SI7820DN-T1-GE3 [VISHAY]

Trans MOSFET N-CH 200V 1.7A 8-Pin PowerPAK 1212 T/R;
SI7820DN-T1-GE3
型号: SI7820DN-T1-GE3
厂家: VISHAY    VISHAY
描述:

Trans MOSFET N-CH 200V 1.7A 8-Pin PowerPAK 1212 T/R

开关 脉冲 晶体管
文件: 总12页 (文件大小:533K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si7820DN  
Vishay Siliconix  
N-Channel 200 V (D-S) MOSFET  
FEATURES  
PRODUCT SUMMARY  
Halogen-free According to IEC 61249-2-21  
VDS (V)  
RDS(on) ()  
ID (A)  
2.6  
Qg (Typ.)  
Definition  
0.240 at VGS = 10 V  
0.250 at VGS = 6 V  
PWM-Optimized TrenchFET® Power MOSFET  
100 % Rg Tested  
Avalanche Tested  
Compliant to RoHS Directive 2002/95/EC  
200  
12.1  
2.5  
PowerPAK® 1212-8  
APPLICATIONS  
Primary Side Switch  
- Telecom Power Supplies  
- Distributed Power Architectures  
- Miniature Power Modules  
S
3.30 mm  
3.30 mm  
1
D
S
2
S
3
G
4
D
8
D
7
G
D
6
D
5
Bottom View  
S
Ordering Information: Si7820DN-T1-E3 (Lead (Pb)-free)  
Si7820DN-T1-GE3 (Lead (Pb)-free and Halogen-free)  
N-Channel MOSFET  
ABSOLUTE MAXIMUM RATINGS (T = 25 °C, unless otherwise noted)  
A
Parameter  
Symbol  
10 s  
Steady State  
Unit  
VDS  
Drain-Source Voltage  
Gate-Source Voltage  
200  
20  
V
VGS  
TA = 25 °C  
TA = 70 °C  
2.6  
2.1  
1.7  
1.3  
Continuous Drain Current (TJ = 150 °C)a  
ID  
IDM  
IS  
Pulsed Drain Current  
10  
A
Continuous Source Current (Diode Conduction)a  
Single Avalanche Current  
3.2  
1.3  
IAS  
EAS  
3.5  
0.6  
L = 0 1 mH  
Single Avalanche Energy  
mJ  
W
TA = 25 °C  
TA = 70 °C  
3.8  
2.0  
1.5  
0.8  
Maximum Power Dissipationa  
PD  
TJ, Tstg  
Operating Junction and Storage Temperature Range  
Soldering Recommendations (Peak Temperature)b, c  
- 55 to 150  
260  
°C  
THERMAL RESISTANCE RATINGS  
Parameter  
Symbol  
Typical  
26  
Maximum  
Unit  
t 10 s  
33  
81  
Maximum Junction-to-Ambienta  
RthJA  
Steady State  
Steady State  
65  
°C/W  
RthJC  
Maximum Junction-to-Case (Drain)  
1.9  
2.4  
Notes:  
a. Surface mounted on 1" x 1" FR4 board.  
b. See solder profile (www.vishay.com/ppg?73257). The PowerPAK 1212-8 is a leadless package. The end of the lead terminal is exposed cop-  
per (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is  
not required to ensure adequate bottom side solder interconnection.  
c. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.  
Document Number: 72581  
S10-2136-Rev. E, 20-Sep-10  
www.vishay.com  
1
Si7820DN  
Vishay Siliconix  
MOSFET SPECIFICATIONS (T = 25 °C, unless otherwise noted)  
J
Parameter  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
Static  
VGS(th)  
IGSS  
VDS = VGS, ID = 250 µA  
Gate Threshold Voltage  
Gate-Body Leakage  
2
4
V
VDS = 0 V, VGS  
=
20 V  
100  
1
nA  
VDS = 200 V, VGS = 0 V  
DS = 200 V, VGS = 0 V, TJ = 55 °C  
VDS 5 V, VGS = 10 V  
VGS = 10 V, ID = 2.6 A  
VGS = 6 V, ID = 2.5 A  
IDSS  
ID(on)  
Zero Gate Voltage Drain Current  
µA  
A
V
5
On-State Drain Currenta  
10  
0.200  
0.210  
8
0.240  
0.250  
Drain-Source On-State Resistancea  
RDS(on)  
Forward Transconductancea  
Diode Forward Voltagea  
Dynamicb  
gfs  
VDS = 15 V, ID = 2.6 A  
IS = 3.2 A, VGS = 0 V  
S
V
VSD  
0.78  
1.2  
18  
Qg  
Qgs  
Qgd  
Rg  
Total Gate Charge  
12.1  
2.5  
4.1  
2.3  
11  
VDS = 100 V, VGS = 10 V, ID = 2.6 A  
f = 1 MHz  
Gate-Source Charge  
Gate-Drain Charge  
Gate Resistance  
nC  
0.5  
3.9  
20  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
Rise Time  
12  
20  
V
DD = 100 V, RL = 100   
ID 1 A, VGEN = 10 V, Rg = 6   
Turn-Off Delay Time  
Fall Time  
30  
45  
ns  
17  
30  
trr  
IF = 3.2 A, dI/dt = 100 A/µs  
Source-Drain Reverse Recovery Time  
65  
100  
Notes:  
a. Pulse test; pulse width 300 µs, duty cycle 2 %.  
b. Guaranteed by design, not subject to production testing.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation  
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)  
10  
8
10  
V
GS  
= 10 V thru 6 V  
5 V  
8
6
6
4
4
T
= 125 °C  
25 °C  
C
2
2
4 V  
- 55 °C  
5
0
0
0
1
2
3
4
6
0
1
2
3
4
5
V
- Gate-to-Source Voltage (V)  
V
- Drain-to-Source Voltage (V)  
GS  
DS  
Output Characteristics  
Transfer Characteristics  
www.vishay.com  
2
Document Number: 72581  
