AD53508JP [ADI]

PPMU Circuit; PPMU电路
AD53508JP
型号: AD53508JP
厂家: ADI    ADI
描述:

PPMU Circuit
PPMU电路

文件: 总8页 (文件大小:127K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
a
PPMU Circuit  
AD53508  
FEATURES  
Dual Measurement Channels  
Precision Four-Quadrant-Per-Pin V/I Source  
Programmable Current Force Ranges  
؎204.8 A and ؎2.048 mA  
Five Current Measurement Ranges  
204.8 nA to ؎2.048 mA  
Output Voltage Range: –4 V to +9 V  
Power Supplies: +15 V, +5 V, and –10 V  
44-Lead Plastic J-Leaded Chip Carrier Package  
The device provides a remote force/sense capability to ensure  
accuracy at the tester pin. A guard output is available to drive  
the shield of a force/sense pair.  
Two input references per channel permit controlled switching to  
different voltage or current levels. The forced voltage or current  
levels can be switched back to the measurement system to read  
back the analog levels for system calibration.  
The circuit is powered by +15 V, +5 V and –10 V supplies and  
dissipates 230 mW nominally.  
Recommended Use of the PPMU with AD53032 DCL  
The PPMU can be used with the AD53032 DCL to extend the  
Current Force Range beyond 2 mA VCOM can be set to the  
maximum spec allowance of 8 V, which would allow the maxi-  
mum Current Force of IOL of 35 mA. The combination of the  
PPMU and the DCL would have a few benefits including:  
APPLICATIONS  
Can Be Used with the AD53032 DCL to Extend Current  
Force Range to 35 mA  
GENERAL DESCRIPTION  
The AD53508 is a custom dual-channel parametric measure-  
ment circuit for use in semiconductor automatic test equipment.  
It contains programmable modes to force a pin voltage and  
measure its current or to integrate and hold a current value.  
Alternatively, a current can be forced and the compliance volt-  
age measured.  
1. Accurately measuring low currents.  
2. Can take parallel measurements by using one PMU per pin.  
FUNCTIONAL BLOCK DIAGRAM  
S8  
S9  
SENSE  
SENSE  
FORCE  
AD53508  
EXT RC  
MAIN  
40pF  
S6  
DAC1  
C1  
R1  
R2  
S7  
INT/IM  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
DAC2  
VF  
IF  
S4  
S5  
ENABLE  
INTEGRATE  
1.25R  
DIFF  
1k  
2mA  
+2.5V  
S17  
DSR  
VM  
IM  
S2  
S3  
10k⍀  
200A  
R
R
OUTPUT  
UNITY  
S1  
MEAS OUT  
CON  
1.25R  
GUARD  
S18  
GUARD  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
AD53508–SPECIFICATIONS (TA = 25؇C, rated power supplies unless otherwise noted)  
Parameter  
Condition  
Min  
Typ  
Max  
Unit1  
VOLTAGE FORCE/MEASURE MODE  
Voltage Swing, 2 mA Range  
2 mA Drive  
–4  
–5  
+9  
+12  
V
V
100 µA Drive  
ACCURACY  
Gain ( 0.1% Tolerance)  
Offset Error  
0.999  
1.001  
15  
V/V  
mV  
Gain Nonlinearity (Relative to Endpoints)  
