AD8381AST-REEL [ADI]

Fast, High Voltage Drive, 6-Channel Output DecDriverTM Decimating LCD Panel Driver; 快速,高电压驱动, 6声道输出DecDriverTM抽取LCD面板驱动
AD8381AST-REEL
型号: AD8381AST-REEL
厂家: ADI    ADI
描述:

Fast, High Voltage Drive, 6-Channel Output DecDriverTM Decimating LCD Panel Driver
快速,高电压驱动, 6声道输出DecDriverTM抽取LCD面板驱动

接口集成电路 驱动 CD
文件: 总16页 (文件大小:517K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Fast, High Voltage Drive, 6-Channel Output  
TM  
a
DecDriver Decimating LCD Panel Driver  
AD8381  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
High Voltage Drive:  
Rated Settling Time to within 1.3 V of Supply Rails  
Output Overload Protection  
High Update Rates:  
Fast, 100 Ms/s 10-Bit Input Word Rate  
Low Power Dissipation: 570 mW  
Includes STBY Function  
Voltage Controlled Video Reference (Brightness) and  
Full-Scale (Contrast) Output Levels  
3.3 V or 5 V Logic and 9 V–18 V Analog Supplies  
High Accuracy:  
Laser Trimming Eliminates External Calibration  
Flexible Logic:  
INV Reverses Polarity of Video Signal  
STSQ/XFR for Parallel AD8381 Operation in  
12-Channel Systems  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
2-STAGE  
LATCH  
DB (0:9)  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
2-STAGE  
LATCH  
AD8381  
2-STAGE  
LATCH  
STBY  
BYP  
BIAS  
2-STAGE  
LATCH  
E/O  
L/R  
2-STAGE  
LATCH  
Drives Capacitive Loads:  
27 ns Settling Time to 1% into 150 pF Load  
Slew Rate 265 V/s with 150 pF Load  
Available in 48-Lead LQFP  
CLK  
2-STAGE  
LATCH  
SEQUENCE  
CONTROL  
STSQ  
XFR  
APPLICATIONS  
LCD Analog Column Driver  
SCALING  
CONTROL  
VREFHI  
VREFLO  
INV VMID  
PRODUCT DESCRIPTION  
The AD8381 provides a fast, 10-bit latched decimating digital  
input, which drives six high voltage outputs. Ten-bit input  
words are sequentially loaded into six separate high-speed, bipolar  
DACs. Flexible digital input format allows several AD8381s to be  
used in parallel for higher resolution displays. STSQ synchronizes  
sequential input loading, XFR controls synchronous output  
updating and R/L controls the direction of loading as either  
Left to Right or Right to Left. Six channels of high voltage  
output drivers drive to within 1.3 V of the rail in rated settling  
time. The output signal can be adjusted for brightness, signal  
inversion and contrast for maximum flexibility.  
The AD8381 is fabricated on ADI’s proprietary, fast bipolar  
24 V process, providing fast input logic, bipolar DACs with  
trimmed accuracy and fast settling, high voltage precision drive  
amplifiers on the same chip.  
The AD8381 dissipates 570 mW nominal static power. STBY  
pin reduces power to a minimum, with fast recovery.  
The AD8381 is offered in a 48-lead 7 × 7 × 1.4 mm LQFP  
package and operates over the commercial temperature range of  
0°C to 85°C.  
DecDriver is a trademark of Analog Devices, Inc.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
(@ 25؇C, AVCC = 15.5 V, DVCC = 3.3 V, VREFLO = VMID = 7 V, VREFHI = 9.5 V,  
MIN = 0؇C, TMAX = 85؇C, unless otherwise noted.)  
T
AD8381–SPECIFICATIONS  
Model  
Conditions  
Min  
Typ  
Max  
Unit  
VIDEO DC PERFORMANCE1  
TMIN to TMAX  
VDE  
VCME  
DAC Code 450 to 800  
DAC Code 450 to 800  
–7.5  
–3.5  
+1.0  
+0.5  
+7.5  
+3.5  
mV  
mV  
REFERENCE INPUTS  
VMID Range2  
(VREFHI–VREFLO) = 2.5 V  
6.25  
9.25  
V
VMID Bias Current  
VREFHI  
VREFLO  
35  
77  
AVCC  
VREFHI  
µA  
V
V
VREFLO  
VMID – 0.5  
VREFHI Input Resistance  
VREFLO Bias Current  
VREFHI Input Current  
VFS Range3  
to VREFLO  
20  
0.01  
125  
kΩ  
µA  
µA  
V
0.07  
165  
5.75  
0
RESOLUTION  
Coding  
Binary  
10  
Bits  
DIGITAL INPUT CHARACTERISTICS  
Input Data Update Rate  
CLK Rise and Fall Time = 5 ns  
NRZ  
100  
Ms/s  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
µA  
µA  
V
CLK to Data Setup Time: t1  
CLK to STSQ Setup Time: t3  
CLK to XFR Setup Time: t5  
CLK to Data Hold Time: t2  
CLK to STSQ Hold Time: t4  
CLK to XFR Hold Time: t6  
0
0
0
5
5
5
CIN  
IIH  
3
0.7  
0.16  
0.6  
IIL  
0.05  
VIH  
VIL  
VTH  
2.0  
0.08  
V
V
Threshold Voltage  
1.4  
VIDEO OUTPUT CHARACTERISTICS  
Output Voltage Swing  
CLK to VID Delay4: t7  
INV to VID Delay  
Output Current  
Output Resistance  
AVCC – VOH, VOL – AGND  
50% of VIDx  
50% of VIDx  
1
1.3  
17.5  
16  
V
13.5  
12  
30  
15.5  
14  
75  
29  
ns  
ns  
mA  
VIDEO OUTPUT DYNAMIC PERFORMANCE TMIN to TMAX, VO = 5 V Step, CL = 150 pF  
Data Switching Slew Rate  
Invert Switching Slew Rate  
265  
410  
27  
50  
33  
55  
5
V/µs  
V/µs  
ns  
ns  
ns  
Data Switching Settling Time to 1%  
Data Switching Settling Time to 0.25%  
Invert Switching Settling Time to 1%  
Invert Switching Settling Time to 0.25%  
CLK and Data Feedthrough5  
32  
75  
40  
100  
ns  
mV p-p  
All-Hostile Crosstalk6  
Amplitude  
Glitch Duration  
50  
45  
mV p-p  
ns  
POWER SUPPLY  
Supply Rejection (VDE)  
DVCC, Operating Range  
DVCC, Quiescent Current  
AVCC, Operating Range  
Total AVCC Quiescent Current  
STBY AVCC Current  
AVCCx = +15.5 V 1 V  
0.6  
18  
mV/V  
V
mA  
V
mA  
mA  
mA  
3
9
5.5  
25  
18  
40  
3
33  
1.8  
0.03  
STBY = H  
STBY = H  
STBY DVCC Current  
0.1  
OPERATING TEMPERATURE RANGE  
NOTES  
0
85  
°C  
1VDE = Differential Error Voltage. VCME = Common-Mode Error Voltage. See the Functional Description section.  
2See Figure 6 in the Functional Description section.  
3VFS = 2 × (VREFHI–VREFLO). See Functional Description section.  
4Measured from 50% of falling CLK edge to 50% of output change. Measurement is made for both states of INV.  
5Measured on one output as CLK is driven and STSQ and XFR are held LOW.  
6Measured on one output as the other five are changing from 000HEX to 3FFHEX for both states of INV.  
Specifications subject to change without notice.  
–2–  
REV. 0  
AD8381  
TIMING CHARACTERISTICS  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
t1 CLK to Data Setup Time  
t2 CLK to Data Hold Time  
t3 CLK to STSQ Setup Time  
t4 CLK to STSQ Hold Time  
t5 CLK to XFR Setup Time  
t6 CLK to XFR Hold Time  
t7 CLK to VID Delay  
CLK Rise and Fall Time = 5 ns  
CLK Rise and Fall Time = 5 ns  
CLK Rise and Fall Time = 5 ns  
CLK Rise and Fall Time = 5 ns  
CLK Rise and Fall Time = 5 ns  
CLK Rise and Fall Time = 5 ns  
0
5
0
5
0
5
13.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
15.5  
17.5  
–1  
0
DB (0:9)  
t1  
t2  
CLK  
t3,t5  
t4,t6  
STSQ, XFR  
Figure 1. Timing Requirement E/O = HIGH  
–1  
DB (0:9)  
0
t1  
t2  
CLK  
t3  
t4  
STSQ  
t5  
t6  
XFR  
Figure 2. Timing Requirements E/O = LOW  
CLK  
XFR  
t7  
VIDx  
Figure 3. Output Timing  
–3–  
REV. 0  
AD8381  
ABSOLUTE MAXIMUM RATINGS1  
MAXIMUM POWER DISSIPATION  
Supply Voltages  
The maximum power that can be safely dissipated by the AD8381  
is limited by its junction temperature. The maximum safe junc-  
tion temperature for plastic encapsulated devices is determined  
by the glass transition temperature of the plastic, approximately  
150°C. Exceeding this limit temporarily may cause a shift in the  
parametric performance due to a change in the stresses exerted  
on the die by the package. Exceeding a junction temperature of  
175°C for an extended period can result in device failure.  
AVCCx – AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 V  
DVCC – DGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V  
Input Voltages  
Maximum Digital Input Voltages . . . . . . . . DVCC + 0.5 V  
Minimum Digital Input Voltages . . . . . . . . DGND – 0.5 V  
Maximum Analog Input Voltages . . . . . . . . . AVCC + 0.5 V  
Minimum Analog Input Voltages . . . . . . . . AGND – 0.5 V  
Internal Power Dissipation2  
LQFP Package @ 25°C Ambient . . . . . . . . . . . . . . . . 2.7 W  
Output Short Circuit Duration . . . . . . . . . . . . . . . . . . Infinite  
Operating Temperature Range . . . . . . . . . . . . . . 0°C to 85°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +125°C  
Lead Temperature Range (Soldering 10 sec) . . . . . . . . 300°C  
To ensure proper operation within the specified operating tem-  
perature range, it is necessary to limit the maximum power  
dissipation as follows:  
P
DMAX = (TJMAX TA)/θJA  
where  
NOTES  
TJMAX = 150°C.  
1Stresses above those listed under the Absolute Maximum Ratings may cause  
permanent damage to the device. This is a stress rating only; functional operation  
of the device at these or any other conditions above those indicated in the  
operational section of this specification is not implied. Exposure to the absolute  
maximum ratings for extended periods may reduce device reliability.  
248-lead LQFP Package:  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
θ
θ
JA = 45°C/W (Still Air, 4-Layer PCB)  
JC = 19°C/W  
Overload Protection  
The AD8381 employs a two-stage overload protection circuit  
that consists of an output current limiter and a thermal shutdown.  
The maximum current at any one output of the AD8381 is  
internally limited to 100 mA average. In the event of a momen-  
tary short-circuit between a video output and a power supply rail  
(VCC or AGND), the output current limit is sufficiently low to  
provide temporary protection.  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
The thermal shutdown “debiases” the output amplifier when the  
junction temperature reaches the internally set trip point. In the  
event of an extended short-circuit between a video output and a  
power supply rail, the output amplifier current continues to  
switch between 0 mA and 100 mA typ with a period determined by  
the thermal time constant and the hysteresis of the thermal trip  
point. The thermal shutdown provides long term protection by  
limiting the average junction temperature to a safe level.  
AMBIENTTEMPERATURE – ؇C  
Figure 4. Maximum Power Dissipation vs. Temperature  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
Recovery from a momentary short-circuit is fast, approximately  
100 ns. Recovery from a thermal shutdown is slow and is  
dependent on the ambient temperature.  
AD8381AST  
AD8381AST-REEL  
0°C to 85°C  
48-Lead LQFP ST-48  
Reel  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD8381 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. 0  
AD8381  
PIN FUNCTION DESCRIPTIONS  
Description  
Pin No.  
Mnemonic  
Function  
1, 12, 19, 23, NC  
24, 43–45  
No Connect  
2–11  
13  
DB (0:9)  
E/O  
Data Input  
Even/Odd Select  
10-Bit Data Input MSB = DB (9).  
The active CLK edge is the rising edge when this input is held HIGH  
and it is the falling edge when this input is held LOW.  
Data is loaded sequentially on the rising edges of CLK when this input  
is HIGH and loaded on the falling edges when this input is LOW.  
A new data loading sequence begins on the left, with Channel 0, when this  
input is LOW, and on the right, with Channel 5 when this input is HIGH.  
When this pin is HIGH, the analog output voltages are above VMID.  
When LOW, the analog output voltages are below VMID.  
This pin is normally connected to the analog ground plane.  
Digital Power Supply.  
14  
15  
R/L  
Right/Left Select  
Invert  
INV  
16  
17  
DGND  
DVCC  
AVCCx  
Digital Supply Return  
Digital Power Supply  
18, 27, 31,  
35, 42  
20  
Analog Power Supplies Analog Power Supplies.  
STBY  
BYP  
Standby  
Bypass  
When HIGH, the internal circuits are “debiased” and the power  
dissipation drops to a minimum.  
A 0.1 µF capacitor connected between this pin and AGND ensures  
optimum settling time.  
21  
22, 25, 29,  
33, 37, 41  
26, 28, 30,  
32, 34, 36  
38  
AGNDx  
Analog Supply Returns These pins are normally connected to the analog ground plane.  
VID5, VID4, VID3,  
VID2, VID1, VID0  
VMID  
Analog Outputs  
These pins are directly connected to the analog inputs of the LCD panel.  
Midpoint Reference  
The voltage applied between this pin and AGND sets the midpoint  
reference of the analog outputs. This pin is normally connected to VCOM.  
The voltage applied between Pins 39 and 40 sets the full-scale output voltage.  
The voltage applied between Pins 39 and 40 sets the full-scale output voltage.  
A new data loading sequence begins on the rising edge of CLK when  
this input was HIGH on the preceding rising edge of CLK and the E/O  
input is held HIGH.  
39  
40  
46  
VREFLO  
VREFHI  
STSQ  
Full-Scale Reference  
Full-Scale Reference  
Start Sequence  
A new data loading sequence begins on the falling edge of CLK when  
this input was HIGH on the preceding falling edge of CLK and the E/O  
input is held LOW.  
47  
48  
XFR  
CLK  
Data Transfer  
Clock  
Data is transferred to the outputs on the immediately following falling  
edge of CLK when this input is HIGH on the rising edge of CLK.  
Clock Input.  
PIN CONFIGURATION  
48  
47 46 45 44 43 42 41 40 39 38 37  
1
2
3
4
5
6
7
8
9
NC  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
36  
35  
34  
33  
32  
VID0  
PIN 1  
IDENTIFIER  
AVCC0, 1  
VID1  
AGND1, 2  
VID2  
AD8381  
31 AVCC2, 3  
TOP VIEW  
30  
VID3  
(Not to Scale)  
29  
28  
27  
26  
25  
AGND3, 4  
VID4  
DB8 10  
DB9 11  
NC 12  
AVCC4, 5  
VID5  
AGND5  
13 14 15 16 17 18  
21 22 23 24  
19 20  
NC = NO CONNECT  
REV. 0  
–5–  
–Typical Performance Characteristics  
AD8381  
12V  
12V  
VMID = 7V  
VFS = 5V  
VMID = 7V  
VFS = 5V  
VIDx  
VIDx  
C
L
150pF  
C
L
150pF  
2V  
2V  
20ns/DIV  
20ns/DIV  
TPC 1. Invert Switching 10 V Step Response (Rise) at CL  
TPC 4. Invert Switching 10 V Step Response (Fall) at CL  
7V  
7V  
VMID = 7V  
VFS = 5V  
VMID = 7V  
VFS = 5V  
VIDx  
VIDx  
C
L
150pF  
C
L
150pF  
2V  
2V  
10ns/DIV  
10ns/DIV  
TPC 2. Data Switching 5 V Step Response (Rise) at CL,  
INV = L  
TPC 5. Data Switching 5 V Step Response (Fall) at CL,  
INV = L  
12V  
12V  
VMID = 7V  
VFS = 5V  
VMID = 7V  
VFS = 5V  
VIDx  
VIDx  
C
L
150pF  
C
L
150pF  
7V  
7V  
20ns/DIV  
20ns/DIV  
TPC 3. Data Switching 5 V Step Response (Rise) at CL,  
INV = H  
TPC 6. Data Switching 5 V Step Response (Fall) at CL,  
INV = H  
–6–  
REV. 0  
AD8381  
1.00%  
0.75%  
0.25%  
0.00%  
7V  
0.50%  
–0.25%  
–0.50%  
–0.75%  
–1.00%  
VMID = 7V  
VFS = 5V  
0.25%  
2V  
0.00%  
VIDx  
C
L
150pF  
–0.25%  
–0.50%  
–0.75%  
–1.00%  
VMID = 7V  
VFS = 5V  
VIDx  
C
L
150pF  
t = 0  
t = 0  
10ns/DIV  
10ns/DIV  
TPC 7. Output Settling Time (Rising Edge) at CL,  
5 V STEP, INV = LOW  
TPC 10. Output Settling Time (Falling Edge) at CL,  
5 V STEP, INV = LOW  
VMID = 7V  
VFS = 5V  
1.00%  
0.75%  
VIDx  
C
L
150pF  
0.00% 12V  
–0.25%  
0.50%  
0.25%  
–0.50%  
VMID = 7V  
VFS = 5V  
0.00%  
–0.25%  
–0.50%  
–0.75%  
–0.75%  
7V  
VIDx  
C
–1.00%  
L
150pF  
t = 0  
t = 0  
10ns/DIV  
10ns/DIV  
TPC 8. Output Settling Time (Rising Edge) at CL, 5 V Step,  
INV = HIGH  
TPC 11. Output Settling Time (Falling Edge) at CL,  
5 V Step, INV = HIGH  
+30mV  
+20mV  
+10mV  
VID5  
VMID = 7V  
–10mV  
+10mV  
VMID = 7V  
–10mV  
–20mV  
VID0 – VID4  
5V  
DB (0:9)  
20ns/DIV  
20ns/DIV  
TPC 9. All-Hostile Crosstalk at CL  
TPC 12. Data Switching Transient (Feedthrough) at CL  
REV. 0  
–7–  
AD8381  
0.5  
0.4  
0.5  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0.0  
0.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
0
256  
512  
768  
1023  
256  
512  
768  
1023  
INPUT CODE  
INPUT CODE  
TPC 16. Differential Nonlinearity (DNL) vs. Code, INV = L  
TPC 13. Differential Nonlinearity (DNL) vs. Code, INV = H  
0.5  
0.4  
0.5  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0.0  
0.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
256  
512  
768  
1023  
0
256  
512  
768  
1023  
INPUT CODE  
INPUT CODE  
TPC 17. Integral Nonlinearity (INL) vs. Code, INV = L  
TPC 14. Integral Nonlinearity (INL) vs. Code, INV = H  
0
5
0
–20  
CODE 512, INV = LOW  
–5  
–40  
CODE 512, INV = HIGH  
–10  
–15  
–20  
–25  
–60  
–80  
10k  
100k  
1M  
5M  
5
6
7
8
9
10  
11  
FREQUENCY – Hz  
VMID V  
TPC 18. AVCC Power Supply Rejection vs. Frequency  
TPC 15. Normalized VDE at Code 0 vs. VMID, AVCC = 15.5 V  
–8–  
REV. 0  
AD8381  
3.50  
1.75  
7.5  
5.0  
2.5  
0.00  
0.0  
–2.5  
–5.0  
–7.5  
–1.75  
–3.50  
0
256  
512  
768  
1023  
0
256  
512  
768  
1023  
INPUT CODE  
INPUT CODE  
TPC 21. Common-Mode Error Voltage (VCME) vs. Code  
TPC 19. Differential Error Voltage (VDE) vs. Code  
3.50  
7.5  
5.0  
1.75  
2.5  
CODE 512  
CODE 512  
0.00  
0.0  
–2.5  
–5.0  
–7.5  
–1.75  
–3.50  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
TPC 22. Common-Mode Error (VCME) vs. Temperature  
TPC 20. Differential Error Voltage (VDE) vs. Temperature  
REV. 0  
–9–  
AD8381  
FUNCTIONAL DESCRIPTION  
Channel 5 and proceeds to Channel 0 when the R/L input is  
held LOW.  
The AD8381 is a system building block designed to directly  
drive the columns of LCD panels of the type popularized for use  
in data projectors. It comprises six channels of precision 10-bit  
digital-to-analog converters loaded from a single, high-speed,  
10-bit-wide input. Precision current feedback amplifiers, provid-  
ing well-damped pulse response and rapid voltage settling into  
large capacitive loads, buffer the six outputs. Laser trimming at  
the wafer level ensure low absolute output errors and tight channel-  
to-channel matching. In addition, tight part-to-part matching  
in high channel count systems is guaranteed by the use of an  
external voltage reference.  
DATA TRANSFER TO OUTPUTS (XFR Control)  
Data transfer to all outputs is initiated by the XFR control input.  
