AD8382ACPZ [ADI]

暂无描述;
AD8382ACPZ
型号: AD8382ACPZ
厂家: ADI    ADI
描述:

暂无描述

CD
文件: 总24页 (文件大小:868K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Performance 12-Bit, 6-Channel Output,  
Decimating LCD DecDriver®  
AD8382  
PRODUCT FEATURES  
High accuracy, high resolution voltage outputs  
12-bit input resolution  
FUNCTIONAL BLOCK DIAGRAM  
Laser trimmed outputs  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
2-STAGE  
LATCH  
Fast settling, high voltage drive  
33 ns settling time to 0.25% into 200 pF load  
Slew rate 390 V/µs  
Outputs to within 1.3 V of supply  
High update rates  
Fast, 120 Ms/s data update rate  
Voltage controlled video reference (brightness) and  
full-scale (contrast) output levels  
Flexible logic  
STSQ/XFR allow parallel AD8382 operation  
INV bit reverses polarity of video signal  
Output overload protection  
DAC  
DAC  
DAC  
DAC  
DAC  
DAC  
DB(0:11)  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
2-STAGE  
LATCH  
AD8382  
2-STAGE  
LATCH  
STBY  
BYP  
BIAS  
2-STAGE  
LATCH  
2-STAGE  
LATCH  
R/L  
E/O  
2-STAGE  
LATCH  
CLK  
STSQ  
XFR  
SEQUENCE  
CONTROL  
Low static power dissipation: 743 mW  
Includes STBY function  
3.3 V logic, 9 V to 18 V analog supplies  
Available in 48-lead 7 mm × 7 mm LFCSP  
SCALING  
CONTROL  
VREFHI  
VREFLO  
INV  
V1 V2  
Figure 1. Functional Block Diagram  
APPLICATIONS  
LCD analog column driver  
PRODUCT DESCRIPTION  
The AD8382 DecDriver provides a fast, 12-bit latched decimat-  
ing digital input that drives six high voltage outputs.12-bit input  
words are sequentially loaded into six separate, high speed,  
bipolar DACs. A flexible digital input format allows several  
AD8382s to be used in parallel for higher resolution displays.  
STSQ synchronizes sequential input loading, XFR controls  
synchronous output updating, and R/L controls the direction of  
loading as either left-to-right or right-to-left. Six channels of  
high voltage output drivers drive to within 1.3 V of the rail. The  
output signal can be adjusted for dc reference, signal inversion,  
and contrast for maximum flexibility.  
The AD8382 is fabricated on Analog Devices’ XFHV, fast  
bipolar 26 V process, providing fast input logic bipolar DACs  
with trimmed accuracy and fast settling, high voltage, precision  
drive amplifiers on the same chip. The AD8382 dissipates  
743 mW nominal static power. The STBY pin reduces power to  
a minimum, with fast recovery.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD8382  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Applications..................................................................................... 15  
VBIAS Generation—V1, V2 Input Pin Functionality ........... 17  
Power Supply Sequencing ......................................................... 18  
PCB Design for Optimized Thermal Performance ............... 18  
Layout Considerations............................................................... 20  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 21  
Absolute Maximum Ratings............................................................ 5  
Timing Characteristics..................................................................... 6  
Pin Configuration and Functional Descriptions.......................... 7  
Typical Performance Characteristics ............................................. 8  
Functional Description.................................................................. 13  
Transfer Function....................................................................... 13  
Accuracy ...................................................................................... 14  
REVISION HISTORY  
Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
AD8382  
SPECIFICATIONS  
Table 1. @ 25°C, AVCC = 15.5 V, DVCC = 3.3 V, TMIN = 0°C, TMAX = 85°C, VREFHI = 9.5 V, VREFLO = V1 = V2 = 7 V, unless  
otherwise noted.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIDEO DC PERFORMANCE1  
TMIN to TMAX  
VDE  
DAC Code 1500 to 3200  
DAC Code 1500 to 3200  
DAC Code 2048  
–5  
+5  
+3.5  
7.5  
mV  
mV  
mV  
mV  
VCME  
–3.5  
+0.5  
2.5  
4
V  
DAC Code 0 to 4095  
15  
V  
VIDEO OUTPUT DYNAMIC PERFORMANCE  
TC, MIN to TC, MAX,  
VO = 5 V Step, CL = 200 pF  
20% to 80%  
Data Switching Slew Rate  
Invert Switching Slew Rate  
Data Switching Settling Time to 1%  
Data Switching Settling Time to 0.25%  
Invert Switching Settling Time to 1%  
Invert Switching Settling Time to 0.25%  
Invert Switch Overshoot  
390  
530  
22  
V/µs  
V/µs  
ns  
20% to 80%  
27  
50  
33  
ns  
34  
100  
300  
200  
ns  
130  
100  
10  
ns  
mV  
CLK and Data Feedthrough2  
All-Hostile Crosstalk3  
mV p-p  
Amplitude  
40  
30  
mV p-p  
ns  
Duration  
DAC Transition Glitch Energy  
VIDEO OUTPUT CHARACTERISTICS  
Output Voltage Swing  
Code 2047 to Code 2048  
0.3  
nV-s  
AVCC – VOH, VOL– AGND  
50% of VIDx  
1.1  
12  
1.3  
14  
V
ns  
ns  
mA  
4
CLK to VID Delay: t9  
10  
INV to VID Delay: t10  
Output Current  
Output Resistance  
RESOLUTION  
50% of VIDx  
10.4  
12.4  
100  
22  
14.4  
Coding  
Binary  
12  
Bits  
DIGITAL INPUT CHARACTERISTICS  
Max. Input Data Update Rate  
Data Setup Time: t1  
STSQ Setup Time: t3  
XFR Setup Time: t5  
Data Hold Time: t2  
STSQ Hold Time: t4  
XFR Hold Time: t6  
CLK High Time: t7  
CLK Low Time: t8  
CIN  
Input tr, tf = 2 ns (10% to 90%)  
120  
0
Ms/s  
ns  
1
ns  
1
ns  
3
ns  
3
ns  
3
ns  
3
ns  
2.5  
ns  
3
pF  
IIH  
0.05  
0.6  
µA  
µA  
µA  
V
IIL—All Inputs except CLK  
IIL—CLK  
1.2  
VIH  
2
VIL  
0.8  
V
VTH  
1.6  
V
Rev. 0 | Page 3 of 24  
 