Current Measure CMRR (at MEAS_OUT)  
0.02  
0.31  
% of Span  
mV/V  
DRIFT  
Gain Error Temperature Coefficient  
20  
ppm (PV  
or MV)/°C  
µV/°C  
Offset Drift  
100  
CURRENT FORCE/MEASURE MODE RANGES  
0 (High)  
1 (Low)  
2.0  
200  
mA  
µA  
ACCURACY—HIGH RANGE  
Transconductance ( 3% Tolerance)  
Transresistance ( 3% Tolerance)  
Offset Error  
Gain Nonlinearity (Relative to Endpoints)  
Output Compliance Voltage-Induced  
Transconductance/Error  
Force Mode  
Measure Mode  
0.776  
1.21  
0.8  
1.25  
0.824  
1.29  
40  
mA/V  
V/mA  
µA  
0.05  
% of Span  
Force Mode  
–0.2  
+0.4  
µA/V  
DRIFT—HIGH RANGE  
Gain Error Temperature Coefficient  
+10/–60  
400  
ppm (PV  
or MV)/°C  
nA/°C  
Offset Drift  
ACCURACY—LOW RANGE  
Transconductance ( 3% Tolerance)  
Transresistance ( 3% Tolerance)  
Offset Error  
Gain Nonlinearity (Relative to Endpoints)  
Output Compliance Voltage-Induced  
Transconductance/Error  
Force Mode  
Measure Mode  
77.6  
12.1  
80  
12.5  
82.4  
12.9  
4
µA/V  
V/mA  
µA  
0.05  
% of Span  
Force Mode  
–0.02  
+0.04  
µA/V  
DRIFT—LOW RANGE  
Gain Error Temperature Coefficient  
+10/–60  
40  
ppm (PV  
or MV)/°C  
nA/°C  
Offset Drift  
CURRENT MEASURE INTEGRATE MODE RANGES  
High  
Medium  
Low  
20.0  
2.0  
200  
µA  
µA  
nA  
ACCURACY—HIGH RANGE  
Transresistance Error ( 3% Tolerance)  
Offset Error  
0.121  
0.125  
0.129  
400  
V/µA  
nA  
Gain Nonlinearity (Relative to Endpoints)  
Output Compliance Voltage-Induced Transresistance Error  
0.05  
2.5  
% of Span  
nA/V of Output  
DRIFT—HIGH RANGE  
Gain Error Temperature Coefficient  
Offset Drift  
20  
2
ppm MV/°C  
nA/°C  
ACCURACY—MEDIUM RANGE  
Transresistance Error ( 3% Tolerance)  
Offset Error  
1.21  
1.25  
1.29  
40  
V/µA  
nA  
Gain Nonlinearity (Relative to Endpoints)  
Output Compliance Voltage-Induced Transresistance Error  
0.05  
0.25  
% of Span  
nA/V of Output  
DRIFT— MEDIUM RANGE  
Gain Error Temperature Coefficient  
Offset Drift  
20  
250  
ppm MV/°C  
pA/°C  
–2–  
REV. 0  
AD53508  
Parameter  
Condition  
Min  
Typ  
Max  
Unit1  
ACCURACY—LOW RANGE  
Transresistance Error ( 3% Tolerance)  
Offset Error  
0.0121 0.0125 0.0129  
V/nA  
nA  
4
Gain Nonlinearity (Relative to Endpoints)  
Output Compliance Voltage-Induced Transresistance Error  
0.05  
0.025  
% of Span  
nA/V of Output  
DRIFT—LOW RANGE  
Gain Error Temperature Coefficient  
Offset Drift  
20  
70  
ppm MV/°C  
pA/°C  
DISABLE MODE2  
Voltage Swing, 2 mA Range  
2 mA Drive  
–4  
–5  
+9  
+12  
V
V
100 µA Drive  
ACCURACY  
Gain ( 0.1% Tolerance)  
Offset Error  
0.999  
1.001  
15  
V/V  
mV  
Gain Nonlinearity (Relative to Endpoints)  
Current Measure CMRR (at MEAS_OUT)  
0.02  
0.31  
% of Span  
mV/V  
DRIFT  
