SI9961CY

更新时间:2024-12-03 13:10:08
品牌:VISHAY
描述:Motion Control Electronic, BCDMOS, PDSO24,

SI9961CY 概述

Motion Control Electronic, BCDMOS, PDSO24, 运动控制电子器件

SI9961CY 规格参数

是否无铅: 含铅是否Rohs认证: 不符合
生命周期:Transferred零件包装代码:SOIC
包装说明:SOP, SOP24,.4针数:24
Reach Compliance Code:unknown风险等级:5.71
JESD-30 代码:R-PDSO-G24JESD-609代码:e0
端子数量:24最高工作温度:70 °C
最低工作温度:封装主体材料:PLASTIC/EPOXY
封装代码:SOP封装等效代码:SOP24,.4
封装形状:RECTANGULAR封装形式:SMALL OUTLINE
电源:5,11.6,12 V认证状态:Not Qualified
子类别:Motion Control Electronics表面贴装:YES
技术:BCDMOS温度等级:COMMERCIAL
端子面层:Tin/Lead (Sn/Pb)端子形式:GULL WING
端子节距:1.27 mm端子位置:DUAL
Base Number Matches:1

SI9961CY 数据手册

通过下载SI9961CY数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
Si9961  
Vishay Siliconix  
12-V Voice Coil Motor Driver  
FEATURES  
D 1.8-A H-Bridge Output  
D Undervoltage Head Retract  
D Rail-to-Rail Output Swing  
D Class B Linear Operation  
D Programmable Retract Current D Single 12-V Supply  
D Externally Programmable Gain and  
D Low Standby Current  
D System Voltage Monitor with Fault Output  
Bandwidth  
DESCRIPTION  
The Si9961 is a linear actuator (voice coil motor) driver suitable  
for use in disk drive head positioning systems. The Si9961  
contains all of the power and control circuitry necessary to  
drive the VCM that is typically found in 31/2-inch hard disk  
drives and optical disk drives. The driver is capable of  
delivering 1.8 A at a nominal supply of 12 V.  
operation during linear tracking. Externally programmable  
gain switch at the input summing junction increases the  
resolution and dynamic range for a given DAC. The head  
retract circuitry can be activated by either an undervoltage  
condition or an external command. An external resistor is  
required to set the VCM current during retract.  
The Si9961 provides all necessary functions including a motor  
current sense amplifier, a loop compensation amplifier and a  
power amplifier featuring four complementary MOSFETs in a  
H-bridge configuration. The output crossover protection  
ensures no cross-conducting current and true Class B  
The Si9961 is constructed on a self-isolated BiC/DMOS power  
IC process. The IC is available in 24-pin SO package for  
operation over the commercial, C suffix (0 to 70_C)  
temperature range.  
FUNCTIONAL BLOCK DIAGRAM  
EXT  
V+  
8
V
REF  
V
V
REF–  
DD  
7
12  
18  
Q1  
Q3  
4
5
FAULT  
V
R
Voltage  
Monitor  
V
CC  
8 R  
17  
19  
OUTPUT  
A
23  
A2  
+
IA2–  
R
A4  
+
OUTPUT  
B
Q2  
Q4  
V
R
V
9
6
R
RETRACT  
Retract  
Control  
I
RET  
11  
Enable  
OA2  
A5  
22  
+
Acceleration Error  
R
V
R
7 R  
A3  
+
GAIN  
10  
SELECT  
1
2
24  
3
13  
21  
15 14  
16 20  
R
INH  
R
INL  
R
FB  
I
I
I
SA  
GND  
SB  
SENSE  
OUT  
SENSE  
IN+  
SENSE  
IN–  
Document Number: 70014  
S-20883—Rev. G, 24-Jun-02  
www.vishay.com  
1
Si9961  
Vishay Siliconix  
ABSOLUTE MAXIMUM RATINGS  
Voltages Referenced to Common Pin  
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to 70_C  
V+ Supply Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 16 V  
Junction Temperature (T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150_C  
J
a
Pin (FAULT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V + 0.3 V  
Power Dissipation (Package)  
CC  
b
24-Pin SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.125 W  
Pin (Output A & B, Source A & B) . . . . . . . . . . . . . . . . 0.3 V to V + 0.3 V  
DD  
a
Thermal Impedance (  
)
Pin (All Others) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to V+ + 0.3 V  
JA  
24-Pin SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40_C/W  
Maximum Clamp Current  
Output A, Output B (Pulsed 10 ms at 10% duty cycle) . . . . . . . . . . . . "1.8 A  
Notes  
Pin (All Others) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "20 mA  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 to 150_C  
a. Device mounted with all leads soldered or welded to PC board.  
b. Derate 25 mW/_C above 25_C.  
SPECIFICATIONS  
Test Conditions  
Unless Otherwise Specified  
Limits  
C Suffix 0 to 70_C  
V+ = 12 V "10%, V = 11.6 V "10%  
DD  
V
= 5 V "10%, V  
= GND = 0 V  