 
AD8382  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
REFERENCE INPUTS1  
V1 Range  
5
5
AVCC – 4  
AVCC – 4  
V
V
V2 (V1 – 0.25 V)  
V2 (V1 – 0.25 V)  
V2 Range  
V1 Input Current  
0.2  
µA  
µA  
V
V2 Input Current  
–7.5  
VREFLO Range  
V1 – 0.5  
VREFLO  
0
AVCC – 1.3  
AVCC  
VREFHI (VREFLO + 2.75 V)  
VREFHI (VREFLO + 2.75 V)  
VREFHI Range  
V
(VREFHI – VREFLO) Range  
VREFHI Input Resistance  
VREFLO Bias Current  
VREFHI Input Current  
VFS Range  
2.75  
V
20  
kΩ  
µA  
µA  
V
–0.2  
125  
5.5  
VFS = 2 × (VREFHI – VREFLO)  
POWER SUPPLY  
DVCC, Operating Range  
DVCC, Quiescent Current  
AVCC, Operating Range  
Total AVCC Quiescent Current  
STBY AVCC Current  
3
9
3.3  
23  
3.6  
31  
V
mA  
V
18  
43  
0.15  
3.5  
52  
mA  
mA  
mA  
STBY = HIGH  
STBY = HIGH  
0.45  
5
STBY DVCC Current  
OPERATING TEMPERATURE RANGE  
Ambient Temperature Range, TA  
Ambient Temperature Range, TA  
Junction Temperature Range, TJ  
Still Air  
0
0
75  
85  
°C  
°C  
°C  
5
100% Tested  
25  
125  
1 VDE = differential error voltage. VCME = common-mode error voltage. V = maximum deviation between outputs.  
Full-scale output voltage = VFS = 2 × (VREFHI – VREFLO). See the Accuracy section on page 14.  
2 Measured on two outputs differentially as CLK and DB(0:11) are driven and STSQ and XFR are held LOW.  
3 Measured on two outputs differentially as the other four are transitioning by 5 V. Measured for both states of INV.  
4 Measured from 50% of falling CLK edge to 50% of output change. Measurement is made for both states of INV.  
5 Operation at 85°C ambient temperature requires a thermally optimized PCB layout (see Applications section), minimum airflow of 200 lfm, input clock rate not  
exceeding 120 MHz, black-to-white transition ≤ 4 V, and CL ≤ 200 pF.  
Rev. 0 | Page 4 of 24  
 
AD8382  
ABSOLUTE MAXIMUM RATINGS  
Table 2. Absolute Maximum Ratings1  
MAXIMUM POWER DISSIPATION  
Parameter  
Rating  
The maximum power that the AD8382 can safely dissipate is  
limited by its junction temperature. The maximum safe junction  
temperature for plastic encapsulated devices, as determined by  
the plastic’s glass transition temperature, is approximately  
150°C. Temporarily exceeding this limit may cause a shift in  
parametric performance due to a change in stresses exerted on  
the die by the package. Exceeding a junction temperature of  
175°C for extended periods can result in device failure.  
Supply Voltages  
AVCCx to AGNDx  
18 V  
DVCC to DGND  
4.5 V  
Input Voltages  
Maximum Digital Input Voltage  
Minimum Digital Input Voltage  
Maximum Analog Input Voltage  
Minimum Analog Input Voltage  
Internal Power Dissipation2  
LFCSP Package @ 25°C Ambient  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature Range (Soldering 10 sec)  
DVCC + 0.5 V  
DGND – 0.5 V  
AVCC + 0.5 V  
AGND – 0.5 V  
OPERATING TEMPERATURE RANGE  
3.84 W  
0°C to 85°C  
–65°C to +125°C  
300°C  
Although the maximum safe operating junction temperature is  
higher, the AD8382 is 100% tested at a junction temperature of  
125°C. Consequently, the maximum guaranteed operating  
junction temperature is 125°C. To ensure operation within the  
specified operating temperature range, it is necessary to limit  
the maximum power dissipation to:  
1Stresses above those listed under the Absolute Maximum Ratings may cause  
permanent damage to the device. This is a stress rating only; functional  
operation of the device at these or any other conditions above those  
indicated in the operational section of this specification is not implied.  
Exposure to absolute maximum ratings for extended periods may reduce  
device reliability.  
(TJMAXTA)  
PDMAX  
3
2 48-lead LFCSP Package:  
JA–0.9× Airflow in lfm)  
θJA = 26°C/W (JEDEC STD, 4-layer PCB in still air)  
where TJMAX = 125°C  
θJC = 20°C/W.  
ΨJB = 11°C/W in Still Air  
AD8382 ON A 4–LAYER JEDEC PCB WITH THERMALLY OPTIMIZED  
LANDING PATTERN AS DESCRIBED IN THE APPLICATION NOTES  
2.00  
OVERLOAD PROTECTION  
200 lfm  
The AD8382 employs a two-stage overload protection circuit  
that consists of an output current limiter and a thermal  
shutdown. The maximum current at any output of the AD8382  
is internally limited to 100 mA average. In the event of a  
momentary short circuit between a video output and a power  
supply rail (VCC or AGND), the output current limit is  
sufficiently low to provide temporary protection.  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
120MHz  
500 lfm  
STILL AIR  
60Hz XGA  
Quiescent  
The thermal shutdown “debiases” the output amplifier when the  
junction temperature reaches the internally set trip point. In the  
event of an extended short circuit between a video output and  
power supply rail, the output amplifier current continues to  
switch between 0 mA and 100 mA typ. with a period set by the  
thermal time constant and hysteresis of the thermal trip point.  
The thermal shutdown provides long-term protection by  
limiting average junction temperature to a safe level.  
65  
70  
75  
80  
85  
90  
95  
100 105 110 115  
MAXIMUM AMBIENT TEMPERATURE (°C)  
Figure 2. Maximum Power Dissipation vs. Temperature.  
Note: Quiescent power dissipation is 0.74 W when operating  
under the conditions specified in this data sheet.  
When driving a 6-channel XGA panel with an input capacitance  
of 200 pF, the AD8382 dissipates a total of 1.14 W when  
displaying 1 pixel wide alternating white and black vertical lines  
generated by a standard 60 Hz XGA input video.  
EXPOSED PADDLE  
To ensure a high degree of reliability, the exposed paddle must  
be electrically connected to AVCC.  
To ensure optimized thermal performance, the exposed paddle  
must be thermally connected to the AVCC plane as described in  
the Applications section.  
The total power dissipation of the AD8382 is 1.67 W when  
operating at the maximum specified frequency of 120 MHz,  
under the conditions specified in this data sheet (Figure 2).  
Rev. 0 | Page 5 of 24  
 