Gain Error Temperature Coefficient  
20  
ppm (PV or  
MV)/°C  
µV/°C  
Offset Drift  
100  
OTHER SPECIFICATIONS  
Power Supply Rejection Ratio  
f < 40 Hz, VCC  
f < 40 Hz, VEE  
f = 40 kHz, VCC  
f = 40 kHz, VEE  
70  
60  
35  
25  
dB  
dB  
dB  
dB  
CURRENT MEASURE HOLD MODE LEAKAGE  
CROSSTALK3  
TAMB = +70°C  
1.2  
nA  
0.02  
% of Span  
SETTLING TIMES TO 0.01%  
Voltage Force and Guard Voltage  
CLOAD = 100 pF  
20  
2
50  
2
µs  
C
LOAD = 2000 pF  
ms  
µs  
Current Force (200 µA Range)  
MEAS_OUT Pin  
ZLOAD = 100 pFʈ50 kΩ  
CLOAD = 20 pF  
µs  
SHORT CIRCUIT CURRENT LIMIT MAGNITUDE  
GUARD SCC LIMIT MAGNITUDE  
Any Output Except Guards 8.5  
20  
10  
0
mA  
mA  
mV  
µA  
2.5  
GUARD OFFSET (FROM SENSE INPUT PIN)  
IB (DAC1, DAC2) CURRENT  
–65  
–25  
1.0  
DIGITAL INPUTS  
VIH  
2.4  
V
VIL  
0.8  
10  
V
µA  
IIN (Input leakage current)  
POWER SUPPLIES  
VCC (Positive Analog Supply Voltage)  
VEE (Negative Analog Supply Voltage)  
14.0  
–10.5  
4.75  
5
15.0  
–10.0  
5.0  
15.75  
–9.0  
5.25  
15  
V
V
V
mA  
mA  
V
DD (Logic Supply Voltage)  
ICC (Positive Analog Supply Current)  
EE (Negative Analog Supply Current)  
IDD (Logic Supply Current Is 0 with Inputs at Rails,  
Worst Case @ 2.4 VIN  
I
–15  
–5  
)
8
mA  
NOTES  
1PV = Programmed Value, MV = Measured Value, FSR = Full-Scale Range = span.  
2Output connected: DAC2 and 2 mA range selected, unconditionally.  
3f < 40 Hz, both channels in current force mode; other channel output voltage swinging rail to rail.  
Specifications subject to change without notice.  
REV. 0  
–3–  
AD53508  
ABSOLUTE MAXIMUM RATINGS*  
(TA = 25°C unless otherwise noted)  
PIN FUNCTION DESCRIPTIONS  
Pin Name  
Description  
Min  
Max  
Unit Condition  
1
2
3
4
5
6
7
8
9
DSR_2.5  
2.5 V Reference Input  
VDD to VEE  
VCC to VEE  
VDD to DGND  
–0.3  
–0.3  
–0.3  
+26.4  
+26.4  
+6  
VCC+0.3  
700  
V
V
V
V
DAC2_A  
DAC1_A  
EXT_RC_A  
C1_A  
First of Two Switchable Inputs  
Second of Two Switchable Inputs  
External RS and C Common  
External Capacitor  
Digital Inputs to DGND –0.3  
Power Dissipation  
mW TA +75°C  
R1_A  
External Resistor  
Operating Temperature  
Range  
Storage Temperature  
Lead Temperature  
Force/Sense Outputs  
R2_A  
External Resistor  
25  
–60  
70  
+125  
+300  
°C  
°C  
SENSE_A  
FORCE_A  
Sense Input  
°C  
Soldering (10 sec)  
Force Output  
VEE–0.8 VCC+0.8  
V
Or 75 mA,  
10 GUARD_A  
11 MEAS_OUT_A  
12 VCC  
Guard Drive Output  
Whichever Is Less  
Measurement Output  
+15 V Analog Supply  
Connect Measure Output to Bus  
–10 V Analog Supply  
*
Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. These are stress ratings only; functional operation of  
the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
13 M_CON_A*  