S10-2136-Rev. E, 20-Sep-10  
Si7820DN  
Vishay Siliconix  
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)  
0.35  
800  
700  
600  
500  
400  
300  
200  
100  
0
0.28  
C
iss  
V
= 6 V  
GS  
0.21  
0.14  
0.07  
0.00  
V
= 10 V  
GS  
C
oss  
C
rss  
0
20  
40  
60  
80  
0
2
4
6
8
10  
V
DS  
- Drain-to-Source Voltage (V)  
I
D
- Drain Current (A)  
On-Resistance vs. Drain Current  
Capacitance  
2.4  
10  
8
V
I
= 100 V  
DS  
D
V
D
= 10 V  
= 2.6 A  
GS  
I
= 2.6 A  
2.0  
1.6  
1.2  
0.8  
0.4  
6
4
2
0
- 50 - 25  
0
25  
50  
75  
100 125 150  
0
2
4
6
8
10  
12  
T - Junction Temperature (°C)  
J
Q
- Total Gate Charge (nC)  
g
Gate Charge  
On-Resistance vs. Junction Temperature  
10  
0.8  
0.6  
0.4  
0.2  
0.0  
T
= 150 °C  
J
I
D
= 2.6 A  
T
= 25 °C  
J
1
0.0  
0
2
4
6
8
10  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
V
SD  
- Source-to-Drain Voltage (V)  
V
GS  
- Gate-to-Source Voltage (V)  
Source-Drain Diode Forward Voltage  
On-Resistance vs. Gate-to-Source Voltage  
Document Number: 72581  
S10-2136-Rev. E, 20-Sep-10  
www.vishay.com  
3
Si7820DN  
Vishay Siliconix  
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)  
0.6  
50  
40  
30  
0.4  
I
D
= 250 µA  
0.2  
0.0  
- 0.2  
- 0.4  
- 0.6  
- 0.8  
- 1.0  
- 1.2  
20  
10  
0
- 50 - 25  
0
25  
50  
75  
100 125 150  
0.01  
0.1  
1
10  
100  
600  
T
- Temperature (°C)  
J
Time (s)  
Threshold Voltage  
Single Pulse Power, Junction-to-Ambient  
1000  
I
Limited  
DM  
*
Limited by R  
DS(on)  
10  
P(t) = 0.0001  
1
P(t) = 0.001  
P(t) = 0.01  
P(t) = 0.1  
I
D(on)  
Limited  
0.1  
P(t) = 1  
P(t) = 10  
DC  
T
= 25 °C  
A
Single Pulse  
0.01  
BVDSS Limited  
10  
0.001  
0.1  
1
100  
1000  
V
- Drain-to-Source Voltage (V)  
DS  
* V > minimum V  
at which R  
is specified  
GS  
GS  
DS(on)  
Safe Operating Area  
2
1
Duty Cycle = 0.5  
0.2  
0.1  
0.05  
Notes:  
P
DM  
0.1  
t
1
t
2
t
t
1
2
1. Duty Cycle, D =  
0.02  
2. Per Unit Base = R  
= 65 °C/W  
thJA  
(t)  
3. T  
- T = P  
Z
JM  
A
DM thJA  
Single Pulse  
4. Surface Mounted  
0.01  
-4  
-3  
-2  
-1  
10  
10  
10  
10  
1
10  
100  
600  
Square Wave Pulse Duration (s)  
Normalized Thermal Transient Impedance, Junction-to-Ambient  
www.vishay.com  
4
Document Number: 72581  
S10-2136-Rev. E, 20-Sep-10  
Si7820DN  
Vishay Siliconix  
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)  
2
1
Duty Cycle = 0.5  
0.2  
0.1  
0.1  
Single Pulse  
0.05  
0.02  
0.01  
-4  
-3  
-2  
-1  
10  
10  
10  
Square Wave Pulse Duration (s)  
Normalized Thermal Transient Impedance, Junction-to-Case  
10  
1
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon  
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and  
reliability data, see www.vishay.com/ppg?72581.  
Document Number: 72581  
S10-2136-Rev. E, 20-Sep-10  
www.vishay.com  
5
Package Information  
www.vishay.com  
Vishay Siliconix  
PowerPAK® 1212-8, (Single / Dual)  
L
H
E2  
E4  
K
W
8
5
1
4
1
2
3
4
Z
2
L1  
E3  
Backside view of single pad  
A1  
L
H
K
E2  
E4  
H
2
E1  
E
1
2
3
4
Detail Z  
D1  
D2  
Notes  
1. Inch will govern  
2 Dimensions exclusive of mold gate burrs  
3. Dimensions exclusive of mold flash and cutting burrs  
E3  
Backside view of dual pad  
MILLIMETERS  
INCHES  
NOM.  
0.041  
-
DIM.  
MIN.  
0.97  
0.00  
0.23  
0.23  
3.20  
2.95  
1.98  
0.48  
NOM.  
1.04  
MAX.  
1.12  
0.05  
0.41  
0.33  
3.40  
3.15  
2.24  
0.89  
MIN.  
MAX.  
0.044  
0.002  
0.016  
0.013  
0.134  
0.124  
0.088  
0.035  
A
A1  
b
0.038  
0.000  
0.009  
0.009  
0.126  
0.116  
0.078  
0.019  
-
0.30  
0.012  
0.011  
0.130  
0.120  
0.083  
-
c
0.28  
D
3.30  
D1  
D2  
D3  
D4  
D5  
E
3.05  
2.11  
-
0.47 typ.  
2.3 typ.  
3.30  
0.0185 typ  
0.090 typ  
0.130  
0.120  
0.063  
0.073  
0.013 typ.  
0.026 BSC  
0.034 typ.  
-
3.20  
2.95  
1.47  
1.75  
3.40  
3.15  
1.73  
1.98  
0.126  
0.116  
0.058  
0.069  
0.134  
0.124  
0.068  
0.078  
E1  
E2  
E3  
E4  
e
3.05  
1.60  
1.85  
0.034 typ.  
0.65 BSC  
0.86 typ.  
-
K
K1  
H
0.35  
0.30  
0.30  
0.06  
0°  
-
0.014  
0.012  
0.012  
0.002  
0°  
-
0.41  
0.51  
0.56  
0.20  
12°  
0.016  
0.017  