 
AD8382  
TIMING CHARACTERISTICS  
Table 3. Timing Parameters and Conditions  
Parameter  
Conditions  
Min  
0
Typ  
Max  
Unit  
t1, Data Setup Time  
t2, Data Hold Time  
t3, STSQ Setup Time  
t4, STSQ Hold Time  
t5, XFR Setup Time  
t6, XFR Hold Time  
t7, CLK High Time  
t8, CLK Low Time  
t9, CLK to VIDx Delay  
t10, INV to VIDx Delay  
tr, tf = 2 ns (10% to 90%)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
1
3
1
3
3
2.5  
10  
10.4  
To 50% of VIDx  
To 50% of VIDx  
12  
14  
12.4  
14.4  
tf  
tr  
t8  
V
CLK  
XFR  
TH  
V
TH  
CLK  
t7  
t1  
t2  
V
TH  
V
TH  
DB(0:11)  
V
INV  
TH  
V
V
TH  
STSQ  
XFR  
t3  
t4  
50%  
VID(0:5)  
TH  
t9  
t5  
t6  
t10  
Figure 5. Output Timing  
Figure 3. Timing Requirement E/O = HIGH  
t8  
t7  
V
CLK  
TH  
t1  
t2  
V
DB(0:11)  
TH  
V
STSQ  
XFR  
TH  
t3  
t4  
V
TH  
t5  
t6  
Figure 4. Timing Requirement E/O = LOW  
Rev. 0 | Page 6 of 24  
 
AD8382  
PIN CONFIGURATION AND FUNCTIONAL DESCRIPTIONS  
DB0  
DB1  
DB2  
DB3  
DB4  
DB5  
DB6  
DB7  
DB8  
1
2
3
4
5
6
7
8
9
36 VID0  
35 AVCC0,1  
34 VID1  
33 AGND1,2  
32 VID2  
31 AVCC2,3  
30 VID3  
PIN 1  
INDICATOR  
AD8382  
TOP VIEW  
(Not to Scale)  
29 AGND3,4  
28 VID4  
DB9 10  
DB10 11  
DB11 12  
27 AVCC4,5  
26 VID5  
25 AGND5  
NC = NO CONNECT  
Figure 6. 48-Lead LFCSP, 7 mm × 7 mm Package  
Table 4. Pin Function Descriptions  
Mnemonic  
DB(0:11)  
CLK  
Function  
Data Input  
Clock  
Description  
12-Bit Data Input. MSB = DB(11).  
Clock Input.  
STSQ  
Start Sequence  
A new data loading sequence begins on the rising edge of CLK when this input was HIGH on  
the preceding rising edge of CLK and the E/O input is held HIGH. A new data loading sequence  
begins on the falling edge of CLK when this input was HIGH on the preceding falling edge of  
CLK and the E/O input is held LOW.  
R/L  
Right/Left Select  
Even/Odd Select  
A new data loading sequence begins on the left, with Channel 0, when this input is LOW, and  
on the right, with Channel 5, when this input is HIGH.  
E/O  
The active CLK edge is the rising edge when this input is held HIGH and the falling edge when  
this input is held LOW. Data is loaded sequentially on the rising edges of CLK when this input is  
HIGH and on the falling edges when this input is LOW.  
XFR  
Data Transfer  
Data is transferred to the outputs on the immediately following falling edge of CLK when this  
input is HIGH on the rising edge of CLK.  
VID0–VID5  
V1,V2  
Analog Outputs  
These pins are directly connected to the analog inputs of the LCD panel.  
Reference Voltages  
The voltages applied between these pins and AGND set the reference levels of the analog  
outputs.  
VREFHI,  
VREFLO  
Full-Scale References  
Invert  
The voltage applied between these pins sets the full-scale output voltage.  
INV  
When this pin is HIGH, the analog output voltages are at or above V2. When this pin is LOW,  
the analog output voltages are at or below V1.  
DVCC  
DGND  
AVCCx  
AGNDx  
BYP  
Digital Power Supply  
Digital Supply Return  
Analog Power Supplies  
Analog Supply Returns  
Bypass  
Digital Power Supply.  
This pin is normally connected to the analog ground plane.  
Analog Power Supplies.  
Analog Supply Returns.  
A 0.1 µF capacitor connected between this pin and AGND ensures optimum settling time.  
When HIGH, the internal circuits are debiased and the power dissipation drops to a minimum.  
STBY  
Standby  
Rev. 0 | Page 7 of 24  
 
AD8382  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.00  
0.75  
0.50  
0.25  
1.50  
1.25  
1.00  
0.75  
0.00  
–0.25  
–0.50  
–0.75  
–1.00  
–1.25  
–1.50  
0.50  
7V  
0.25  
0.00  
2V  
–0.25  
–0.50  
–0.75  
–1.00  
–20  
0
20  
40  
60  
80  
100 120 140 160 180  
–20  
0
20  
40  
60  
80  
100 120 140 160 180  
TIME (ns)  
TIME (ns)  
Figure 7. Output Settling Time (Rising Edge),  
CL = 200 pF, 5 V Step, INV = LOW  
Figure 10. Output Settling Time (Falling Edge),  
CL = 200 pF, 5 V Step, INV = LOW  
1.00  
0.75  
1.50  
1.25  
0.50  
1.00  
0.25  
0.75  
0.00  
0.50  
12V  
–0.25  
–0.50  
–0.75  
–1.00  
–1.25  
–1.50  
0.25  
0.00  
7V  
–0.25  
–0.50  
–0.75  
–1.00  
–20  
0
20  
40  
60  
80  
100 120 140 160 180  
–20  
0
20  
40  
60  
80  
100 120 140 160 180  
TIME (ns)  
TIME (ns)  
Figure 8. Output Settling Time (Rising Edge),  
CL = 200 pF, 5 V Step, INV = HIGH  
Figure 11. Output Settling Time (Falling Edge),  
CL = 200 pF, 5 V Step, INV = HIGH  
0pF, 12V  
47pF, 12V  
100pF, 12V  
150pF, 12V  
0pF, 7V  
47pF, 7V  
100pF, 7V  
150pF, 7V  
200pF, 12V  
250pF, 12V  
300pF, 12V  
200pF, 7V  
250pF, 7V  
300pF, 7V  
–15  
0
15  
30  
45  
60  
75  
90  
105 120 135  
–15  
0
15  
30  
45  
60  
75  
90  
105 120 135  
TIME (ns)  
TIME (ns)  
Figure 9. Output Settling Time (Rising Edge) vs. CL,  
5 V Step, INV = HIGH  
Figure 12. Output Settling Time (Falling Edge) vs. CL,  
5 V Step, INV = HIGH  
Rev. 0 | Page 8 of 24  
 