14 VEE  
15 FORCE_I_A*  
16 FORCE_EN_A*  
17 DAC1_SEL_A*  
18 INTEG_A*  
19 HOLD_A*  
20 I_RANGE0_A*  
21 I_RANGE1_A*  
22 VERIFY*  
Force V (When Hi) or I (When Lo)  
Control Input  
Select DAC1 (When Lo) or DAC2  
Control Input  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Control Input  
Model  
Select 2 mA Range (Active Lo)  
Select 200 µA Range (Active Lo)  
Measure Forced Voltage or Current  
AD53508JP 25°C to 70°C  
Plastic Leaded  
Chip Carrier  
P-44A  
23 OUTPUT_CON_A* Connect Pin Drive (Active Lo)  
24 OUTPUT_CON_B* Connect Pin Drive (Active Lo)  
PIN CONFIGURATION  
25 I_RANGE1_B*  
26 I_RANGE0_B*  
27 HOLD_B*  
28 INTEG_B*  
29 DAC1_SEL_B*  
30 FORCE_EN_B*  
31 FORCE_I_B*  
32 DIGGND  
33 M_CON_B*  
34 VDD  
Select 200 µA Range (Active Lo)  
Select 2 mA Range (Active Lo)  
Control Input  
Control Input  
6
5
4
3
2
1
44 43 42 41 40  
Select DAC1 (When Lo) or DAC2  
Control Input  
PIN 1  
IDENTIFIER  
7
8
R2 A  
SENSE A  
FORCE A  
GUARD A  
39 R2  
B
Force V (When Hi) or I (When Lo)  
Digital Ground  
38 SENSE B  
9
37  
FORCE B  
10  
36  
35  
34  
33  
GUARD B  
MEAS OUT B  
VDD  
Connect Measure Output to Bus  
+5 V Digital Supply  
MEAS OUT A 11  
VCC 12  
AD53508  
TOP VIEW  
13  
(Not to Scale)  
M CON B*  
M CON A*  
35 MEAS_OUT_B  
36 GUARD_B  
37 FORCE_B  
38 SENSE_B  
39 R2_B  
Measurement Output  
Guard Drive Output  
VEE 14  
32 DIGGND  
31  
15  
16  
FORCE I A*  
FORCE I B*  
30  
29  
FORCE EN B*  
DAC1 SEL B*  
FORCE EN A*  
Force Output  
DAC1 SEL A* 17  
Sense Input  
External Resistor  
18 19 20 21 22 23 24 25 26 27 28  
40 R1_B  
External Resistor  
41 C1_B  
External Capacitor  
* = ACTIVE LO  
42 EXT_RC_B  
43 DAC1_B  
External RS and C Common  
Second of Two Switchable Inputs  
First of Two Switchable Inputs  
44 DAC2_B  
*
= Active Lo  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD53508 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. 0  
AD53508  
Table I. Data Table  
Data Latch Bits  
S1 S2  
S13,  
S10  
S15,  
S14  
S3  
S4  
S5  
S6  
S7  
S9  
S17  
S8  
S16  
S11  
S12  
S18  
Voltage Force/Current Measure  
Irange 0  
On  
Irange 1  
On  
Integrate Range  
On  
Integrate  
On  
Off  
On  
On  
On  
On  
On  
On  
On  
On  
On  
On  
Off  
Off  
Off  
Off  
Off  
On  
On  
On  
On  
On  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
On  
Off  
Off  
Off  
Off  
On  
On  
On  
On  
On  
Off  
On  
On  
On  
Off  
Off  
On  
Off  
Off  
Off  
Off  
Off  
On  
Off  
Off  
Off  
Off  
Off  
On  
On  
Off  
Off  
Off  
On  
On  
On  
On  
On  
On  
On  
On  
Off  
Off  
Off  
Hold/Measure  
On Off  
Current Force/Voltage Measure  
Irange 0  
On  
Irange 1  
On  
On  
Off  
Off  
On  
On  
On  
On  
Off  
Off  
Off  
Off  
Off  
Off  
