V23990-P640-H10-PM [VINCOTECH]

Optionally with brake chopper;
V23990-P640-H10-PM
型号: V23990-P640-H10-PM
厂家: VINCOTECH    VINCOTECH
描述:

Optionally with brake chopper

文件: 总16页 (文件大小:1529K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
V23990-P640-G10/H10-PM  
preliminary datasheet  
flowCON 0  
1200V / 75A  
Features  
flow0 housing  
Input rectifier  
Optionally with brake chopper  
Vincotech clip-in housing  
Target Applications  
Schematic  
Motor drives  
UPS  
Types  
V23990-P640-G10-PM with brake chopper  
V23990-P640-H10-PM without brake chopper  
Maximum Ratings  
Condition  
Parameter  
Symbol  
Value  
Unit  
Input Rectifier Diode  
Repetitive peak reverse voltage  
Forward current per diode  
Surge forward current  
VRRM  
IFAV  
Tj=Tjmax  
1600  
63  
V
A
A
Tj=Tjmax  
DC current  
Th=80°C  
Tj=45°C  
Th=80°C  
IFSM  
850  
3610  
67  
tp=10ms  
half sine wave  
I2t-value  
I2t  
A2s  
W
Ptot  
Tj=Tjmax  
Power dissipation per Diode  
Tjmax  
Maximum junction temperature  
150  
°C  
Input Rectifier Thyristor  
Repetitive peak reverse voltage  
Forward average current  
VRRM  
IFAV  
Tj=25ºC  
1600  
42  
V
A
A
Tj=Tjmax  
DC current  
Th=80°C  
Tj=130°C  
Th=80°C  
IFSM  
Surge forward current  
450  
1012  
49  
tp=10ms  
half sine wave  
I2t-value  
I2t  
A2s  
W
Ptot  
Tj=Tjmax  
Power dissipation per Thyristor  
Tjmax  
Maximum junction temperature  
130  
°C  
Copyright by Vincotech  
1
Revision: 1  
V23990-P640-G10/H10-PM  
preliminary datasheet  
Maximum Ratings  
Condition  
Parameter  
Symbol  
Value  
Unit  
Transistor BRC  
VCE  
IC  
Collector-emitter break down voltage  
DC collector current  
1200  
34  
V
A
Tj=Tjmax  
Th=80°C  
Th=80°C  
Icpuls  
Ptot  
VGE  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak collector current  
Power dissipation per IGBT  
Gate-emitter peak voltage  
Short circuit ratings*  
105  
65  
A
W
V
±20  
tSC  
Tj150°C  
10  
μs  
V
VCC  
VGE=15V  
1200  
Tjmax  
Maximum junction temperature  
150  
°C  
* It is recommended to not exceed 1000 short circuit situations in the lifetime of the module and to allow at least 1s between short circuits  
BRC inverse diode  
Peak Repetitive Reverse Voltage  
DC forward current  
VRRM  
IF  
IFRM  
Ptot  
1200  
6
V
A
Tj=Tjmax  
Th=80°C  
Th=80°C  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak forward current  
Power dissipation per Diode  
Maximum junction temperature  
6
A
19  
150  
W
°C  
Tjmax  
Diode BRC  
Peak Repetitive Reverse Voltage  
DC forward current  
VRRM  
IF  
IFRM  
Ptot  
1200  
23  
V
A
Tj=Tjmax  
Th=80°C  
Th=80°C  
tp limited by Tjmax  
Tj=Tjmax  
Repetitive peak forward current  
Power dissipation per Diode  
Maximum junction temperature  
50  
A
38  
W
°C  
Tjmax  
150  
Thermal properties  
Storage temperature  
Operation temperature  
Tstg  
Top  
-40...+125  
-40...+110  
°C  
°C  
Copyright by Vincotech  
2
Revision: 1  
V23990-P640-G10/H10-PM  
preliminary datasheet  
Maximum Ratings  
Condition  
Parameter  
Symbol  
Value  
Unit  
Insulation properties  
Insulation voltage  
Creepage distance  
Clearance  
Vis  
t=2 s  
4000  
V
min 12.7  
min 12.7  
mm  
mm  
Copyright by Vincotech  
3
Revision: 1  
V23990-P640-G10/H10-PM  
preliminary datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
Vr(V) or  
VGE(V) or  
IC(A) or IF(A)  
or ID(A)  
VCE(V) or  
T(°C)  
Min  
Max  
VGS(V)  
VDS(V)  
Input Rectifier Bridge  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=150°C  