When XFR is held HIGH during a rising CLK edge, data is  
simultaneously transferred to all outputs on the immediately  
following falling CLK edge.  
VCOM REFERENCE (VMID Reference Input)  
An external analog reference voltage connected to this input sets  
the reference level at the outputs. This input is normally con-  
nected to VCOM.  
INPUT DATA LOADING (STart SeQuence Control)  
A valid STSQ control input initiates a new six-clock pulse loading  
cycle, during which six input data-words are loaded sequentially  
into six internal channels. A new loading sequence begins on the  
current active CLK edge only when STSQ was held HIGH at  
the preceding active CLK edge.  
FULL-SCALE OUTPUT (VREFHI, VREFLO Reference  
Inputs)  
The difference between two external analog reference voltages,  
connected to these inputs, sets the full-scale output voltage at  
the outputs. VREFLO is normally tied to VMID.  
DATA LOADING—EXPANDED SYSTEMS (Even/Odd  
Control)  
To facilitate expanded, even/odd systems, the active CLK edge, at  
which input data is loaded, is set with the E/O control input.  
ANALOG VOLTAGE INVERSION (INVert Control)  
To facilitate systems that use column, row or pixel inversion,  
the analog output voltage inversion is controlled by the INV  
control input. While INV is HIGH, the analog voltage equiva-  
lent of the input code is subtracted from (VMID + VFS) at each  
output. While INV is LOW, the analog voltage equivalent of the  
input code is added to (VMID – VFS) at each output.  
Input data is loaded on rising CLK edges while the E/O input is  
held HIGH and loaded on falling CLK edges while the E/O  
input is held LOW.  
STANDBY MODE (STBY Control)  
DATA LOADING—INVERTED IMAGES (Right/Left  
Control)  
To facilitate image mirroring, the order in which input data is  
loaded is set with the R/L input.  
A HIGH applied to the STBY input debiases the internal  
circuitry, dropping the quiescent power dissipation to a few  
milliwatts. Since both digital and analog circuits are debiased,  
all stored data will be lost. Upon returning STBY to LOW,  
normal operation is restored.  
A new loading sequence begins at Channel 0 and proceeds to  
Channel 5 when the R/L input is held HIGH and begins at  
–10–  
REV. 0  
AD8381  
TRANSFER FUNCTION  
ACCURACY  
The AD8381 has two regions of operation, selected by the INV  
input, where the video output voltages are either above or below  
a reference voltage, applied externally at the VMID input.  
To best correlate transfer function errors to image artifacts, the  
overall accuracy of the AD8381 is defined by two parameters,  
VDE and VCME.  
The transfer function defines the analog output voltage as the  
function of the digital input code as follows:  
VDE, the differential error voltage, measures the deviation of the  
rms value of the output from the rms value of the ideal. It is depen-  
dent on the difference between the output amplitudes VOUTN(n)  
and VOUTP(n) at a particular code. The defining expression is:  
n
VOUT =VMID VFS × 1–  
1023  
1
n
VDE = × VOUTN(n) VOUTP(n) – VFS × 1–  
(
)
where:  
2
1023  
n = input code  
where:  
1
2
VFS = 2 × (VREFHI – VREFLO)  
× VOUTN(n) VOUTP(n)  
(
)
is the rms value of the output,  
VOUT (V)  
AVCC  
(VFS × (1 – n/1023)) is the rms value of the ideal.  
VCME, the common-mode error voltage, measures the devia-  
tion of the average value of the output from the average value of  
the ideal. It is dependent on the average between the output  
amplitudes VOUTN(n) and VOUTP(n) at a particular code.  
(VMID + VFS)  
INV = HIGH  
VOUTN(n)  
The defining expression is:  
VMID  
1
2
1  
2  
VCME =  
where:  
×
× VOUTN(n)+VOUTP(n) VMID  
(
)
INV = LOW  
VOUTP(n)  
1
2
(VMID VFS)  
× VOUTN(n)+VOUTP(n)  
(
)
is the average value of the output,  
AGND  
VMID is the average value of the ideal.  
INPUT CODE  
0
1023  
MAXIMUM FULL-SCALE OUTPUT VOLTAGE  
The following conditions limit the range of usable output voltages:  
Figure 5. Transfer Function  
The internal DACs limit the minimum allowed voltage at the  
VMID input to 5.3 V.  
The scale factor control loop limits the maximum full-scale  
output voltage to 5.75 V.  
The output amplifiers settle cleanly at voltages within 1.3 V  
from the supply rails.  
The common-mode range of the output amplifiers limit the  
maximum value of VMID to AVCC – 3.  
The region over which the output voltage varies with input code  
