AD5722_17 [ADI]

Complete, Dual, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar, Voltage Output DACs;
AD5722_17
型号: AD5722_17
厂家: ADI    ADI
描述:

Complete, Dual, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar, Voltage Output DACs

文件: 总31页 (文件大小:1354K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Complete, Dual, 12-/14-/16-Bit, Serial Input,  
Unipolar/Bipolar, Voltage Output DACs  
AD5722/AD5732/AD5752  
Data Sheet  
FEATURES  
GENERAL DESCRIPTION  
Complete, dual, 12-/14-/16-bit digital-to-analog converter (DAC)  
Operates from single/dual supplies  
The AD5722/AD5732/AD5752 are dual, 12-/14-/16-bit, serial  
input, voltage output, digital-to-analog converters. They operate  
from single-supply voltages from +4.5 V up to +16.5 V or dual-  
supply voltages from 4.5 V up to 16.5 V. Nominal full-scale  
output range is software-selectable from +5 V, +10 V, +10.8 V,  
5 V, 10 V, or 10.8 V. Integrated output amplifiers, reference  
buffers, and proprietary power-up/power-down control circuitry  
are also provided.  
Software programmable output range  
+5 V, +10 V, +10.8 V, 5 V, 10 V, 10.8 V  
INL error: 16 LSB maximum, DNL error: 1 LSB maximum  
Total unadjusted error (TUE): 0.1% FSR maximum  
Settling time: 10 µs typical  
Integrated reference buffers  
Output control during power-up/brownout  
Simultaneous updating via LDAC  
The parts offer guaranteed monotonicity, integral nonlinearity  
(INL) of 16 LꢀB maximum, low noise, and 10 μs typical  
settling time.  
Asynchronous CLR to zero scale or midscale  
DSP-/microcontroller-compatible serial interface  
24-lead TSSOP  
The AD5722/AD5732/AD5752 use a serial interface that  
operates at clock rates up to 30 MHz and are compatible with  
DꢀP and microcontroller interface standards. Double buffering  
allows the simultaneous updating of all DACs. The input coding  
is user-selectable twos complement or offset binary for a bipolar  
Operating temperature range: −40°C to +85°C  
iCMOS process technology1  
APPLICATIONS  
Industrial automation  
2sComp  
output (depending on the state of Pin BIN/  
), and  
Closed-loop servo control, process control  
Automotive test and measurement  
Programmable logic controllers  
straight binary for a unipolar output. The asynchronous clear  
function clears all DAC registers to a user-selectable zero-scale  
or midscale output. The parts are available in a 24-lead TꢀꢀOP  
and offer guaranteed specifications over the −40°C to +85°C  
industrial temperature range.  
The AD5722/AD5732/AD5752 are pin compatible with the  
AD5724/AD5734/AD5754, which are complete, quad, 12-/14-/  
16-bit, serial input, unipolar/bipolar voltage output DACs.  
FUNCTIONAL BLOCK DIAGRAM  
DD  
AV  
AV  
REFIN  
SS  
DV  
CC  
AD5722/AD5732/AD5752  
REFERENCE  
BUFFERS  
CLR  
BIN/2sCOMP  
12/14/16  
12/14/16  
12/14/16  
INPUT  
REGISTER A  
DAC  
REGISTER A  
DAC A  
DAC B  
SDIN  
SCLK  
SYNC  
SDO  
V
V
A
B
OUT  
OUT  
INPUT SHIFT  
REGISTER  
AND  
CONTROL  
LOGIC  
INPUT  
REGISTER B  
DAC  
REGISTER B  
DAC_GND (2)  
SIG_GND (2)  
GND  
LDAC  
Figure 1.  
1 For analog systems designers within industrial/instrumentation equipment OEMs who need high performance ICs at higher voltage levels, iCMOS® is a technology  
platform that enables the development of analog ICs capable of 30 V and operating at 15 V supplies while allowing dramatic reductions in power consumption and  
package size, as well as increased ac and dc performance.  
Rev. F  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject tochange without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2008–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD5722/AD5732/AD5752  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Transfer Function....................................................................... 20  
Input ꢀhift Register .................................................................... 24  
DAC Register .............................................................................. 25  
Output Range ꢀelect Register ................................................... 25  
Control Register ......................................................................... 26  
Power Control Register ............................................................. 26  
Design Features............................................................................... 27  
Analog Output Control ............................................................. 27  
Power-Down Mode.................................................................... 27  
Overcurrent Protection ............................................................. 27  
Thermal ꢀhutdown .................................................................... 27  
Applications Information.............................................................. 28  
+5 V/ 5 V Operation ................................................................ 28  
Alternative Power-Up ꢀequence ꢀupport ............................... 28  
Layout Guidelines....................................................................... 28  
Galvanically Isolated Interface ................................................. 29  
Voltage Reference ꢀelection...................................................... 29  
Microprocessor Interfacing....................................................... 29  
Outline Dimensions....................................................................... 31  
Ordering Guide .......................................................................... 31  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
ꢀpecifications..................................................................................... 3  
AC Performance Characteristics................................................ 5  
Timing Characteristics ................................................................ 5  
Timing Diagrams.......................................................................... 6  
Absolute Maximum Ratings............................................................ 8  
EꢀD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 10  
Terminology .................................................................................... 16  
Theory of Operation ...................................................................... 18  
Architecture................................................................................. 18  
Power-Up ꢀequence ................................................................... 18  
ꢀerial Interface ............................................................................ 18  
LDAC  
Load DAC (  
)..................................................................... 20  
CLR  
Asynchronous Clear (  
)....................................................... 20  
Configuring the AD5722/AD5732/AD5752 .......................... 20  
REVISION HISTORY  
2/2017—Rev. E to Rev. F  
3/2011—Rev. B to Rev. C  
Added Power-Up ꢀequence ꢀection............................................. 18  
Changes to Table 7 and Table 8..................................................... 21  
Changes to Table 10 and Table 11 ................................................ 22  
Changes to Table 13 and Table 14 ................................................ 23  
Changes to Analog Output Control ꢀection............................... 27  
Added Alternative Power-Up ꢀequence ꢀupport ꢀection,  
Figure 43, and Figure 44; Renumbered ꢀequentially................. 28  
Changes to Configuring the AD5722/AD5732/AD5752 ꢀection..20  
8/2010—Rev. A to Rev. B  
Changes to Table 27 ....................................................................... 26  
5/2010—Rev. 0 to Rev. A  
Changes to Junction Temperature, TJ max Parameter, Table 4 ...8  
Changes to Exposed Paddle Description, Table 5.........................9  
Changes to Ordering Guide.......................................................... 30  
2/2016—Rev. D to Rev. E  
Changes to Table 1............................................................................ 3  
10/08—Revision 0: Initial Version  
7/2011—Rev. C to Rev. D  
Changes to Table 3: t7, t8, t10 Limits......................................................5  
Rev. F | Page 2 of 31  
 