1
1,17  
1,13  
0,91  
0,78  
3
1,5  
VF  
Vto  
rt  
Forward voltage  
75  
V
V
Threshold voltage (for power loss calc. only)  
Slope resistance (for power loss calc. only)  
Reverse leakage current  
m  
mA  
K/W  
5
0,5  
1,5  
Ir  
1500  
RthJH  
RthJC  
Thermal resistance chip to heatsink per chip  
Thermal resistance chip to case per chip  
Thermal grease  
thickness 50um λ=  
0.61W/mK  
1,04  
n.A.  
Input Rectifier Thyristor  
Forward voltage  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=130°C  
Tj=25°C  
Tj=130°C  
Tj=25°C  
Tj=130°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=130°C  
Tj=25°C  
Tj=115°C  
1
1,37  
1,45  
0,94  
0,86  
6
2
VF  
Vto  
75  
V
V
Threshold voltage (for power loss calc. only)  
Slope resistance (for power loss calc. only)  
Reverse current  
rt  
mΩ  
mA  
ms  
ms  
V/μs  
A/μs  
ms  
mA  
mA  
V
8
0,2  
Ir  
1
2
tGD  
Gate controlled delay time  
Gate controlled rise time  
Ig=1A dig/dt=1A/s  
Ig=1A dig/dt=1A/s  
1072  
1072  
tGR  
Critical rate of rise of off-state voltage  
Critical rate of rise of on-state current  
Circuit-commutated turn-off time  
Holding current  
(dv/dt)cr  
(di/dt)cr  
tq  
1000  
50  
150  
165  
330  
1,98  
100  
IH  
IL  
Latching current  
VGT  
IGT  
VGD  
IGD  
Gate trigger voltage  
Gate trigger current  
A
Gate non-trigger voltage  
V
0,25  
6
Gate non-trigger current  
A
RthJH  
RthJC  
Thermal resistance chip to heatsink per chip  
Thermal resistance chip to case per chip  
Thermal grease  
thickness 50um λ=  
0.61W/mK  
1,12  
n.A.  
K/W  
K/W  
Copyright by Vincotech  
4
Revision: 1  
V23990-P640-G10/H10-PM  
preliminary datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
Vr(V) or  
VGE(V) or  
IC(A) or IF(A)  
or ID(A)  
VCE(V) or  
T(°C)  
Min  
Max  
VGS(V)  
VDS(V)  
Transistor BRC  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
5
5,8  
6,5  
2,2  
VGE(th)  
VCE(sat)  
ICES  
IGES  
Rgint  
td(on)  
tr  
VCE=VGE  
Gate emitter threshold voltage  
Collector-emitter saturation voltage  
Collector-emitter cut-off  
Gate-emitter leakage current  
Integrated Gate resistor  
Turn-on delay time  
0,0015  
35  
V
V
1,3  
1,69  
1,88  
15  
0
0,25  
650  
1200  
0
mA  
nA  
20  
6
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
ns  
65  
26  
Rise time  
ns  
td(off)  
tf  
Turn-off delay time  
ns  
Rgon=32Ohm  
Rgoff=16Ohm  
673  
171  
3,34  
15  
600  
35  
Fall time  
ns  
Eon  
Turn-on energy loss per pulse  
Turn-off energy loss per pulse  
Input capacitance  
mWs  
mWs  
nF  
Eoff  
3,99  
2,53  
Cies  
Coss  
Crss  
QGate  
RthJH  
RthJC  
Output capacitance  
f=1MHz  
0
25  
Tj=25°C  
Tj=25°C  
0,132  
0,115  
203  
nF  
Reverse transfer capacitance  
Gate charge  
nF  
15  
960  
35  
nC  
K/W  
K/W  
Thermal resistance chip to heatsink per chip  
Thermal resistance chip to case per chip  
Thermal grease  
thickness 50um λ=  
0.61W/mK  
1,08  
n.A.  
BRC inverse diode  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
1
1,61  
1,56  
2,3  
Diode forward voltage  
VF  
Ir  
3
V
250  
Reverse leakage current  
1200  
uA  
Thermal resistance chip to heatsink per chip  
Thermal resistance chip to case per chip  
RthJH  
RthJC  
Thermal grease  
thickness 50um λ=  
0.61W/mK  
3,62  
n.A.  
K/W  
K/W  
Copyright by Vincotech  
5
Revision: 1  
V23990-P640-G10/H10-PM  
preliminary datasheet  
Characteristic Values  
Conditions  
Value  
Typ  
Parameter  
Symbol  
Unit  
Vr(V) or  
VGE(V) or  
IC(A) or IF(A)  
or ID(A)  
VCE(V) or  
T(°C)  
Min  
Max  
VGS(V)  
VDS(V)  
Diode BRC  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
Tj=25°C  
Tj=125°C  
1
1,7  
1,68  
2,4  
VF  
Ir  
Diode forward voltage  
35  
V
mA  
A
250  
Reverse leakage current  
1200  
600  
IRRM  
trr  
Peak reverse recovery current  
Reverse recovery time  
56,4  
279  
ns  
Rgon=32Ohm  
Rgoff=16Ohm  
Qrr  
Reverse recovered charge  
15  
35  
mC  
A/ms  
mWs  
K/W  
K/W  
5,15  
2460  
di(rec)max  
/dt  
Peak rate of fall of reverse recovery current  
Reverse recovery energy  
Erec  
RthJH  
RthJC  
1,94  
1,86  
Thermal resistance chip to heatsink per chip  
Thermal resistance chip to case per chip  
Thermal grease  
thickness 50um λ=  
0.61W/mK  
n.A.  
Copyright by Vincotech  
6
Revision: 1  
V23990-P640-G10/H10-PM  
preliminary datasheet  
Brake  
Figure 1  
Brake IGBT  
Figure 2  
Typical output characteristics  
Brake IGBT  
Typical output characteristics  
IC = f(VCE  
)
IC = f(VCE)  
100  
100  
80  
60  
40  
20  
80  
60  
40  
20  
0
0
0
0
VCE (V)  
VCE (V)  
1
2
3
4
5
1
2
3
4
5
At  
At  
tp =  
Tj =  
tp =  
Tj =  
250  
25  
μs  
°C  
250  
125  
μs  
°C  
VGE from 7 V to 17 V in steps of 1 V  
VGE from 7 V to 17 V in steps of 1 V  
Figure 3  
Brake IGBT  
Figure 4  
Brake FRED  
Typical transfer characteristics  
Typical diode forward current as  
a function of forward voltage  
IF = f(VF)  
IC = f(VGE  
)
40  
32  
24  
40  
32  
24  
16  
8
125 o C  
25 o C  
125 o C  
25 o C  
16  
8
0
0
0
VGE (V)  
VF (V)  
2
4
6
8
10  
12  
0
0,5  
1
1,5  
2
2,5  
At  
At  
tp =  
tp =  
250  
10  
μs  
250  
μs  
VCE  
=
V
Copyright by Vincotech  
7
Revision: 1  
V23990-P640-G10/H10-PM  
preliminary datasheet  
Brake  
Figure 5  
Brake IGBT  
Figure 6  
Brake IGBT  
Typical switching energy losses  
as a function of collector current  
E = f(IC)  
Typical switching energy losses  
as a function of gate resistor  
E = f(RG)  
10  
10  
Eon  
8
6
8
Eoff  
6
Eon  
Eoff  
4
4
Erec  
2
0
2
Erec  
0
R G ( Ω )  
150  
0
30  
60  
90  
120  
0
10  
20  
30  
40  
50  
60  
70  
I C (A)  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
125  
600  
15  
°C  
V
125  
600  
15  
°C  
V
=
=
=
=
V
V
Rgon  
Rgoff  
=
=
IC =  
32  
35  
A
16  
Figure 7  
Brake IGBT  
Figure 8  
Brake IGBT  
Typical switching times as a  
function of collector current  
t = f(IC)  
Typical switching times as a  
function of gate resistor  
t = f(RG)  
10  
10  
tdoff  
tdoff  
1
1
tdon  
tf  
tf  
0,1  
0,1  
tdon  
tr  
tr  
0,01  
0,01  
0,001  
0,001  
0
30  
60  
90  
120  
R G ( Ω ) 150  
0
10  
20  
30  
40  
50  
60  
70  
IC (A)  
With an inductive load at  
With an inductive load at  
Tj =  
VCE  
VGE  
Tj =  
VCE  
VGE  
125  
600  
15  
°C  
V
125  
600  
15  
°C  
V
=
=
=
=
V
V
Rgon  
Rgoff  
=
=
IC =  
32  
35  
A
16  
Copyright by Vincotech  
8
Revision: 1  
V23990-P640-G10/H10-PM  
preliminary datasheet  
Brake  
Figure 9  
Figure 10  
IGBT transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
FRED transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
101  
101  
100  
100  
D = 0,5  
0,2  
D = 0,5  
0,2  
10-1  
10-1  
0,1  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
0,05  
0,02  
0,01  
0,005  
0.000  
10-2  
10-2  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
1
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
1
t p (s)  
t p (s)  
With  
With  
D =  
tp / T  
1,08  
D =  
tp / T  
1,86  
RthJH  
=
RthJH =  
K/W  
