,07  
A
tQint =  
trr  
=
μs  
copyright Vincotech  
28  
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Switching Definitions Neutral Point IGBT  
figure 9.  
Half Bridge FWD  
Turn-on Switching Waveforms & definition of t Erec  
(t Erec= integrating time for E rec  
)
125  
%
Erec  
100  
tErec  
75  
50  
25  
0
Prec  
-25  
4,1  
4,15  
4,2  
4,25  
4,3  
4,35  
4,4  
time(us)  
Prec (100%) =  
Erec (100%) =  
69,93  
3,61  
1,00  
kW  
mJ  
μs  
tE rec  
=
Neutral Point IGBT switching measurement circuit  
figure 10.  
Neutral Point IGBT  
copyright Vincotech  
29  
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Ordering Code and Marking - Outline - Pinout  
Ordering Code & Marking  
Version  
Ordering Code  
in DataMatrix as  
M660F08  
M660F08  
in packaging barcode as  
without thermal paste with solder pins  
with thermal paste and solder pins  
without thermal paste with Press-fit pins  
with thermal paste and Press-fit pins  
30-FT12NMA200SH-M660F08  
30-FT12NMA200SH-M660F08-/3/  
30-PT12NMA200SH-M660F08Y  
30-PT12NMA200SH-M660F08Y-/3/  
M660F08  
M660F08-/3/  
M660F08Y  
M660F08Y  
M660F08Y  
M660F08Y-/3/  
Outline  
copyright Vincotech  
30  
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Pinout  
Identification  
Current  
ID  
Component  
Voltage  
Function  
Comment  
T1, T3  
D1, D3  
D5, D7  
T2, T4  
D6, D8  
D2, D4  
R1  
IGBT  
FWD  
1200V  
1200V  
700V  
200A  
Half Bridge IGBT  
15A  
150A  
150A  
100A  
50A  
HB IGBT Inverse Diode  
Neutral Point FWD  
Neutral Point IGBT  
Half Bridge FWD  
NP IGBT Inverse Diode  
Resistor  
FWD  
IGBT  
FWD  
600V  
1200V  
600V  
FWD  
Resistor  
copyright Vincotech  
31  
08 Apr. 2017 / Revision 3  
30-FT12NMA200SH-M660F08  
30-PT12NMA200SH-M660F08Y  
datasheet  
Packaging instruction  
Standard packaging quantity (SPQ)  
>SPQ  
Standard  
<SPQ  
Sample  
36  
Handling instruction  
Handling instructions for flow 2 packages see vincotech.com website.  
Package data  
Package data for flow 2 packages see vincotech.com website.  
UL recognition and file number  
This device is certified according to UL 1557 standard, UL file number E192116. For more information see vincotech.com website.  
Document No.:  
Date:  
Modification:  
Pages  
31  
30-FT12NMA200SH-M660F08-D3-14  
19 Mar. 2018  
Pin number corrected on schematic  
DISCLAIMER  
The information, specifications, procedures, methods and recommendations herein (together “information”) are presented by Vincotech to reader in  
good faith, are believed to be accurate and reliable, but may well be incomplete and/or not applicable to all conditions or situations that may exist or  
occur. Vincotech reserves the right to make any changes without further notice to any products to improve reliability, function or design. No  
representation, guarantee or warranty is made to reader as to the accuracy, reliability or completeness of said information or that the application or use  
of any of the same will avoid hazards, accidents, losses, damages or injury of any kind to persons or property or that the same will not infringe third  
parties rights or give desired results. It is reader’s sole responsibility to test and determine the suitability of the information and the product for reader’s  
intended use.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of  
Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c)  
whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in  
significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of  
the life support device or system, or to affect its safety or effectiveness.  
copyright Vincotech  
32  
08 Apr. 2017 / Revision 3  

相关型号:

30-FT12NMA200SH01-M660F18

Easy paralleling;High speed switching;Low switching losses
VINCOTECH

30-GC6NLT1

GAS Engine-Generator Set
MTU

30-GC6NLT1_14

GAS GENERATOR SET
MTU

30-JC6DT4

DIESEL ENGINE-GENERATOR SET
MTU

30-JS6DT4

Diesel Engine-Generator Set
MTU

30-P2126PA050SC-L287F09Y

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

30-P2126PA075M7-L288F79Y

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

30-P2126PA075SC-L288F09Y

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

30-P2126PA100M7-L289F79Y

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

30-P2126PA100SC-L289F09Y

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

30-P2126PA150M7-L280F79Y

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current;Switching optimized for EMC
VINCOTECH

30-P2126PA150SC-L280F09Y

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH