AD8384ASVZ [ADI]

10-Bit, 6-Channel Decimating LCD DecDriver-R with Level Shifters; 10位, 6通道抽取LCD DecDriver -R与电平转换器
AD8384ASVZ
型号: AD8384ASVZ
厂家: ADI    ADI
描述:

10-Bit, 6-Channel Decimating LCD DecDriver-R with Level Shifters
10位, 6通道抽取LCD DecDriver -R与电平转换器

显示驱动器 转换器 电平转换器 驱动程序和接口 接口集成电路 CD
文件: 总24页 (文件大小:468K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-Bit, 6-Channel Decimating  
LCD DecDriver® with Level Shifters  
AD8384  
PRODUCT FEATURES  
High accuracy, high resolution voltage outputs  
FUNCTIONAL BLOCK DIAGRAM  
10-bit input resolution  
BYP  
BIAS  
Laser trimmed outputs  
VRH  
VRL  
2
SCALING  
CONTROL  
Fast settling, high voltage drive  
30 ns settling time to 0.25% into a 150 pF load  
Slew rate 460 V/µs  
Outputs to within 1.3 V of supply rails  
High update rates  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
/
6
/
2-STAGE  
LATCH  
10  
DACs  
DB(0:9)  
/
R/L  
CLK  
STSQ  
XFR  
4
/
SEQUENCE  
CONTROL  
INV  
CONTROL  
Fast, 100 Ms/s 10-bit input data update rate  
Voltage controlled video reference (brightness), offset, and  
full-scale (contrast) output levels  
Flexible logic  
STSQ/XFR allow parallel AD8384 operation  
INV bit reverses polarity of video signal  
Output short-circuit protection  
INV  
V1  
V2  
TSTM  
SDI  
SCL  
SEN  
12-BIT  
SHIFT  
REGISTER  
VAO1  
VAO2  
3
2
DUAL  
DAC  
/
/
SVRH  
SVRL  
3.3 V logic, 9 V to 18 V analog supplies  
18 V level shifters for panel timing signals  
Available in 80-lead 12 mm × 12 mm TQFP E-pad  
DYIN  
DXIN  
DIRYIN  
DIRXIN  
NRGIN  
ENBX1IN  
ENBX2IN  
ENBX3IN  
ENBX4IN  
DY  
DX  
DIRY  
DIRX  
NRG  
ENBX1  
ENBX2  
ENBX3  
ENBX4  
9
2
9
/
/
/
APPLICATIONS  
LCD analog column drivers  
2
2
CLX  
CLY  
/
/
CLXIN  
CLYIN  
CLXN  
CLYN  
R
S
MONITI  
MONITO  
AD8384  
Figure 1.  
PRODUCT DESCRIPTION  
The AD8384 DecDriver provides a fast, 10-bit, latched,  
The AD8384 is fabricated on the 26 V, fast, bipolar XFHV  
process developed by Analog Devices, Inc. This process  
provides fast input logic, bipolar DACs with trimmed accuracy  
and fast settling, high voltage, precision drive amplifiers on the  
same chip.  
decimating digital input that drives six high voltage outputs.  
10-bit input words are loaded sequentially into six separate high  
speed, bipolar DACs. Flexible digital input format allows several  
AD8384s to be used in parallel in high resolution displays. The  
output signal can be adjusted for dc reference, signal inversion,  
and contrast for maximum flexibility. Integrated level shifters  
convert timing signals from a 3 V timing controller to high  
voltage for LCD panel timing inputs. Two serial input, 8-bit  
DACs are integrated to provide dc reference signals. DAC  
addresses and 8-bit data are loaded in one 12-bit serial word.  
The AD8384 dissipates 1.1 W nominal static power.  
The AD8384 is offered in an 80-lead 12 mm × 12 mm TQFP  
E-pad package and operates over the 0°C to 85°C commercial  
temperature range.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD8384  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
DecDriver ...................................................................................... 3  
Level Shifters ................................................................................. 5  
Level Shifting Edge Detector ...................................................... 5  
Serial Interface .............................................................................. 6  
Power Supplies .............................................................................. 7  
Operating Temperature ............................................................... 7  
Absolute Maximum Ratings............................................................ 8  
Maximum Power Dissipation ..................................................... 8  
Operating Temperature Range ................................................... 8  
Overload Protection..................................................................... 8  
Exposed Paddle............................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Timing Characteristics................................................................... 11  
DecDriver Section...................................................................... 11  
Level Shifter Section................................................................... 12  
Level Shifting Edge Detector .................................................... 13  
Serial Interface ............................................................................ 14  
Functional Description.................................................................. 15  
Accuracy ...................................................................................... 16  
TSTM Control—Test Mode...................................................... 16  
Grounded Output Mode ........................................................... 16  
Overload Protection................................................................... 16  
3-Wire Serial Interface............................................................... 16  
Serial DACs................................................................................. 16  
Level Shifters............................................................................... 16  
Applications..................................................................................... 17  
Power Supply Sequencing ......................................................... 17  
VBIAS Generation—V1, V2 Input Pin Functionality ........... 18  
Applications Circuit................................................................... 18  
PCB Design for Optimized Thermal Performance ............... 19  
Thermal Pad Design .................................................................. 19  
Thermal Via Structure Design.................................................. 19  
AD8384 PCB Design Recommendations ............................... 20  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 21  
REVISION HISTORY  
Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
AD8384  
SPECIFICATIONS  
DecDriver  
Table 1. @ 25°C, AVCC = 15.5 V, DVCC = 3.3 V, TA MIN = 0°C, TA MAX = 85°C, VRH = 9.5 V, VRL = V1 = V2 = 7 V,  
unless otherwise noted  
Parameter  
VIDEO DC PERFORMANCE1  
Conditions  
Min  
Typ  
Max  
Unit  
TA MIN to TA MAX  
VDE  
VCME  
DAC Code 450 to 800  
DAC Code 450 to 800  
TA MIN to TA MAX , VO = 5 V Step, CL = 150 pF  
20% to 80%  
–7.5  
–3.5  
+7.5  
+3.5  
mV  
mV  
VIDEO OUTPUT DYNAMIC PERFORMANCE  
Data Switching Slew Rate  
Invert Switching Slew Rate  
Data Switching Settling Time to 1%  
Data Switching Settling Time to 0.25%  
Invert Switching Settling Time to 1%  
Invert Switching Settling Time to 0.25%  
Invert Switching Overshoot  
CLK and Data Feedthrough2  
All-Hostile Crosstalk3  
460  
560  
19  
30  
75  
250  
100  
10  
V/µs  
V/µs  
ns  
ns  
ns  
ns  
mV  
mV p-p  
20% to 80%  
24  
50  
120  
500  
200  
VO = 10 V Step  
VO = 10 V Step  
VO = 10 V Step  
Amplitude  
Glitch Duration  
DAC Transition Glitch Energy  
VIDEO OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Output Voltage—Grounded Mode  
Data Switching Delay: t9  
INV Switching Delay: t10  
Output Current  
Output Resistance  
REFERENCE INPUTS  
V1 Range  
10  
30  
0.3  
mV p-p  
ns  
nV-s  
DAC Code 511 to 512  
AVCC – VOH, VOL – AGND  
1.1  
0.25  
12  
15  
100  
22  
1.3  
V
V
ns  
ns  
mA  
4
50 % of VIDx  
50 % of VIDx  
10  
13  
14  
17  
5
V2 ≥ (V1-0.25V)  
V2 ≥ (V1-0.25V)  
5.25  
5.25  
AVCC – 4  
AVCC – 4  
V
V
V2 Range  
V1 Input Current  
V2 Input Current  
VRL Range  
–3  
–14  
µA  
µA  
V
VRH ≥ VRL  
VRH ≥ VRL  
V1 – 0.5  
VRL  
AVCC – 1.3  
AVCC  
VRH Range  
V
(VRH–VRL) Range  
VRH Input Resistance  
VRL Bias Current  
VRH Input Current  
RESOLUTION  
VFS = 2(VRH – VRL)  
To VRL  
0
2.75  
V
20  
–0.2  
125  
kΩ  
µA  
µA  
Coding  
Binary  
10  
Bits  
1 VDE = differential error voltage; VCME = common-mode error voltage; VFS = full-scale output voltage = 2 × (VRH – VRL). See the Accuracy section.  
2 Measured differentially on two outputs as CLK and DB(0:9) are driven and STSQ and XFR are held LOW.  
3 Measured differentially on two outputs as the other four are transitioning by 5 V. Measured for both states of INV.  
4 Measured from 50% of rising CLK edge to 50% of output change. Measurement is made for both states of INV.  
5 Measured from 50% of rising CLK edge to 50% of output change. Refer to Figure 7 for the definition.  
Rev. 0 | Page 3 of 24  
 
 
 
 
 
 
AD8384  
DecDriver (continued)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DIGITAL INPUT CHARACTERISTICS  
Max. Input Data Update Rate  
CLK to Data Setup Time: t1  
CLK to STSQ Setup Time: t3  
CLK to XFR Setup Time: t5  
CLK to Data Hold Time: t2  
CLK to STSQ Hold Time: t4  
CLK to XFR Hold Time: t6  
CLK High Time: t7  
100  
0
0
0
3
3
3
3
2.5  
Ms/s  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
µA  
µA  
V
CLK Low Time: t8  
CIN  
IIH  
3
0.05  
–0.6  
IIL  
VIH  
VIL  
VTH  
2
0.8  
V
V
1.65  
Rev. 0 | Page 4 of 24  
AD8384  
LEVEL SHIFTERS  
Table 2. @ 25°C, AVCC = 15.5 V, DVCC = 3.3 V, TA MIN = 0°C, TA MAX = 85°C, VRH = 9.5 V, VRL = V1 = V2 = 7 V,  
unless otherwise noted  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
LEVEL SHIFTER LOGIC INPUTS  
CIN  
IIH  
IIL  
VTH  
3
pF  
µA  
µA  
V
0.05  
–0.6  
1.65  
VIH  
VIL  
2.0  
DGND  
DVCC  
0.8  
V
V
LEVEL SHIFTER OUTPUTS  
RL ≥ 10 kΩ  
VOH  
VOL  
AVCC – 0.45  
AVCC – 0.25  
0.25  
V
V
0.45  
LEVEL SHIFTER DYNAMIC PERFORMANCE  
Output Rise, Fall Times—tr, tf  
DX, CLX, CLXN, ENBX(1–4)  
DY, CLY, CLYN  
TA MIN to TA MAX  
CL = 40 pF  
CL = 40 pF  
CL = 40 pF  
CL = 200 pF  
CL = 300 pF  
18.5  
40  
100  
35  
30  
70  
150  
50  
100  
ns  
ns  
ns  
ns  
ns  
DIRX, DIRY  
NRG  
55  
Propagation Delay Times—t11, t12, t13, t14  
DX, CLX, CLXN, ENBX(1–4)  
DY, CLY, CLYN  
DIRX, DIRY  
CL = 40 pF  
CL = 40 pF  
CL = 40 pF  
CL = 200 pF  
CL = 300 pF  
20  
29  
60  
25  
32  
50  
50  
100  
55  
ns  
ns  
ns  
ns  
ns  
NRG  
Output Skew  
ENBX(1–4)—t15, t16  
CL = 40 pF  
CL = 40 pF  
CL = 40 pF  
CL = 40 pF  
2
2
10  
20  
ns  
ns  
ns  
ns  
DX to ENBX(1–4)—t16  
DX to CLX—t15, t16, t17, t18  
DY to CLY, CLYN—t15, t16, t17, t18  
LEVEL SHIFTING EDGE DETECTOR  
Table 3. CL = 10 pF, TA MIN to TA MAX, unless otherwise noted  
Parameter  
Min  
Typ  
Max  
Unit  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
AGND  
AVCC – 2.7  
AGND + 2.75  
AVCC  
V
V
VTH LH  
VTH HL  
VOH  
VOL  
IIH  
IIL  
t19  
∆t19  
t20  
∆t20  
tr  
Input Rising Edge Threshold Voltage  
Input Falling Edge Threshold Voltage  
Output High Voltage  
Output Low Voltage  
Input Current High State  
AGND + 3  
AVCC – 3  
DVCC – 0.25  
V
V
V
V
µA  
µA  
ns  
ns  
ns  
ns  
ns  
ns  
DVCC – 0.45  
–2.5  
0.25  
1.2  
–1.2  
16  
2
12  
2
5
0.45  
2.5  
Input Current Low State  
Input Rising Edge Propagation Delay Time  
t19 Variation with Temperature  
Input Falling Edge Propagation Delay Time  
t20 Variation with Temperature  
Output Rise Time  
tf  
Output Fall Time  
6
Rev. 0 | Page 5 of 24  
 
AD8384  
SERIAL INTERFACE  
Table 4. @ 25°C, AVCC = 15.5 V, DVCC = 3.3 V, TA MIN = 0°C, TA MAX = 85°C, SVRL = 4 V, SVRH = 9 V, unless otherwise noted  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SERIAL DAC REFERENCE INPUTS  
SVRH Range  
SVRL Range  
SVFS = (SVRH – SVRL)  
SVRL < SVRH  
SVRL < SVRH  
SVRL + 1  
AGND + 1.5  
1
AVCC – 3.5  
SVRH – 1  
8
V
V
V
SVFS Range  
SVRH Input Current  
SVRL Input Current  
SVRH Input Resistance  
SERIAL DAC ACCURACY  
DNL  
SVFS = 5 V  
SVFS = 5 V  
–70  
–2.5  
40  
nA  
mA  
kΩ  
–2.8  
SVFS = 5 V, RL = ∞  
SVFS=5 V, RL = ∞  
–1.0  
–1.5  
–2.0  
–4.0  
+1.0  
+1.5  
+2.0  
+4.0  
LSB  
LSB  
LSB  
LSB  
INL  
Output Offset Error  
Scale Factor Error  
SERIAL DAC LOGIC INPUTS  
CIN  
IIL  
IIH  
3
pF  
µA  
µA  
V
–0.6  
0.05  
1.65  
VTH  
VIH  
VIL  
2.0  
DGND  
DVCC  
0.8  
V
V
SERIAL DAC OUTPUTS  
Maximum Output Voltage  
Minimum Output Voltage  
VAO1—Grounded Mode  
IOUT  
CLOAD Low Range6  
CLOAD High Range1  
SERIAL DAC DYNAMIC PERFORMANCE  
SEN to SCL Setup Time, t20  
SCL, High Level Pulse Width, t21  
SCL, Low Level Pulse Width, t22  
SDI Setup Time, t24  
SDI Hold Time, t25  
SCL to SEN Hold Time, t23  
VAO1, VAO2 Settling Time, t26  
VAO1, VAO2 Settling Time, t26  
SVRH – 1 LSB  
SVRL  
0.1  
V
V
V
mA  
µF  
µF  
30  
0.002  
0.047  
10  
15  
10  
10  
10  
15  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ms  
SVFS = 5 V, to 0.5%, CL = 100 pF  
SVFS = 5 V, to 0.5%, CL = 33 µF  
1
10  
2
15  
6 Outputs VAO1 and VAO2 are designed to drive very high capacitive loads. The load capacitance must be 0.002 µF or 0.047 µF.  
Load capacitance in the range 0.002 µF to 0.047 µF causes the output overshoot to exceed 100 mV.  
Rev. 0 | Page 6 of 24  
 
 
 
AD8384  
POWER SUPPLIES  
Table 5. @ 25°C, AVCC = 15.5 V, DVCC = 3.3 V, TA MIN = 0°C, TA MAX = 85°C, SVRL = 4 V, SVRH = 9 V, unless otherwise noted  
Parameter  
Min  
Typ  
3.3  
40  
Max  
3.6  
50  
18  
85  
Unit  
DVCC, Operating Range  
DVCC, Quiescent Current  
AVCC Operating Range  
Total AVCC Quiescent Current  
3
V
mA  
V
9
70  
mA  
OPERATING TEMPERATURE  
Parameter  
Conditions  
Still Air  
200 lfm  
Min  
0
0
Typ  
Max  
75  
85  
Unit  
°C  
°C  
7
Ambient Temperature Range, TA  
8
Ambient Temperature Range, TA  
Junction Temperature Range, TJ  
100% Tested  
25  
125  
°C  
7 Operation at high ambient temperature requires a thermally optimized PCB layout (see the Applications section), input data update rate not exceeding 85 MHz, black-  
to-white transition ≤ 4V and CL ≤ 150 pF. In systems with limited or no airflow, the maximum ambient operating temperature is limited to 75°C. For operation above  
75°C, see Note 8 below.  
8 In addition to the requirements stated in Note 7 above, operation at 85°C ambient temperature requires 200 lfm airflow.  
Rev. 0 | Page 7 of 24  
 
 
 
AD8384  
ABSOLUTE MAXIMUM RATINGS  
Table 6. AD8384 Stress Ratings9  
MAXIMUM POWER DISSIPATION  
Parameter  
Rating  
The maximum power that can be safely dissipated by the  
AD8384 is limited by its junction temperature. The maximum  
safe junction temperature for plastic encapsulated devices, as  
determined by the glass transition temperature of the plastic, is  
approximately 150°C. Exceeding this limit temporarily may  
cause a shift in the parametric performance due to a change in  
the stresses exerted on the die by the package. Exceeding a  
junction temperature of 175°C for an extended period can  
result in device failure.  
Supply Voltages  
AVCCx – AGNDx  
DVCC – DGND  
Input Voltages  
Maximum Digital Input Voltage  
Minimum Digital Input Voltage  
Maximum Analog Input Voltage  
Minimum Analog Input Voltages  
Internal Power Dissipation10  
TQFP E-Pad Package @ TA = 25°C  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature Range (Soldering 10 sec)  
18 V  
4.5 V  
DVCC + 0.5 V  
DGND – 0.5 V  
AVCC + 0.5 V  
AGND – 0.5 V  
4.16 W  
OPERATING TEMPERATURE RANGE  
0°C to 85°C  
–65°C to +125°C  
300°C  
Although the maximum safe operating junction temperature is  
higher, the AD8384 is 100% tested at a junction temperature of  
125°C. Consequently, the maximum guaranteed operating  
junction temperature is 125°C.  
9 Stresses above those listed under the Absolute Maximum Ratings may cause  
permanent damage to the device. This is a stress rating only; functional  
operation of the device at these or any other conditions above those  
indicated in the operational section of this specification is not implied.  
Exposure to the absolute maximum ratings for extended periods may  
reduce device reliability.  
To ensure operation within the specified temperature range, it is  
necessary to limit the maximum power dissipation as follows:  
(TJMAX T  
A
)
PDMAX  
10 80-lead TQFP E-pad package:  
θJA0.5× Airflow(lfm)  
θJA = 24°C/W (JEDEC STD, 4-layer PCB in still air)  
θJC = 16°C/W  
2.5  
2.0  
1.5  
1.0  
OVERLOAD PROTECTION  
200lfm  
The AD8384 employs a 2-stage overload protection circuit that  
consists of an output current limiter and a thermal shutdown.  
The maximum current at any one output of the AD8384 is, on  
average, internally limited to 100 mA. In the event of a momen-  
tary short circuit between a video output and a power supply  
rail (VCC or AGND), the output current limit is sufficiently low  
to provide temporary protection.  
500lfm  
100MHz  
60Hz XGA  
STILL AIR  
The thermal shutdown debiases the output amplifier when the  
junction temperature reaches the internally set trip point. In the  
event of an extended short-circuit between a video output and a  
power supply rail, the output amplifier current continues to  
switch between 0 mA and 100 mA typical with a period deter-  
mined by the thermal time constant and the hysteresis of the  
thermal trip point. Thermal shutdown provides long term pro-  
tection by limiting average junction temperature to a safe level.  
QUIESCENT  
70  
65  
75  
80  
85  
90  
95  
100  
105  
AMBIENT TEMPERATURE (°C)  
Figure 2. Maximum Power Dissipation vs. Temperature*  
*AD8384 on a 4-layer JEDEC PCB with thermally optimized landing pattern, as  
described in the Application Notes.  
EXPOSED PADDLE  
Note: When operating under the conditions specified in this  
data sheet, the AD8384s quiescent power dissipation is 1.1 W.  
When driving a 6-channel XGA panel with a 150 pF input  
capacitance, the AD8384 dissipates a total of 1.58 W when  
displaying 1-pixel-wide alternating white and black vertical  
lines generated by a standard 60 Hz XGA input video. When the  
pixel clock frequency is raised to 100 MHz (the AD8384s  
maximum specified operating frequency), total power  
dissipation increases to 1.83 W. Figure 2 shows these specific  
power dissipations.  
To ensure optimized thermal performance, the exposed paddle  
must be thermally connected to an external plane, such as  
AVCC or GND, as described in the Application Notes.  
Rev. 0 | Page 8 of 24  
 
 
 
 
 
AD8384  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
1
DGND  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
AGND0  
VID0  
PIN 1  
IDENTIFIER  
2
3
TSTM  
CLK  
AVCC0,1  
VID1  
4
XFR  
5
STSQ  
INV  
AGND1,2  
VID2  
6
7
R/L  
AVCC2,3  
VID3  
8
E/O  
9
SDI  
AGND3,4  
VID4  
AD8384  
TOP VIEW  
(Not to Scale)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
SEN  
SCL  
AVCC4,5  
VID5  
NC  
AGNDS  
SVRL  
SVRH  
VAO1  
VAO2  
AVCCS  
DIRXIN  
DIRYIN  
AGND5  
CLXN  
CLX  
ENBX4  
ENBX3  
ENBX2  
ENBX1  
DX  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
NC =  
NO CONNECT  
Figure 3. 80-Lead 12 mm × 12 mm TQFP E-Pad Pin Configuration  
Table 7. Pin Function Descriptions  
Pin Name  
DB(0:9)  
CLK  
Function  
Data Input  
Clock  
Description  
10-Bit Data Input. MSB = DB(9).  
Clock Input.  
STSQ  
Start Sequence  
The state of STSQ is detected on the active edge of CLK. A new data loading sequence  
begins on the next active edge of CLK after STSQ is detected HIGH.  
The active CLK edge is the rising edge when E/O is held HIGH. It is the falling edge when  
E/O is held LOW.  
R/L  
Right/Left Select  
Even/Odd Select  
A new data loading sequence begins on the left, with Channel 0, when this input is LOW,  
and on the right, with Channel 5, when this input is HIGH.  
E/O  
The active CLK edge is the rising edge when this input is held HIGH. It is the falling edge  
when this input is held LOW. Data is loaded sequentially on the rising edges of CLK when  
this input is HIGH and on the falling edges when this input is LOW.  
XFR  
Data Transfer  
XFR is detected and a data transfer is initiated on a rising CLK edge when this input is held  
HIGH. Data is transferred to the video outputs on the next rising CLK edge after XFR is  
detected.  
VID0–VID5  
V1, V2  
Analog Outputs  
These pins are directly connected to the analog inputs of the LCD panel.  
Reference Voltages  
The voltage applied between V1 and AGND sets the white video level during INV = LOW.  
The voltage applied between V2 and AGND sets the white video level during INV = HIGH.  
VRH, VRL  
BYP  
Full-Scale References  
Bypass  
Twice the voltage applied between these pins sets the full-scale video output voltage.  
A 0.1µ F capacitor connected between this pin and AGND ensures optimum settling time.  
Rev. 0 | Page 9 of 24  
 
AD8384  
Pin Name  
Function  
Description  
INV  
Invert  
When this input is HIGH, the VIDx output voltages are above V2. When INV is LOW, the VIDx  
output voltages are below V1.  
The state of INV is latched on the first rising CLK edge, after XFR is detected. The VIDx  
outputs change on the rising CLK edge after the next XFR is detected.  
DVCC  
DGND  
AVCCx  
Digital Power Supply  
Digital Ground  
Digital Power Supply.  
This pin is normally connected to the digital ground plane.  
Analog Power Supplies.  
Analog Power  
Supplies  
AGNDx  
Analog Ground  
Analog Supply Returns.  
SVRH, SVRL  
Serial DAC Reference  
Voltages  
Reference Voltages for the Output Amplifiers of the Control DACs.  
SCL  
SDI  
Serial Data Clock  
Data Input  
Serial Data Clock.  
While the SEN input is LOW, one 12-bit serial word is loaded into the serial DAC on the  
rising edges of SCL. The first bit selects the output, the next three bits are unused, and the  
subsequent eight bits are the data used in the DAC.  
SEN  
Serial DAC Enable  
A falling edge of this input initiates a loading cycle. While this input is held LOW, the serial  
DAC is enabled and data is loaded on every rising edge of SCL. The selected output is  
updated on the rising edge of this input. While this input is held HIGH, the control DAC is  
disabled.  
VAO1, VAO2  
TSTM  
Serial DAC Voltage  
Output  
These output voltages are updated on the rising edge of the SEN input.  
Test Mode  
When this input is LOW, the output mode is determined by the function programmed into  
the serial interface.  
While this input is held HIGH, the output mode is forced to NORMAL, regardless of function  
programmed into the serial interface.  
MONITI  
Monitor Input  
Logic Input of the Level Shifting Inverting Edge Detector.  
Output of the Level Shifting Inverting Edge Detector.  
Logic Input of the Inverting Level Shifters.  
MONITO  
Monitor Output  
DYIN, DIRYIN,  
DIRXIN, DXIN,  
Inverting Level  
Shifter Inputs  
NRGIN, ENBX(1–4)IN  
DX, DY, DIRX, DIRY,  
NRG, ENBX(1-4)  
Inverting Level  
Shifter Outputs  
While the corresponding input voltage of these level shifters is below the threshold  
voltage, the output voltage at these pins is at VOH.  
While the corresponding input voltage of these level shifters is above the threshold  
voltage, the output voltage at these pins is at VOL.  
CLXIN, CLYIN  
Complementary  
Logic Input of the Complementary Level Shifters.  
Level Shifter Inputs  
CLX, CLXN, CLY,  
CLYN,  
Complementary  
While the corresponding input voltage of these level shifters is below the threshold  
Level Shifter Outputs voltage, the voltage at the noninverting output pins is at VOH and the voltage at the  
inverting outputs is at VOL.  
While the corresponding input voltage of these level shifters is above the threshold  
voltage, the voltage at the noninverting output pins is at VOL and the voltage at the  
inverting outputs is at VOH.  
Rev. 0 | Page 10 of 24  
AD8384  
tf  
tr  
TIMING CHARACTERISTICS  
DECDRIVER SECTION  
t8  
V
TH  
CLK  
t7  
t1  
t2  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
2-STAGE  
LATCH  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
DB(0:9)  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
V
TH  
DB(0:9)  
2-STAGE  
LATCH  
AD8384  
V
V
TH  
STSQ  
XFR  
t3  
t4  
2-STAGE  
LATCH  
BYP  
BIAS  
TH  
t5  
Figure 5. Input Timing, Even Mode (E/O = HIGH)  
t8 t7  
t6  
2-STAGE  
LATCH  
CLK  
STSQ  
XFR  
SEQUENCE  
CONTROL  
2-STAGE  
LATCH  
R/L  
2-STAGE  
LATCH  
V
CLK  
TH  
INV  
INV CONTROL  
t1  
t2  
SCALING  
CONTROL  
V
DB(0:9)  
TH  
VRH VRL  
V1 V2  
V
STSQ  
XFR  
Figure 4. Block Diagram  
TH  
t3  
t4  
V
TH  
t5  
t6  
Figure 6. Input Timing, Odd Mode ( E/O = LOW)  
CLK  
–8 –7 –6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
7
DB(0:9)  
STSQ  
XFR  
INV  
V2+VFS  
VID(0:5)  
PIXELS  
–6, –5, –4, –3, –2, –1  
50%  
50%  
V2  
t9  
V1  
t9  
PIXELS 0, 1, 2, 3, 4, 5  
V1–VFS  
t10  
Figure 7. Output Timing (R/L = Low, E/O = High)  
Table 8. Timing Characteristics  
Parameter  
Conditions  
Min  
0
3
0
3
0
3
3
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
t10  
CLK to Data Setup Time  
CLK to Data Hold Time  
CLK to STSQ Setup Time  
CLK to STSQ Hold Time  
CLK to XFR Setup Time  
CLK to XFR Hold Time  
CLK High Time  
CLK Low Time  
CLK to VIDx Delay  
INV to VIDx Delay  
2.5  
10  
13  
12  
15  
14  
17  
Rev. 0 | Page 11 of 24  
 
AD8384  
LEVEL SHIFTER SECTION  
DYIN  
DXIN  
DIRYIN  
DIRXIN  
NRGIN  
ENBX1IN  
ENBX2IN  
ENBX3IN  
ENBX4IN  
DY  
DX  
CLX  
CLY  
CLXIN  
CLYIN  
DIRY  
DIRX  
NRG  
ENBX1  
ENBX2  
ENBX3  
ENBX4  
CLXN  
CLYN  
Figure 9. Level Shifter—Complementary  
Figure 8. Level Shifter—Inverting  
INPUTS  
t11  
t12  
INVERTING  
OUTPUTS  
t15  
t17  
t16  
t18  
NONINVERTING  
OUTPUTS  
t13  
t14  
Figure 10. Inverting and Complementary Level Shifter Timing  
Table 9. Level Shifter Timing  
Parameter  
Conditions  
TA MIN to TA MAX  
CL = 40 pF  
Min  
Typ  
Max  
Unit  
Output Rise, Fall Times, tr, tf  
DX, CLX, CLXN, ENBX(1–4)  
DY, CLY, CLYN  
DIRX, DIRY  
NRG  
18.5  
40  
100  
35  
30  
70  
150  
50  
100  
ns  
ns  
ns  
ns  
ns  
CL = 200 pF  
CL = 300 pF  
TA MIN to TA MAX  
CL = 40 pF  
55  
Propagation Delay Times—t11, t12, t13, t14  
DX, CLX, CLXN, ENBX(1–4)  
DY, CLY, CLYN  
DIRX, DIRY  
20  
29  
60  
25  
32  
50  
50  
100  
55  
ns  
ns  
ns  
ns  
ns  
NRG  
CL = 200 pF  
CL = 300 pF  
Propagation Delay Skew  
ENBX(1–4)—t15, t16  
DX to ENBX(1–4)—t16  
DX to CLX—t15, t16, t17, t18  
DY to CLY, CLYN—t15, t16, t17, t18  
TA MIN to TA MAX, CL = 40 pF  
2
2
10  
20  
ns  
ns  
ns  
ns  
Rev. 0 | Page 12 of 24  
 
AD8384  
LEVEL SHIFTING EDGE DETECTOR  
R
S
MONITI  
MONITO  
Figure 11. Level Shifting Edge Detector Block Diagram  
AVCC  
MONITI  
AGND  
t19  
t20  
VOH  
MONITO  
VOL  
Figure 12. Level Shifting Edge Detector Timing  
Table 10. Level Shifting Edge Detector, AVCC = 15.5 V, DVCC = 3.3 V, CL = 10 pF, TA MIN = 25°C, TA MAX = 85°C  
Parameter  
Min  
Typ  
Max  
Unit  
V
V
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
AGND  
AVCC – 2.7  
AGND + 2.75  
AVCC  
VTH LH  
VTH HL  
IIH  
Input Rising Edge Threshold Voltage  
Input Falling Edge Threshold Voltage  
Input Current High State  
Input Current Low State  
Output High Voltage  
AGND + 3  
AVCC – 3  
1.2  
–1.2  
V
V
µA  
µA  
V
2.5  
IIL  
–2.5  
DVCC – 0.45  
VOH  
VOL  
t19  
∆t19  
t20  
∆t20  
tr  
tf  
DVCC – 0.25  
Output Low Voltage  
0.25  
16  
2
12  
2
0.45  
V
Input Rising Edge Propagation Delay Time  
t19 Variation with Temperature  
Input Falling Edge Propagation Delay Time  
t20 Variation with Temperature  
Output Rise Time  
ns  
ns  
ns  
ns  
ns  
ns  
5
6
Output Fall Time  
Rev. 0 | Page 13 of 24  
 
AD8384  
SERIAL INTERFACE  
SVRH  
SVRL  
SDI  
SCL  
SEN  
12-BIT SHIFT REGISTER  
VAO1, VAO2 = SVRL + SDICODE (SVRH–SVRL)/256  
DUAL SDAC  
8
AO2  
AO1  
SD(0:7)  
/
SELECT LOAD  
SD0 SD1 SD2 SD3 SD4 SD5 SD6 SD7 SD8 SD9 SD10 SD11  
CONTROL  
ENABLE  
THERMAL  
SWITCH  
6
/
6
/
6
/
VIDEO  
DACs  
VID(0:5)  
TSTM  
Figure 13. Serial Interface Block Diagram  
SEN  
SCL  
SDI  
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
VAO1,  
VAO2  
SEN  
t20  
t22  
t21  
t25  
t23  
SCL  
SDI  
t24  
D11  
D10  
D1  
D0  
VAO1,  
VAO2  
t26  
Figure 14. Serial DAC Timing  
Table 11. Serial DAC Timing  
Parameter  
SEN to SCL Setup Time, t20  
SCL, High Level Pulse Width, t21  
SCL, Low Level Pulse Width, t22  
SDI Setup Time, t24  
SDI Hold Time, t25  
SCL to SEN Hold Time, t23  
VAO1, VAO2 Settling Time, t26  
Conditions  
Min  
10  
15  
10  
10  
10  
15  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ms  
VFS = 5 V, to 0.5%, CL = 100 pF  
VFS = 5 V, to 0.5%, CL = 33 µF  
1
10  
2
15  
Rev. 0 | Page 14 of 24  
 
AD8384  
FUNCTIONAL DESCRIPTION  
V1, V2 Inputs—Voltage Reference Inputs  
The AD8384 is a system building block designed to directly  
drive the columns of LCD microdisplays of the type  
Two external analog voltage references set the levels of the  
outputs. V1 sets the output voltage at Code 1023 while the INV  
input is LOW; V2 sets the output voltage at Code 1023 while  
INV is held HIGH.  
popularized for use in projection systems. It comprises six  
channels of precision, 10-bit digital-to-analog converters loaded  
from a single, high speed, 10-bit wide input. Precision current  
feedback amplifiers, providing well-damped pulse response and  
fast voltage settling into large capacitive loads, buffer the six  
outputs. Laser trimming at the wafer level ensures low absolute  
output errors and tight channel-to-channel matching. Tight  
part-to-part matching in high resolution systems is guaranteed  
by the use of external voltage references.  
VRH, VRL Inputs—Full-Scale Video Reference Inputs  
Twice the difference between these analog input voltages sets  
the full-scale output voltage VFS = 2 × (VRH – VRL).  
INV Control—Analog Output Inversion  
The analog voltage equivalent of the input code is subtracted  
from (V2 + VFS) while INV is held HIGH and added to  
(V1 –VFS) while INV is held LOW. Video inversion is delayed  
by six to 12 CLK cycles from the INV input.  
Three groups of level shifters convert digital inputs to high  
voltage outputs for direct connection to the control inputs of  
LCD panels.  
Transfer Function and Analog Output Voltage  
An edge detector conditions a high voltage reference timing  
input from the LCD and converts it to digital levels for use in a  
synchronizing timing controller such as the AD8389.  
The DecDriver has two regions of operation where the video  
output voltages are either above reference voltage V2 or below  
reference voltage V1. The transfer function defines the video  
output voltage as a function of the digital input code:  
Start Sequence Control—Input Data Loading  
A valid STSQ control input initiates a new 6-clock loading cycle  
during which six input data-words are loaded sequentially into  
six internal channels. A new loading sequence begins on the  
current active CLK edge only when STSQ was held HIGH at the  
preceding active CLK edge.  
VIDx(n) = V2 + VFS × (1 – [n/1023]), for INV = HIGH  
VIDx(n) = V1 - VFS × (1 – [n/1023]), for INV = LOW  
where: n = input code  
Right/Left Control—Input Data Loading  
VFS = 2 × (VRH VRL)  
To facilitate image mirroring, the direction of the loading  
sequence is set by the R/L control.  
A number of internal limits define the usable range of the video  
output voltages, VIDx. See Figure 15.  
A new loading sequence begins at Channel 0 and proceeds to  
Channel 5 when the R/L control is held LOW. It begins at  
Channel 5 and proceeds to Channel 0 when the R/L control is  
held HIGH.  
AVCC  
1.3V  
V2 + VFS  
INTERNAL LIMITS AND  
INV = HIGH  
USABLE VOLTAGE RANGES  
VOUTN(n)  
Even/Odd Control—Input Data Loading  
9V AVCC 18V  
0 VFS 5.5V  
Data is loaded on the rising CLK edges when this input is  
HIGH, and on the falling CLK edges when this input is LOW.  
V2  
V1  
5.25V V2 ≤ (AVCC – 4)  
XFR Control—Data Transfer to Outputs  
Data transfer to the outputs is initiated by the XFR control. Data  
is transferred to all outputs simultaneously on the rising CLK  
edge only when XFR was HIGH during the preceding rising  
CLK edge.  
0 VFS 5.5V  
VOUTP(n)  
INV = LOW  
5.25V V1  
≤ (AVCC – 4)  
V1 – VFS  
AGND  
1.3V  
0
1023  
INPUT CODE  
Figure 15. Transfer Function and Usable Voltage Ranges  
Rev. 0 | Page 15 of 24  
 
 
AD8384  
Table 12. Bit Definitions  
ACCURACY  
To best correlate transfer function errors to image artifacts, the  
overall accuracy of the DecDriver is defined by two parameters:  
VDE and VCME.  
Bit  
Name  
Bit Functionality  
8-Bit SDAC Data. MSB = SD7.  
SD(0:7)  
SD8  
VDE, the differential error voltage, measures the difference  
between the rms value of the output and the rms value of the  
ideal. The defining expression is  
Not Used.  
Not Used.  
SD9  
SD10  
SD11  
Output operating mode and SDAC selection control.  
Output operating mode and SDAC selection control.  
[VOUTN(n)V 2]–[VOUTP(n)V1]  
n
1023  
VDE(n) =  
– 1–  
×VFS  
2
Table 13. Truth Table  
VCME, the common-mode error voltage, measures ½ the dc  
bias of the output. The defining expression is  
SD  
Action  
VOUTN(n)+VOUTP(n)  
(
V2 +V1  
)
SEN 11 10  
9
8
1
2
VCME(n) =  
2
2
Load VAO2. No change to VAO1. No  
change to Grounded mode.  
0
1
0
0
X
X
TSTM CONTROL—TEST MODE  
Load VAO1. Release outputs from  
Grounded mode. No change to AO2.  
A LOW on this input allows serial interface control of the  
output operating mode. A HIGH on this input forces the video  
X
X
X
X
outputs and VAO1 to normal operating mode.  
Release Video Outputs and VAO1  
from Grounded Output mode. No  
change to VAO1 and VAO2 data.  
0
1
GROUNDED OUTPUT MODE  
In normal operating mode, the voltage of the video outputs and  
VAO1 are determined by the inputs.  
Video Outputs and VAO1 to  
Grounded Output mode. No change  
to VAO1 and VAO2 data.  
1
1
X
X
X
X
In Grounded Output mode, the video outputs and VAO1 are  
forced to AGND.  
X
X
No Change.  
OVERLOAD PROTECTION  
SERIAL DACS  
The overload protection employs current limiters and a thermal  
switch, protecting the video output pins against accidental  
shorts between any video output pin and AVCC or AGND.  
Both serial DACs are loaded via the serial interface. The output  
voltage is determined by the following equation:  
VAO1, VAO2 = SVRL + SD(0:7) × (SVRH – SVRL)/256  
The junction temperature trip point of the thermal switch is  
165°C. Production test guarantees a minimum junction  
temperature trip point of 125°C. Consequently, the operating  
junction temperature should not be allowed to rise above 125°C.  
Output VAO1 is designed to drive very large capacitive loads  
above 0.047 µF. Lower capacitive loads may result in excessive  
overshoot at VAO1.  
LEVEL SHIFTERS  
For systems that operate at high internal ambient temperatures  
and require large capacitive loads to be driven by the AD8384 at  
high frequencies, a minimum airflow of 200 lfm should be  
maintained to ensure junction temperatures below 125°C.  
The characteristics of the level shifters are optimized based on  
their intended use.  
Seven level shifters—DX, CLX, CLXN, and ENBX(1:4)—are  
optimized for “X direction,” and three—DY, CLY, and CLYN—  
are optimized for the “Y direction” control signals. One level  
shifter, NRG, is designed to drive a large capacitive load and  
optimized for an X direction control signal and two, DIRX and  
DIRY are optimized for very low frequency control signals.  
3-WIRE SERIAL INTERFACE  
The serial interface controls two 8-bit serial DACs, the overload  
protection and the video output operating mode via a 12-bit  
wide serial word from a microprocessor. Four of the 12-bits  
select the function and the remaining eight bits are the data for  
the serial DACs.  
One level shifting edge detector, MONITI, MONITO, is  
optimized to condition a synchronizing feedback reference  
signal from the LCD.  
Rev. 0 | Page 16 of 24  
 
AD8384  
APPLICATIONS  
6-CHANNEL LCD  
CHANNEL 0–5  
AD8384  
VID(0:5)  
DB(0:5)  
STSQ, XFR,  
CLK, R/L, INV  
DIRXIN, DIRYIN,  
DYIN, CLYIN,  
NRGIN  
DIRX, DIRY,  
DY, CLY,  
CLYN, NRG  
LCD TIMING  
CONTROLS  
IMAGE  
PROCESSOR  
1/3 AD8389  
DXIN,  
CLXIN,  
ENBXIN (1–4)  
DX,  
CLX, CLXN,  
ENBX (1–4)  
LCD TIMING  
CONTROLS  
DXI, CLXI,  
ENBX(1–4)I  
DXxO, CLXxO,  
ENBX(1–4)xO  
MONITxI  
MONITO  
MONITI  
CLK  
MONITOR  
VCOM  
VAO1  
VAO2  
SDI  
SCL  
SEN  
µP  
VRH, VRL,  
V1, V2,  
SVRH, SVRL  
DC REFERENCE  
VOLTAGES  
Figure 16. Typical Applications Circuit  
Failure to comply with the Absolute Maximum Ratings may  
result in functional failure or damage to the internal ESD  
diodes. Damaged ESD diodes may cause temporary parametric  
failures, which may result in image artifacts. Damaged ESD  
diodes cannot provide full ESD protection, reducing reliability.  
POWER SUPPLY SEQUENCING  
As indicated under the Absolute Maximum Ratings, the voltage  
at any input pin cannot exceed its supply voltage by more than  
0.5 V. To ensure compliance with the Absolute Maximum  
Ratings, the following power-up and power-down sequencing is  
recommended.  
To Ensure Grounded Output Mode at Power-Off  
If references are active sources:  
During power-up, initial application of nonzero voltages to any  
of the input pins must be delayed until the supply voltage ramps  
up to at least the highest maximum operational input voltage.  
1. Program Grounded Output mode  
2. Turn off references  
During power-down, the voltage at any input pin must reach  
zero during a period not exceeding the hold-up time of the  
power supply.  
3. Turn off AVCC  
4. Turn off DVCC  
Power ON  
If references are passive voltage dividers dependent on AVCC:  
1. Program Grounded Output mode  
2. Set AVCC to 5 V  
Sequence the applied voltages starting with the highest and  
proceeding toward the lowest. Apply AVCC and then proceed  
with applying the voltages in a decreasing order, for example  
VRH, V2, and so on. Apply DVCC last.  
Power OFF  
3. Hold for 1 ms  
Remove voltages starting with the lowest and proceed toward  
the highest. Remove DVCC and then proceed with the voltages  
in an increasing order, for example V1, V2, VRH, and so on.  
Remove AVCC last.  
4. Turn off DVCC  
5. Turn off AVCC  
Rev. 0 | Page 17 of 24  
 
AD8384  
VBIAS GENERATION—V1, V2 INPUT PIN  
FUNCTIONALITY  
APPLICATIONS CIRCUIT  
The circuit in Figure 18 ensures VBIAS symmetry to within  
1 mV with a minimum component count. Bypass capacitors are  
not shown for clarity.  
In order to avoid image flicker, a symmetrical ac voltage is  
required and a bias voltage of approximately 1 V minimum  
must be maintained across the pixels of HTPS LCDs. The  
AD8384 provides two methods of maintaining this bias voltage.  
Note from the curve in Figure 20 that the AD8132 (Figure 18)  
typically produces a symmetrical output at 85°C when its  
supply, (V+) – (V–), is at 7.2 V.  
Internal Bias Voltage Generation  
Standard systems that internally generate the bias voltage  
reserve the upper-most code range for the bias voltage, and use  
the remaining code range to encode the video for gamma  
correction. In these systems, a high degree of ac symmetry is  
guaranteed by the AD8384.  
AVCC = 15.5V  
VZ = 5.1V  
AD8384  
3
The V1 and V2 inputs in these systems are tied together and are  
normally connected to VCOM, as shown in Figure 17.  
1
V2 = 8V  
V1 = 6V  
5
–IN  
V+  
V2  
2
8
VCOM  
VCOM = 7V  
R2 = 1kΩ  
AD8132  
V–  
V1  
+IN  
4
6
R1 = 6kΩ  
VFS = 5V  
DVCC = 3.3V  
AD8384  
VBIAS = 1V  
V2  
Figure 18. External VBIAS Generator with the AD8132  
VCOM  
VCOM  
V1  
VBIAS = 1V  
820 1023  
RESERVED  
CODE  
VFS = 5V  
RANGE  
VFS = 4V  
V2  
Figure 17. V1, V2 Connection and Transfer Function  
in a Typical Standard System  
VBIAS = 1V  
VCOM  
VBIAS = 1V 1023  
V1  
External Bias Voltage Generation  
VFS = 4V  
In systems that require improved brightness resolution and  
higher accuracy, the V1 and V2 inputs, connected to external  
voltage references, provide the necessary bias voltage (VBIAS)  
while allowing the full code range to be used for gamma  
correction.  
Figure 19. AD8384 Transfer Function in a Typical High Accuracy System  
8.75  
7.50  
6.25  
5.00  
3.75  
To ensure a symmetrical ac voltage at the outputs of the  
AD8384, VBIAS must remain constant for both states of INV.  
Therefore, V1 and V2 are defined as  
T
= 25°C  
T
= 85°C  
A
A
2.50  
1.25  
V1 = VCOM VBIAS  
V2 = VCOM + VBIAS  
0.00  
–1.25  
–2.50  
–3.75  
–5.00  
–6.25  
–7.50  
–8.75  
5.7  
6.2  
6.7  
7.2  
7.7  
8.2  
8.7  
9.2  
9.7 10.2 10.7  
[V+] – [V–] (V)  
Figure 20. Typical Asymmetry at the Outputs of the AD8132 vs. Its Power  
Supply for the Application Circuit  
Rev. 0 | Page 18 of 24  
 
 
 
 
AD8384  
A thermally effective PCB must incorporate two thermal pads  
and a thermal via structure. The thermal pad on the top surface  
of the PCB provides a solderable contact surface on the top  
surface of the PCB. The thermal pad on the bottom PCB layer  
provides a surface in direct contact with the ambient. The  
thermal via structure provides a thermal path to the inner and  
bottom layers of the PCB to remove heat.  
PCB DESIGN FOR OPTIMIZED THERMAL  
PERFORMANCE  
The AD8384s total maximum power dissipation is partly load  
dependent. In a 6-channel 60Hz XGA system running at a  
65 MHz clock rate, the total maximum power dissipation is  
1.6 W at a 150 pF LCD input capacitance.  
At a clock rate of 100 MHz, the total maximum power  
dissipation can exceed 2 W, as shown in Table 14, for a black-to-  
white video output voltage swing of 4 V and 5 V.  
THERMAL PAD DESIGN  
To minimize thermal performance degradation of production  
PCBs, the contact area between the thermal pad and the PCB  
should be maximized. Therefore, the size of the thermal pad on  
the top PCB layer should match the exposed paddle. The second  
thermal pad of the same size should be placed on the bottom  
side of the PCB. At least one thermal pad should be in direct  
thermal contact with an external plane such as AVCC or GND.  
Table 14. Power Dissipation  
VSWING = 5 V  
VSWING = 4 V  
PDYNAMIC PTOTAL  
CLOAD  
(pF)  
PQUIESCENT  
(W)  
PDYNAMIC PTOTAL  
(W)  
(W)  
(W)  
(W)  
150  
200  
250  
300  
1.12  
1.12  
1.12  
1.12  
0.82  
1.01  
1.21  
1.41  
1.94  
2.13  
2.33  
2.53  
0.71  
0.86  
1.01  
1.17  
1.83  
1.98  
2.13  
2.29  
THERMAL VIA STRUCTURE DESIGN  
Effective heat transfer from the top to the inner and bottom  
layers of the PCB requires thermal vias incorporated into the  
thermal pad design. Thermal performance increases  
logarithmically with the number of vias.  
Although the maximum safe operating junction temperature is  
higher, the AD8384 is 100% tested at a junction temperature of  
125°C. Consequently, the maximum guaranteed operating  
junction temperature is 125°C. To limit the maximum junction  
temperature at or below the guaranteed maximum, the package,  
in conjunction with the PCB, must effectively conduct heat  
away from the junction.  
Near optimum thermal performance of production PCBs is  
attained only when tightly spaced thermal vias are placed on the  
full extent of the thermal pad.  
The AD8384 package is designed to provide enhanced thermal  
characteristics through the exposed die paddle on the bottom  
surface of the package. In order to take full advantage of this  
feature, the exposed paddle must be in direct thermal contact  
with the PCB, which then serves as a heat sink.  
Rev. 0 | Page 19 of 24  
 
 
AD8384  
AD8384 PCB DESIGN RECOMMENDATIONS  
14 mm  
6 mm  
Top PCB Layer  
Land Pattern Dimensions  
Pad Size: 0.6 mm × 0.25 mm  
Pad Pitch: 0.5 mm  
Thermal Pad Size: 6 mm × 6 mm  
Thermal via structure: 0.25 mm to 0.35 mm diameter via holes on  
a 0.5 mm to 1.0 mm grid.  
LAND PATTERN – TOP LAYER  
Figure 21. Land Pattern—Top Layer  
6 mm  
Bottom PCB Layer  
Thermal Pad and Thermal Via Connections  
The thermal pad on the solder side is connected to a plane. Use of  
thermal spokes is not recommended when connecting the thermal  
pads or via structure to the plane.  
LAND PATTERN – BOTTOM LAYER  
Figure 22. Land Pattern—Bottom Layer  
Solder Masking  
Solder masking of the via holes on the top layer of the PCB plugs  
the via holes, inhibiting solder flow into the holes. To minimize the  
formation of solder voids due to solder flowing into the via holes  
(solder wicking), the via diameter should be made small and an  
optional solder mask may be used. To optimize thermal pad  
coverage, the solder masks diameter should be no more than  
0.1 mm larger than the via hole diameter.  
Solder Mask—Top Layer  
Pads: Set by the customers PCB design rules.  
Thermal Via Holes: Circular mask, centered on the via holes.  
Diameter of the mask should be 0.1 mm larger than the via hole  
diameter.  
SOLDER MASK – TOP LAYER  
Figure 23. Solder Mask—Top Layer  
Solder Mask—Bottom Layer  
Set by customers PCB design rules.  
Rev. 0 | Page 20 of 24  
 
AD8384  
OUTLINE DIMENSIONS  
14.00 SQ  
12.00 SQ  
1.20  
MAX  
0.75  
0.60  
0.45  
80  
80  
61  
61  
60  
60  
1
1
SEATING  
PLANE  
PIN 1  
TOP VIEW  
(PINS DOWN)  
BOTTOM  
VIEW  
6.00  
SQ  
20  
41  
20  
41  
21  
40  
40  
21  
0.15  
0.05  
1.05  
1.00  
0.95  
7°  
3.5°  
0°  
0.20  
0.09  
0.50 BSC  
0.27  
0.22  
0.17  
GAGE PLANE  
0.25  
COPLANARITY  
0.08  
COMPLIANT TO JEDEC STANDARDS MS-026-ADD-HD  
Figure 24. 80-Lead, Thermally Enhanced Thin Quad Flatpack Package [TQFP]  
(SV-80)  
Dimensions shown in millimeters  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
this product features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
ORDERING GUIDE  
Model  
AD8384ASVZ11  
Temperature Range  
Package Description  
Package Option  
0°C to 85°C  
80-Lead Thin Quad Flat Pack  
SV-80  
11 Z = Pb-free part.  
Rev. 0 | Page 21 of 24  
 
 
AD8384  
NOTES  
Rev. 0 | Page 22 of 24  
AD8384  
NOTES  
Rev. 0 | Page 23 of 24  
AD8384  
NOTES  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04512–0–1/04(0)  
Rev. 0 | Page 24 of 24  

相关型号:

AD8385

10-Bit, 12-Channel Decimating LCD DECDRIVER with Level Shifters
ADI

AD8385ASVZ

10-Bit, 12-Channel Decimating LCD DECDRIVER with Level Shifters
ADI

AD8386

10-Bit, 12-Channel Output Decimating LCD Driver
ADI

AD8386JCPZ

10-Bit, 12-Channel Output Decimating LCD Driver
ADI

AD8387

High Performance, 12-Bit, 12-Channel Decimating, LCD DecDriver
ADI

AD8387-EB

High Performance, 12-Bit, 12-Channel Decimating, LCD DecDriver
ADI

AD8387JSVZ

High Performance, 12-Bit, 12-Channel Decimating, LCD DecDriver
ADI

AD8389

Triple, 6-Channel LCD Timing Delay-Locked Loop
ADI

AD8389ACPZ

Triple, 6-Channel LCD Timing Delay-Locked Loop
ADI

AD8389ACPZ

SPECIALTY CONSUMER CIRCUIT, QCC48, LEAD FREE, MO-220-VKKD-2, LFCSP-48
ROCHESTER

AD8390

Low Power, High Output Current Differential Amplifier
ADI

AD8390A

Low Power, High Output Current Differential Amplifier
ADI