CC  
REF–  
Parameter  
Bridge Outputs (A4, A5)  
High Level Output Voltage  
Symbol  
Minb  
Typa  
Maxb Unit  
V
REF  
= 5 V "5%  
V
OH  
I
= 1.0 A, V = 10.2 V, OA = V  
"1 V  
8.0  
9.1  
0.6  
OH  
DD  
2
REF  
V
Low Level Output Voltage  
Clamp Diode Voltage  
Amplifier Gain  
V
OL  
I
= 1.0 A, OA = V  
"1 V  
1.1  
2.5  
18  
OL  
2
REF  
V
CL  
I = 1.0 A, ENABLE = High  
F
Output V  
= V  
"2 V  
12  
1
16  
10  
V/V  
mA  
RANGE  
REF  
Dynamic Crossover Current  
Slew Rate  
Measured at V  
DD  
SR  
V/S  
MHz  
mV  
Small Signal Bandwidth (3 dB)  
Input Deadband  
0.2  
60  
60  
A2, Loop Compensation Amplifier  
Input Offset Voltage  
Input Bias Current  
V
8  
8
mV  
nA  
OS  
I
Gain Select = High, IA = 5 V  
50  
50  
B
2
Unity Gain Bandwidth  
Slew Rate  
R
LOAD  
= 10 k, C  
= 100 pF to V  
1
MHz  
V/s  
LOAD  
REF  
SR  
1
Power Supply Rejection Ratio  
Open Loop Voltage Gain  
PSRR  
@ 10 kHz  
50  
80  
dB  
V
A
VOL  
Output Voltage Swing  
V
O
V
REF  
2  
V
REF  
+2  
R
LOAD  
= 10 kto V  
REF  
A3, Current Sense Amplifier  
Input Offset Voltage  
Input Impedance  
V
5  
5
mV  
OS  
R
I
IN+ to I IN–  
SENSE  
5
1
kꢂ  
IN  
SENSE  
Small Signal Bandwidth (3 dB)  
Common Mode Rejection Ratio  
Slew Rate  
R
R
= 10 k, C  
= 100 pF to V  
REF  
MHz  
dB  
LOAD  
LOAD  
CMRR  
SR  
@ 5 kHz  
50  
2
V/s  
V/V  
Gain  
3.9  
0.3  
4
4.1  
2
Input Common-Mode Voltage Range  
Output Voltage Swing  
V
CM  
To GND  
V
V
= 10 k, C  
= 100 pF to V  
V
2  
V
+2  
O
LOAD  
LOAD  
REF  
REF  
REF  
Supply  
I
0.01  
5
CC  
Static, No Load  
RETRACT = High  
ENABLE = Low  
Supply Current (Normal)  
mA  
I
2
5
V+  
I
13  
DD  
Document Number: 70014  
www.vishay.com  
S-20883Rev. G, 24-Jun-02  
2
Si9961  
Vishay Siliconix  
SPECIFICATIONS  
Test Conditions  
Unless Otherwise Specified  
Limits  
C Suffix 0 to 70_C  
V+ = 12 V "10%, V = 11.6 V "10%  
DD  
V
CC  
= 5 V "10%, V  
= GND = 0 V  
REF–  
Parameter  
Supply  
Symbol  
Minb  
Typa  
Maxb Unit  
V
REF  
= 5 V "5%  
I
0.01  
CC  
Static, No Load  
RETRACT = High  
ENABLE = High  
Normal Mode  
Supply Current (Standby)  
mA  
V
I
0.2  
0.8  
0.4  
1.6  
V+  
I
DD  
10.2  
2.0  
11.6  
13.2  
14  
V
V
Range  
Range  
V
V
DD  
DD  
Retract Mode  
4.5  
5
5.5  
CC  
CC  
V+ Range  
V+  
10.8  
12  
13.2  
Gain Select Switch  
R
R
R
Switch Resistance  
108  
135  
810  
240  
300  
FB  
IA2= 5 V  
Switch Resistance  
Switch Resistance  
INH  
INL  
1800  
VREF (EXT)  
Input Current  
I
OA2 = V  
0.15  
4.75  
0.40  
5
0.65  
5.25  
mA  
V
REF  
REF  
External Voltage Range  
Power Supply Monitor  
V
REF  
V
Undervoltage Threshold  
V
V
= 5.0 V  
= 5.0 V  
3.82  
9.1  
4.12  
40  
4.42  
10.6  
V
CC  
REF  
Hysteresis  
mV  
V
V+ Undervoltage Threshold  
Hysteresis  
9.8  
100  
REF  
mV  
Gain Select, RETRACT, ENABLE Input  
Input High Voltage  
Input Low Voltage  
Input High Current  
Input Low Current  
V
3.5  
IH  
V
V
1.5  
1
IL  
I
IH  
V
V
= 5 V  
= 0 V  
1  
1  
IN  
A
I
IL  
1
IN  
FAULT Output  
V
0.8  
V
CC  
CC  
Output High Voltage  
V
I
= 100 A  
V
OH  
OH  
0.33  
0.25  
400  
Output Low Voltage  
V
I
OL  
= 1.6 mA  
0.50  
OL  
Output High Sourcing Current  
I
V
= 0 V  
1100  
A
OHS  
OUT  
RETRACT Current Control (RETRACT = Low, Output Current from A to B)  
I
Bias Voltage  
V(I  
)
V
= 10 V, R = 3.74 k  
0.66  
30  
RET  
RET  
DD  
RET  
V
Retract Output Pull-Up Voltage  
V
V
= 2.5 V to 14 V, I  
= 30 mA  
V
1  
OUT A  
OUTB  
DD  
OUTA  
DD  
V
= 10 V, V  
= 5 V R  
= 3.74 kꢂ  
DD  
OUTB  
RET  
Retract Output Pull-Down Current  
Maximum Emergency Retract Current  
I
22  
40  
38  
R
= 0.5 , T = 25_C  
SB  
A
mA  
I
(Max)  
V
DD  
= 2 V, V  
= 0.7 V R  
= < 10 , R = 0.5 ,  
OUTB  
OUTB  
RET SB  
Retract Current V Supply Rejection Ratio  
DD  
V
DD  
= 2 V to 14 V, R  
= 3.74 k  
3.0  
%/V  
RET  
Retract Current Temperature Coefficient  
V
DD  
= 10 V, R  
= 3.74 k  
0.3  
%/_C  
RET  
Notes  
a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.  
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum.  
Document Number: 70014  
www.vishay.com  