0.005  
-
0.020  
0.022  
0.008  
12°  
L
0.43  
L1  
0.13  
-
W
M
0.15  
0.25  
0.36  
0.006  
0.010  
0.005 typ.  
0.014  
0.125 typ.  
ECN: S16-2667-Rev. M, 09-Jan-17  
DWG: 5882  
Revison: 09-Jan-17  
Document Number: 71656  
1
For technical questions, contact: pmostechsupport@vishay.com  
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT  
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000  
AN822  
Vishay Siliconix  
®
PowerPAK 1212 Mounting and Thermal Considerations  
Johnson Zhao  
MOSFETs for switching applications are now available  
The PowerPAK 1212-8 has a footprint area compara-  
ble to TSOP-6. It is over 40 % smaller than standard  
TSSOP-8. Its die capacity is more than twice the size  
of the standard TSOP-6’s. It has thermal performance  
an order of magnitude better than the SO-8, and 20  
times better than TSSOP-8. Its thermal performance is  
better than all current SMT packages in the market. It  
will take the advantage of any PC board heat sink  
capability. Bringing the junction temperature down also  
increases the die efficiency by around 20 % compared  
with TSSOP-8. For applications where bigger pack-  
ages are typically required solely for thermal consider-  
ation, the PowerPAK 1212-8 is a good option.  
with die on resistances around 1 mΩ and with the  
capability to handle 85 A. While these die capabilities  
represent a major advance over what was available  
just a few years ago, it is important for power MOSFET  
packaging technology to keep pace. It should be obvi-  
ous that degradation of a high performance die by the  
package is undesirable. PowerPAK is a new package  
technology that addresses these issues. The PowerPAK  
1212-8 provides ultra-low thermal impedance in a  
small package that is ideal for space-constrained  
applications. In this application note, the PowerPAK  
1212-8’s construction is described. Following this,  
mounting information is presented. Finally, thermal  
and electrical performance is discussed.  
Both the single and dual PowerPAK 1212-8 utilize the  
same pin-outs as the single and dual PowerPAK SO-8.  
The low 1.05 mm PowerPAK height profile makes both  
versions an excellent choice for applications with  
space constraints.  
THE PowerPAK PACKAGE  
The PowerPAK 1212-8 package (Figure 1) is a deriva-  
tive of PowerPAK SO-8. It utilizes the same packaging  
technology, maximizing the die area. The bottom of the  
die attach pad is exposed to provide a direct, low resis-  
tance thermal path to the substrate the device is  
mounted on. The PowerPAK 1212-8 thus translates  
the benefits of the PowerPAK SO-8 into a smaller  
package, with the same level of thermal performance.  
PowerPAK 1212 SINGLE MOUNTING  
To take the advantage of the single PowerPAK 1212-8’s  
thermal performance see Application Note 826,  
Recommended Minimum Pad Patterns With Outline  
Drawing Access for Vishay Siliconix MOSFETs. Click  
on the PowerPAK 1212-8 single in the index of this  
document.  
(Please refer to application note “PowerPAK SO-8  
Mounting and Thermal Considerations.”)  
In this figure, the drain land pattern is given to make full  
contact to the drain pad on the PowerPAK package.  
This land pattern can be extended to the left, right, and  
top of the drawn pattern. This extension will serve to  
increase the heat dissipation by decreasing the ther-  
mal resistance from the foot of the PowerPAK to the  
PC board and therefore to the ambient. Note that  
increasing the drain land area beyond a certain point  
will yield little decrease in foot-to-board and foot-to-  
ambient thermal resistance. Under specific conditions  
of board configuration, copper weight, and layer stack,  
experiments have found that adding copper beyond an  
2
area of about 0.3 to 0.5 in of will yield little improve-  
ment in thermal performance.  
Figure 1. PowerPAK 1212 Devices  
Document Number 71681  
03-Mar-06  
www.vishay.com  
1
AN822  
Vishay Siliconix  
PowerPAK 1212 DUAL  
To take the advantage of the dual PowerPAK 1212-8’s  
thermal performance, the minimum recommended  
land pattern can be found in Application Note 826,  
