APW7062BKC-TUL [ANPEC]

Synchronous Buck PWM Controller; 同步降压PWM控制器
APW7062BKC-TUL
型号: APW7062BKC-TUL
厂家: ANPEC ELECTRONICS COROPRATION    ANPEC ELECTRONICS COROPRATION
描述:

Synchronous Buck PWM Controller
同步降压PWM控制器

控制器
文件: 总18页 (文件大小:230K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
APW7062B  
Synchronous Buck PWM Controller  
Features  
General Description  
The APW7062B is a voltage mode, synchronous PWM  
controller which drives dual N-Channel MOSFETs. It  
integrates the control, monitoring and protection func-  
tions into a single package, provides one controlled  
power outputs with under-voltage and over-current  
protection.  
APW7062B provide excellent regulation for output load  
variation. An internal 0.8V temperature-compensated  
reference voltage is designed to meet the requirement  
of low output voltage applications. It includes a 200kHz  
free-running triangle-wave oscillator that is adjustable  
from 70kHz to 800kHz.  
The power-on-reset (POR) circuit monitors the VCC,  
EN, OCSET input voltage to start-up or shutdown the  
IC. The over-current protection (OCP) monitors the  
output current by using the voltage drop across the  
upper MOSFET’s RDS(ON), eliminating the need for a  
current sensing resistor. The under-voltage protection  
(UVP) monitors the voltage of FB pin for short-circuit  
protection.  
Simple Single-Loop Control Design  
- Voltage-Mode PWM Control  
Fast Transient Response  
- Full 0–100% Duty Ratio  
Excellent Output Voltage Regulation  
- 0.8V Internal Reference  
- ± 1% Over Line Voltage and Temperature  
Over Current Fault Monitor  
- Uses Upper MOSFETs RDS (ON)  
Converter Can Source and Sink Current  
Small Converter Size  
- 200kHz Free-Running Oscillator  
- Programmable from 70kHz to 800kHz  
14-Lead SOIC Package  
Lead Free Available (RoHS Compliant)  
Applications  
The over-current protection trip cycle the soft-start func-  
tion until the fault events be removed. Under-voltage  
protection will shutdown the IC directly.  
Graphic Cards  
DDR Memory Power Supply  
DDR Memory Termination Voltage  
Low-Voltage Distributed Power Supplies  
Pinouts  
RT  
OCSET  
SS  
1
2
3
4
5
6
7
VCC  
14  
13  
PVCC  
12  
11  
10  
9
LGATE  
PGND  
BOOT  
COMP  
FB  
UGATE  
PHASE  
EN  
8
GND  
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise  
customers to obtain the latest version of relevant information to verify before placing orders.  
Copyright ANPEC Electronics Corp.  
Rev. A.3 - Mar., 2005  
1
www.anpec.com.tw  
APW7062B  
Ordering and Marking Information  
P ackage C ode  
APW 7062B  
K : S O P -14  
O perating Junction Tem p. R ange  
C : 0 to 70°C  
Lead Free C ode  
H andling C ode  
Tem p. R ange  
P ackage C ode  
H andling C ode  
TU : Tube  
TR : Tape & R eel  
Lead Free C ode  
L : Lead Free D evice  
B lank : O riginal D evice  
A P W 7062B  
XXXXX  
A P W 7062B K :  
XXXXX - D ate C ode  
NotesANPEC lead-free products contain molding compounds/die attach materials and 100% matte in plate  
termination finish; which are fully compliant with RoHS and compatible with both SnPb and lead-free soldiering  
operations. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J STD-020C for  
MSL classification at lead-free peak reflow temperature.  
Block Diagram  
VCC  
OCSET  
GND  
Power-On  
Reset  
EN  
SS  
OCSET  
I
200uA  
BOOT  
vcc  
SS  
I
UGATE  
10uA  
O.C.P  
Comparator  
Soft Start  
PHASE  
5.8V  
U.V.P  
Comparator  
:
2
R EF  
50% V  
PVCC  
PW M  
Comparator  
Gate Control  
LGATE  
Error Amp  
PGND  
R EF  
V
Oscillator  
Triangle  
W ave  
COMP  
FB  
RT  
Copyright ANPEC Electronics Corp.  
Rev. A.3 - Mar., 2005  
2
www.anpec.com.tw  
APW7062B  
Application Cicuit  
12V  
C1  
R1  
10R  
1uF  
D1  
1N4148  
12V  
L1  
R3  
1K  
R2  
10K  
1uH  
U1  
C3  
C6  
C4  
+
+
+
APW7062B  
8
7
6
5
C5  
470uF  
16V  
470uF  
16V  
100uF  
16V  
R4  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
4.7uF  
RT  
VCC  
C2  
1nF  
4
30mR  
30mR  
NC  
OCSET  
SS  
PV CC  
LGATE  
PGND  
BOOT  
COMP  
FB  
Q1  
R5  
2R2  
APM4220  
EN  
UGA TE  
PHA SE  
8
1
2
3
GND  
1.2V  
C8  
0.1uF  
C7  
L2  
0.1uF  
8
7
6
5
R10  
15K  
2.2uH  
SHDN  
R7  
NC  
C9  
C10  
+
+
C13  
D2  
1000uF  
6.3V  
30mR  
1000uF  
6.3V  
C11  
47pF  
Q2  
SR24  
4.7uF  
R6  
0R  
C12  
4
APM4220  
2A/40V  
30mR  
8200pF  
1
2
3
R8  
1KF  
1%  
C12  
NC  
R9  
2KF  
1%  
R8  
R9  
OUT  
REF  
V
= V × 1+  
Absolute Maximum Ratings  
Symbol  
Parameter  
Rating  
30  
Unit  
V
CC  
V
VCC to GND  
BOOT  
V
BOOT to GND  
PHASE to GND  
30  
V
PHASE  
V
30  
V
Operating Junction Temperature  
Storage Temperature  
0~150  
-65 ~ 150  
300  
oC  
oC  
oC  
KV  
STG  
T
SDR  
T
Soldering Temperature (10 Seconds)  
Minimum ESD Rating  
ESD  
V
±2  
Copyright ANPEC Electronics Corp.  
Rev. A.3 - Mar., 2005  
3
www.anpec.com.tw  
APW7062B  
Electrical Characteristics  
APW7062B  
Unit  
Symbol  
Parameter  
Test Conditions  
Min Typ Max  
VCC SUPPLY CURRENT  
CC  
EN=V ; UGATE and LGATE  
CC  
I
Nominal Supply  
2
mA  
Open  
Shutdown Supply  
EN=0V  
250 350  
µA  
POWER-ON-RESET  
CC  
OCSET  
OCSET  
DC  
DC  
Rising V Threshold  
V
V
=4.5V  
=4.5V  
10.4  
8.8  
V
V
CC  
Falling V Threshold  
Enable-Input Threshold  
OCSET  
DC  
V
=4.5V  
0.8  
2.0  
V
V
Voltage  
OCSET  
Rising V  
OSCILLATOR  
Threshold  
1.27  
T
CC  
Free Running Frequency  
Total Variation  
R =OPEN, V =12  
170 200 230 kHz  
-15  
+15  
6K< RT to GND < 200KΩ  
%
T
P-P  
Ramp Amplitude  
R =OPEN  
1.9  
V
OSC  
V  
REFERENCE VOLTAGE ACCURANCY  
Reference Voltage Tolerance  
-1  
+1  
REF  
V  
%
REF  
V
PWM Error Amplifier  
0.80  
V
GATE DRIVERS  
UGATE  
BOOT  
UGATE  
I
Upper Gate Source  
V
=12V, V  
=6V  
650 800  
4
mA  
UGATE  
ILGATE=0.3A  
PVCC=12V, VLGATE=6V  
ILGATE=0.3A  
R
Upper Gate Sink  
Lower Gate Source  
Lower Gate Sink  
Dead Time  
7
7
LGATE  
700  
4
mA  
I
550  
LGATE  
R
D
VOUT=2.5V, IOUT=1A, RT=OPEN  
50  
ns  
T
PROTECTION  
FB Under Voltage  
50  
%
OCSET  
OCSET  
DC  
I
OCSET Current Source  
Soft-Start Current  
V
=4.5V  
170 200 230  
10 12  
µA  
µA  
SS  
I
8
Copyright ANPEC Electronics Corp.  