S-20883Rev. G, 24-Jun-02  
3
Si9961  
Vishay Siliconix  
PIN CONFIGURATION  
24-Pin SOIC  
(Wide Body)  
R
R
FB  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
INH  
R
IA2–  
INL  
I
OUT  
OA2  
3
SENSE  
FAULT  
I
(IN)–  
4
SENSE  
V
SOURCE B  
OUTPUT B  
5
CC  
I
RET  
6
EXT V  
V
DD  
(Spindle Supply)  
7
REF  
V+  
OUTPUT A  
GND  
8
RETRACT  
9
GAIN SELECT  
ENABLE  
SOURCE A  
GND  
10  
11  
12  
Order Number: Si9961ACY  
V
REF–  
I
(IN)  
SENSE +  
Top View  
APPLICATIONS  
Introduction  
User-Programmable Gains  
The Si9961 Voice Coil Motor (VCM) driver integrates the active  
feedback and drive components of a head-positioning servo  
loop for high-performance hard-disk applications. The Si9961  
operates from a 12-V ("10%) power supply and delivers 1 A  
of steady-state output current. This device is made possible by  
a power IC process which combines bipolar, CMOS and  
complimentary DMOS technologies. CMOS logic and linear  
components minimize power consumption, bipolar front-ends  
on critical amplifiers provide necessary accuracy, and  
complimentary (p- and n-channel) DMOS devices allow the  
transconductance output amplifier to operate from ground to  
VDD. Two user-programmable, current feedback/input voltage  
ratios may be digitally selected to optimize gain for both seek  
and track following modes, to maximize system accuracy for  
a given DAC resolution. An undervoltage lockout circuit  
monitors the V+ supply and generates a fault signal to trigger  
an orderly head-retract sequence at a voltage level sufficient  
to allow the spindle motors back EMF-generated voltage to  
supply the necessary head parking energy. Head retract can  
also be commanded via a separate RETRACT input. VCM  
current during retract can be user programmed with a single  
external resistor. External components are limited to R/C filter  
components for loop compensation and the resistors that are  
required to program gain, retract current, and the load current  
sense.  
During linear operation, the transconductance amplifiers’  
gains (input voltage at VIN vs. VCM current, in Figure 1) are set  
by external resistors R3 R5, RSA, and RSB and selected by  
gain input. After selecting a value for RSA and RSB that will yield  
the desired VCM current level, the High and Low feedback  
gain ratios may be determined by the following:  
R5  
1
(GAIN SELECT Input = High)  
(GAIN SELECT Input = Low)  
High Gain +  
Low Gain +  
ǒ Ǔ4 R  
R3  
S
R5  
1
ǒ Ǔ4 R  
R4  
S
Where RS = RSA = RSB  
Input offset current may then be calculated as:  
ǒ
Ǔ
RS ) RIN  
1
4 RS  
ǒ
IAS3Ǔ  
) 5 V  
OSA2  
IOS  
+
V
ǒ Ǔ  
RIN  
Where RIN = R3 or R4  
Document Number: 70014  
www.vishay.com  
S-20883Rev. G, 24-Jun-02  
4
Si9961  
Vishay Siliconix  
Back EMF Supply  
12 V  
System  
Supply  
5-V Ref  
12  
EXT  
8
7
18  
V
DD  
V+  
V
REF–  
V
REF  
FAULT  
4
5
I
OUT  
mP  
Voltage  
Monitor  
V
R
Q1  
Q3  
5 V  
V
VCM  
CC  
23  
L
8 R  
17  
IA2–  
OUTPUT  
A2  
R2  
R
C2  
A
A4  
+
19  
C
+
OUTPUT  
B
Q2  
Q4  
R
L
V
R
V
R
RETRACT  
9
6
Retract  
Control  
I
RET  
ENABLE  
11  
22  
OA2  
A5  
Acceleration Error  
R
+
R
RET  
7 R  
V
R
A3  
10  
GAIN  
SELECT  
+
mP  
GND  
I
I
I
SENSE SENSE SENSE  
R
R
2
R
FB  
A
B
OUT  
IN+  
IN–  
INH  
INL  
1
24  
3
13  
21  
15 14  
16 20  
R3  
R4  
R5  
V
IN  
R
SA  
R
SB  
FIGURE 1. Si9961 Typical Application  
Head Retract  
eliminate quiescent output current when power is applied but  
the head has been parked, such as a sleep mode. A  
sleep-mode power down sequence should be preceded by a  
retract signal since a power failure during this state may not  
provide adequate spindle-motor back EMF to permit head  
retraction.  
A low on the RETRACT input pin turns output devices Q1 and  
Q4 on, and output devices Q2 and Q3 off. Maximum VCM  
current can be set during head retract by adding an external  
resistor between the IRET pin and ground. Maximum retract  
current may be calculated as:  
0.66 V  
Rret  
Transconductance Amplifier Compensation  
IOUT + 175 x Iret + 175 x  