AD8382  
12  
12  
2
2
20ns/DIV  
20ns/DIV  
TIME (ns)  
TIME (ns)  
Figure 13. Invert Switching Step Response (Rising Edge),  
10 V Step, CL = 200 pF  
Figure 16. Invert Switching Step Response (Falling Edge),  
10 V Step, CL = 200 pF  
7
2
7
2
20ns/DIV  
20ns/DIV  
TIME (ns)  
TIME (ns)  
Figure 14. Data Switching Step Response (Rising Edge),  
5 V Step, CL=200 pF, INV = LOW  
Figure 17. Data Switching Step Response (Falling Edge),  
5 V Step, CL = 200 pF, INV = LOW  
12  
12  
7
7
20ns/DIV  
20ns/DIV  
TIME (ns)  
TIME (ns)  
Figure 15. Data Switching Step Response (Rising Edge),  
5 V Step, CL = 200 pF, INV = HIGH  
Figure 18. Data Switching Step Response (Falling Edge),  
5 V Step, CL = 200 pF, INV = HIGH  
Rev. 0 | Page 9 of 24  
AD8382  
2.0  
2.0  
1.5  
1.5  
1.0  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.0  
0
512  
1024 1536  
2048  
2564 3072  
3584  
4096  
0
512  
1024 1536  
2048  
2564 3072  
3584  
4096  
INPUT CODE  
INPUT CODE  
Figure 19. Differential Nonlinearity (DNL) vs. Code, INV = LOW  
Figure 22. Differential Nonlinearity (DNL) vs. Code, INV = HIGH  
2.0  
2.0  
1.5  
1.0  
1.5  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
0
512  
1024 1536  
2048  
2564 3072  
3584  
4096  
0
512  
1024 1536  
2048  
2564 3072  
3584  
4096  
INPUT CODE  
INPUT CODE  
Figure 20. Integral Nonlinearity (INL) vs. Code, INV = LOW  
Figure 23. Integral Nonlinearity (INL) vs. Code, INV = HIGH  
3.500  
2.625  
1.750  
0.875  
0
5.00  
3.75  
2.50  
1.25  
0
–0.875  
–1.750  
–2.625  
–3.500  
–1.25  
–2.50  
–3.75  
–5.00  
0
512  
1024 1536  
2048  
2564 3072  
3584  
4096  
0
512  
1024 1536  
2048  
2564 3072  
3584  
4096  
INPUT CODE  
INPUT CODE  
Figure 21. Common-Mode Error Voltage (VCME) vs. Code  
Figure 24. Differential Error Voltage (VDE) vs. Code  
Rev. 0 | Page 10 of 24  
AD8382  
4
3
4
3
2
2
1
1
VDE  
VDE  
0
0
VCME  
VCME  
–1  
–2  
–3  
–4  
–1  
–2  
–3  
–4  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
5.0  
6.0  
7.0  
8.0  
V1 = V2 (V)  
9.0  
10.0  
11.0  
V2 – V1 (V)  
Figure 28. Normalized VDE, VCME vs. V1 = V2 at Code 2048  
Figure 25. Normalized VDE, VCME vs. (V2 – V1) at Code 2048  
10  
5
4
3
V1 = V2 = 5V, VFS = 3V  
2
1
VCME  
0
–1  
0
VDE  
–2  
–3  
–4  
–5  
–10  
5
6
7
8
9
10  
11  
12  
13  
14  
4
5
6
7
8
9
10  
11  
12  
VREFLO (V)  
V1 (V) @ V2 = 7V  
V2 (V) @ V1 = 7V  
Figure 26. Normalized VDE vs. V1 and V2 at Code 2048  
Figure 29. Normalized VDE, VCME vs. VREFLO at Code 2048  
5.00  
3.75  
2.50  
1.25  
0
3.500  
2.625  
1.750  
0.875  
0
CODE 2048  
CODE 2048  
–0.875  
–1.750  
–2.625  
–3.500  
–1.25  
–2.50  
–3.75  
–5.00  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 27. Common-Mode Error Voltage (VCME) vs. Temperature  
Figure 30. Differential Error Voltage (VDE) vs. Temperature  
Rev. 0 | Page 11 of 24  
AD8382  
7.05  
7.05  
7.04  
7.03  
7.02  
7.01  
7.00  
6.09  
6.08  
6.07  
6.06  
6.05  
20ns/DIV  
V1 = V2 = 7V  
V1 = V2 = 7V  
7.04  
7.03  
7.02  
7.01  
7.00  
6.09  
6.08  
6.07  
6.06  
6.05  
(VID4 – VID5)  
(VID4 – VID5)  
VID0, 1, 2, 3  
5V  
3.3V  
DB (0:11)  
20ns/DIV  
TIME (ns)  
TIME (ns)  
Figure 31. All-Hostile Crosstalk at CL = 200 pF  
Figure 34. Data Switching Transient (Feedthrough) at CL = 200 pF  
800  
700  
600  
500  
400  
300  
200  
900  
800  
700  
600  
500  
10% TO 90%  
10% TO 90%  
400  
20% TO 80%  
20% TO 80%  
300  
200  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
Figure 35. Slew Rate vs. CL (Rising Edge)  
Figure 32. Slew Rate vs. CL (Falling Edge)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
INV = LOW  
INV = HIGH  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 33. AVCC Power Supply Rejection vs. Frequency  
Rev. 0 | Page 12 of 24  
AD8382  
FUNCTIONAL DESCRIPTION  
The AD8382 is a system building block designed to directly  
drive the columns of LCD microdisplays of the type  
V1, V2 INPUTS—VOLTAGE REFERENCE INPUTS  
popularized for use in projection systems. It comprises six  
channels of precision, 12-bit digital-to-analog converters loaded  
from a single, high speed, 12-bit wide input. Precision current  
feedback amplifiers, providing well-damped pulse response and  
fast voltage settling into large capacitive loads, buffer the six  
outputs. Laser trimming at the wafer level ensures low absolute  
output errors and tight channel-to-channel matching. Tight  
part-to-part matching in high resolution systems is guaranteed  
by the use of external voltage references.  
Two external analog voltage references set the levels of the  
outputs. V1 sets the output voltage at Code 4095 while the INV  
input is LOW, and V2 sets the output voltage at Code 4095 while  
the INV input is held HIGH.  
VREFHI, VREFLO INPUTS—FULL-SCALE  
REFERENCE INPUTS  
Twice the difference between these analog input voltages sets  
the full-scale output voltage VFS.  
START SEQUENCE CONTROL—INPUT DATA  
LOADING  
VFS = 2 × (VREFHI VREFLO)  
A valid STSQ control input initiates a new 6-clock loading  
cycle, during which six input data-words are loaded sequentially  
into six internal channels. A new loading sequence begins on  
the current active CLK edge only when STSQ was held HIGH at  
the preceding active CLK edge. Active CLK edge is defined by  
the E/O Control.  
INV CONTROL—ANALOG OUTPUT INVERSION  
The analog voltage equivalent of the input code is subtracted  
from (V2 + VFS) while INV is held HIGH and added to (V1 –  
VFS) while INV is held LOW.  
Transfer Function  
The AD8382 has two regions of operation, where the video  
output voltages are either above reference voltage V2 or below  
reference voltage V1. The transfer function defines the video  
output voltage as the function of the digital input code as  
follows:  
EVEN/ODD CONTROL—INPUT DATA LOADING  
To facilitate 12-channel, single data bus systems, the active CLK  
edge, at which input data is loaded, is selected with the E/O  
control input. Input data is loaded on the rising CLK edges  
while the E/O input is held HIGH; input data is loaded on the  
falling CLK edges while the E/O input is held LOW.  
VIDx(n) = V2 + VFS × (1 – n/4095), for INV = HIGH  
VIDx(n) = V1 – VFS × (1 – n/4095), for INV = LOW  
RIGHT/LEFT CONTROL—INPUT DATA LOADING  
where n = input code  
To facilitate image mirroring, the direction of the loading  
sequence is set by the R/L control. A new loading sequence  
begins at channel 0 and proceeds to Channel 5 when the R/L  
control is held LOW. It begins at Channel 5 and proceeds to  
channel 0 when the R/L control is held HIGH.  
VFS = 2 × (VREFHI VREFLO)  
A number of internal limits define the usable range of the video  
output voltages, VIDx, as shown in Figure 36  
AVCC  
1.3V  
V2 + VFS  
XFR CONTROL—DATA TRANSFER TO OUTPUTS  
INTERNAL LIMITS AND  
INV = HIGH  
USABLE VOLTAGE RANGES  
Data transfer to the outputs is initiated by the XFR control.  
While XFR is held HIGH during a rising CLK edge, data is  
simultaneously transferred to all outputs on the immediately  
following falling CLK edge.  
9V AVCC 18V  
0 VFS 5.5V  
V2  
V1  
5V V2 ≤ (AVCC – 4)  
STBY CONTROL—STANDBY MODE  
0 VFS 5.5V  
5V V1 ≤ (AVCC – 4)  
A HIGH applied to the STBY input debiases the internal  
circuitry, dropping the quiescent power dissipation to a few  
milliwatts. Upon returning STBY to LOW, normal operation is  
restored. Since both analog and digital circuitry is debiased, all  
stored data will be lost in standby mode.  
INV = LOW  
V1 – VFS  
AGND  
1.3V  
0
4095  
INPUT CODE  
Figure 36. Transfer Function and Usable Voltage Ranges  
Rev. 0 | Page 13 of 24  
 