Rev. A.3 - Mar., 2005  
4
www.anpec.com.tw  
APW7062B  
Functional Pin Description  
RT (Pin1)  
SS (Pin3)  
This pin can adjust the switching frequency. Connect  
a resistor from RT to GND for increasing the switching  
frequency:  
Connect a capacitor from the pin to GND to set the  
soft-start interval of the converter. An internal 10uA  
current source charges this capacitor to 5.8V. The  
SS voltage clamps the error amplifier output, and Fig-  
ure1 shows the soft-start interval. At t1, the SS volt-  
age reaches the valley of the oscillator’s triangle wave.  
The PWM comparator starts to generate a PWM sig-  
nal to control logic, and the output is rising rapidly.  
Until the output is in regulation at t2, the clamp on the  
COMP is released. This method provides a rapid and  
controlled output voltage rise.  
When over current protection occurs, the VOUT is  
shutdown, and re-soft-start again, if the over current  
condition still exists in soft-start , the VOUT is  
shutdowned again, after the SS reaches 4.5V, the SS  
is discharged to zero. The soft-start is recurring until  
the over current condition is eliminated.  
4.15×106  
FS = 200kHz +  
RT  
(RT to GND,F  
S =  
200kHz to 400kHz)  
Conversely, connect a resistor from RT to VCC for de-  
creasing the switching frequency:  
3.51×107  
FS = 200kHz -  
RT  
(RT to VCC,FS = 200kHz to 75kHz)  
OCSET (Pin2)  
This pin serves two functions: a shutdown control and  
the setting of over current limit threshold. Pulling this  
pin below 1.27V will shutdown the controller, forcing  
the UGATE and LGATE signals to be at 0V.  
A resistor (Rocset) connected between this pin and the  
drain of the high side MOSFET will determine the over  
current limit. An internal 200uA current source will  
flow through this resistor, creating a voltage drop,  
which will be compared with the voltage across the  
high side MOSFET. The threshold of the over current  
limit is therefore given by:  
VOLTAGE  
VSOFT START  
VOUT  
Error Am p  
Output  
VOSC(MIN)  
VSS=1.2V  
OCSET  
(
)
×
OCSET  
I
200uA  
R
PEAK =  
I
DS(ON)  
R
TIME  
t0  
t1  
t2  
t3  
To avoid noise interference from switching transient, a  
delay time is designed in the OCP comparator.  
The over current protection is active only when the  
high side MOSFET is turned on longer than 300ns.  
FIGURE1. SOFT-START INTERVAL  
C
I
SS  
=
SS ×(VOSC(MIN)+t1)  
t2  
VOUT  
CSS  
SS  
I
SoftStart  
=
3
t
2
t
=
×
SteadyState×OSC  
t
V
IN  
V
Copyright ANPEC Electronics Corp.  
Rev. A.3 - Mar., 2005  
5
www.anpec.com.tw  
APW7062B  
Functional Pin Description (Cont.)  
Where :  
LGATE pins are held low. The EN pin is the open-  
collector, it will not be floating.  
t1=1.2V  
CSS = Soft Start Capacitor  
GND (Pin7)  
ISS = Soft Start Current = 10µA  
VOSC(MIN) = Bottom of Oscillator = 1.35V  
VIN = Input Voltage  
Vosc = Peak to Peak Oscillator Voltage = 1.9V  
VOUTSteadyState = Steady State Output Voltage  
Signal ground for the IC.  
PHASE (Pin8)  
This pin is connected to the source of the high-side  
MOSFETandisusedtomonitorthevoltagedropacross  
the high-side MOSFET for over-current protection.  
COMP (Pin4)  
This pin is the output of the error amplifier. Add an  
external resistor and capacitor network to provide the  
loop compensation for the PWM converter (see Appli-  
cation Information).  
UGATE (Pin9)  
Connect the pin to external MOSFET, and provides  
the gate drive for the upper MOSFET.  
FB (Pin5)  
BOOT (Pin 10)  
FB pin is the inverter input of the error amplifier. and it  
receives the feedback voltage from an external resis-  
This pin provides the supply voltage to the high side  
MOSFET driver. For driving logic level N-channel  
MOSEFT, a bootstrap circuit can be used to create a  
suitable driver’s supply.  
tive divider across the output (VOUT). The output volt-  
age is determined by:  
OUT  
R
PGND (Pin11)  
OUT =  
V
×
+
0.8V  
1
GND  
R
Power ground for the gate diver. Connect the lower  
MOSFET source to this pin.  
where ROUT is the resistor connected from VOUT to FB  
and RGND is the resistor connected from FB to GND.  