is selected by the INV input. When INV is LOW, the output  
voltage increases from (VMID – VFS), (where VFS = the full-  
scale output voltage), to VMID as the input code increases from  
0 to 1023. When INV is HIGH, the output voltage decreases  
from (VMID + VFS) to VMID with increasing input code.  
For each value of input code there are then two possible values  
of output voltage. When INV is LOW, the output is defined as  
VOUTP(n) where n is the input code and P indicates the oper-  
ating region where the slope of the transfer function is positive.  
When INV is HIGH, the output is defined as VOUTN(n) where n  
indicates the operating region where the slope of the transfer  
function is negative.  
At any given valid value of VMID, the voltage required to reach  
any one of the above limits defines the maximum usable full-  
scale output voltage VFSMAX.  
VFSMAX is the envelope in Figure 6. The valid range of VMID  
is the shaded area.  
VFS (V)  
AVCC/2  
AVCC/2–1.3  
5.75  
4.3  
VALID VMID  
2
5.3  
7
AVCC–7  
AVCC/2  
VMID (V)  
AVCC–3  
AVCC  
0
Figure 6. VFSMAX vs. VMID  
REV. 0  
–11–  
AD8381  
Operating Modes—Six-Channel Systems  
The simplest full color LCD-based system is characterized by an  
image processor with a single 10-bit-wide data bus and a 6-channel  
LCD per color.  
PIXEL CLK  
15 16 17 18 19 20 21 22 23 24  
–3 –2 –1  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
DB (0:9)  
CLK  
Such systems usually have VGA or SVGA resolution and require a  
single AD8381 per color.  
STSQ  
EVEN  
STSQ  
ODD  
The INV input facilitates column and row inversion for  
these systems.  
XFR  
R/L  
–1  
0
1
2
3
4
5
6
7
8
9
10 11  
12  
DB(0:9)  
CLK  
E/O  
EVEN  
E/O  
ODD  
STSQ  
XFR  
12  
0
CH0  
CH1  
2
14  
CH 0  
CH 1  
CH 2  
CH 3  
CH 4  
CH 5  
12  
0
6
16  
CH2  
CH3  
CH4  
CH5  
4
1
7
18  
6
2
8
20  
8
3
9
22  
–2  
10  
4
10  
–1  
5
11  
–12  
VID0  
VID1  
VID2  
VID3  
0
2
12  
14  
–10  
–8  
–6  
–4  
–2  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
–6  
0
1
2
3
4
5
6
4
16  
18  
20  
22  
–5  
–4  
–3  
–2  
–1  
7
6
8
VID4  
VID5  
8
9
10  
10  
11  
13  
CH0  
CH1  
CH2  
CH3  
1
3
15  
17  
5
Figure 7. Six-Channel System Timing Diagram, E/O = H,  
R/L = LOW  
19  
7
21  
CH4 –3  
9
Operating Modes—12-Channel Systems  
Single and dual data bus type 12-channel systems are com-  
monly in use.  
23  
–1  
11  
CH5  
–11  
–9  
13  
15  
1
3
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
The single data bus 12-channel system is characterized by an  
image processor with a single, 10-bit data bus and a 12-channel  
LCD per color. The maximum resolution of such a system is  
usually up to 85 Hz XGA or 75 Hz SXGA and requires two  
AD8381s per color.  
–7  
–5  
5
17  
19  
21  
7
–3  
–1  
9
11  
23  
One AD8381 is set to run in EVEN mode while the other is in  
ODD mode. Both AD8381s share the same data bus and CLK.  
The timing diagram of such a system is shown in Figure 8.  
Figure 8. Twelve-Channel Even/Odd System Timing  
Diagram  
The dual data bus 12-channel system is characterized by an  
image processor with two 10-bit parallel data buses and a  
12-channel LCD. The maximum resolution of such a system  
is usually up to 75 Hz UXGA and requires two AD8381s per color.  
Operating Modes—Large Channel Count Systems  
To facilitate 18, 24, or higher channel systems, any number of  
required AD8381s may be cascaded.  
Both AD8381s may be set to run in EVEN mode and may share  
the same CLK. The timing diagram of each AD8381 in such  
a system is identical to that of the 6-channel system.  
The INV input facilitates column, row, and pixel inversion for  
both types of 12-channel systems.  
–12–  
REV. 0  
AD8381  
IMAGE PROCESSOR  
DB(0:9)  
DB(0:9)  
AD8381  
CH 0  
CH 2  
CH 4  
CH 6  
CH 8  
CH 10  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
CLK  
XFR  
R/L  
CLK  
XFR  
R/L  
PIXEL CLK  
+2  
STSQ2  
STSQ1  
CLK  
CLK  
،6 COUNTER  
STSQ1  
INV1  
E/O1  
STSQ  
INV  
E/O  
H. REVERSE  
CLK  
CLK  
STSQ2  
INV2  
E/O2  
،6 COUNTER  
VREFHI  
VMID  
VREFLO  
HSTART  
12–CHANNEL  
LCD  
HSYNC  
VSYNC  
INV1  
INV2  
DB(0:9)  
CH 1  
CH 3  
CH 5  
CH 7  
CH 9  
CH 11  
VID0  
VID1  
AD8381  
CLK  
XFR  
R/L  
VID2  
VID3  
VID4  
VID5  
STSQ  
INV  
E/O  
REFERENCES  
VREFHI  
VMID  
VREFHI  
VCOM  
VREFLO  