Data Sheet  
AD5722/AD5732/AD5752  
SPECIFICATIONS  
AVDD = 4.5 V1 to 16.5 V; AVꢀꢀ = −4.5 V1 to −16.5 V, or AVꢀꢀ = 0 V; GND = 0 V; REFIN = 2.5 V; DVCC = 2.7 V to 5.5 V; RLOAD = 2 kΩ;  
CLOAD = 200 pF; all specifications TMIN to TMAX, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
ACCURACY  
Outputs unloaded  
Resolution  
AD5752  
16  
14  
12  
Bits  
Bits  
Bits  
AD5732  
AD5722  
Total Unadjusted Error (TUE)  
B Version  
−0.1  
−0.3  
+0.1  
+0.3  
% FSR  
% FSR  
10 V range  
10 V range  
A Version  
Integral Nonlinearity (INL)2  
AD5752 A, B Versions  
AD5732 A Version  
AD5722 A Version  
−16  
−4  
+16  
+4  
+1  
+1  
+6  
LSB  
LSB  
LSB  
LSB  
mV  
−1  
Differential Nonlinearity (DNL) −1  
All models, all versions, guaranteed monotonic  
Bipolar Zero Error  
−6  
−6  
−6  
10 V range, TA = 25°C, error at other temperatures  
obtained using bipolar zero TC  
Bipolar Zero TC3  
Zero-Scale Error  
4
4
4
ppm FSR/°C  
mV  
+6  
+6  
10 V range, TA = 25°C, error at other temperatures  
obtained using zero-scale TC  
Zero-Scale TC3  
Offset Error  
ppm FSR/°C  
mV  
+10 V range, TA = 25°C, error at other temperatures  
obtained using zero-scale TC  
Offset Error TC  
Gain Error  
ppm FSR/°C  
−0.025  
−0.065  
0
+0.025 % FSR  
10 V range, TA = 25°C, error at other temperatures  
obtained using gain TC  
Gain Error3  
Gain Error3  
0
+10 V and +5 V ranges, TA = 25°C, error at other  
temperatures obtained using gain TC  
0.08  
5 V range, TA = 25°C, error at other temperatures  
obtained using gain TC  
Gain TC3  
DC Crosstalk3  
4
ppm FSR/°C  
μV  
120  
REFERENCE INPUT3  
Reference Input Voltage  
DC Input Impedance  
Input Current  
2.5  
5
V
1% for specified performance  
1
MΩ  
μA  
V
−2  
2
0.5  
+2  
3
Reference Range  
OUTPUT CHARACTERISTICS3  
Output Voltage Range  
−10.8  
−12  
+10.8  
+12  
0.ꢀ  
V
AVDD/AVSS = 11.7 V min, REFIN = +2.5 V  
AVDD/AVSS = 12.ꢀ V min, REFIN = +3 V  
V
Headroom Required  
Output Voltage TC  
Output Voltage Drift vs. Time  
Short-Circuit Current  
Load  
0.5  
4
V
ppm FSR/°C  
50  
20  
ppm FSR  
Drift after 1000 hours of life test @ 125°C  
For specified performance  
mA  
kΩ  
pF  
Ω
2
Capacitive Load Stability  
DC Output Impedance  
4000  
0.5  
Rev. F | Page 3 of 31  
AD5722/AD5732/AD5752  
Data Sheet  
Parameter  
DIGITAL INPUTS3  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DVCC = 2.7 V to 5.5 V, JEDEC compliant  
Input High Voltage, VIH  
Input Low Voltage, VIL  
Input Current  
2
V
0.8  
1
V
μA  
pF  
Per pin  
Per pin  
Pin Capacitance  
5
DIGITAL OUTPUTS (SDO)3  
Output Low Voltage, VOL  
Output High Voltage, VOH  
Output Low Voltage, VOL  
Output High Voltage, VOH  
0.4  
0.4  
+1  
V
DVCC = 5 V 10%, sinking 200 μA  
DVCC = 5 V 10%, sourcing 200 μA  
DVCC = 2.7 V to 3.6 V, sinking 200 μA  
DVCC = 2.7 V to 3.6 V, sourcing 200 μA  
DVCC − 1  
V
V
DVCC − 0.5  
−1  
V
High Impedance Leakage  
Current  
μA  
High Impedance Output  
Capacitance  
5
pF  
POWER REQUIREMENTS  
AVDD  
4.5  
16.5  
−16.5  
5.5  
V
V
V
AVSS  
−4.5  
2.7  
DVCC  
Power Supply Sensitivity3  
∆VOUT/∆ΑVDD  
−65  
0.5  
dB  
AIDD  
3.25  
2.4  
2.5  
3
mA/channel  
mA/channel  
mA/channel  
μA  
Outputs unloaded  
AVSS = 0 V, outputs unloaded  
Outputs unloaded  
AISS  
DICC  
VIH = DVCC, VIL = GND  
Power Dissipation  
1ꢀ0  
7ꢀ  
mW  
16.5 V operation, outputs unloaded  
16.5 V operation, AVSS = 0 V, outputs unloaded  
mW  
Power-Down Currents  
AIDD  
AISS  
DICC  
40  
μA  
μA  
nA  
40  
300  
1 For specified performance, the maximum headroom requirement is 0.ꢀ V.  
2 INL is the relative accuracy. It is measured from Code 512, Code 128, and Code 32 for the AD5752, the AD5732, and the AD5722, respectively.  
3 Guaranteed by characterization; not production tested.  
Rev. F | Page 4 of 31  
Data Sheet  
AD5722/AD5732/AD5752  
AC PERFORMANCE CHARACTERISTICS  
AVDD = 4.5 V1 to 16.5 V; AVꢀꢀ = −4.5 V to −16.5 V, or AVꢀꢀ = 0 V; GND = 0 V; REFIN = 2.5 V; DVCC = 2.7 V to 5.5 V; RLOAD = 2 kΩ;  
LOAD = 200 pF; all specifications TMIN to TMAX, unless otherwise noted.  
C
Table 2.  
Parameter2  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DYNAMIC PERFORMANCE  
Output Voltage Settling Time  
10  
12  
8.5  
5
μs  
20 V step to 0.03% FSR  
7.5  
μs  
10 V step to 0.03% FSR  
μs  
512 LSB step settling (16-bit resolution)  
Slew Rate  
3.5  
13  
35  
10  
10  
0.6  
V/μs  
nV-sec  
mV  
Digital-to-Analog Glitch Energy  
Glitch Impulse Peak Amplitude  
Digital Crosstalk  
nV-sec  
nV-sec  
nV-sec  
DAC-to-DAC Crosstalk  
Digital Feedthrough  
Output Noise  
0.1 Hz to 10 Hz Bandwidth  
100 kHz Bandwidth  
15  
μV p-p  
μV rms  
nV/√Hz  
0x8000 DAC code  
80  
Output Noise Spectral Density  
320  
Measured at 10 kHz, 0x8000 DAC code  
1 For specified performance, the maximum headroom requirement is 0.ꢀ V.  
2 Guaranteed by design and characterization; not production tested.  
TIMING CHARACTERISTICS  
AVDD = 4.5 V to 16.5 V; AVꢀꢀ = −4.5 V to −16.5 V, or AVꢀꢀ = 0 V; GND = 0 V; REFIN = 2.5 V; DVCC = 2.7 V to 5.5 V; RLOAD = 2 kΩ; CLOAD  
200 pF; all specifications tMIN to tMAX, unless otherwise noted.  
=
Table 3.  
Parameter1, 2, 3  
Limit at tMIN, tMAX  
Unit  
Description  
t1  
33  
13  
13  
13  
13  
100  
7
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
μs max  
ns min  
μs max  
ns min  
ns max  
ns min  
SCLK cycle time  
t2  
SCLK high time  
t3  
SCLK low time  
t4  
SYNC falling edge to SCLK falling edge setup time  
SCLK falling edge to SYNC rising edge  
Minimum SYNC high time (write mode)  
Data setup time  
t5  
t6  
t7  
t8  
2
Data hold time  
tꢀ  
20  
130  
20  
10  
20  
2.5  
13  
40  
200  
LDAC falling edge to SYNC falling edge  
SYNC rising edge to LDAC falling edge  
LDAC pulse width low  
t10  
t11  
t12  
t13  
t14  
DAC output settling time  
CLR pulse width low  
CLR pulse activation time  
4
t15  
SYNC rising edge to SCLK falling edge  
SCLK rising edge to SDO valid (CL SDO5 = 15 pF)  
Minimum SYNC high time (readback/daisy-chain mode)  
4
t16  
t17  
1 Guaranteed by characterization; not production tested.  
2 All input signals are specified with tR = tF = 5 ns (10% to ꢀ0% of DVCC) and timed from a voltage level of 1.2 V.  
3 See Figure 2, Figure 3, and Figure 4.  
4 Daisy-chain and readback mode.  
5 CL SDO = capacitive load on SDO output.  
Rev. F | Page 5 of 31  
AD5722/AD5732/AD5752  
Data Sheet  
TIMING DIAGRAMS  
t1  
SCLK  
1
2
24  
t2  
t3  
t6  
t5  
t4  
SYNC  
SDIN  
t8  
t7  
DB23  
DB0  
t11  
t9  
t10  
LDAC  
t12  
V
V
x
x
OUT  
OUT  
t12  
t13  
CLR  
t14  
V
x
OUT  
Figure 2. Serial Interface Timing Diagram  
t1  
SCLK  
24  
48  
t3  
t2  
t5  
t17  
t15  
t4  
SYNC  
SDIN  
t8  
t7  
D32B  
D0B  
D32B  
D0B  
INPUT WORD FOR DAC N  
INPUT WORD FOR DAC N – 1  
INPUT WORD FOR DAC N  
t16  
DB23  
DB0  
SDO  
t10  
UNDEFINED  
t11  
LDAC  
Figure 3. Daisy-Chain Timing Diagram  
Rev. F | Page 6 of 31  
 
Data Sheet  
AD5722/AD5732/AD5752  
SCLK  
1
24  
24  
1
t17  
SYNC  
SDIN  
DB23  
DB0  
DB23  
DB0  
INPUT WORD SPECIFIES  
REGISTER TO BE READ  
NOP CONDITION  
DB23  
DB0  
DB23  
DB0  
SDO  
UNDEFINED  
SELECTED REGISTER DATA  
CLOCKED OUT  
Figure 4. Readback Timing Diagram  
Rev. F | Page 7 of 31  
 
AD5722/AD5732/AD5752  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C unless otherwise noted.  
Transient currents of up to 100 mA do not cause ꢀCR latch-up.  
ꢀtresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 4.  
Parameter  
Rating  
AVDD to GND  
−0.3 V to +17 V  
+0.3 V to −17 V  
−0.3 V to +7 V  
AVSS to GND  
DVCC to GND  
Digital Inputs to GND  
−0.3 V to DVCC + 0.3 V or 7 V  
(whichever is less)  
ESD CAUTION  
Digital Outputs to GND  
−0.3 V to DVCC + 0.3 V or 7 V  
(whichever is less)  
REFIN to GND  
−0.3 V to +5 V  
AVSS to AVDD  
VOUTA or VOUTB to GND  
DAC_GND to GND  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
SIG_GND to GND  
Operating Temperature Range, TA  
Industrial  
−40°C to +85°C  
−65°C to +150°C  
150°C  
Storage Temperature Range  
Junction Temperature, TJ max  
24-Lead TSSOP Package  
θJA Thermal Impedance  
θJC Thermal Impedance  
Power Dissipation  
42°C/W  
ꢀ°C/W  
(TJ max − TA)/θJA  
JEDEC industry standard  
J-STD-020  
Lead Temperature  
Soldering  
ESD (Human Body Model)  
3.5 kV  
Rev. F | Page 8 of 31  
Data Sheet  
AD5722/AD5732/AD5752  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AV  
AV  
1
2
3
4
5
6
7
8
9
24  
23  
DD  
SS  
NC  
V
B
OUT  
AD5722/  
AD5732/  
AD5752  
22 NC  
21  
V
A
OUT  
NC  
SIG_GND  
20 SIG_GND  
BIN/2sCOMP  
NC  
TOP VIEW  
(Not to Scale)  
19  
18  
DAC_GND  
DAC_GND  
SYNC  
17 REFIN  
16 SDO  
15 GND  
SCLK  
SDIN  
LDAC 10  
DV  
11  
14  
13  
CLR  
CC  
NC  
12  
NC  
NOTES  
1. NC = NO CONNECT  
2. IT IS RECOMMENDED THAT THE  
EXPOSED PAD BE THERMALLY  
CONNECTED TO A COPPER PLANE  
FOR ENHANCED THERMAL  
PERFORMANCE.  
Figure 5. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
AVSS  
Negative Analog Supply. Voltage ranges from −4.5 V to −16.5 V. This pin can be connected to 0 V if output  
ranges are unipolar.  
2, 4, 6, 12,  
13, 22  
NC  
Do not connect to these pins.  
3
5
VOUT  
A
Analog Output Voltage of DAC A. The output amplifier is capable of directly driving a 2 kΩ, 4000 pF load.  
BIN/2sCOMP Determines the DAC coding for a bipolar output range. This pin should be hardwired to either DVCC or GND.  
When hardwired to DVCC, input coding is offset binary. When hardwired to GND, input coding is twos  
complement. (For unipolar output ranges, coding is always straight binary.)  
7
8
SYNC  
Active Low Input. This is the frame synchronization signal for the serial interface. While SYNC is low, data is  
transferred on the falling edge of SCLK. Data is latched on the rising edge of SYNC.  
SCLK  
Serial Clock Input. Data is clocked into the shift register on the falling edge of SCLK. This operates at clock  
speeds up to 30 MHz.  
SDIN  
Serial Data Input. Data must be valid on the falling edge of SCLK.  
10  
LDAC  
Load DAC, Logic Input. This is used to update the DAC registers and, consequently, the analog outputs. When  
this pin is tied permanently low, the addressed DAC register is updated on the rising edge of SYNC. If LDAC is  
held high during the write cycle, the DAC input register is updated, but the output update is held off until the  
falling edge of LDAC. In this mode, all analog outputs can be updated simultaneously on the falling edge of  
LDAC. The LDAC pin should not be left unconnected.  
11  
14  
15  
16  
CLR  
Active Low Input. Asserting this pin sets the DAC registers to zero-scale code or midscale code (user-selectable).  
Digital Supply. Voltage ranges from 2.7 V to 5.5 V.  
DVCC  
GND  
SDO  
Ground Reference.  
Serial Data Output. Used to clock data from the serial register in daisy-chain or readback mode. Data is clocked  
out on the rising edge of SCLK and is valid on the falling edge of SCLK.  
17  
REFIN  
External Reference Voltage Input. Reference input range is 2 V to 3 V. REFIN = 2.5 V for specified performance.  
Ground Reference for the Two Digital-to-Analog Converters (DACs).  
18, 1ꢀ  
20, 21  
23  
DAC_GND  
SIG_GND  
Ground Reference for the Two Output Amplifiers.  
VOUT  
B
Analog Output Voltage of DAC B. The output amplifier is capable of directly driving a 2 kΩ, 4000 pF load.  
Positive Analog Supply. Voltage ranges from 4.5 V to 16.5 V.  
24  
AVDD  
Exposed  
Paddle  
This exposed paddle should be connected to the potential of the AVSS pin, or alternatively, it can be left electrically  
unconnected. It is recommended that the paddle be thermally connected to a copper plane for enhanced thermal  
performance.  
Rev. F | Page ꢀ of 31  
AD5722/AD5732/AD5752  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
6
0.6  
0.4  
AV /AV = +12V/0V, RANGE = +10V  
DD SS  
AV /AV = ±12V, RANGE = ±10V  
DD SS  
AV /AV = ±6.5V, RANGE = ±5V  
DD SS  
4
2
AV /AV = +6.5V/0V, RANGE = +5V  
DD  
SS  
0.2  
0
0
–2  
–4  
–6  
–8  
–0.2  
–0.4  
–0.6  
–0.8  
AV /AV = +12V/0V, RANGE = +10V  
DD SS  
AV /AV = ±12V, RANGE = ±10V  
DD SS  
AV /AV = ±6.5V, RANGE = ±5V  
DD SS  
AV /AV = +6.5V/0V, RANGE = +5V  
DD  
SS  
0
10,000  
20,000  
30,000  
40,000  
50,000  
60,000  
0
10,000  
20,000  
30,000  
CODE  
40,000  
50,000  
60,000  
CODE  
Figure 6. AD5752 Integral Nonlinearity Error vs. Code  
Figure 9. AD5752 Differential Nonlinearity Error vs. Code  
1.5  
1.0  
0.15  
AV /AV = +12V/0V, RANGE = +10V  
DD  
SS  
AV /AV = ±12V, RANGE = ±10V  
DD  
SS  
AV /AV = ±6.5V, RANGE = ±5V  
DD  
SS  
0.10  
0.05  
0
AV /AV = +6.5V/0V, RANGE = +5V  
DD  
SS  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.05  
–0.10  
–0.15  
–0.20  
AV /AV = +12V/0V, RANGE = +10V  
DD  
SS  
AV /AV = ±12V, RANGE = ±10V  
DD  
SS  
AV /AV = ±6.5V, RANGE = ±5V  
DD  
SS  
AV /AV = +6.5V/0V, RANGE = +5V  
DD  
SS  
0
2000 4000 6000 8000 10,000 12,000 14,000 16,000  
CODE  
0
2000 4000 6000 8000 10,000 12,000 14,000 16,000  
CODE  
Figure 7. AD5732 Integral Nonlinearity Error vs. Code  
Figure 10. AD5732 Differential Nonlinearity Error vs. Code  
0.04  
0.3  
0.2  
AV /AV = +12V/0V, RANGE = +10V  
AV /AV = +12V/0V, RANGE = +10V  
DD SS  
DD  
SS  
AV /AV = ±12V, RANGE = ±10V  
AV /AV = ±12V, RANGE = ±10V  
DD SS  
DD  
SS  
0.03  
0.02  
AV /AV = ±6.5V, RANGE = ±5V  
AV /AV = ±6.5V, RANGE = ±5V  
DD SS  
AV /AV = +6.5V/0V, RANGE = +5V  
DD SS  
DD  
SS  
AV /AV = +6.5V/0V, RANGE = +5V  
DD  
SS  
0.1  
0.01  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
Figure 11. AD5722 Differential Nonlinearity Error vs. Code  
Figure 8. AD5722 Integral Nonlinearity Error vs. Code  
Rev. F | Page 10 of 31  
 