K/W  
Copyright by Vincotech  
9
Revision: 1  
V23990-P640-G10/H10-PM  
preliminary datasheet  
Brake  
Figure 11  
Brake IGBT  
Figure 12  
Collector current as a  
Brake IGBT  
Power dissipation as a  
function of heatsink temperature  
Ptot = f(Th)  
function of heatsink temperature  
IC = f(Th)  
150  
125  
100  
75  
40  
35  
30  
25  
20  
15  
10  
5
50  
25  
0
0
(
o C)  
Th  
(
o C)  
0
50  
100  
150  
200  
Th  
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
VGE  
150  
ºC  
150  
15  
ºC  
V
=
Figure 13  
Power dissipation as a  
Brake FRED  
Figure 14  
Forward current as a  
Brake FRED  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
90  
75  
60  
45  
30  
15  
0
30  
25  
20  
15  
10  
5
0
(
o C)  
Th  
(
o C)  
0
50  
100  
150  
200  
Th  
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
150  
ºC  
150  
ºC  
Copyright by Vincotech  
10  
Revision: 1  
V23990-P640-G10/H10-PM  
preliminary datasheet  
Brake Inverse Diode  
Figure 1  
Brake inverse diode  
Figure 2  
Brake inverse diode  
Typical diode forward current as  
a function of forward voltage  
IF = f(VF)  
Diode transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
101  
100  
10-1  
10-2  
14  
12  
10  
8
25°C  
125°C  
D = 0,5  
0,2  
6
0,1  
4
0,05  
0,02  
0,01  
0,005  
0.000  
2
0
VF (V)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
0
0,5  
1
1,5  
2
2,5  
3
t p (s)  
At  
With  
D =  
tp =  
250  
μs  
tp / T  
3,62  
RthJH  
=
K/W  
Figure 3  
Power dissipation as a  
Brake inverse diode  
Figure 4  
Forward current as a  
Brake inverse diode  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
12  
50  
40  
30  
20  
10  
0
10  
8
6
4
2
0
(
o C)  
Th  
(
o C)  
0
50  
100  
150  
200  
Th  
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
150  
ºC  
150  
ºC  
Copyright by Vincotech  
11  
Revision: 1  
V23990-P640-G10/H10-PM  
preliminary datasheet  
Input Rectifier Bridge  
Figure 1  
Rectifier diode  
Figure 2  
Rectifier diode  
Typical diode forward current as  
a function of forward voltage  
IF= f(VF)  
Diode transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
101  
100  
10-1  
10-2  
250  
200  
150  
100  
50  
25°C  
125°C  
D = 0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
0
VF (V)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
0
0,4  
0,8  
1,2  
1,6  
2
t p (s)  
At  
With  
D =  
tp =  
250  
μs  
tp / T  
1,04  
RthJH  
=
K/W  
Figure 3  
Power dissipation as a  
Rectifier diode  
Figure 4  
Forward current as a  
Rectifier diode  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
90  
75  
60  
45  
30  
15  
0
150  
120  
90  
60  
30  
0
o C)  
0
50  
100  
150  
200  
Th  
(
o C)  
Th  
(
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
150  
ºC  
150  
ºC  
Copyright by Vincotech  
12  
Revision: 1  
V23990-P640-G10/H10-PM  
preliminary datasheet  
Thyristor  
Figure 1  
Thyristor  
Figure 2  
Thyristor  
Typical thyristor forward current as  
a function of forward voltage  
IF= f(VF)  
Thyristor transient thermal impedance  
as a function of pulse width  
ZthJH = f(tp)  
101  
100  
10-1  
10-2  
240  
200  
160  
120  
80  
25°C  
125°C  
D = 0,5  
0,2  
0,1  
0,05  
0,02  
0,01  
0,005  
0.000  
40  
0
VF (V)  
3
0
0,5  
1
1,5  
2
2,5  
t p (s)  
10-5  
10-4  
10-3  
10-2  
10-1  
100  
101  
At  
With  
D =  
tp =  
250  
μs  
tp / T  
1,12  
RthJH  
=
K/W  
Figure 3  
Power dissipation as a  
Thyristor  
Figure 4  
Forward current as a  