Figure 9. Single Data Bus 12-Channel Even/Odd System Block Diagram  
IMAGE PROCESSOR  
D(0:9) ODD  
D(0:9) EVEN  
DB1(0:9)  
DB(0:9) AD8381  
CLK  
XFR  
R/L  
CH 0  
VID0  
CLK  
XFR  
R/L  
PIXEL CLK  
+2  
VID1  
VID2  
VID3  
VID4  
VID5  
CH 2  
CH 4  
CH 6  
CH 8  
CH 10  
H. REVERSE  
CLK  
،6 COUNTER  
STSQ  
INV1  
E/O  
STSQ  
INV  
E/O  
“1”  
HSTART  
VREFHI  
VMID  
INV2  
VREFLO  
12–CHANNEL  
LCD  
D(0:9) EVEN  
D(0:9) ODD  
DB2(0:9)  
DB(0:9) AD8381  
CLK  
XFR  
R/L  
CH 1  
CH 3  
CH 5  
CH 7  
CH 9  
CH 11  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
HSYNC  
VSYNC  
INV1  
INV2  
STSQ  
INV  
E/O  
REFERENCES  
VREFHI  
VCOM  
VREFHI  
VMID  
VREFLO  
Figure 10. Dual Parallel Data Bus 12-Channel System Block Diagram  
REV. 0  
–13–  
AD8381  
LAYOUT CONSIDERATIONS  
Each reference voltage should be distributed to each AD8381  
directly from the source of the reference voltage with approxi-  
mately equal trace lengths.  
The AD8381 is a mixed-signal, high speed, very accurate  
device. In order to realize its specifications, it is essential to use  
a properly designed printed circuit board.  
A 0.1 µF chip capacitor should be placed as close to each refer-  
ence input pin as possible and directly connected between the  
reference input pin and the analog ground plane.  
Layout and Grounding  
The analog outputs and the digital inputs of the AD8381 are  
pinned out on opposite sides of the package. When laying out  
the circuit board, keep these sections separate from each other  
to minimize crosstalk and noise and the coupling of the digital  
input signals into the analog outputs.  
All signal trace lengths should be made as short and direct as  
possible to prevent signal degradation due to parasitic effects.  
Note that digital signals should not cross or be routed near  
analog signals.  
36 VID0  
AVCC0,1  
1
2
3
4
5
6
7
8
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
It is imperative to provide a solid analog ground plane under  
and around the AD8381. All of the ground pins of the part  
should be connected directly to the ground plane with no extra  
signal path length. For conventional operation this includes the  
pins DGND, AGNDDAC, AGNDBIAS, AGND0, AGND1, 2,  
AGND3, 4, and AGND5. The return traces for any of the  
signals should be routed close to the ground pin for that section  
to prevent stray signals from coupling into other ground pins.  
VID1  
34  
32  
30  
28  
26  
AGND1,2  
VID2  
AVCC2,3  
VID3  
AGND3,4  
VID4  
DB7  
9
DB8 10  
DB9 11  
AVCC4,5  
VID5  
Power Supply Bypassing  
AGND5  
12  
All power supply and reference pins of the AD8381 must be  
properly bypassed to the analog ground plane for optimum  
performance.  
All analog supply pins may be connected directly to an analog  
supply plane located as close to the part as possible. A 0.1 µF  
chip capacitor should be placed as close to each analog supply  
pin as possible and connected directly between each analog  
supply pin and the analog ground plane.  
TO ANALOG GROUND PLANE  
TO ANALOG SUPPLY PLANE  
A minimum of 47 µF tantalum capacitor should be placed near  
the analog supply plane and connected directly between the  
supply and analog ground planes.  
Figure 11. AD8381 Recommended Bypassing  
A minimum of 10 µF tantalum capacitor should be placed near the  
digital supply pin and connected directly to the analog ground  
plane. A 0.1 µF chip capacitor should be connected between the  
digital supply pin and the analog ground.  
VREFHI, VMID, VREFLO Reference Distribution  
To ensure well-matched video outputs, all AD8381s must oper-  
ate from equal reference voltages.  
–14–  
REV. 0  
AD8381  
OUTLINE DIMENSIONS  
Dimensions shown in millimeters and (inches)  
48-Lead LQFP  
(ST-48)  
1.60 (0.0630)  
MAX  
GAGE PLANE  
PIN 1  
INDICATOR  
9.00 (0.3543)  
BSC SQ  
0.25 (0.0098)  
0.75 (0.0295)  
0.60 (0.0236)  
0.45 (0.0177)  
37  
48  
36  
1
SEATING  
PLANE  
7.00  
TOP VIEW  
(0.2756)  
BSC  
(PINS DOWN)  
VIEW A
SQ  
25  
12  
24  
13  
0.50 (0.0197)  
0.27 (0.0106)  
0.22 (0.0087)  
BSC  
0.17 (0.0067)  
1.45 (0.0571)  
0.20 (0.0079)  
0.09 (0.0035)  
1.40 (0.0551)  
1.35 (0.0531)  
7؇  
3.5؇  
0؇  
0.15 (0.0059)  
COPLANARITY  
0.05 (0.0020)  
0.08 (0.0031) MAX  
VIEW A  
ROTATED 90؇ CCW  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MS-026-BBC  
REV. 0  
–15–  
–16–  