 
Data Sheet  
AD5722/AD5732/AD5752  
8
6
10  
8
6
4
4
MAX INL ±10V  
MAX INL ±5V  
MIN INL ±10V  
MIN INL ±5V  
MAX INL +10V  
MIN INL +10V  
MAX INL +5V  
MIN INL +5V  
2
2
BIPOLAR 5V MIN  
UNIPOLAR 5V MIN  
BIPOLAR 5V MAX  
UNIPOLAR 5V MAX  
0
0
–2  
–4  
–6  
–8  
–10  
–2  
–4  
–6  
–8  
5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5  
–40  
–20  
0
20  
40  
60  
80  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 12. AD5752 Integral Nonlinearity Error vs. Temperature  
Figure 15. AD5752 Integral Nonlinearity Error vs. Supply Voltage  
0.1  
0
1.0  
BIPOLAR 10V MIN  
UNIPOLAR 10V MIN  
BIPOLAR 10V MAX  
UNIPOLAR 10V MAX  
0.8  
0.6  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
MAX DNL ±10V  
MAX DNL ±5V  
MIN DNL ±10V  
MIN DNL ±5V  
MAX DNL +10V  
MIN DNL +10V  
MAX DNL +5V  
MIN DNL +5V  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5  
–40  
–20  
0
20  
40  
60  
80  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 16. AD5752 Differential Nonlinearity Error vs. Supply Voltage  
Figure 13. AD5752 Differential Nonlinearity Error vs. Temperature  
1.0  
10  
8
BIPOLAR 5V MIN  
UNIPOLAR 5V MIN  
0.8  
BIPOLAR 5V MAX  
UNIPOLAR 5V MAX  
0.6  
6
0.4  
0.2  
4
2
BIPOLAR 10V MIN  
0
UNIPOLAR 10V MIN  
0
BIPOLAR 10V MAX  
UNIPOLAR 10V MAX  
–0.2  
–0.4  
–0.6  
–0.8  
–2  
–4  
–6  
–8  
–1.0  
–10  
5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5  
11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 17. AD5752 Differential Nonlinearity Error vs. Supply Voltage  
Figure 14. AD5752 Integral Nonlinearity Error vs. Supply Voltage  
Rev. F | Page 11 of 31  
AD5722/AD5732/AD5752  
Data Sheet  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
0.02  
0.01  
BIPOLAR 10V MIN  
UNIPOLAR 10V MIN  
BIPOLAR 10V MAX  
UNIPOLAR 10V MAX  
0
–0.01  
–0.02  
–0.03  
–0.04  
4.5  
6.5  
8.5  
10.5  
AV (V)  
12.5  
14.5  
16.5  
11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5  
SUPPLY VOLTAGE (V)  
DD  
Figure 18. AD5752 Total Unadjusted Error vs. Supply Voltage  
Figure 21. Supply Current vs. Supply Voltage (Single Supply)  
4
0.04  
0.03  
0.02  
+10V  
3
2
0.01  
0
BIPOLAR 5V MIN  
UNIPOLAR 5V MIN  
BIPOLAR 5V MAX  
UNIPOLAR 5V MAX  
1
±10V  
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
0
–1  
–2  
±5V  
–3  
–40  
5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5  
–20  
0
20  
40  
60  
80  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 19. AD5752 Total Unadjusted Error vs. Supply Voltage  
Figure 22. Zero-Scale Error vs. Temperature  
5
4
0.8  
0.6  
0.4  
AI  
(mA)  
DD  
3
2
±5V RANGE  
0.2  
1
0
±10V RANGE  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1  
–2  
–3  
–4  
AI  
(mA)  
DD  
4.5  
6.5  
8.5  
10.5  
AV /AV (V)  
12.5  
14.5  
16.5  
–40  
–20  
0
20  
40  
60  
80  
DD  
SS  
TEMPERATURE (°C)  
Figure 20. Supply Current vs. Supply Voltage (Dual Supply)  
Figure 23. Bipolar Zero Error vs. Temperature  
Rev. F | Page 12 of 31  
 
 
Data Sheet  
AD5722/AD5732/AD5752  
0.06  
0.04  
0.02  
0
15  
10  
5
±5V  
0
±10V  
+10V  
–0.02  
–0.04  
–0.06  
–5  
–10  
–15  
–3  
–1  
1
3
5
7
9
11  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TIME (µs)  
Figure 24. Gain Error vs. Temperature  
Figure 27. Full-Scale Settling Time, 10 V Range  
1000  
7
5
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
3
1
DV  
= 5V  
–1  
–3  
–5  
–7  
CC  
DV  
2
= 3V  
CC  
–100  
0
1
3
4
5
6
–3  
–1  
1
3
5
7
9
11  
V
(V)  
LOGIC  
TIME (µs)  
Figure 25. Digital Current vs. Logic Input Voltage  
Figure 28. Full-Scale Settling Time, 5 V Range  
0.010  
0.005  
0
12  
10  
8
±5V RANGE, CODE = 0xFFFF  
±10V RANGE, CODE = 0xFFFF  
+10V RANGE, CODE = 0xFFFF  
+5V RANGE, CODE = 0xFFFF  
±5V RANGE, CODE = 0x0000  
±10V RANGE, CODE = 0x0000  
–0.005  
–0.010  
–0.015  
–0.020  
6
4
2
0
–25 –20 –15 –10  
–5  
0
5
10  
15  
20  
25  
–3  
–1  
1
3
5
7
9
11  
OUTPUT CURRENT (mA)  
TIME (µs)  
Figure 26. Output Source and Sink Capability  
Figure 29. Full-Scale Settling Time, +10 V Range  
Rev. F | Page 13 of 31  
 
 
 
AD5722/AD5732/AD5752  
Data Sheet  
6
5
4
3
2
1
0
1
RANGE = ±5V  
RANGE = +5V  
RANGE = +10V  
RANGE = ±10V  
–3  
–1  
1
3
5
7
9
11  
TIME (µs)  
CH1 5µV  
M5s  
LINE  
73.8V  
Figure 30. Full-Scale Settling Time, +5 V Range  
Figure 33. Peak-to-Peak Noise, 100 kHz Bandwidth  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.020  
AV /AV = ±16.5V  
±
DD  
DD  
SS  
±10V RANGE, 0x7FFF TO 0x8000  
±10V RANGE, 0x8000 TO 0x7FFF  
±5V RANGE, 0x7FFF TO 0x8000  
±5V RANGE, 0x8000 TO 0x7FFF  
+10V RANGE, 0x7FFF TO 0x8000  
+10V RANGE, 0x8000 TO 0x7FFF  
+5V RANGE, 0x7FFF TO 0x8000  
+5V RANGE, 0x8000 TO 0x7FFF  
AV  
= +16.5V, AVSS = 0V  
0.015  
0.010  
0.005  
0
–0.005  
–0.010  
–0.015  
–0.02  
–0.04  
–0.06  
–50  
–30  
–10  
10  
30  
TIME (µs)  
50  
70  
90  
–1  
0
1
2
3
4
5
TIME (µs)  
Figure 34. Output Glitch on Power-Up  
Figure 31. Digital-to-Analog Glitch Energy  
15  
10  
AV /AV = +12V/0V, RANGE = +10V  
DD  
SS  
AV /AV = ±12V, RANGE = ±10V  
DD  
SS  
AV /AV = ±6.5V, RANGE = ±5V  
DD  
SS  
AV /AV = +6.5V/0V, RANGE = +5V  
DD  
SS  
5
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
1
RANGE = ±5V  
RANGE = +5V  
RANGE = +10V  
RANGE = ±10V  
0
1000  
2000  
3000  
CODE  
4000  
5000  
6000  
CH1 5µV  
M 5s  
LINE  
73.8V  
Figure 35. AD5752 Total Unadjusted Error vs. Code  
Figure 32. Peak-to-Peak Noise, 0.1 Hz to 10 Hz Bandwidth  
Rev. F | Page 14 of 31  
 
Data Sheet  
AD5722/AD5732/AD5752  
4
1.0  
0.5  
AV /AV = +12V/0V, RANGE = +10V  
AV /AV = +12V/0V, RANGE = +10V  
DD SS  
DD  
SS  
AV /AV = ±12V, RANGE = ±10V  
AV /AV = ±12V, RANGE = ±10V  
DD SS  
DD  
SS  
AV /AV = ±6.5V, RANGE = ±5V  
AV /AV = ±6.5V, RANGE = ±5V  
DD SS  
AV /AV = +6.5V/0V, RANGE = +5V  
DD SS  
DD  
SS  
2
0
AV /AV = +6.5V/0V, RANGE = +5V  
DD  
SS  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–2  
–4  
–6  
–8  
–10  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
0
2000 4000 6000 8000 10000 12000 14000 16000  
CODE  
Figure 37. AD5722 Total Unadjusted Error vs. Code  
Figure 36. AD5732 Total Unadjusted Error vs. Code  
Rev. F | Page 15 of 31  
AD5722/AD5732/AD5752  
Data Sheet  
TERMINOLOGY  
Relative Accuracy or Integral Nonlinearity (INL)  
For the DAC, relative accuracy, or integral nonlinearity, is a  
measure of the maximum deviation in LꢀBs from a straight line  
passing through the endpoints of the DAC transfer function. A  
typical INL vs. code plot can be seen in Figure 6.  
Gain Error  
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from the  
ideal and is expressed in % FꢀR. A plot of gain error vs.  
temperature can be seen in Figure 24.  
Differential Nonlinearity (DNL)  
Gain TC  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LꢀB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LꢀB maximum  
ensures monotonicity. This DAC is guaranteed monotonic by  
design. A typical DNL vs. code plot can be seen in Figure 9.  
Gain TC is a measure of the change in gain error with changes  
in temperature. Gain TC is expressed in ppm FꢀR/°C.  
Total Unadjusted Error (TUE)  
Total unadjusted error is a measure of the output error taking  
all the various errors into account, namely INL error, offset  
error, gain error, and output drift over supplies, temperature,  
and time. TUE is expressed in % FꢀR.  
Monotonicity  
A DAC is monotonic if the output either increases or remains  
constant for increasing digital input code. The AD5722/AD5732/  
AD5752 are monotonic over their full operating temperature  
range.  
Digital-to-Analog Glitch Impulse  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state, but the output voltage remains constant. It is normally  
specified as the area of the glitch in nV-sec and is measured  
when the digital input code is changed by 1 LꢀB at the major  
carry transition (0x7FFF to 0x8000). ꢀee Figure 31.  
Bipolar Zero Error  
Bipolar zero error is the deviation of the analog output from the  
ideal half-scale output of 0 V when the DAC register is loaded  
with 0x8000 (straight binary coding) or 0x0000 (twos complement  
coding). A plot of bipolar zero error vs. temperature can be seen  
in Figure 23.  
Glitch Impulse Peak Amplitude  
Glitch impulse peak amplitude is the peak amplitude of the  
impulse injected into the analog output when the input code in  
the DAC register changes state. It is specified as the amplitude  
of the glitch in mV and is measured when the digital input code  
is changed by 1 LꢀB at the major carry transition (0x7FFF to  
0x8000). ꢀee Figure 31.  
Bipolar Zero TC  
Bipolar zero TC is a measure of the change in the bipolar zero  
error with a change in temperature. It is expressed in ppm FꢀR/°C.  
Zero-Scale Error or Negative Full-Scale Error  
Zero-scale error is the error in the DAC output voltage when  
0x0000 (straight binary coding) or 0x8000 (twos complement  
coding) is loaded to the DAC register. Ideally, the output voltage  
should be negative full-scale − 1 LꢀB. A plot of zero-scale error  
vs. temperature can be seen in Figure 22.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital inputs of the  
DAC but is measured when the DAC output is not updated. It is  
specified in nV-sec and measured with a full-scale code change  
on the data bus.  
Zero-Scale TC  
Zero-scale TC is a measure of the change in zero-scale error with a  
change in temperature. Zero-scale TC is expressed in ppm FꢀR/°C.  
Power Supply Sensitivity  
Power supply sensitivity indicates how the output of the DAC is  
affected by changes in the power supply voltage. It is measured  
by superimposing a 50 Hz/60 Hz, 200 mV p-p sine wave on the  
supply voltages and measuring the proportion of the sine wave  
that transfers to the outputs.  
Output Voltage Settling Time  
Output voltage settling time is the amount of time required for  
the output to settle to a specified level for a full-scale input change.  
A plot for full-scale settling time can be seen in Figure 27.  
Slew Rate  
DC Crosstalk  
The slew rate of a device is a limitation in the rate of change of  
the output voltage. The output slewing speed of a voltage output  
DAC is usually limited by the slew rate of the amplifier used at  
its output. ꢀlew rate is measured from 10% to 90% of the output  
signal and is given in V/μs.  
This is the dc change in the output level of one DAC in response  
to a change in the output of another DAC. It is measured with a  
full-scale output change on one DAC while monitoring another  
DAC. It is expressed in LꢀBs.  
Rev. F | Page 16 of 31  
Data Sheet  
AD5722/AD5732/AD5752  
Digital Crosstalk  
DAC-to-DAC Crosstalk  
Digital crosstalk is a measure of the impulse injected into the  
analog output of one DAC from the digital inputs of another  
DAC but is measured when the DAC output is not updated. It is  
specified in nV-sec and measured with a full-scale code change  
on the data bus.  
DAC-to-DAC crosstalk is the glitch impulse transferred to the  
output of one DAC due to a digital code change and a subsequent  
output change of another DAC. This includes both digital and  
analog crosstalk. It is measured by loading one of the DACs  
with a full-scale code change (all 0s to all 1s and vice versa) with  
LDAC  
low and monitoring the output of another DAC. The  
energy of the glitch is expressed in nV-sec.  
Rev. F | Page 17 of 31  
AD5722/AD5732/AD5752  
Data Sheet  
THEORY OF OPERATION  
The AD5722/AD5732/AD5752 are dual, 12-/14-/16-bit, serial  
input, unipolar/bipolar, voltage output DACs. They operate  
from unipolar supply voltages of +4.5 V to +16.5 V or bipolar  
supply voltages of 4.5 V to 16.5 V. In addition, the parts have  
software-selectable output ranges of +5 V, +10 V, +10.8 V, 5 V,  
10 V, and 10.8 V. Data is written to the AD5722/AD5732/  
AD5752 in a 24-bit word format via a 3-wire serial interface.  
The devices also offer an ꢀDO pin to facilitate daisy-chaining  
or readback.  
The resistor string structure is shown in Figure 39. It is a string  
of resistors, each of value R. The code loaded to the DAC register  
determines the node on the string where the voltage is to be  
tapped off and fed into the output amplifier. The voltage is  
tapped off by closing one of the switches connecting the string  
to the amplifier. Because it is a string of resistors, it is guaranteed  
monotonic.  
Output Amplifiers  
The output amplifiers are capable of generating both unipolar  
and bipolar output voltages. They are capable of driving a load  
of 2 kΩ in parallel with 4000 pF to GND. The source and sink  
capabilities of the output amplifiers can be seen in Figure 26.  
The slew rate is 3.5 V/μs with a full-scale settling time of 10 μs.  
The AD5722/AD5732/AD5752 incorporate a power-on reset  
circuit to ensure that the DAC registers power up loaded with  
0x0000. When powered on, the outputs are clamped to 0 V via  
a low impedance path.  
ARCHITECTURE  
Reference Buffers  
The DAC architecture consists of a string DAC followed by an  
output amplifier. Figure 38 shows a block diagram of the DAC  
architecture. The reference input is buffered before being  
applied to the DAC.  
The AD5722/AD5732/AD5752 require an external reference  
source. The reference input has an input range of 2 V to 3 V,  
with 2.5 V for specified performance. This input voltage is then  
buffered before it is applied to the DAC cores.  
REFIN  
POWER-UP SEQUENCE  
Because the DAC output voltage is controlled by the voltage  
monitor and control block (see Figure 42), it is important to  
power the DVCC pin before applying any voltage to the AVDD  
and AVꢀꢀ pins; otherwise, the G1 and G2 transmission gates are at  
an undefined state. The ideal power-up sequence is in the  
REF (+)  
RESISTOR  
STRING  
DAC REGISTER  
V
X
OUT  
CONFIGURABLE  
OUTPUT  
REF (–)  
AMPLIFIER  
following order: GND, ꢀIG_GND, DAC_GND, DVCC, AVDD  
,
GND  
OUTPUT  
RANGE CONTROL  
AVꢀꢀ, and then the digital inputs. The relative order of powering  
AVDD and AVꢀꢀ is not important, provided that they are powered  
Figure 38. DAC Architecture Block Diagram  
up after DVCC  
.
REFIN  
SERIAL INTERFACE  
R
R
The AD5722/AD5732/AD5752 are controlled over a versatile  
3-wire serial interface that operates at clock rates up to 30 MHz.  
It is compatible with ꢀPI, QꢀPI™, MICROWIRE™, and DꢀP  
standards.  
Input Shift Register  
TO OUTPUT  
R
AMPLIFIER  
The input shift register is 24 bits wide. Data is loaded into the  
device MꢀB first as a 24-bit word under the control of a serial  
clock input, ꢀCLK. The input register consists of a read/write  
bit, three register select bits, three DAC address bits, and 16 data  
bits. The timing diagram for this operation is shown in Figure 2.  
R
R
Figure 39. Resistor String Structure  
Rev. F | Page 18 of 31  
 
 
Data Sheet  
AD5722/AD5732/AD5752  
Standalone Operation  
Daisy-Chain Operation  
The serial interface works with both a continuous and noncon-  
tinuous serial clock. A continuous ꢀCLK source can be used  
For systems that contain several devices, the ꢀDO pin can be  
used to daisy-chain several devices together. Daisy-chain mode  
can be useful in system diagnostics and in reducing the number  
ꢀYNC  
only if  
In gated clock mode, a burst clock containing the exact number  
ꢀYNC  
is held low for the correct number of clock cycles.  
ꢀYNC  
of serial interface lines. The first falling edge of  
write cycle. ꢀCLK is continuously applied to the input shift  
ꢀYNC  
starts the  
of clock cycles must be used, and  
must be taken high  
register when  
is low. If more than 24 clock pulses are  
after the final clock to latch the data. The first falling edge of  
ꢀYNC  
applied, the data ripples out of the shift register and appears on  
the ꢀDO line. This data is clocked out on the rising edge of  
ꢀCLK and is valid on the falling edge. By connecting the ꢀDO  
of the first device to the ꢀDIN input of the next device in the  
chain, a multidevice interface is constructed. Each device in the  
system requires 24 clock pulses. Therefore, the total number of  
clock cycles must equal 24 × N, where N is the total number of  
AD5722/AD5732/AD5752 devices in the chain. When the serial  
starts the write cycle. Exactly 24 falling clock edges must  
ꢀYNC  
be applied to ꢀCLK before  
is brought high again. If  
th  
ꢀYNC  
is brought high before the 24 falling ꢀCLK edge, the  
data written is invalid. If more than 24 falling ꢀCLK edges are  
ꢀYNC  
applied before  
invalid. The input register addressed is updated on the rising  
ꢀYNC ꢀYNC  
is brought high, the input data is also  
edge of  
. For another serial transfer to take place,  
must be brought low again. After the end of the serial data  
transfer, data is automatically transferred from the input shift  
register to the addressed register.  
ꢀYNC  
transfer to all devices is complete,  
is taken high. This  
latches the input data in each device in the daisy chain and  
prevents any further data from being clocked into the input shift  
register. The serial clock can be a continuous or a gated clock.  
When the data has been transferred into the chosen register of  
the addressed DAC, all DAC registers and outputs can be  
ꢀYNC  
A continuous ꢀCLK source can only be used if  
is held  
LDAC  
ꢀYNC  
is high.  
updated by taking  
low while  
low for the correct number of clock cycles. In gated clock mode,  
a burst clock containing the exact number of clock cycles must  
AD5722/  
AD5732/  
AD5752*  
*
68HC11  
ꢀYNC  
be used, and  
latch the data.  
Readback Operation  
must be taken high after the final clock to  
SDIN  
MOSI  
SCK  
PC7  
SCLK  
SYNC  
LDAC  
W
Readback mode is invoked by setting the R/ bit = 1 in the  
write operation to the serial input shift register. (If the ꢀDO  
output is disabled via the ꢀDO disable bit in the control register,  
it is automatically enabled for the duration of the read operation,  
PC6  
SDO  
MISO  
SDIN  
W
after which it is disabled again.) With R/ = 1, Bit A2 to Bit A0,  
AD5722/  
AD5732/  
AD5752*  
in association with Bit REG2 to Bit REG0, select the register to  
be read. The remaining data bits in the write sequence are don’t  
care bits. During the next ꢀPI write, the data appearing on the ꢀDO  
output contains the data from the previously addressed register.  
For a read of a single register, the NOP command can be used in  
clocking out the data from the selected register on ꢀDO. The  
readback diagram in Figure 4 shows the readback sequence.  
For example, to read back the DAC register of Channel A, the  
following sequence should be implemented:  
SCLK  
SYNC  
LDAC  
SDO  
SDIN  
AD5722/  
AD5732/  
AD5752*  
1. Write 0x800000 to the AD5722/AD5732/AD5752 input  
register. This configures the part for read mode with the  
DAC register of Channel A selected. Note that all the data  
bits, DB15 to DB0, are don’t care bits.  
SCLK  
SYNC  
LDAC  
SDO  
2. Follow this with a second write, a NOP condition, 0x180000.  
During this write, the data from the register is clocked out  
on the ꢀDO line.  
*
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 40. Daisy Chaining the AD5722/AD5732/AD5752  
Rev. F | Page 1ꢀ of 31  
AD5722/AD5732/AD5752  
Data Sheet  
LOAD DAC (LDAC)  
CONFIGURING THE AD5722/AD5732/AD5752  
When the power supplies are applied to the AD5722/AD5732/  
AD5752, the power-on reset circuit ensures that all registers  
default to 0. This places all channels in power-down mode. The  
DVCC should be brought high before any of the interface lines  
are powered. If this is not done the first write to the device may  
be ignored. The first communication to the AD5722/AD5732/  
AD5752 should be to set the required output range on all  
channels (the default range is the 5 V unipolar range) by writing  
to the output range select register. The user should then write to  
the power control register to power on the required channels. To  
program an output value on a channel, that channel must first  
be powered up; any writes to a channel while it is in power-down  
mode are ignored. The AD5722/AD5732/AD5752 operate with a  
wide power supply range. It is important that the power supply  
applied to the parts provide adequate headroom to support the  
chosen output ranges.  
After data has been transferred into the input register of the  
DACs, there are two ways to update the DAC registers and DAC  
ꢀYNC  
LDAC  
, one  
outputs. Depending on the status of both  
and  
of two update modes is selected: individual DAC updating or  
simultaneous updating of all DACs.  
OUTPUT  
AMPLIFIER  
12-/14-/16-BIT  
DAC  
REFIN  
LDAC  
V
X
OUT  
DAC  
REGISTER  
INPUT  
REGISTER  
SCLK  
SYNC  
SDIN  
INTERFACE  
LOGIC  
SDO  
TRANSFER FUNCTION  
Figure 41. Simplified Diagram of Input Loading Circuitry for One DAC  
Table 7 to Table 15 show the relationships of the ideal input  
code to output voltage for the AD5752, AD5732, and AD5722,  
respectively, for all output voltage ranges. For unipolar output  
ranges, the data coding is straight binary. For bipolar output  
Individual DAC Updating  
LDAC  
In this mode,  
input shift register. The addressed DAC output is updated on  
ꢀYNC  
is held low while data is clocked into the  
2sCOMP  
ranges, the data coding is user selectable via the BIN/  
the rising edge of  
Simultaneous Updating of All DACs  
LDAC  
.
pin and can be either offset binary or twos complement.  
For a unipolar output range, the output voltage expression is  
given by  
In this mode,  
input shift register. All DAC outputs are asynchronously updated  
LDAC ꢀYNC  
is held high while data is clocked into the  
D
by taking  
low after  
has been taken high. The  
LDAC  
VOUT VREFIN Gain  
N
2
update now occurs on the falling edge of  
ASYNCHRONOUS CLEAR (CLR)  
CLR  
.
For a bipolar output range, the output voltage expression is given by  
Gain VREFIN  
D
VOUT VREFIN Gain  
is an active low clear that allows the outputs to be cleared  
to either zero-scale code or midscale code. The clear code value is  
user-selectable via the CLR select bit of the control register (see  
N
2
2
where:  
D is the decimal equivalent of the code loaded to the DAC.  
N is the bit resolution of the DAC.  
CLR  
the Control Register section). It is necessary to maintain  
for a minimum amount of time to complete the operation (see  
CLR  
low  
VREFIN is the reference voltage applied at the REFIN pin.  
Gain is an internal gain whose value depends on the output  
range selected by the user, as shown in Table 6.  
Figure 2). When the  
signal is returned high, the output  
remains at the cleared value until a new value is programmed.  
CLR  
The outputs cannot be updated with a new value while the  
pin is low. A clear operation can also be performed via the clear  
command in the control register.  
Table 6. Internal Gain Values  
Output Range (V)  
Gain Value  
+5  
2
+10  
+10.8  
5
4
4.32  
4
10  
8
10.8  
8.64  
Rev. F | Page 20 of 31  
 
Data Sheet  
AD5722/AD5732/AD5752  
Ideal Output Voltage to Input Code Relationship—AD5752  
Table 7. Bipolar Output, Offset Binary Coding  
Digital Input  
Analog Output  
10 V Output Range  
+4 × REFIN × (32,767/32,768)  
+4 × REFIN × (32,766/32,768)  
MSB  
1111  
1111  
LSB  
1111  
1110  
5 V Output Range  
+2 × REFIN × (32,767/32,768)  
+2 × REFIN × (32,766/32,768)  
10.8 V Output Range  
+4.32 × REFIN × (32,767/32,768)  
+4.32 × REFIN × (32,766/32,768)  
1111  
1111  
1111  
1111  
1000  
1000  
0111  
0000  
0000  
1111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 × REFIN × (1/32,768)  
0 V  
+4 × REFIN × (1/32,768)  
0 V  
+4.32 × REFIN × (1/32,768)  
0 V  
−2 × REFIN × (1/32,768)  
−4 × REFIN × (1/32,768)  
−4.32 × REFIN × (32,766/32,768)  
0000  
0000  
0000  
0000  
0000  
0000  
0001  
0000  
−2 × REFIN × (32,767/32,768)  
−2 × REFIN × (32,768/32,768)  
−4 × REFIN × (32,767/32,768)  
−4 × REFIN × (32,768/32,768)  
−4.32 × REFIN × (32,767/32,768)  
−4.32 × REFIN × (32,768/32,768)  
Table 8. Bipolar Output, Twos Complement Coding  
Digital Input  
Analog Output  
10 V Output Range  
+4 × REFIN × (32,767/32,768)  
+4 × REFIN × (32,766/32,768)  
MSB  
0111  
0111  
LSB  
1111  
1110  
5 V Output Range  
+2 × REFIN × (32,767/32,768)  
+2 × REFIN × (32,766/32,768)  
10.8 V Output Range  
+4.32 × REFIN × (32,767/32,768)  
+4.32 × REFIN × (32,766/32,768)  
1111  
1111  
1111  
1111  
0000  
0000  
1111  
0000  
0000  
1111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 × REFIN × (1/32,768)  
0 V  
+4 × REFIN × (1/32,768)  
0 V  
+4.32 × REFIN × (1/32,768)  
0 V  
−2 × REFIN × (1/32,768)  
−4 × REFIN × (1/32,768)  
−4.32 × REFIN × (1/32,768)  
1000  
1000  
0000  
0000  
0000  
0000  
0001  
0000  
−2 × REFIN × (32,767/32,768)  
−2 × REFIN × (32,768/32,768)  
−4 × REFIN × (32,767/32,768)  
−4 × REFIN × (32,768/32,768)  
−4.32 × REFIN × (32,767/32,768)  
−4.32 × REFIN × (32,768/32,768)  
Table 9. Unipolar Output, Straight Binary Coding  
Digital Input  
Analog Output  
+10 V Output Range  
+4 × REFIN × (65,535/65,536)  
+4 × REFIN × (65,534/65,536)  
MSB  
1111  
1111  
LSB  
1111  
1110  
+5 V Output Range  
+2 × REFIN × (65,535/65,536)  
+2 × REFIN × (65,534/65,536)  
+10.8 V Output Range  
+4.32 × REFIN × (65,535/65,536)  
+4.32 × REFIN × (65,534/65,536)  
1111  
1111  
1111  
1111  
1000  
1000  
0111  
0000  
0000  
1111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 × REFIN × (32,76ꢀ/65,536)  
+2 × REFIN × (32,768/65,536)  
+2 × REFIN × (32,767/65,536)  
+4 × REFIN × (32,76ꢀ/65,536)  
+4 × REFIN × (32,768/65,536)  
+4 × REFIN × (32,767/65,536)  
+4.32 × REFIN × (32,76ꢀ/65,536)  
+4.32 × REFIN × (32,768/65,536)  
+4.32 × REFIN × (32,767/65,536)  
0000  
0000  
0000  
0000  
0000  
0000  
0001  
0000  
+2 × REFIN × (1/65,536)  
0 V  
+4 × REFIN × (1/65,536)  
0 V  
+4.32 × REFIN × (1/65,536)  
0 V  
Rev. F | Page 21 of 31  
AD5722/AD5732/AD5752  
Data Sheet  
Ideal Output Voltage to Input Code Relationship—AD5732  
Table 10. Bipolar Output, Offset Binary Coding  
Digital Input  
Analog Output  
10 V Output Range  
+4 × REFIN × (81ꢀ1/81ꢀ2)  
+4 × REFIN × (81ꢀ0/81ꢀ2)  
MSB  
11  
11  
LSB  
1111  
1110  
5 V Output Range  
+2 × REFIN × (81ꢀ1/81ꢀ2)  
+2 × REFIN × (81ꢀ0/81ꢀ2)  
10.8 V Output Range  
1111  
1111  
1111  
1111  
+4.32 × REFIN × (81ꢀ1/81ꢀ2)  
+4.32 × REFIN × (81ꢀ0/81ꢀ2)  
10  
10  
01  
0000  
0000  
1111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 × REFIN × (1/81ꢀ2)  
0 V  
+4 × REFIN × (1/81ꢀ2)  
0 V  
+4.32 × REFIN × (1/81ꢀ2)  
0 V  
−2 × REFIN × (1/81ꢀ2)  
−4 × REFIN × (1/81ꢀ2)  
−4.32 × REFIN × (1/81ꢀ2)  
00  
00  
0000  
0000  
0000  
0000  
0001  
0000  
−2 × REFIN × (81ꢀ1/81ꢀ2)  
−2 × REFIN × (81ꢀ2/81ꢀ2)  
−4 × REFIN × (81ꢀ1/81ꢀ2)  
−4 × REFIN × (81ꢀ2/81ꢀ2)  
−4.32 × REFIN × (81ꢀ1/81ꢀ2)  
−4.32 × REFIN × (81ꢀ2/81ꢀ2)  
Table 11. Bipolar Output, Twos Complement Coding  
Digital Input  
Analog Output  
10 V Output Range  
+4 × REFIN × (81ꢀ1/81ꢀ2)  
+4 × REFIN × (81ꢀ0/81ꢀ2)  
MSB  
01  
01  
LSB  
1111  
1110  
5 V Output Range  
+2 × REFIN × (81ꢀ1/81ꢀ2)  
+2 × REFIN × (81ꢀ0/81ꢀ2)  
10.8 V Output Range  
+4.32 × REFIN × (81ꢀ1/81ꢀ2)  
+4.32 × REFIN × (81ꢀ0/81ꢀ2)  
1111  
1111  
1111  
1111  
00  
00  
11  
0000  
0000  
1111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 × REFIN × (1/81ꢀ2)  
0 V  
+4 × REFIN × (1/81ꢀ2)  
0 V  
+4.32 × REFIN × (1/81ꢀ2)  
0 V  
−2 × REFIN × (1/81ꢀ2)  
−4 × REFIN × (1/81ꢀ2)  
−4.32 × REFIN × (1/81ꢀ2)  
10  
10  
0000  
0000  
0000  
0000  
0001  
0000  
−2 × REFIN × (81ꢀ1/81ꢀ2)  
−2 × REFIN × (81ꢀ2/81ꢀ2)  
−4 × REFIN × (81ꢀ1/81ꢀ2)  
−4 × REFIN × (81ꢀ2/81ꢀ2)  
−4.32 × REFIN × (81ꢀ1/81ꢀ2)  
−4.32 × REFIN × (81ꢀ2/81ꢀ2)  
Table 12. Unipolar Output, Straight Binary Coding  
Digital Input  
Analog Output  
+10 V Output Range  
+4 × REFIN × (16,383/16,384)  
+4 × REFIN × (16,382/16,384)  
MSB  
11  
11  
LSB  
1111  
1110  
+5 V Output Range  
+2 × REFIN × (16,383/16,384)  
+2 × REFIN × (16,382/16,384)  
+10.8 V Output Range  
+4.32 × REFIN × (16,383/16,384)  
+4.32 × REFIN × (16,382/16,384)  
1111  
1111  
1111  
1111  
10  
10  
01  
0000  
0000  
1111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 × REFIN × (81ꢀ3/16,384)  
+2 × REFIN × (81ꢀ2/16,384)  
+2 × REFIN × (81ꢀ1/16,384)  
+4 × REFIN × (81ꢀ3/16,384)  
+4 × REFIN × (81ꢀ2/16,384)  
+4 × REFIN × (81ꢀ1/16,384)  
+4.32 × REFIN × (81ꢀ3/16,384)  
+4.32 × REFIN × (81ꢀ2/16,384)  
+4.32 × REFIN × (81ꢀ1/16,384)  
00  
00  
0000  
0000  
0000  
0000  
0001  
0000  
+2 × REFIN × (1/16,384)  
0 V  
+4 × REFIN × (1/16,384)  
0 V  
+4.32 × REFIN × (1/16,384)  
0 V  
Rev. F | Page 22 of 31  
Data Sheet  
AD5722/AD5732/AD5752  
Ideal Output Voltage to Input Code Relationship—AD5722  
Table 13. Bipolar Output, Offset Binary Coding  
Digital Input  
Analog Output  
10 V Output Range  
MSB  
1111  
1111  
LSB  
1111  
1110  
5 V Output Range  
+2 × REFIN × (2047/2048)  
+2 × REFIN × (2046/2048)  
10.8 V Output Range  
+4.32 × REFIN × (2047/2048)  
+4.32 × REFIN × (2046/2048)  
1111  
1111  
+4 × REFIN × (2047/2048)  
+4 × REFIN × (2046/2048)  
1000  
1000  
0111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 × REFIN × (1/2048)  
0 V  
+4 × REFIN × (1/2048)  
0 V  
+4.32 × REFIN × (1/2048)  
0 V  
−2 × REFIN × (1/2048)  
−4 × REFIN × (1/2048)  
−4.32 × REFIN × (1/2048)  
0000  
0000  
0000  
0000  
0001  
0000  
−2 × REFIN × (2047/2048)  
−2 × REFIN × (2048/2048)  
−4 × REFIN × (2047/2048)  
−4 × REFIN × (2048/2048)  
−4.32 × REFIN × (2047/2048)  
−4.32 × REFIN × (2048/2048)  
Table 14. Bipolar Output, Twos Complement Coding  
Digital Input  
Analog Output  
10 V Output Range  
+4 × REFIN × (2047/2048)  
+4 × REFIN × (2046/2048)  
MSB  
0111  
0111  
LSB  
1111  
1110  
5 V Output Range  
+2 × REFIN × (2047/2048)  
+2 × REFIN × (2046/2048)  
10.8 V Output Range  
+4.32 × REFIN × (2047/2048)  
+4.32 × REFIN × (2046/2048)  
1111  
1111  
0000  
0000  
1111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 × REFIN × (1/2048)  
0 V  
+4 × REFIN × (1/2048)  
0 V  
+4.32 × REFIN × (1/2048)  
0 V  
−2 × REFIN × (1/2048)  
−4 × REFIN × (1/2048)  
−4.32 × REFIN × (1/2048)  
1000  
1000  
0000  
0000  
0001  
0000  
−2 × REFIN × (2047/2048)  
−2 × REFIN × (2048/2048)  
−4 × REFIN × (2047/2048)  
−4 × REFIN × (2048/2048)  
−4.32 × REFIN × (2047/2048)  
−4.32 × REFIN × (2048/2048)  
Table 15. Unipolar Output, Straight Binary Coding  
Digital Input  
Analog Output  
+10 V Output Range  
+4 × REFIN × (40ꢀ5/40ꢀ6)  
+4 × REFIN × (40ꢀ4/40ꢀ6)  
MSB  
1111  
1111  
LSB  
1111  
1110  
+5 V Output Range  
+2 × REFIN × (40ꢀ5/40ꢀ6)  
+2 × REFIN × (40ꢀ4/40ꢀ6)  
+10.8 V Output Range  
+4.32 × REFIN × (40ꢀ5/40ꢀ6)  
+4.32 × REFIN × (40ꢀ4/40ꢀ6)  
1111  
1111  
1000  
1000  
0111  
0000  
0000  
1111  
0001  
0000  
1111  
+2 × REFIN × (204ꢀ/40ꢀ6)  
+2 × REFIN × (2048/40ꢀ6)  
+2 × REFIN × (2047/40ꢀ6)  
+4 × REFIN × (204ꢀ/40ꢀ6)  
+4 × REFIN × (2048/40ꢀ6)  
+4 × REFIN × (2047/40ꢀ6)  
+4.32 × REFIN × (204ꢀ/40ꢀ6)  
+4.32 × REFIN × (2048/40ꢀ6)  
+4.32 × REFIN × (2047/40ꢀ6)  
0000  
0000  
0000  
0000  
0001  
0000  
+2 × REFIN × (1/40ꢀ6)  
0 V  
+4 × REFIN × (1/40ꢀ6)  
0 V  
+4.32 × REFIN × (1/40ꢀ6)  
0 V  
Rev. F | Page 23 of 31  
AD5722/AD5732/AD5752  
Data Sheet  
INPUT SHIFT REGISTER  
W
The input shift register is 24 bits wide and consists of a read/write bit (R/ ), a reserved bit (zero) that must always be set to 0, three  
register select bits (REG0, REG1, REG2), three DAC address bits (A2, A1, A0), and 16 data bits (data). The register data is clocked in MꢀB  
first on the ꢀDIN pin. Table 16 shows the register format, and Table 17 describes the function of each bit in the register. All registers are  
read/write registers.  
Table 16. Input Register Format  
MSB  
DB23  
R/W  
LSB  
DB15 to DB0  
Data  
DB22  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
Zero  
REG2  
REG1  
REG0  
A2  
A1  
A0  
Table 17. Input Register Bit Functions  
Bit Mnemonic  
R/W  
Description  
Indicates a read from or a write to the addressed register.  
REG2, REG1, REG0  
Used in association with the address bits to determine if a write operation is to the DAC register, the output range  
select register, the power control register, or the control register.  
REG2  
REG1  
REG0  
Function  
0
0
0
0
0
0
1
1
0
1
0
1
DAC register  
Output range select register  
Power control register  
Control register  
A2, A1, A0  
These DAC address bits are used to decode the DAC channels.  
A2  
A1  
0
A0  
0
Channel Address  
DAC A  
0
0
1
0
DAC B  
1
0
0
Both DACs  
Data  
Data bits.  
Rev. F | Page 24 of 31  
 