Thyristor  
function of heatsink temperature  
function of heatsink temperature  
Ptot = f(Th)  
IF = f(Th)  
100  
75  
50  
25  
0
150  
125  
100  
75  
50  
25  
0
Th  
(
o C)  
Th (  
o C)  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
At  
At  
Tj =  
Tj =  
135  
ºC  
135  
ºC  
Copyright by Vincotech  
13  
Revision: 1  
V23990-P640-G10/H10-PM  
preliminary datasheet  
Thyristor  
Figure 5  
Thyristor  
Gate trigger characteristics  
102  
100W  
(0,5ms)  
20V;20 Ohm  
150W  
(0,1ms)  
101  
VGT  
50W  
(8ms)  
BSZ  
PG(tp)  
100  
TJ=- 40oC  
TJ=25oC  
TJ=130oC  
0
)
VGD(130  
IGT  
0
)
IGD(130  
10-1  
10-3  
10-2  
10-1  
100  
101  
102  
IG(A)  
Copyright by Vincotech  
14  
Revision: 1  
V23990-P640-G10/H10-PM  
preliminary datasheet  
Package Outline and Pinout  
Outline  
Pinout  
Copyright by Vincotech  
15  
Revision: 1  
V23990-P640-G10/H10-PM  
preliminary datasheet  
PRODUCT STATUS DEFINITIONS  
Datasheet Status  
Product Status  
Definition  
This datasheet contains the design specifications for  
product development. Specifications may change in any  
manner without notice. The data contained is exclusively  
intended for technically trained staff.  
Target  
Formative or In Design  
First Production  
This datasheet contains preliminary data, and  
supplementary data may be published at a later date.  
Vincotech reserves the right to make changes at any time  
without notice in order to improve design. The data  
contained is exclusively intended for technically trained  
staff.  
Preliminary  
This datasheet contains final specifications. Vincotech  
reserves the right to make changes at any time without  
notice in order to improve design. The data contained is  
exclusively intended for technically trained staff.  
Final  
Full Production  
DISCLAIMER  
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested  
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve  
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit  
described herein; neither does it convey any license under its patent rights, nor the rights of others.  
LIFE SUPPORT POLICY  
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written  
approval of Vincotech.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or  
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be  
reasonably expected to result in significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to  
cause the failure of the life support device or system, or to affect its safety or effectiveness.  
Copyright by Vincotech  
16  
Revision: 1  

相关型号:

V23990-P649-G-PM

Optionally with brake chopper
VINCOTECH

V23990-P649-G10-PM

Optionally with brake chopper
VINCOTECH

V23990-P649-H-PM

Optionally with brake chopper
VINCOTECH

V23990-P649-H09-PM

High inrush current capability
VINCOTECH

V23990-P649-H10-PM

Optionally with brake chopper
VINCOTECH

V23990-P689-F-PM

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

V23990-P700-F

power flow through for simple PCB routing
VINCOTECH

V23990-P700-F40-PM

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

V23990-P700-F44-PM

Easy paralleling;Low turn-off losses;Low collector emitter saturation voltage;Positive temperature coefficient;Short tail current
VINCOTECH

V23990-P704-F

power flow through for simple PCB routing
VINCOTECH

V23990-P704-F-PM

Low gate charge;Low collector emitter saturation voltage
VINCOTECH

V23990-P705-F

power flow through for simple PCB routing
VINCOTECH