The Si9961CY features an integrated transconductance  
amplifier to drive the voice coil motor (VCM). To ensure proper  
operation, this amplifier must be compensated specifically for  
the VCM being driven. As a first approximation, the torque  
constant and inertia of the VCM may be ignored, although they  
will have some influence on the final results, especially if large  
values are involved. (See Figure 1.)  
Head retract can be initiated automatically by an undervoltage  
condition (either the 12-V or 5-V supplies on the Si9961) by  
connecting the FAULT output to the RETRACT input.  
A high ENABLE input puts both driver outputs in a  
high-impedance state. The ENABLE function can be used to  
Document Number: 70014  
www.vishay.com  
S-20883Rev. G, 24-Jun-02  
5
Si9961  
Vishay Siliconix  
Frequency Compensation:  
A
CL  
=
=
16 x RL/10000  
Lv/(Rv x RL) = 100 x 106/RL farads  
The VCM transconductance (in siemens) of this simplified  
case may be expressed in the s (Laplace) plane as:  
Gain Optimization:  
1
L
There are three things to consider when optimizing the gain (A)  
above. The first is servo bandwidth. The main criterion here is  
to avoid having the transconductance amplifier cause an  
undue loss of phase margin in the overall servo (mechanical  
+ electrical + firmware) loop. The second is to avoid confirguing  
a bandwidth that is more than required in view of noise and  
stability considerations. The third is to keep the voltage output  
v
gv  
+
R
L
v
s )  
v
Where Rv = VCM resistance in ohms  
LV = VCM inductance in henrys  
s is the Laplace operator  
waveform overshoot to  
cross-conduction of the output FETs.  
a level that will not cause  
In this case, the transconductance pole is at Rv/Lv. It is  
desirable to cancel this pole in the interest of stability. To do  
this, a compensation amplifier is cascaded with the VCM and  
its driver. The transfer function of this amplifier is:  
The first two problems can be considered together. Let us  
assume a disk drive with a spindle RPM of 4400 and with  
50 servo sectors per track. The sample rate is therefore:  
1
  C  
ǒs )  
Ǔ
R
L
L
Hc + A   
440  
s
This is a sample frequency of 3667 Hz  
fsĂ + 50Ă  Ă  
60  
Where RL  
=
=
=
Compensation amplifier feedback  
resistor in ohms  
Compensation amplifier feedback  
capacitor in farads  
Compensation amplifier and driver  
voltage gain at high frequency  
As a rule of thumb, the open loop unity gain crossover  
frequency of the entire servo (mechanical + electrical +  
firmware) loop should be less than 1/10 of the sample  
frequency. In this example, the servo open loop unity gain  
crossover frequency would be less than 367 Hz. If we allow  
only a 10_ degradation in phase margin due to the  
transconductance amplifier, then a phase lag of 10_ at 367 Hz  
CL  
A
If RL x CL is set equal to Lv/Rv, then the combined open loop  
transconductance in siemens becomes:  
is acceptable. This results in  
transconductance at :  
a 3-dB point in the  
A
gto  
+
367  
tan 10  
s   Lv  
f3db  
+
(
)
In this case, the transconductance has a single pole at the  
origin. If this open loop transfer is closed with  
or a 3-dB point in the transconductance at 2081 Hz.  
a
transimpedance amplifier having a gain of B ohms, the  
resultant closed loop transconducatance stage has the  
transfer function (in siemens) of:  
The pole in the closed loop transconductance (A * B / Lv)  
should then be 2081 * 2 * = 13075. This means that A = 9.8.  
From the above equation for A, RL = 6.2 k. This sets the  
minimum gain limit governed by the servo bandwidth  
requirements. The gain should not be much greater than this,  
since increased noise will degrade the servo response.  
A
L
v
gtc  
+
A   B  
s )  
L
v
Where B = Current feedback transimpedence amplifier gain in  
ohms.  
The third problem, keeping the transconductance amplifier  
voltage output wave form overshoot to a level that will not  
cause the wrong output FETs to conduct, can be evaluated by  
deriving the voltage transfer function of the closed loop  
transconductance amplifier from input voltage to output  