 
Data Sheet  
AD5722/AD5732/AD5752  
DAC REGISTER  
The DAC register is addressed by setting the three REG bits to 000. The DAC address bits select the DAC channel in which the data  
transfer is to take place (see Table 17). The data bits are in positions DB15 to DB0 for the AD5752 (see Table 18), DB15 to DB2 for the  
AD5732 (see Table 19), and DB15 to DB4 for the AD5722 (see Table 20).  
Table 18. Programming the AD5752 DAC Register  
MSB  
LSB  
R/W  
Zero  
REG2  
REG1  
REG0  
A2  
A1  
A0  
DB15 to DB0  
0
0
0
0
0
DAC address  
16-bit DAC data  
Table 19. Programming the AD5732 DAC Register  
MSB  
LSB  
DB0  
X
R/W  
Zero  
REG2  
REG1  
REG0  
A2  
A1  
A0  
DB15 to DB2  
DB1  
0
0
0
0
0
DAC address  
14-bit DAC data  
X
Table 20. Programming the AD5722 DAC Register  
MSB  
LSB  
R/W  
Zero  
REG2  
REG1  
REG0  
A2  
A1  
A0  
DB15 to DB4  
12-bit DAC data  
DB3  
DB2  
DB1  
DB0  
0
0
0
0
0
DAC address  
X
X
X
X
OUTPUT RANGE SELECT REGISTER  
The output range select register is addressed by setting the three REG bits to 001. The DAC address bits select the DAC channel, and the  
range bits (R2, R1, R0) select the required output range (see Table 21 and Table 22).  
Table 21. Programming the Required Output Range  
MSB  
R/W  
0
LSB  
Zero  
REG2  
REG1  
REG0  
A2  
A1  
A0  
DB15 to DB3  
DB2  
DB1  
DB0  
0
0
0
1
DAC address  
Don’t care  
R2  
R1  
R0  
Table 22. Output Range Options  
R2  
0
R1  
0
R0  
0
Output Range (V)  
+5  
0
0
1
+10  
+10.8  
5
0
1
0
0
1
1
1
0
0
10  
1
0
1
10.8  
Rev. F | Page 25 of 31  
 
 
 
 
 
AD5722/AD5732/AD5752  
Data Sheet  
CONTROL REGISTER  
The control register is addressed by setting the three REG bits to 011. The value written to the address and data bits determines the  
control function selected. The control register options are shown in Table 23 and Table 24.  
Table 23. Programming the Control Register  
MSB  
LSB  
R/W  
Zero  
REG2 REG1 REG0 A2 A1 A0 DB15 to DB4  
DB3  
DB2  
DB1  
DB0  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
0
0
0
0
1
0
1
NOP, data = don’t care  
Don’t care  
TSD enable  
Clamp enable  
CLR select  
SDO disable  
Clear, data = don’t care  
Load, data = don’t care  
Table 24. Explanation of Control Register Options  
Option  
NOP  
Description  
No operation instruction used in readback operations.  
Clear  
Addressing this function sets the DAC registers to the clear code and updates the outputs.  
Addressing this function updates the DAC registers and, consequently, the DAC outputs.  
Load  
SDO Disable  
CLR Select  
Set by the user to disable the SDO output. Cleared by the user to enable the SDO output (default).  
See Table 25 for a description of the CLR select operation.  
Clamp Enable Set by the user to enable the current-limit clamp. The channel does not power down upon detection of an overcurrent; the  
current is clamped at 20 mA (default).  
Cleared by the user to disable the current-limit clamp. The channel powers down upon detection of an overcurrent.  
TSD Enable  
Set by the user to enable the thermal shutdown feature. Cleared by the user to disable the thermal shutdown feature (default).  
Table 25. CLR Select Options  
Output CLR Value  
Bipolar Output Range  
CLR Select Setting  
Unipolar Output Range  
0
1
0 V  
0 V  
Midscale  
Negative full-scale  
POWER CONTROL REGISTER  
The power control register is addressed by setting the three REG bits to 010. This register allows the user to control and determine the  
power and thermal status of the AD5722/AD5732/AD5752. The power control register options are shown in Table 26 and Table 27.  
Table 26. Programming the Power Control Register  
MSB  
LSB  
DB15 to  
W
R/  
Zero REG2 REG1 REG0 A2 A1 A0 DB11  
DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
1
0
0
0
0
X
0
OCB  
X
OCA  
X
TSD  
X
X
PUB  
X
PUA  
Table 27. Power Control Register Functions  
Option Description  
PUA  
DAC A power-up. When set, this bit places DAC A in normal operating mode. When cleared, this bit places DAC A in power-down  
mode (default). After setting this bit to power DAC A, a power-up time of 10 μs is required. During this power-up time, the DAC  
register should not be loaded to the DAC output (see the Load DAC (LDAC) section). If the clamp enable bit of the control register  
is cleared, DAC A powers down automatically on detection of an overcurrent, and PUA is cleared to reflect this.  
PUB  
DAC B power-up. When set, this bit places DAC B in normal operating mode. When cleared, this bit places DAC B in power-down  
mode (default). After setting this bit to power DAC B, a power-up time of 10 μs is required. During this power-up time, the DAC  
register should not be loaded to the DAC output (see the Load DAC (LDAC) section). If the clamp enable bit of the control register  
is cleared, DAC B powers down automatically on detection of an overcurrent, and PUB is cleared to reflect this.  
TSD  
OCA  
OCB  
Thermal shutdown alert (read-only bit). In the event of an overtemperature situation, both DACs are powered down and this bit is set.  
DAC A overcurrent alert (read-only bit). In the event of an overcurrent situation on DAC A, this bit is set.  
DAC B overcurrent alert (read-only bit). In the event of an overcurrent situation on DAC B, this bit is set.  
Rev. F | Page 26 of 31  
 
 
 
 
 
Data Sheet  
AD5722/AD5732/AD5752  
DESIGN FEATURES  
ANALOG OUTPUT CONTROL  
OVERCURRENT PROTECTION  
Each DAC channel of the AD5722/AD5732/AD5752 incorporates  
individual overcurrent protection. The user has two options for  
the configuration of the overcurrent protection: constant current  
clamp or automatic channel power-down. The configuration of  
the overcurrent protection is selected via the clamp enable bit in  
the control register.  
In many industrial process control applications, it is vital that  
the output voltage be controlled during power-up. When the  
supply voltages change during power-up, the VOUTx pins are  
clamped to 0 V via a low impedance path (approximately 4 kΩ).  
To prevent the output amplifiers from being shorted to 0 V  
during this time, Transmission Gate G1 is also opened (see  
Figure 42). These conditions are maintained until the analog  
power supplies have stabilized and a valid word is written to a  
DAC register. At this time, G2 opens and G1 closes.  
Constant Current Clamp (Clamp Enable = 1)  
If a short circuit occurs in this configuration, the current is  
clamped at 20 mA. This event is signaled to the user by the  
setting of the appropriate overcurrent (OCX) bit in the power  
control register. Upon removal of the short-circuit fault, the  
OCX bit is cleared.  
VOLTAGE  
MONITOR  
AND  
CONTROL  
G1  
Automatic Channel Power-Down (Clamp Enable = 0)  
V
A
OUT  
G2  
If a short circuit occurs in this configuration, the shorted channel  
powers down and its output is clamped to ground via a resistance  
of approximately 4 kΩ. At this time, the output of the amplifier  
is disconnected from the output pin. The short-circuit event is  
signaled to the user via the overcurrent (OCX) bits, and the  
power-up (PUX) bits indicate which DACs have powered down.  
After the fault is rectified, the channels can be powered up again  
by setting the PUX bits.  
Figure 42. Analog Output Control Circuitry  
POWER-DOWN MODE  
Each DAC channel of the AD5722/AD5732/AD5752 can be  
individually powered down. By default, all channels are in  
power-down mode. The power status is controlled by the power  
control register (see Table 26 and Table 27 for details). When a  
channel is in power-down mode, its output pin is clamped to  
ground through a resistance of approximately 4 kΩ, and the  
output of the amplifier is disconnected from the output pin.  
THERMAL SHUTDOWN  
The AD5722/AD5732/AD5752 incorporate a thermal shutdown  
feature that automatically shuts down the device if the core  
temperature exceeds approximately 150°C. The thermal shutdown  
feature is disabled by default and can be enabled via the TꢀD  
enable bit of the control register. In the event of a thermal  
shutdown, the TꢀD bit of the power control register is set.  
Rev. F | Page 27 of 31  
 
AD5722/AD5732/AD5752  
Data Sheet  
APPLICATIONS INFORMATION  
+5 V/ 5 V OPERATION  
Figure 44 shows an example of the analog supplies powering up  
before the digital supply. The circuit delays the AVDD power up  
until after DVCC, as shown by the AVDD (delayed) line.  
When operating from a single +5 V supply or a dual 5 V supply,  
an output range of +5 V or 5 V is not achievable because suffi-  
cient headroom for the output amplifier is not available. In this  
situation, a reduced reference voltage can be used. For example,  
a 2 V reference voltage produces an output range of +4 V or 4 V,  
and the 1 V of headroom is more than enough for full operation.  
A standard value voltage reference of 2.048 V can be used to  
produce output ranges of +4.096 V and 4.096 V.  
AV  
AV  
DD  
SS  
t (sec)  
ALTERNATIVE POWER-UP SEQUENCE SUPPORT  
There may be cases where it is not possible to use the  
recommended power-up sequence, and in those instances an  
external circuit shown in Figure 43 is recommended to be used.  
The circuit shown in Figure 43 ensures that the digital block is  
powered up first, prior to the analog block, by using a load  
switch circuit. This circuit targets applications for which either  
DV  
AV  
CC  
DD  
(DELAYED)  
AVDD or AVꢀꢀ or both supplies power up before DVCC  
.
Consider the following design rules when choosing the  
component values for the AVDD delay circuit.  
Figure 44. Delayed Power Supplies Sequence Example  
LAYOUT GUIDELINES  
R1 ensures that the Q1 gate to source voltage is zero when  
DVCC is in an open state. R1 also prevents false turn on of  
Q1. However, if DVCC is permanently connected to the  
source, R1 can be removed to conserve power.  
In any circuit where accuracy is important, careful consideration  
of the power supply and ground return layout helps to ensure  
the rated performance. The printed circuit board on which the  
AD5722/AD5732/AD5752 are mounted should be designed so  
that the analog and digital sections are separated and confined  
to certain areas of the board. If the AD5722/AD5732/AD5752  
are in a system where multiple devices require an AGND-to-  
DGND connection, the connection should be made at one  
point only. The star ground point should be established as close  
as possible to the device.  
ꢀelect Q1 (N-channel MOꢀFET) with a VGꢀ threshold that  
is much lower than the minimum operating DVCC and a  
VDꢀ rating much lower than the maximum operating AVDD  
C1, R2, and R3 are the main components that dictates the  
delay from DVCC enable to AVDD. Adjust the values  
according for the desired delay. Choose R2 and R3 values  
that ensure Q2 turn on.  
.
The AD5722/AD5732/AD5752 should have ample supply bypass-  
ing of a 10 μF capacitor in parallel with a 0.1 μF capacitor on  
each supply located as close to the package as possible, ideally  
right up against the device. The 10 μF capacitor is the tantalum  
bead type. The 0.1 μF capacitor should have low effective series  
resistance (EꢀR) and low effective series inductance (EꢀI) such  
as the common ceramic types, which provide a low impedance  
path to ground at high frequencies to handle transient currents  
due to internal logic switching.  
VGS  
VEQ  
tDELAY (sec) C1(R3 || R2 ) ln1   
R3  
where VEQ AVDD  
R3 R2  
Q2 (P-channel MOꢀFET) acts as a switch that allows the flow  
of current from VIN to AVDD; therefore, choosing a MOꢀFET  
with very low RDꢀON is necessary to minimize losses during  
operation. Other parameters such as maximum VDꢀ rating,  
maximum drain to source current rating, VGꢀ threshold  
voltage, and maximum gate to source voltage rating must  
also be taken into consideration when choosing Q2.  
The power supply lines of the AD5722/AD5732/AD5752 should  
use as large a trace as possible to provide low impedance paths  
and reduce the effects of glitches on the power supply line. Fast  
switching signals, such as a data clock, should be shielded with  
digital ground to avoid radiating noise to other parts of the  
board, and they should never be run near the reference inputs.  
A ground line routed between the ꢀDIN and ꢀCLK lines helps  
reduce crosstalk between them (this is not required on a  
multilayer board that has a separate ground plane, but separating  
the lines does help). It is essential to minimize noise on the  
V
AV  
DD  
IN  
+
Q2  
C1  
R3  
LOAD SWITCH  
SECTION  
R2  
DV  
CC  
Q1  
CONTROL  
SECTION  
R1  
Figure 43. Load Switch Control Circuit  
Rev. F | Page 28 of 31  
 