On  
On  
On  
On  
On  
Off  
Off  
On  
Off  
Off  
Off  
Off  
On  
On  
On  
Off  
Off  
Disable Mode: Output Connected  
X
X
X
On  
On  
Off  
On  
X
Off  
Off  
On  
Off  
X
Off  
On  
On  
X
On  
Off  
Off  
X
Off  
Off  
Off  
On  
X
Off  
Off  
Off  
Off  
X
On  
On  
On  
Off  
X
X
On  
On  
On  
Off  
X
Off  
Off  
Off  
Off  
X
Off  
Off  
Off  
Off  
X
Off  
Off  
Off  
On  
X
On  
On  
On  
Off  
X
Verify/Voltage Force  
On On Off  
On  
On  
On  
X
Verify/Current Force  
On  
Off  
On  
Disconnect  
X
X
X
DAC2 Select: Enabled  
X
X
X
Off  
On  
CAPACITOR  
CHARGE  
INTEGRATE*  
HOLD*  
DISCHARGE  
CAPACITOR  
INTEGRATE  
HOLD  
* = ACTIVE LO  
Figure 1. Integrate/Current Measure Timing Diagram  
Table II. Truth Table  
* = Active LO  
FV/MI 2 mA  
FV/MI 200 mA  
FV/MI Integrate DAC1  
Voltage Inte-  
FV/MI Integrate DAC 2  
Voltage Inte-  
FI/MV 2 mA  
FI/MV 200 µA  
FV/Verify  
FI/Verify  
Disconnect  
Disable  
Control  
Input  
Output  
DAC1  
LO  
HI  
DAC2  
DAC1  
LO  
HI  
DAC2  
Settle  
LO  
HI  
grate  
LO  
HI  
Hold  
LO  
HI  
Settle  
LO  
HI  
grate  
LO  
HI  
Hold  
LO  
HI  
DAC1  
LO  
HI  
DAC2  
DAC1  
LO  
HI  
DAC2  
DAC1  
LO  
LO  
HI  
DAC2  
DAC1  
LO  
LO  
LO  
LO  
LO  
HI  
DAC2  
LO  
LO  
LO  
LO  
HI  
Connected  
M_CON*  
LO  
HI  
HI  
LO  
HI  
HI  
HI  
LO  
HI  
LO  
LO  
HI  
HI  
LO  
HI  
HI  
HI  
HI  
LO  
LO  
LO  
HI  
LO  
HI  
LO  
LO  
HI  
LO  
HI  
HI  
HI  
X
X
X
X
X
X
X
X
X
X
HI  
X
VERIFY*  
X
FORCE_I*  
FORCE_EN*  
DAC1_SEL*  
INTEG*  
HI  
HI  
HI  
HI  
HI  
HI  
HI  
HI  
LO  
LO  
LO  
HI  
LO  
LO  
HI  
LO  
LO  
LO  
HI  
LO  
LO  
HI  
X
LO  
LO  
HI  
LO  
LO  
HI  
LO  
LO  
HI  
LO  
LO  
LO  
HI  
LO  
LO  
LO  
LO  
HI  
LO  
HI  
LO  
HI  
LO  
HI  
LO  
LO  
HI  
HI  
X
HI  
LO  
HI  
LO  
LO  
HI  
HI  
HI  
HI  
X
HOLD*  
HI  
HI  
HI  
HI  
HI  
HI  
HI  
HI  
HI  
HI  
HI  
X
I_RANGE0*  
I_RANGE1*  
LO  
HI  
HI  
HI  
HI  
HI  
HI  
LO  
HI  
LO  
HI  
HI  
HI  
X
X
X
X
LO  
LO  
HI  
HI  
HI  
HI  
HI  
HI  
LO  
LO  
LO  
LO  
X
X
X
X
X
OUTPUT_CON* LO  
LO  
LO  
LO  
LO  
LO  
LO  
LO  
LO  
LO  
LO  
LO  
LO  
LO  
REV. 0  
–5–  
AD53508  
4. Computations for F1 are:  
PPMU APPLICATION NOTES  
F1 × 0.25 = LOW + 1 × (HIGH – LOW)/4  
F1 × 0.50 = LOW + 2 × (HIGH – LOW)/4  
F1 × 0.75 = LOW + 3 × (HIGH – LOW)/4  
The PPMU can be used in two modes: 1. VOLTAGE FORCE  
with CURRENT MEASURE or VERIFY CURRENT FORCE;  
2. CURRENT FORCE with VOLTAGE MEASURE or  
VERIFY VOLTAGE FORCE. In both modes the following  
setup is recommended:  
Where LOW = –Full Scale and HIGH = +Full Scale.  
The linearity tests for measuring current are as follows (at the  
MEAS_OUT pin):  
1. The value of the external integrate capacitor (EXT_RC to  