voltage (Vin to output A and B on the reference schematic).  
The entire transconductance now contains only a single pole  
at A*B/Lv. A and B are chosen to be considerably higher than  
the servo bandwidth, to avoid undue phase margin reduction.  
As a typical example, in the referenced schematic, assume  
that Rsa and Rsb = 0.5 , R5= R3 = 10 k, VCM inductance  
(Lv) = 1.5 mH, VCM resistance (Rv) = 15 . Hence:  
This is :  
s ) p  
Hto + A   
s ) x  
Rv  
Lv  
B
=
=
=
15 ꢂ  
1.5 mH  
2 ꢂ  
Where p = 1/RL x CL) or Rv/Lv Comp amplifier  
zero/VCM pole  
x = A x B/Lv closed loop pole  
Document Number: 70014  
www.vishay.com  
S-20883Rev. G, 24-Jun-02  
6
Si9961  
Vishay Siliconix  
If a unit step voltage is applied to the above transfer function  
and the inverse Laplace transform is taken, the output result is:  
Result:  
In the example for the 2081-Hz roll-off case with 31%  
overshoot and proper pole cancellation, the compensation  
values are:  
*x   t  
(
)
p ) x * p x e  
VO + A   
x
Where t = time  
RL  
CL  
=
=
6.2 kꢂ  
0.016 F  
As we can see, if x = p (i.e. if the VCM pole and compensation  
amplifier zero = the transconductance closed loop pole), then  
Vo reduces to A. In other words, a step input results in a step  
output without overshoot. If x < p then a step input results in an  
increased rise time output and no overshoot. If x > p, a step  
input results in a step output with an overshoot.  
In the example for the 1592-Hz roll-off case with no overshoot  
and proper pole cancellation, the compensation values are:  
RL  
CL  
=
=
4.7 kꢂ  
0.022 F  
The linearity of the transconductance amplifier (around a  
center value of 500 mA/volt) is shown in Figure 2. In this case,  
the output current sense resistors (RSA and RSB) were "5%  
tolerance, 0.5 . Any mismatch between RSA and RSB  
contribute directly to mismatch between the positive and  
negative full-scale. Including the external resistor mismatch,  
the overall loop nonlinearity is approximately 1% maximum  
over a "250-mV input voltage range.  
If this overshoot is large enough, there may be  
cross-conduction condition in the output FETs.  
a
Let us look at the above equation at t = 0 and t >> 0, expressed  
in terms of the open loop high frequency voltage gain, A.  
VO + A  
At t = 0  
p   Lv  
5
4
3
At t uu 0  
VO  
+
B
In the example shown above, p = 10,000 and A = 9.8. This  
means that there is some overshoot. At t = 0, the output voltage  
is 9.8 V per volt of input. At some later time, it has dropped to  
7.5 V per volt of input. An overshoot of 31 % is thus produced.  
2
1
0
V
R
R
= 12 V  
1  
2  
3  
4  
5  
DD  
SA  
= R = 0.5 5%  
SB  
The maximum overshoot voltage requires careful  
consideration, since it constitutes a potentially catastrophic  
problem area. If we had decided to optimize for no overshoot,  
A would equal 7.5, and hence the closed loop pole (A * B / Lv)  
would be 10,000, which is a frequency of 1.592 kHz. This  
would have resulted in a phase margin degradation of 13_ at  
the 367-Hz frequency desired. This may or may not be  
acceptable. One must weigh the servo bandwidth, phase  
margin degradation, and maximum voltage at the VCM for  
each individual case.  
= 52  
m
m
G
= 500 mA/V  
300 200 100  
0
100  
200  
300  
V
IN  
in mV  
FIGURE 2. Si9961 Transconductance  
End Point Non-Linearity  
Document Number: 70014  
www.vishay.com  
S-20883Rev. G, 24-Jun-02  
7
Si9961  
Vishay Siliconix  
6.2 k  
RL  
0.016 F  
CL  
8 R  
V
DD  
R
IN  
A2  
R
V
IN  
A4  
A5  
I
OUT  
Cross-Over  
Protection  
10 k  
+
+
V
R
V
R
VCM  
1.5 mH  
V
DD  
15  
V
V
Cross-Over  
Protection  
R5  
10 k  
S
Gain +  
IN  
+
R
7 R  
V
R
A3  
V
S
+
(4 x Gain)  
R
SA  
R
SB  
0.5  
0.5 ꢂ  
V
R
FIGURE 3. Transconductance Amplifier  
R
= 6.2 k, C = 0.016 F  
L
R = 6.2 k, C = 0.016 F  
L L  
L
0
20  
40  
60  
80  
5  
8  
11  
14  
17  
20  
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
Frequency (Hz)  
Frequency (Hz)  
FIGURE 4.  
FIGURE 5.  
Document Number: 70014  
www.vishay.com  
S-20883Rev. G, 24-Jun-02  
8