 
AD8382  
Accuracy  
AVCC  
To best correlate transfer function errors to image artifacts, the  
overall accuracy of the AD8382 is defined by three parameters:  
VDE, VCME, and V.  
(V2 + VFS)  
VDE, the differential error voltage, measures the difference  
between the rms value of the output and the rms value of the  
ideal. The defining expression is:  
V2  
V1  
VOUTN(n)  
[VOUTN(n)V2][VOUTP(n) V1]  
n
4095  
VDE(n) =  
1−  
×VFS  
2
VOUTP(n)  
(V1 – VFS)  
AGND  
VCME, the common-mode error voltage, measures one-half the  
dc bias of the output. The defining expression is:  
0
n
4095  
INPUT CODE  
VOUTN(n) +VOUTP(n) (V2 +V1)  
Figure 37. AD8382 Transfer Function  
1
2
VCME(n) =  
2
2
V measures the maximum deviation between the output  
voltages. The defining expression is:  
V (n) = max{VN(n), VP(n)}  
where VN(n) = max{VOUTN(n)(0–5)} – min{VOUTN(n)(0–5)  
}
and VP(n) = max{VOUTP(n)(0–5) } – min{VOUTP(n)(0–5)  
}
Rev. 0 | Page 14 of 24  
 
AD8382  
APPLICATIONS  
PIXEL  
CLK  
OPERATING MODES—6-CHANNEL SYSTEMS  
Depending on the speed of the LCD microdisplay, 6-channel  
systems are compatible with up to XGA resolutions and require  
one AD8382 per color. The input/output timing diagram of the  
AD8382 in such systems is shown in Figure 38.  
DB(0:11)  
CLK  
–3 –2 –1  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
STSQ  
STSQ  
DB(0:11)  
CLK  
–1  
0
1
2
3
4
5
6
7
8
9
10 11 12  
XFR  
R/L  
STSQ  
XFRF  
E/O  
EVEN  
0
6
12  
CH 0  
CH 1  
CH 2  
CH 3  
CH 4  
CH 5  
E/O  
ODD  
1
7
2
8
0
12  
14  
16  
18  
20  
CH 0  
CH 1  
CH 2  
CH 3  
CH 4  
CH 5  
3
9
2
4
10  
4
–1  
5
11  
6
–6  
–5  
–4  
VID0  
VID1  
VID2  
0
1
2
6
7
8
8
–2  
10  
22  
–12  
–10  
–8  
VID0  
VID1  
0
2
4
12  
14  
16  
–3  
–2  
3
4
9
VID3  
VID4  
10  
VID2  
VID3  
VID4  
–1  
5
11  
VID5  
–6  
–4  
6
8
18  
20  
Figure 38. Timing Diagram in a Typical 6-Channel System, E/O=HIGH,  
R/L=LOW  
–2  
10  
22  
VID5  
OPERATING MODES—12-CHANNEL SYSTEMS  
1
13  
CH 0  
CH 1  
CH 2  
CH 3  
CH 4  
CH 5  
12-channel systems are usually those requiring video line  
doubling or compatibility with SXGA and higher resolutions.  
Depending on the input data rates, two types of 12-channel  
systems are in common use.  
3
15  
5
17  
7
19  
–3  
9
21  
–1  
11  
23  
–11  
–9  
VID0  
VID1  
VID2  
1
3
5
13  
15  
17  
12-Channel, Even/Odd Systems  
Single data bus systems are characterized by an image processor  
with a single data bus output. They require two AD8382s per  
color.  
–7  
–5  
–3  
VID3  
VID4  
7
9
19  
21  
One AD8382 is set to operate in EVEN mode, while the other is  
set to operate in ODD mode. Both AD8382s share the same  
data bus and CLK. The timing diagram of such a system is  
shown in Figure 39.  
–1  
11  
23  
VID5  
Figure 39. 12-Channel Even/Odd System Timing Diagram  
OPERATING MODES—BEYOND 12 CHANNELS  
12-Channel Parallel Systems  
Any number of AD8382s may be cascaded in even/odd pairs or  
in parallel to facilitate very high resolution systems.  
Dual data bus systems are characterized by an image processor  
with two data bus outputs. They require two AD8382s per color.  
Both AD8382s in dual data bus systems can be set  
independently. The timing diagram of each AD8382 in such  
systems is identical to that of a 6-channel system.  
Rev. 0 | Page 15 of 24  
 
 
 
AD8382  
IMAGE PROCESSOR  
DB1(0:11)  
AD8382  
DB(0:11)  
STSQ2  
STSQ1  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
Ch 0  
Ch 2  
Ch 4  
Ch 6  
Ch 8  
Ch 10  
÷2  
CLK  
XFR  
R/L  
CLK  
XFR  
R/L  
Pixel CLK  
CLK  
CLK  
÷6 COUNTER  
STSQ1  
INV1  
E/O1  