LGATE (Pin 12)  
Connect the pin to external MOSFET, and provides  
the gate drive signal for the lower MOSFET.  
If the FB voltage is under 50% VREF, because of the  
short circuit or other influence , it will cause the under  
voltage protection, and the device is shutdowned. Re-  
move the error condition and restart the VCC voltage  
or pull the EN from low to high once, the device can  
be enabled again.  
PVCC (Pin13)  
This pin provides a supply voltage for the lower gate  
drive, connect it to VCC pin in common use.  
VCC (Pin14)  
EN (Pin6)  
This pin provides a supply voltage for the device, when  
VCC is above the rising threshold 10.4V, the device is  
turned on, conversely, VCC is below the falling  
threshold, the device is turned off.  
Pull the pin higher than 2V to enable the device, and  
pull the pin lower than 0.8V to shutdown the device. In  
shutdown, the SS is discharged and the UGATE and  
Copyright ANPEC Electronics Corp.  
Rev. A.3 - Mar., 2005  
6
www.anpec.com.tw  
APW7062B  
Typical Characteristics  
Power Up  
Power Down  
VCC=12V, VIN=12V  
VOUT=2.5V, L=2.2uH  
VCC=12V, VIN=12V  
VOUT=2.5V, L=2.2uH  
VCC(5V/div)  
SS(2V/div)  
VCC(5V/div)  
SS(2V/div)  
VOUT(1V/div)  
VOUT(1V/div)  
Time(10ms/div)  
Time(10ms/div)  
Enable (EN = VCC)  
Shutdown (EN=GND)  
VCC=12V, VIN=12V  
VOUT=2.5V, L=2.2uH  
EN(10V/div)  
SS(2V/div)  
EN(10V/div)  
VCC=12V, VIN=12V  
VOUT=2.5V, L=2.2uH  
SS(2V/div)  
VOUT(1V/div)  
VOUT(1V/div)  
Time(10ms/div)  
Time(2ms/div)  
Copyright ANPEC Electronics Corp.  
Rev. A.3 - Mar., 2005  
7
www.anpec.com.tw  
APW7062B  
Typical Characteristics (Cont.)  
Load Transient Response  
Under Voltage Protection  
VCC=12V, VIN=12V  
VCC=12V, VIN=12V  
VOUT(100mV/div)  
VOUT=2.5V, RT=Open  
VOUT=2.5V, L=2.2uH  
L=2.2uH  
VOUT(2V/div)  
SS(5V/div)  
IL(10A/div)  
IOUT(2A/div)  
UGATE(20V/div)  
Time(20us/div)  
Time(20us/div)  
UGATE Falling  
UGATE Rising  
VCC=12V, VIN=12V  
VOUT=2.5V, RT=Open  
VCC=12V, VIN=12V  
VOUT=2.5V, RT=Open  
UGATE(10V/div)  
UGATE(10V/div)  
LGATE(10V/div)  
Phase(10V/div)  
LGATE(10V/div)  
Phase(10V/div)  
Time(50ns/div)  
Time(50ns/div)  
Copyright ANPEC Electronics Corp.  
Rev. A.3 - Mar., 2005  
8
www.anpec.com.tw  
APW7062B  
Typical Characteristics (Cont.)  
UGATE Source Current vs. UGATE Voltage  
UGATE Sink Current vs. UGATE Voltage  
1.2  
1.4  
VBOOT=12V  
VBOOT=12V  
1.2  
1
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
UGATE Voltage (V)  
UGATE Voltage (V)  
LGATE Source Current vs. LGATE Voltage  
LGATE Sink Current vs. LGATE Voltage  
1.2  
1
1.4  
PVCC=12V  
PVCC=12V  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
LGATE Voltage (V)  
LGATE Voltage (V)  
Copyright ANPEC Electronics Corp.  
Rev. A.3 - Mar., 2005  
9
www.anpec.com.tw  
APW7062B  
Typical Characteristics (Cont.)  