SI9961CY 相关器件

型号 制造商 描述 价格 文档
SI9961DJ VISHAY Interface Circuit 获取价格
SI9976 VISHAY N-Channel Half-Bridge Driver 获取价格
SI9976DY VISHAY N-Channel Half-Bridge Driver 获取价格
SI9976DY-T1 VISHAY N-Channel Half-Bridge Driver 获取价格
SI9976DY-T1-E3 VISHAY N-Channel Half-Bridge Driver 获取价格
SI9978 VISHAY Configurable H-Bridge Driver 获取价格
SI9978DW VISHAY Configurable H-Bridge Driver 获取价格
SI9978DW-E3 VISHAY MOSFET Driver, PDSO24 获取价格
SI9978DW-T1 VISHAY Configurable H-Bridge Driver 获取价格
SI9978DW-T1-E3 VISHAY Configurable H-Bridge Driver 获取价格

SI9961CY 相关文章

  • 苹果Apple Intelligence适配百度AI模型遇技术挑战
    2024-12-05
    10
  • 苹果携手亚马逊,定制AI芯片助力Apple Intelligence模型训练
    2024-12-05
    9
  • 革命性突破:光衍射极限下微型步行机器人成功面世
    2024-12-05
    11
  • Soitec将为格罗方德9SW平台供应300mm RF-SOI晶圆
    2024-12-05
    9