Recommended Minimum Pad Patterns With Outline  
Drawing Access for Vishay Siliconix MOSFETs. Click  
on the PowerPAK 1212-8 dual in the index of this doc-  
ument.  
ture profile used, and the temperatures and time  
duration, are shown in Figures 2 and 3. For the lead  
(Pb)-free solder profile, see http://www.vishay.com/  
doc?73257.  
The gap between the two drain pads is 10 mils. This  
matches the spacing of the two drain pads on the Pow-  
erPAK 1212-8 dual package.  
This land pattern can be extended to the left, right, and  
top of the drawn pattern. This extension will serve to  
increase the heat dissipation by decreasing the ther-  
mal resistance from the foot of the PowerPAK to the  
PC board and therefore to the ambient. Note that  
increasing the drain land area beyond a certain point  
will yield little decrease in foot-to-board and foot-to-  
ambient thermal resistance. Under specific conditions  
of board configuration, copper weight, and layer stack,  
experiments have found that adding copper beyond an  
area of about 0.3 to 0.5 in of will yield little improve-  
Ramp-Up Rate  
+ 6 °C /Second Maximum  
2
Temperature at 155 15 °C  
Temperature Above 180 °C  
Maximum Temperature  
Time at Maximum Temperature  
Ramp-Down Rate  
120 Seconds Maximum  
ment in thermal performance.  
70 - 180 Seconds  
240 + 5/- 0 °C  
20 - 40 Seconds  
REFLOW SOLDERING  
+ 6 °C/Second Maximum  
Vishay Siliconix surface-mount packages meet solder  
reflow reliability requirements. Devices are subjected  
to solder reflow as a preconditioning test and are then  
reliability-tested using temperature cycle, bias humid-  
ity, HAST, or pressure pot. The solder reflow tempera-  
Figure 2. Solder Reflow Temperature Profile  
10 s (max)  
210 - 220 °C  
3 °C/s (max)  
4 °C/s (max)  
183 °C  
140 - 170 °C  
50 s (max)  
3° C/s (max)  
60 s (min)  
Reflow Zone  
Pre-Heating Zone  
Maximum peak temperature at 240 °C is allowed.  
Figure 3. Solder Reflow Temperatures and Time Durations  
www.vishay.com  
2
Document Number 71681  
03-Mar-06  
AN822  
Vishay Siliconix  
TABLE 1: EQIVALENT STEADY STATE PERFORMANCE  
Package  
SO-8  
Single  
20  
TSSOP-8  
TSOP-8  
PPAK 1212  
PPAK SO-8  
Single Dual  
1.8 5.5  
Configuration  
Dual  
Single  
Dual  
Single  
40  
Dual  
Single  
Dual  
40  
52  
83  
90  
2.4  
5.5  
Thermal Resiatance RthJC(C/W)  
PowerPAK 1212  
49.8 °C  
Standard SO-8  
Standard TSSOP-8  
TSOP-6  
85 °C  
149 °C  
125 °C  
2.4 °C/W  
20 °C/W  
52 °C/W  
40 °C/W  
PC Board at 45 °C  
Figure 4. Temperature of Devices on a PC Board  
THERMAL PERFORMANCE  
Introduction  
Spreading Copper  
A basic measure of a device’s thermal performance is Designers add additional copper, spreading copper, to  
the junction-to-case thermal resistance, Rθjc, or the the drain pad to aid in conducting heat from a device. It  
junction to- foot thermal resistance, Rθjf. This parameter is helpful to have some information about the thermal  
is measured for the device mounted to an infinite heat performance for a given area of spreading copper.  
sink and is therefore a characterization of the device  
only, in other words, independent of the properties of the  
object to which the device is mounted. Table 1 shows a  
comparison of the PowerPAK 1212-8, PowerPAK SO-8,  
standard TSSOP-8 and SO-8 equivalent steady state  
performance.  
Figure 5 and Figure 6 show the thermal resistance of a  
PowerPAK 1212-8 single and dual devices mounted on  
a 2-in. x 2-in., four-layer FR-4 PC boards. The two inter-  
nal layers and the backside layer are solid copper. The  
internal layers were chosen as solid copper to model the  
large power and ground planes common in many appli-  
By minimizing the junction-to-foot thermal resistance, the cations. The top layer was cut back to a smaller area and  
MOSFET die temperature is very close to the tempera- at each step junction-to-ambient thermal resistance  
ture of the PC board. Consider four devices mounted on measurements were taken. The results indicate that an  
a PC board with a board temperature of 45 °C (Figure 4)  
.
area above 0.2 to 0.3 square inches of spreading copper  