Over Current Protection  
RT Resistance vs. Switching Frequency  
VCC=12V, VIN=12V, VOUT=2.5V,  
ROCEST=1KΩ, RT=Open, RDS(ON)=14mΩ,  
IOUT=16.3A, L=2.2uH, LOUT=16.3A  
10000  
1000  
100  
10  
VOUT(1V/div)  
RT pull up to 12V  
SS(5V/div)  
IL(10A/div)  
RT pull down to GND  
UGATE(20V/div)  
1
10  
100  
1000  
Switching Frequency (kHz)  
Time(20ms/div)  
Switching Frequency vs. Junction Temperature  
Reference Voltage vs. Junction Temperature  
0.8  
220  
VCC=12V  
RT=Open  
210  
0.798  
0.796  
0.794  
0.792  
0.79  
200  
190  
180  
170  
160  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
Junction Temperature (°C)  
Junction Temperature (°C)  
Copyright ANPEC Electronics Corp.  
Rev. A.3 - Mar., 2005  
10  
www.anpec.com.tw  
APW7062B  
Application Information  
VOUT = IRIPPLE x ESR  
Component Selection Guidelines  
where Fs is the switching frequency of the regulator.  
Output Capacitor Selection  
The selection of COUT is determined by the required  
effective series resistance (ESR) and voltage rating  
rather than the actual capacitance requirement. There-  
fore select high performance low ESR capacitors that  
are intended for switching regulator applications. In  
some applications, multiple capacitors have to be  
paralled to achieve the desired ESR value. If tantalum  
capacitors are used, make sure they are surge tested  
by the manufactures. If in doubt, consult the capaci-  
tors manufacturer.  
There is a tradeoff exists between the inductor’s ripple  
current and the regulator load transient response time  
A smaller inductor will give the regulator a faster load  
transient response at the expense of higher ripple cur-  
rent and vice versa. The maximum ripple current oc-  
curs at the maximum input voltage. A good starting  
point is to choose the ripple current to be approxi-  
mately 30% of the maximum output current.  
Once the inductance value has been chosen, select  
an inductor that is capable of carrying the required  
peak current without going into saturation. In some  
type of inductors, especially core that is make of  
ferrite, the ripple current will increase abruptly when it  
saturates. This will result in a larger output ripple  
voltage.  
Input Capacitor Selection  
The input capacitor is chosen based on the voltage  
rating and the RMS current rating. For reliable  
operation, select the capacitor voltage rating to be at  
least 1.3 times higher than the maximum input voltage.  
The maximum RMS current rating requirement is ap-  
proximately IOUT/2 , where IOUT is the load current.  
During power up, the input capacitors have to handle  
large amount of surge current. If tantalum capacitors  
are used, make sure they are surge tested by the  
manufactures. If in doubt, consult the capacitors  
manufacturer.  
Compensation  
The output LC filter introduces a double pole, which  
contributes with –40dB/decade gain slope and 180  
degrees phase shift in the control loop. A compensa-  
tion network between COMP pin and ground should  
be added. The simplest loop compensation network  
is shown in Fig. 4.  
For high frequency decoupling, a ceramic capacitor  
between 0.1uF to 1uF can be connected between VCC  
and ground pin.  
The output LC filter consists of the output inductor  
and output capacitors. The transfer function of the LC  
filter is given by:  
Inductor Selection  
The inductance of the inductor is determined by the  
output voltage requirement. The larger the inductance,  
the lower the inductor’s current ripple. This will trans-  
late into lower output ripple voltage. The ripple current  
and ripple voltage can be approximated by:  
1+ s×ESR×COUT  
GAINLC  
=
2
OUT  
s ×L ×C + s×ESR +1  
VIN - VOUT VOUT  
x
IRIPPLE  
=
VIN  
Fs x L  
Copyright ANPEC Electronics Corp.  
Rev. A.3 - Mar., 2005  
11  
www.anpec.com.tw  
APW7062B  
Application Information (Cont.)  
Compensation (Cont.)  
The poles and zero of this transfer function are:  
IN  
V
V
GAINPWM =  
PWM  
OSC  
IN  
V
1
FLC  
=
2× π ×  
2 × π ×  
×
OUT  
L C  
Driver  
1
Comparator  
FESR  
=
×
OUT  
ESR C  
OSC  
V
The FLC is the double poles of the LC filter, and FESR is  
the zero introduced by the ESR of the output capacitor.  