C1) is 10 nF.  
1. The voltage is constant for these measurements.  
2. MEAS_OUT pin is loaded with 1 Mto ground.  
2. The four ranges (M1, M2, M3, M4) correspond to  
CURRENT MEASURE ranges (200 nA, 20 µA, 200 µA,  
and 2 mA respectively).  
3. VCC = +15.0 V, VDD = +4.5 V, DIGGND = 0.0 V,  
V
EE = –10 V, DSR = 2.5 V unless otherwise stated.  
4. A 10 resistor in series with the FORCE pin.  
5. A 1 kresistor in series with the SENSE pin.  
3. The endpoints of the linearity curve are determined by the  
–full scale (or LOW), and the +full scale (or HIGH) read-  
ings at the same FORCE pin voltage.  
IN VOLTAGE FORCE WITH CURRENT MEASURE OR  
VERIFY CURRENT FORCE  
4. Using these endpoints, gain nonlinearity is computed and  
tested at the 1/4 scale, 1/2 scale, and 3/4 scale points.  
To measure the leakage in the current measure and hold mode,  
the PPMU has to be into the Force Voltage/Measure Current  
Integrate mode.  
5. Computations for M1 are:  
M1 × 0.25 = LOW + 1 × (HIGH – LOW)/4  
M1 × 0.50 = LOW + 2 × (HIGH – LOW)/4  
M1 × 0.75 = LOW + 3 × (HIGH – LOW)/4  
1. The FORCE_A (Force Output) pin has to be programmed  
to +9 V.  
Where LOW = –Full Scale, and HIGH = +Full Scale.  
2. The PPMU has to be programmed to INTEGRATE mode.  
3. The PPMU has to be programmed to HOLD mode.  
4. Sample MEAS_OUT.  
The M_CON pin can be used for disconnecting the MEAS_OUT  
pin by:  
1. Raising M_CON to 2.4 V.  
2. Measuring MEAS_OUT (which is loaded with 100 k).  
3. MEAS_OUT should ideally be 0 V.  
5. Wait 100 ms.  
6. Sample MEAS_OUT again.  
The OUTPUT_CON pin can be used for disconnecting the  
DUT by:  
7. The difference between 2 and 4 must be less than 15 mV.  
The linearity tests for forcing voltage are as follows (at the  
FORCE pin):  
1. Disabling the SENSE pin (OUTPUT_CON = 2.4 V).  
2. Loading FORCE_OUT with 2 kto ground.  
1. The four ranges of CURRENT MEASURE ranges (200 nA,  
20 µA, 200 µA, and 2 mA) correspond to F1, F2, F3, and F4.  
3. Programming the DAC1 input to +FS (+9 V) and measuring  
the FORCE_OUT voltage (FV1).  
2. The endpoints of the linearity curve are determined by –full  
scale (or LOW), and the +full scale (or HIGH) readings at  
the same FORCE pin current.  
4. Programming the DAC1 input to –FS (–4 V) and measur-  
ing the FORCE_OUT voltage (FV2).  
3. Using these endpoints, gain nonlinearity is computed and  
tested at the 1/4 scale, 1/2 scale, and 3/4 scale points.  
5. FV1–FV2 < 1.3 mV.  
6. A change of 1.3 mV implies a switch off-resistance of 20 M.  
1k  
S8  
S9  
SENSE  
SENSE  
AD53508  
FORCING  
EXT RC  
VOLTAGE  
DAC1  
40pF  
S6  
S7  
MAIN  
C1  
R1  
R2  
INT/IM  
S10  
10⍀  
DAC2  
S11  
S12  
S13  
S14  
S15  
S16  
FORCE  
TO DUT  
S4  
S5  
VF  
IF  