gives no additional thermal performance improvement.  
A subsequent experiment was run where the copper on  
the back-side was reduced, first to 50 % in stripes to  
mimic circuit traces, and then totally removed. No signif-  
icant effect was observed.  
Suppose each device is dissipating 2 W. Using the junc-  
tion-to-foot thermal resistance characteristics of the  
PowerPAK 1212-8 and the other SMT packages, die  
temperatures are determined to be 49.8 °C for the Pow-  
erPAK 1212-8, 85 °C for the standard SO-8, 149 °C for  
standard TSSOP-8, and 125 °C for TSOP-6. This is a  
4.8 °C rise above the board temperature for the Power-  
PAK 1212-8, and over 40 °C for other SMT packages. A  
4.8 °C rise has minimal effect on r  
whereas a rise  
DS(ON)  
of over 40 °C will cause an increase in r  
as 20 %.  
as high  
DS(ON)  
Document Number 71681  
03-Mar-06  
www.vishay.com  
3
AN822  
Vishay Siliconix  
130  
120  
110  
100  
90  
105  
Spreading Copper (sq. in.)  
Spreading Copper (sq. in.)  
95  
85  
75  
65  
55  
45  
80  
50 %  
100 %  
70  
100 %  
0 %  
60  
50 %  
0 %  
50  
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00  
Figure 6. Spreading Copper - Junction-to-Ambient Performance  
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00  
Figure 5. Spreading Copper - Si7401DN  
CONCLUSIONS  
As a derivative of the PowerPAK SO-8, the PowerPAK The PowerPAK 1212-8 combines small size with attrac-  
1212-8 uses the same packaging technology and has tive thermal characteristics. By minimizing the thermal  
been shown to have the same level of thermal perfor- rise above the board temperature, PowerPAK simplifies  
mance while having a footprint that is more than 40 % thermal design considerations, allows the device to run  
smaller than the standard TSSOP-8.  
cooler, keeps r  
low, and permits the device to  
DS(ON)  
handle more current than a same- or larger-size MOS-  
FET die in the standard TSSOP-8 or SO-8 packages.  
Recommended PowerPAK 1212-8 land patterns are  
provided to aid in PC board layout for designs using this  
new package.  
www.vishay.com  
4
Document Number 71681  
03-Mar-06  
Application Note 826  
Vishay Siliconix  
RECOMMENDED MINIMUM PADS FOR PowerPAK® 1212-8 Single  
0.152  
(3.860)  
0.039  
0.068  
0.010  
(0.255)  
(0.990)  
(1.725)  
0.016  
(0.405)  
0.026  
(0.660)  
0.025  
0.030  
(0.635)  
(0.760)  
Recommended Minimum Pads  
Dimensions in Inches/(mm)  
Return to Index  
Document Number: 72597  
Revision: 21-Jan-08  
www.vishay.com  
7
Legal Disclaimer Notice  
www.vishay.com  
Vishay  
Disclaimer  
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE  
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,  
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other  
disclosure relating to any product.  
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or  
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all  
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,  
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular  
purpose, non-infringement and merchantability.  
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of  
typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding  
statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a  
particular product with the properties described in the product specification is suitable for use in a particular application.  
Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over  
time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s  
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,  
including but not limited to the warranty expressed therein.  
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining  
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.  
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk.  
Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for  
such applications.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document  
or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.  
© 2017 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED  
Revision: 08-Feb-17  
Document Number: 91000  
1