Output of  
Error  
PHASE  
Amplifier  
L
Output  
PHASE  
Driver  
Figure 3. The PWM Modulator  
OUT  
C
ESR  
The compensation circuit is shown in Figure 4. R3  
and C1 introduce a zero and C2 introduces a pole to  
reduce the switching noise. The transfer function of  
error amplifier is given by:  
Figure 1. The Output LC Filter  
LC  
F
1
sC1  
1
sC2  
-40dB/dec  
gm × R3 +  
//  
GAINAMP = gm× Zo =  
ESR  
F
Gain  
(
R3sC1+1  
C1+ C2  
R3×C1× C2  
)
gm×  
=
s× s +  
-20dB/dec  
The poles and zero of the compensation network are:  
1
Frequency  
FP =  
C1×C2  
Figure 2. The Output LC Filter Gain & Frequency  
2× π ×R3×  
C1+ C2  
1
The PWM modulator is shown in Figure. 3. The input  
is the output of the error amplifier and the output is the  
PHASE node. The transfer function of the PWM modu-  
lator is given by:  
FZ  
=
2× π ×R3× C1  
Copyright ANPEC Electronics Corp.  
Rev. A.3 - Mar., 2005  
12  
www.anpec.com.tw  
APW7062B  
Application Information (Cont.)  
Compensation (Cont.)  
Calculate the C2 by the equation:  
C1  
VOUT  
C2 =  
S
π × R3 × C1 × F 1  
Error  
R1  
Amplifier  
FB  
Z
LC  
F =0.75F  
-
COMP  
P
S
F =0.5F  
20 log(gm R3)  
R2  
+
R3  
C1  
Compensation  
Gain  
VREF  
C2  
LC  
O
F
F
VIN  
20 log  
Figure 4. Compensation Network  
ΔVOSC  
Converter  
Gain  
ESR  
F
PWM &  
The closed loop gain of the converter can be written  
as:  
Filter Gain  
R2  
R1+ R2  
Frequency  
Figure 5. Converter Gain & Frequency  
x GAINAMP  
GAINLC x GAINPWM x  
Figure 5 shows the converter gain and the following  
guidelines will help to design the compensation  
network.  
1.Select the desired zero crossover frequency FO:  
(1/5 ~ 1/10) x FS >FO>FZ  
MOSFET Selection  
The selection of the N-channel power MOSFETs are  
determined by the RDS(ON), reverse transfer capacitance  
(CRSS) and maximum output current requirement.The  
losses in the MOSFETs have two components: con-  
duction loss and transition loss. For the upper and  
lower MOSFET, the losses are approximately given  
by the following :  
Use the following equation to calculate R3:  
OSC  
IN  
ESR  
O
V  
V
F
R1+ R2  
F
R3 =  
×
×
×
LC 2  
R2  
gm  
F
Where:  
P
UPPER = Iou2t (1+ TC)(RDS(ON))D + (0.5)(Iout)(VIN)(tsw)FS  
gm=900uA/V  
2.Place the zero FZ before the LC filter double poles  
FLC:  
PLOWER = Iout2(1+ TC)(RDS(ON))(1-D)  
FZ = 0.75 x FLC  
Calculate the C1 by the equation:  
where IOUT is the load current  
TC is the temperature dependency of RDS(ON)  
FS is the switching frequency  
tsw is the switching interval  
10  
=
C1  
× π ×  
× LC  
2
R1 F  
D is the duty cycle  
3. Set the pole at the half the switching frequency:  
FP = 0.5xFS  
Copyright ANPEC Electronics Corp.  
Rev. A.3 - Mar., 2005  
13  
www.anpec.com.tw  
APW7062B  
Application Information (Cont.)  
Note that both MOSFETs have conduction losses while  
the upper MOSFET include an additional transition  
loss.The switching internal, tsw, is a function of the  
reverse transfer capacitance CRSS. Figure 3 illustrates  
the switching waveform internal of the MOSFET.  