STSQ  
INV  
E/O  
H. REVERSE  
VREFHI  
VREFLO  
V2  
CLK  
CLK  
STSQ2  
INV2  
E/O2  
÷6 COUNTER  
HSTART  
V1  
12 – CHANNEL  
LCD  
AD8382  
DB(0:11)  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
CH 1  
CH 3  
CH 5  
CH 7  
CH 9  
CH 11  
CLK  
XFR  
R/L  
HSYNC  
VSYNC  
INV1  
INV2  
STSQ  
INV  
REFERENCES  
E/O  
VREFHI  
VREFLO  
V2  
VREFHI  
VREFLO  
V2  
V1  
V1  
Figure 40. Single Data Bus 12-Channel Even/Odd System Block Diagram  
IMAGE PROCESSOR  
AD8382  
D(0:9) Odd  
D(0:9) Even  
DB1(0:11)  
DB(0:11)  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
Ch 0  
Ch 2  
Ch 4  
Ch 6  
Ch 8  
Ch 10  
Pixel CLK ÷2  
CLK  
XFR  
R/L  
CLK  
XFR  
R/L  
H. REVERSE  
÷6 COUNTER  
HSTART  
CLK  
STSQ  
INV1  
STSQ  
INV  
“1”  
E/O  
E/O  
VREFHI  
VREFLO  
V2  
INV2  
V1  
12 – CHANNEL  
LCD  
AD8382  
D(0:9) Even  
D(0:9) Odd  
DB2(0:11)  
DB(0:11)  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
CH 1  
CH 3  
CH 5  
CH 7  
CH 9  
CH 11  
CLK  
XFR  
R/L  
HSYNC  
VSYNC  
INV1  
INV2  
STSQ  
INV  
REFERENCES  
E/O  
VREFHI  
VREFLO  
V2  
VREFHI  
VREFLO  
V2  
V1  
V1  
Figure 41. Dual Data Bus 12-Channel Even/Odd System Block Diagram  
Rev. 0 | Page 16 of 24  
AD8382  
APPLICATIONS CIRCUIT  
VBIAS Generation—V1, V2 Input Pin  
Functionality  
The circuit in Figure 41 ensures VBIAS symmetry to within 1  
mV with a minimum component count. Bypass capacitors are  
omitted for clarity.  
In order to avoid image flicker, a symmetrical ac voltage is  
required and a bias voltage of approximately 1 V minimum  
must be maintained across the pixels of HTPS LCDs. The  
AD8382 provides two methods of maintaining this bias voltage.  
AVCC = 15.5V  
VZ = 5.1V  
INTERNAL BIAS VOLTAGE GENERATION  
AD8382  
V2  
3
Standard systems that internally generate the bias voltage  
reserve the uppermost code range for the bias voltage and use  
the remaining code range to encode the video for gamma  
correction. A high degree of ac symmetry is guaranteed by the  
AD8382 in these systems.  
1
V2 = 8V  
V1 = 6V  
5
–IN  
V+  
2
8
VCOM = 7V  
R2 = 1kΩ  
VCOM  
+IN  
AD8132  
V–  
V1  
4
6
R1 = 6kΩ  
The V1 and V2 inputs in these systems are tied together and are  
normally connected to VCOM, as shown in Figure 42.  
DVCC = 3.3V  
Figure 43. External VBIAS Generator with the AD8132  
VFS = 5V  
AD8382  
VBIAS = 1V  
VBIAS = 1V  
V2  
V1  
VFS = 4V  
VCOM  
VCOM  
3280 4095  
V2  
VCOM  
VBIAS = 1V  
RESERVED  
CODE  
VFS = 5V  
VBIAS = 1V 4095  
V1  
RANGE  
VFS = 4V  
Figure 42. V1, V2 Connection and Transfer Function in a Typical Standard  
System  
Figure 44. The AD8382 Transfer Function in a Typical High Accuracy System  
EXTERNAL BIAS VOLTAGE GENERATION  
In systems that require improved brightness resolution and  
higher accuracy, the V1 and V2 inputs, connected to external  
voltage references, provide necessary bias voltage, VBIAS, while  
allowing the full code range to be used for gamma correction.  
8.75  
7.50  
6.25  
5.00  
3.75  
T
= 25°C  
T
= 85°C  
A
A
To ensure a symmetrical ac voltage at the AD8382s outputs,  
VBIAS must remain constant for both states of INV. Thus, V1  
and V2 are defined as:  
2.50  
1.25  
0.00  
–1.25  
–2.50  
–3.75  
–5.00  
–6.25  
–7.50  
–8.75  
V1 = VCOM VBIAS  
V2 = VCOM + VBIAS  
5.7  
6.2  
6.7  
7.2  
7.7  
8.2  
8.7  
9.2  
9.7 10.2 10.7  
+
V
– V (V)  
Figure 45. Typical Asymmetry at the Outputs of the AD8132 vs. Power Supply  
for the Application Circuit  
The AD8132 typically produces a symmetrical output at 85°C  
when its supply, (V+) – (V–), is 7.2 V (Figure 45).  
Rev. 0 | Page 17 of 24  
 