相关型号:

SI7824

3-Terminal Positive Voltage Regulator
SECOS

SI7840BDP

Si7840BDP vs. Si7840DP Specification Comparison
VISHAY

SI7840BDP-T1-GE3

Power Field-Effect Transistor, 11A I(D), 30V, 0.0085ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, HALOGEN FREE AND ROHS COMPLIANT, PLASTIC, POWERPAK, SOP-8
VISHAY

SI7840DP

N-Channel 30-V (D-S) Fast Switching MOSFET
VISHAY

SI7840DP-T1

Power Field-Effect Transistor, 11A I(D), 30V, 0.0095ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, POWERPAK, SOP-8
VISHAY

SI7842DP

Dual N-Channel 30-V (D-S) MOSFET with Schottky Diode
VISHAY

SI7842DP-E3

TRANSISTOR 6.3 A, 30 V, 0.022 ohm, N-CHANNEL, Si, POWER, MOSFET, POWERPAK, SO-8, FET General Purpose Power
VISHAY

SI7842DP-T1-E3

Trans MOSFET N-CH 30V 6.3A 8-Pin PowerPAK SO T/R
VISHAY

SI7842DP-T1-GE3

Trans MOSFET N-CH 30V 6.3A 8-Pin PowerPAK SO T/R
VISHAY

SI7844DP

Dual N-Channel 30-V (D-S) MOSFET
VISHAY

SI7844DP-T1-E3

Trans MOSFET N-CH 30V 6.4A 8-Pin PowerPAK SO T/R
VISHAY

SI7844DP-T1-GE3

Trans MOSFET N-CH 30V 6.4A 8-Pin PowerPAK SO T/R
VISHAY