ENABLE  
INTEGRATE  
1k⍀  
1.25R  
2.5V  
S17  
2mA  
DSR  
VM  
IM  
S2  
S3  
10k⍀  
DIFF  
R
R
OUTPUT  
200A  
UNITY  
S1  
MEAS OUT  
CON  
1.25R  
GUARD  
S18  
GUARD  
Figure 2. Guarded Voltage Force/Current Measure, IRANGE 1: I 2 mA  
6–  
REV. 0  
AD53508  
IN CURRENT FORCE WITH VOLTAGE MEASURE OR  
VERIFY CURRENT FORCE  
7. Measure voltage at MEAS_OUT and compare to 4.  
8. VCC = 15 V.  
The linearity tests for forcing current at the FORCE pin:  
1. The FORCE pin is loaded with a voltage source.  
9. DAC1 = 0 V.  
10. FORCE pin loaded with –4 V source.  
11. Measure current at FORCE.  
12. Measure voltage at MEAS_OUT.  
13. VEE = –9.5 V.  
2. The two ranges of CURRENT FORCE ranges (2 mA and  
200 µA) correspond to F1 and F2. The endpoints of the  
linearity curve are determined by full scale (or LOW), and  
the full scale (or HIGH) readings at the same FORCE pin  
voltage.  
14. Measure current at FORCE and compare to 11.  
15. Measure voltage at MEAS_OUT and compare to 12.  
16. VEE = –10 V.  
3. Using these endpoints, gain nonlinearity is computed and  
tested at the 1/4 scale, 1/2 scale, and 3/4 scale points.  
4. Computations for F1 are:  
F1 × 0.25 = LOW + 1 × (HIGH – LOW)/4  
F1 × 0.50 = LOW + 2 × (HIGH – LOW)/4  
F1 × 0.75 = LOW + 3 × (HIGH – LOW)/4  
VOLTAGE FORCE WITH CURRENT MEASURE  
(2 mA RANGE)  
1. DAC1 = 9 V.  
Where LOW = –Full Scale and HIGH = +Full Scale.  
2. FORCE pin loaded with 2 mA current source.  
3. Measure voltage at FORCE.  
4. Measure current at MEAS_OUT.  
5. VCC = 14.25 V.  
The linearity test for measuring voltage is as follows (at the  
MEAS_OUT pin):  
1. The endpoints of the linearity curve are determined by the  
–full scale (or LOW), and the +full scale (or HIGH) readings.  
2. Using these endpoints, gain nonlinearity is computed and  
tested at the 1/4 scale, 1/2 scale, and 3/4 scale points.  
6. Measure voltage at FORCE and compare to 3:  
Limit = 237 µV.  
3. Computations for M1 are:  
7. Measure current at MEAS_OUT and compare to 4:  
M1 × 0.25 = LOW + 1 × (HIGH – LOW)/4  
M1 × 0.50 = LOW + 2 × (HIGH – LOW)/4  
M1 × 0.75 = LOW + 3 × (HIGH – LOW)/4  
Limit = 237 µV.  
8. VCC = 15 V.  
9. DAC1 = –4 V.  
Where LOW = –Full Scale, and HIGH = +Full Scale.  
10. FORCE pin loaded with 2 mA current sink.  
11. Measure voltage at FORCE.  
12. Measure current at MEAS_OUT.  
13. VEE = –9.5 V.  
CURRENT FORCE WITH VOLTAGE MEASURE  
(2 mA RANGE)  
1. DAC1 = 5 V.  
2. FORCE pin loaded with 9 V source.  
3. Measure current at FORCE.  
4. Measure voltage at MEAS_OUT.  
5. VCC = 15 V.  
14. Measure voltage at FORCE and compare to 11:  
Limit = 474 µV.  
15. Measure current at MEAS_OUT and compare to 12.  
16. VEE = –10 V.  
6. Measure current at FORCE and compare to 3.  
S8  