 
AD8382  
Power Supply Sequencing  
The AD8382 package is designed to provide superior thermal  
characteristics, partly through the exposed die paddle on the  
bottom surface of the package. In order to take full advantage of  
this feature, the exposed paddle must be in direct thermal  
contact with the PCB, which then serves as a heat sink.  
As indicated in the Absolute Maximum Ratings, voltage at any  
input pin cannot exceed its supply voltage by more than 0.5 V.  
To ensure compliance with these ratings, the following power-  
up and power-down sequencing is recommended.  
Table 5. AD8382 Power Dissipation  
During power-up, initial application of nonzero voltages to any  
input pin must be delayed until supply voltage ramps up to at  
least the highest maximum operational input voltage. During  
power-down, the voltage at any input pin must reach zero  
during a period not exceeding the power supplys hold-up time.  
VSWING = 5 V  
VSWING = 4 V  
PQUIESCENT  
(W)  
CLOAD  
(pF)  
PDYNAMIC  
PTOTAL  
(W)  
PDYNAMIC  
PTOTAL  
(W)  
(W)  
0.93  
1.16  
1.39  
(W)  
0.74  
0.93  
1.11  
200  
250  
300  
0.74  
0.74  
0.74  
1.67  
1.90  
2.13  
1.48  
1.67  
1.85  
Failure to comply with the Absolute Maximum Ratings may  
result in functional failure or damage to the internal ESD  
diodes. Damaged ESD diodes may cause temporary parametric  
failures, which may result in image artifacts. Damaged ESD  
diodes cannot provide full ESD protection, reducing reliability.  
A thermally effective PCB must incorporate a thermal pad and  
a thermal via structure. The thermal pad provides a solderable  
contact surface on the top surface of the PCB. The thermal via  
structure provides a thermal path to the inner and bottom  
layers of the PCB to remove heat.  
Power ON  
Power OFF  
1. Apply power to supplies.  
2. Apply power to other I/Os.  
1. Remove power from I/Os.  
THERMAL PAD DESIGN  
2. Remove power from  
supplies.  
Thermal performance of the AD8382 varies logarithmically  
with the contact area between the exposed thermal paddle and  
the thermal pad on the top layer of the PCB.  
PCB Design for Optimized Thermal  
Performance  
In order to minimize thermal performance degradation of  
production PCBs, the contact area between the thermal pad and  
the PCB should be maximized. Therefore, the size of the  
thermal pad should match the exposed paddle size of 5.25 mm  
× 5.25 mm. In addition, a second thermal pad of the same size  
should be placed on the bottom side of the PCB. At least one  
thermal pad should be in direct thermal (and electrical) contact  
with the AVCC plane.  
The total maximum power dissipation of the AD8382 is partly  
load dependent. In a 6-channel, 65 MHz, 60 Hz XGA system,  
the total maximum power dissipation is 1.14 W at an LCD input  
capacitance of 200 pF.  
At a clock rate of 120 Ms/s, the total maximum power  
dissipation can exceed 2 W, as shown below for a black-to-white  
video output voltage swing of 4 V and 5 V.  
THERMAL VIA STRUCTURE DESIGN  
Although the maximum safe operating junction temperature is  
higher, the AD8382 is 100% tested at a junction temperature of  
125°C. Consequently, the maximum guaranteed operating  
junction temperature is 125°C. To limit the maximum junction  
temperature at or below the guaranteed maximum, the package,  
in conjunction with the PCB, must effectively conduct heat  
away from the junction.  
Effective heat transfer from the top to the inner and bottom  
layers of the PCB requires thermal vias incorporated into the  
thermal pad design. Thermal performance increases  
logarithmically with the number of vias. θJA reaches its specified  
value at approximately 16 vias, provided the AD8382 is on a  
standard JEDEC PCB. θJA approaches its optimum value as the  
slope of such a curve approaches zero, at above 36 vias. Near  
optimum thermal performance of production PCBs is attained  
when the number of thermal vias is at least 36.  
Rev. 0 | Page 18 of 24  
 