相关型号:

AD8381JST

Fast, High Voltage Drive, 6-Channel Output DecDriver Decimating LCD Panel Driver
ADI

AD8381JSTZ

Fast, High Voltage Drive, 6-Channel Output DecDriver Decimating LCD Panel Driver
ADI

AD8382

High Performance 12-Bit, 6-Channel Output, Decimating LCD DecDriver
ADI

AD8382ACP

High Performance 12-Bit, 6-Channel Output, Decimating LCD DecDriver
ADI

AD8382ACPZ

暂无描述
ADI

AD8383

Low Cost 10-Bit, 6-Channel Output Decimating LCD DecDriver
ADI

AD8383ACPZ

Low Cost 10-Bit, 6-Channel Output Decimating LCD DecDriver
ADI

AD8383ACPZ

LIQUID CRYSTAL DISPLAY DRIVER, QCC48, 7 X 7 MM, 0.85 MM HEIGHT, MO-220VKKD-2, LFCSP-48
ROCHESTER

AD8384

10-Bit, 6-Channel Decimating LCD DecDriver-R with Level Shifters
ADI

AD8384ASVZ

10-Bit, 6-Channel Decimating LCD DecDriver-R with Level Shifters
ADI

AD8385

10-Bit, 12-Channel Decimating LCD DECDRIVER with Level Shifters
ADI

AD8385ASVZ

10-Bit, 12-Channel Decimating LCD DECDRIVER with Level Shifters
ADI