SENSE  
SENSE  
AD53508  
S9  
FORCING  
EXT RC  
VOLTAGE  
40pF  
S6  
DAC1  
MAIN  
C1  
R1  
R2  
S7  
INT/IM  
S10  
DAC2  
S11  
S12  
S13  
S14  
S15  
S16  
FORCE  
VF  
IF  
S4  
S5  
ENABLE  
INTEGRATE  
1k  
2mA  
1.25R  
2.5V  
S17  
DSR  
VM  
IM  
S2  
S3  
10k⍀  
200A  
DIFF  
R
R
OUTPUT  
UNITY  
S1  
MEAS OUT  
CON  
1.25R  
GUARD  
S18  
GUARD  
Figure 3. Guarded Current Force/Voltage Measure, IRANGE 1: I 2 mA  
7–  
REV. 0  
AD53508  
1
51  
52  
34  
39  
40  
41  
32  
V
V
EE  
CC  
39nF  
CHDCPL  
47  
VH  
45  
37  
38  
43  
42  
49  
50  
VTERM  
DATA  
DATA  
IOD  
AD53032  
39nF  
CLDCPL  
VHDCPL  
25  
30  
22  
50  
VOUT  
TO DUT  
DRIVER  
IOD  
VLDCPL  
TO DUT (SENSE)  
RLD  
GUARD  
RLD  
VL 31  
16  
HCOMP  
13  
12  
7
LEH  
LEH  
QH  
6
QHB  
COMPARATOR  
4
QL  
QL  
"CONNECT TO HIGH QUALITY,  
LOW NOISE SIGNAL (GND)"  
3
11  
10  
17  
LEL  
LEL  
LCOMP  
ACTIVE LOAD  
+1  
24  
23  
25  
30  
22  
VCOMS  
VCOMI  
IOLC  
DSR  
IOL  
V/I  
V/I  
FORCE  
SENSE  
IOLRTN  
*
27  
36  
35  
IOHRTN  
INHL  
PPMU  
26  
IOH  
15  
14  
THERM  
NC  
INHL  
DAC1  
DAC2  
1.0A/K  
IOHC 29  
GUARD*  
9, 33, 44, 46, 48  
PWRGND  
2, 5, 8  
19  
28  
MEAS_OUT  
ECLGND HQGND2 HQGND  
TO V/I DAC  
(PER CHANNEL)  
TO SYSTEM  
VOLTMETER  
FROM OTHER PMUs  
Figure 4. Recommended Use of the PPMU with a DCL  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
44-Lead Plastic Leaded Chip Carrier (PLCC)  
(P-44A)  
0.180 (4.57)  
0.165 (4.19)  
0.056 (1.42)  
0.042 (1.07)  
0.048 (1.21)  
0.042 (1.07)  
0.025 (0.63)  
0.015 (0.38)  
0.048 (1.21)  
0.042 (1.07)  
6
40  
39  
7
PIN 1  
IDENTIFIER  
0.050  
(1.27)  
BSC  
0.63 (16.00)  
0.59 (14.99)  
0.021 (0.53)  
0.013 (0.33)  
TOP VIEW  
(PINS DOWN)  
0.032 (0.81)  
0.026 (0.66)  
17  
29  
28  
18  
0.040 (1.01)  
0.025 (0.64)  
0.020  
(0.50)  
R
0.656 (16.66)  
0.650 (16.51)  
SQ  
SQ  
0.110 (2.79)  
0.085 (2.16)  
0.695 (17.65)  
0.685 (17.40)  
8–  
REV. 0  

相关型号:

AD53509

High-Performance Driver/Comparator Active Load on a Single Chip
ADI

AD53509G

High Performance Driver/Comparator Active Load on a Single Chip
ADI

AD53509JSQ

High-Performance Driver/Comparator Active Load on a Single Chip
ADI

AD53509JSW

High Performance Driver/Comparator Active Load on a Single Chip
ADI

AD53509JSWZ

High-Performance Driver/Comparator Active Load on a Single Chip
ADI

AD53509_15

High Performance Driver/Comparator
ADI

AD53513

Quad Ultrahigh-Speed Pin Driver with High-Z and VTERM Modes
ADI

AD53513JSQ

Quad Ultrahigh-Speed Pin Driver with High-Z and VTERM Modes
ADI

AD53519

Preliminary Technical Data
ADI

AD53519JP

Preliminary Technical Data
ADI

AD53522

High Speed Dual Pin Electronic
ADI

AD53522JSQ

High Speed Dual Pin Electronic
ADI