AD8382  
AD8382 PCB DESIGN RECOMMENDATIONS  
SOLDER MASKING  
7 mm  
To minimize the formation of solder voids due to solder flowing  
into the via holes (solder wicking), via diameter should be small.  
Solder masking of the via holes on the top layer of the PCB  
plugs the via holes, inhibiting solder flow into the holes. To  
optimize the thermal pad coverage, the solder mask diameter  
should be no more than 0.1 mm larger than the via diameter.  
Land pattern Dimensions  
Pad Size:  
0.5 mm × 0.25 mm  
Pad Pitch:  
0.5 mm  
Solder Mask—Top Layer  
Thermal Pad Size:  
Pads: Set by customers PCB  
Design Rules  
5.25 mm × 5.25 mm  
LAND PATTERN – TOP LAYER  
Thermal via structure:  
Thermal Vias: 0.25 mm dia.  
circular mask, centered on the  
vias.  
Figure 46. Land Pattern—Top Layer  
0.25 mm diameter.  
Vias on 0.5mm grid.  
Solder Mask—Bottom  
Layer  
THERMAL PAD AND VIA CONNECTIONS  
Thermal Pads are connected to AVCC.  
Set by customers PCB Design  
SOLDER MASK – TOP LAYER  
Rules.  
Figure 48. Solder Mask—Top Layer  
For PCBs with the AVCC  
plane located on one of  
the outer layers, direct  
connection of at least one  
thermal pad to the AVCC  
plane is recommended.  
For PCBs with the AVCC  
plane located on one of  
the internal layers, direct  
connection of all thermal  
vias to the AVCC plane is  
LAND PATTERN – BOTTOM LAYER  
recommended.  
Figure 47. Land Pattern—Bottom Layer  
The use of thermal spokes is not recommended when  
connecting the thermal pads or via structure to the AVCC  
plane.  
Rev. 0 | Page 19 of 24  
AD8382  
POWER SUPPLY BYPASSING  
Layout Considerations  
All power supply and reference pins of the AD8382 must be  
properly bypassed to the analog ground plane for optimum  
performance.  
The AD8382 is a mixed-signal, high speed, high accuracy  
device. In order to fully realize its specifications, it is essential to  
use a properly designed printed circuit board.  
All analog supply pins may be connected directly to an analog  
supply plane located as close to the part as possible. A 0.1 µF  
chip capacitor should be placed as close to each analog supply  
pin as possible and connected directly between each analog  
supply pin and the analog ground plane.  
LAYOUT AND GROUNDING  
The analog outputs and the digital inputs of the AD8382 are on  
opposite sides of the package. Keep these sections separated to  
minimize crosstalk and coupling of digital inputs into the  
analog outputs.  
A minimum 47 µF tantalum capacitor should be placed near the  
analog supply plane and connected directly between the supply  
and analog ground planes.  
All signal trace lengths should be made as short and direct as  
possible to prevent signal degradation due to parasitic effects.  
Note that digital signals should not cross and should not be  
routed near analog signals.  
A minimum 10 µF tantalum capacitor should be placed near the  
digital supply pin and connected directly to the analog ground  
plane. A 0.1 µF chip capacitor should be connected between the  
digital supply pin and the analog ground.  
It is imperative to provide a solid analog ground plane under  
and around the AD8382. All ground pins of the part should be  
connected directly to this ground plane with no extra signal  
path length. This includes DGND, AGNDBIAS, AGND5,  
AGND3,4, AGND1,2, AGND0, and AGNDDAC. The return  
traces for any of the signals should be routed close to the  
ground pin for that section to prevent stray signals from  
coupling into other ground pins.  
VREFHI, VREFLO, V2, V1 REFERENCE  
DISTRIBUTION  
To ensure well-matched video outputs, all AD8382s must  
operate from equal reference voltages.  
Each reference voltage should be distributed to each AD8382  
directly from the source of the reference voltage with  
approximately equal trace lengths.  
A 0.1 µF chip capacitor should be placed as close to each  
reference input pin as possible and directly connected between  
the reference input pin and the analog ground plane.  
Rev. 0 | Page 20 of 24  
 
AD8382  
OUTLINE DIMENSIONS  
0.30  
0.23  
0.18  
7.00  
0.60 MAX  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
37  
36  
48  
1
PIN 1  
INDICATOR  
5.25  
5.10 SQ  
4.95  
6.75  
BOTTOM  
TOP  
VIEW  
BSC SQ  
VIEW  
0.50  
0.40  
0.30  
25  
24  
12  
13  
5.50  
REF  
0.80 MAX  
0.65 NOM  
1.00  
0.90  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
0.20  
REF  
0.50 BSC  
COPLANARITY  
0.08  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VKKD-2  
Figure 49. 48-Lead Frame Chip Scale Package [LFCSP] (CP-48)—Dimensions shown in millimeters  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although the AD8382 features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Ordering Guide  
Table 6.  
Model  
Temperature Range  
Package Description  
Package Option  
AD8382ACP  
0°C to 85°C  
48-Lead LFCSP  
CP-48  
Rev. 0 | Page 21 of 24  
 
AD8382  
Rev. 0 | Page 22 of 24  
AD8382  
Rev. 0 | Page 23 of 24  
AD8382  
©
2003 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective companies.  
Printed in the U.S.A. C03371-0-2/03(0)  
Rev. 0 | Page 24 of 24  

相关型号:

AD8383

Low Cost 10-Bit, 6-Channel Output Decimating LCD DecDriver
ADI

AD8383ACPZ

Low Cost 10-Bit, 6-Channel Output Decimating LCD DecDriver
ADI

AD8383ACPZ

LIQUID CRYSTAL DISPLAY DRIVER, QCC48, 7 X 7 MM, 0.85 MM HEIGHT, MO-220VKKD-2, LFCSP-48
ROCHESTER

AD8384

10-Bit, 6-Channel Decimating LCD DecDriver-R with Level Shifters
ADI

AD8384ASVZ

10-Bit, 6-Channel Decimating LCD DecDriver-R with Level Shifters
ADI

AD8385

10-Bit, 12-Channel Decimating LCD DECDRIVER with Level Shifters
ADI

AD8385ASVZ

10-Bit, 12-Channel Decimating LCD DECDRIVER with Level Shifters
ADI

AD8386

10-Bit, 12-Channel Output Decimating LCD Driver
ADI

AD8386JCPZ

10-Bit, 12-Channel Output Decimating LCD Driver
ADI

AD8387

High Performance, 12-Bit, 12-Channel Decimating, LCD DecDriver
ADI

AD8387-EB

High Performance, 12-Bit, 12-Channel Decimating, LCD DecDriver
ADI

AD8387JSVZ

High Performance, 12-Bit, 12-Channel Decimating, LCD DecDriver
ADI