 
Data Sheet  
AD5722/AD5732/AD5752  
REFIN line because any unwanted signals can couple through  
to the DAC outputs.  
The temperature coefficient of a reference output voltage  
affects INL, DNL, and TUE. A reference with a tight  
temperature coefficient specification should be chosen to  
reduce the dependence of the DAC output voltage on  
ambient conditions.  
Avoid crossover of digital and analog signals. Traces on  
opposite sides of the board should run at right angles to each  
other. This reduces the effects of feedthrough on the board. A  
microstrip technique is by far the best method, but it is not  
always possible with a double-sided board. In this technique,  
the component side of the board is dedicated to a ground plane,  
and signal traces are placed on the solder side.  
Long-term drift is a measure of how much the reference  
output voltage drifts over time. A reference with a tight  
long-term drift specification ensures that the overall  
solution remains relatively stable over its entire lifetime.  
Reference output voltage noise needs to be considered in  
high accuracy applications that have relatively low noise  
budgets. It is important to choose a reference with as low  
an output noise voltage as practical for the required system  
resolution. Precision voltage references such as the ADR431  
(XFET® design) produce low output noise in the 0.1 Hz to  
10 Hz range. However, as the circuit bandwidth increases,  
filtering the output of the reference may be required to  
minimize the output noise.  
GALVANICALLY ISOLATED INTERFACE  
In many process control applications, it is necessary to provide  
an isolation barrier between the controller and the unit being  
controlled to protect and isolate the controlling circuitry from  
any hazardous common-mode voltages that may occur. The  
iCoupler® family of products from Analog Devices, Inc., provides  
voltage isolation in excess of 2.5 kV. The serial loading structure  
of the AD5722/AD5732/AD5752 makes them ideal for isolated  
interfaces because the number of interface lines is kept to a  
minimum. Figure 45 shows a 4-channel isolated interface to the  
AD5722/AD5732/AD5752 using an ADuM1400. For further  
information, visit www.analog.com/iCouplers.  
MICROPROCESSOR INTERFACING  
Microprocessor interfacing to the AD5722/AD5732/AD5752 is  
via a serial bus that uses a standard protocol compatible with  
microcontrollers and DꢀP processors. The communications  
channel is a 3-wire (minimum) interface consisting of a clock  
signal, a data signal, and a synchronization signal. The AD5722/  
AD5732/AD5752 require a 24-bit data-word with data valid on  
the falling edge of ꢀCLK.  
MICROCONTROLLER  
ADuM1400*  
V
V
V
V
V
V
V
V
OA  
OB  
OC  
OD  
IA  
IB  
IC  
ID  
SERIAL CLOCK OUT  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
TO SCLK  
TO SDIN  
TO SYNC  
TO LDAC  
SERIAL DATA OUT  
SYNC OUT  
ENCODE  
ENCODE  
ENCODE  
CONTROL OUT  
For all interfaces, the DAC output update can be initiated  
automatically when all the data is clocked in, or it can be  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
LDAC  
performed under the control of  
. The contents of the  
registers can be read using the readback function.  
Figure 45. Isolated Interface  
AD5722/AD5732/AD5752 to Blackfin® DSP Interface  
VOLTAGE REFERENCE SELECTION  
Figure 46 shows how the AD5722/AD5732/AD5752 can be  
interfaced to the Analog Devices Blackfin DꢀP. The Blackfin has  
an integrated ꢀPI port that can be connected directly to the ꢀPI  
pins of the AD5722/AD5732/AD5752 and the programmable  
I/O pins that can be used to set the state of a digital input such  
To achieve optimum performance from the AD5722/AD5732/  
AD5752 over their full operating temperature range, a precision  
voltage reference must be used. Thought should be given to the  
selection of a precision voltage reference. The voltage applied to  
the reference inputs is used to provide a buffered positive and  
negative reference for the DAC cores. Therefore, any error in  
the voltage reference is reflected in the outputs of the device.  
LDAC  
as the  
pin.  
SPISELx  
SYNC  
SCK  
SCLK  
SDIN  
There are four possible sources of error to consider when  
choosing a voltage reference for high accuracy applications:  
initial accuracy, temperature coefficient of the output voltage,  
long-term drift, and output voltage noise.  
MOSI  
AD5722/  
AD5732/  
AD5752  
ADSP-BF531  
PF10  
Initial accuracy error on the output voltage of an external  
reference can lead to a full-scale error in the DAC. To  
minimize these errors, a reference with low initial accuracy  
error specification is preferred. Choosing a reference with  
an output trim adjustment, such as the ADR421, allows a  
system designer to trim out system errors by setting the  
reference voltage to a voltage other than the nominal. The  
trim adjustment can also be used to trim out temperature-  
induced errors.  
LDAC  
Figure 46. AD5722/AD5732/AD5752 to Blackfin Interface  
Rev. F | Page 2ꢀ of 31  
 
 
AD5722/AD5732/AD5752  
Data Sheet  
Table 28. Some Precision References Recommended for Use with the AD5722/AD5732/AD5752  
Part No. Initial Accuracy (mV Max)  
Long-Term Drift (ppm Typ) Temp Drift (ppm/°C Max)  
0.1 Hz to 10 Hz Noise (µV p-p Typ)  
ADR431  
ADR421  
ADR03  
1
40  
50  
50  
50  
20  
3
3
3
8
3
3.5  
1.75  
6
1
2.5  
2
ADR2ꢀ1  
AD780  
8
1
4
Rev. F | Page 30 of 31  
Data Sheet  
AD5722/AD5732/AD5752  
OUTLINE DIMENSIONS  
5.02  
5.00  
4.95  
7.90  
7.80  
7.70  
24  
13  
12  
4.50  
4.40  
4.30  
3.25  
3.20  
3.15  
EXPOSED  
PAD  
(Pins Up)  
6.40 BSC  
1
BOTTOM VIEW  
TOP VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
1.05  
1.00  
0.80  
1.20 MAX  
8°  
0°  
SECTION OF THIS DATA SHEET.  
0.20  
0.09  
0.15  
0.05  
0.30  
0.19  
0.65  
BSC  
0.75  
0.60  
0.45  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-153-ADT  
Figure 47. 24-Lead Thin Shrink Small Outline Package, Exposed Pad [TSSOP_EP]  
(RE-24)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Resolution (Bits) Temperature Range INL  
TUE (% FSR) Package Description Package Option  
AD5722AREZ  
12  
12  
14  
14  
16  
16  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
1 LSB  
1 LSB  
4 LSB  
4 LSB  
16 LSB  
16 LSB  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
24-Lead TSSOP_EP  
24-Lead TSSOP_EP  
24-Lead TSSOP_EP  
24-Lead TSSOP_EP  
24-Lead TSSOP_EP  
24-Lead TSSOP_EP  
RE-24  
RE-24  
RE-24  
RE-24  
RE-24  
RE-24  
AD5722AREZ-REEL7  
AD5732AREZ  
AD5732AREZ-REEL7  
AD5752AREZ  
AD5752AREZ-REEL7  
1 Z = RoHS Compliant Part.  
©2008–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06467-0-2/17(F)  
Rev. F | Page 31 of 31  

相关型号:

AD5724

Complete, Quad, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar Voltage Output DACs
ADI

AD5724AREZ

Complete, Quad, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar Voltage Output DACs
ADI

AD5724AREZ-REEL7

Complete, Quad, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar Voltage Output DACs
ADI

AD5724BREZ

IC SERIAL INPUT LOADING, 8 us SETTLING TIME, 12-BIT DAC, PDSO24, LEAD FREE, MO-153ADT, TSSOP-24, Digital to Analog Converter
ADI

AD5724BREZ-REEL7

IC SERIAL INPUT LOADING, 8 us SETTLING TIME, 12-BIT DAC, PDSO24, LEAD FREE, MO-153ADT, TSSOP-24, Digital to Analog Converter
ADI

AD5724R

Quad 12-Bit Serial Input Unipolar/Bipolar Voltage Output DAC
ADI

AD5724RBREL

Complete, Quad, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar Voltage Output DACs
ADI

AD5724RBREZ

Complete, Quad, 12-Bit, Serial Input, Unipolar/Bipolar Voltage Output DAC with Internal Reference
ADI

AD5724RBREZ-REEL7

Complete, Quad, 12-/14-/16-Bit, Serial Input, Unipolar/Bipolar Voltage Output DACs
ADI

AD5725

Quad 12-Bit Serial Input Unipolar/Bipolar Voltage Output DAC
ADI

AD5725ARSZ-REEL

Quad, 12-Bit, Parallel Input, Unipolar/Bipolar, Voltage Output DAC
ADI

AD5725BRSZ-1500RL7

Quad, 12-Bit, Parallel Input, Unipolar/Bipolar, Voltage Output DAC
ADI