The (1+TC) term is to factor in the temperature depen-  
dency of the RDS(ON) and can be extracted from the  
“RDS(ON) vs Temperature” curve of the power MOSFET.  
single point grounding. Figure 4 illustrates the layout,  
with bold lines indicating high current paths. Compo-  
nents along the bold lines should be placed close  
together. Below is a checklist for your layout:  
Keep the switching nodes (UGATE, LGATE and  
PHASE) away from sensitive small signal nodes  
since these nodes are fast moving signals. There  
fore keep traces to these nodes as short as  
possible.  
Layout Considerations  
The ground return of CIN must return to the combine  
In high power switching regulator, a correct layout is  
important to ensure proper operation of the regulator.  
In general, interconnecting impedances should be mini-  
mized by using short, wide printed circuit traces. Sig-  
nal and power grounds are to be kept separate and  
finally combined using ground plane construction or  
COUT (-) terminal.  
Capacitor CBOOT should be connected as close to  
the BOOT and PHASE pins as possible.  
V DS  
VIN  
C IN  
APW 7062B  
+
11  
P GND  
12  
L
O
A
D
LG ATE  
C OU T  
9
8
UGATE  
P HAS E  
Q1  
Q2  
+
L1  
t
VOU T  
Time  
sw  
Figure 4. Recomm ended Layout Diagram  
Figure 3. Switching waveform across MOSFET  
Copyright ANPEC Electronics Corp.  
Rev. A.3 - Mar., 2005  
14  
www.anpec.com.tw  
APW7062B  
Package Information  
SOP – 14 (150mil)  
A
D
Ee  
B
L
Millimeters  
Inches  
Dim  
Min.  
1.477  
0.102  
0.331  
0.191  
8.558  
3.82  
Max.  
1.732  
0.255  
0.509  
Min.  
Max.  
0.068  
0.010  
0.020  
0.0098  
0.344  
0.157  
A
A1  
B
0.058  
0.004  
0.013  
C
D
E
0.2496  
8.762  
3.999  
0.0075  
0.336  
0.150  
e
1.274  
0.050  
H
L
5.808  
0.382  
6.215  
1.274  
0.228  
0.015  
0.244  
0.050  
°
0
8
0
8
θ
°
°
°
°
Copyright ANPEC Electronics Corp.  
Rev. A.3 - Mar., 2005  
15  
www.anpec.com.tw  
APW7062B  
Physical Specifications  
Terminal Material  
Lead Solderability  
Packaging  
Solder-Plated Copper (Solder Material : 90/10 or 63/37 SnPb  
Meets EIA Specification RSI86-91, ANSI/J-STD-002 Category 3.  
2500 devices per reel  
Reflow Condition (IR/Convection or VPR Reflow)  
tp  
TP  
Critical Zone  
TL to TP  
Ramp-up  
TL  
tL  
Tsmax  
Tsmin  
Ramp-down  
ts  
Preheat  
25  
°
t 25 C to Peak  
Time  
Classificatin Reflow Profiles  
Profile Feature  
Sn-Pb Eutectic Assembly  
Pb-Free Assembly  
Average ramp-up rate  
3°C/second max.  
3°C/second max.  
(TL to TP)  
Preheat  
100°C  
150°C  
150°C  
200°C  
- Temperature Min (Tsmin)  
- Temperature Max (Tsmax)  
- Time (min to max) (ts)  
Time maintained above:  
- Temperature (TL)  
60-120 seconds  
60-180 seconds  
183°C  
217°C  
60-150 seconds  
60-150 seconds  
- Time (tL)  
Peak/Classificatioon Temperature (Tp)  
See table 1  
See table 2  
Time within 5°C of actual  
10-30 seconds  
20-40 seconds  
Peak Temperature (tp)  
Ramp-down Rate  
6°C/second max.  
6°C/second max.  
6 minutes max.  
8 minutes max.  
Time 25°C to Peak Temperature  
Notes: All temperatures refer to topside of the package .Measured on the body surface.  
Copyright ANPEC Electronics Corp.  
Rev. A.3 - Mar., 2005  
16  
www.anpec.com.tw  
APW7062B  
Classificatin Reflow Profiles(Cont.)  
Table 1. SnPb Entectic Process – Package Peak Reflow Temperatures  
Package Thickness  
Volume mm3  
<350  
Volume mm3  
350  
<2.5 mm  
2.5 mm  
240 +0/-5°C  
225 +0/-5°C  
225 +0/-5°C  
225 +0/-5°C  
Table 2. Pb-free Process – Package Classification Reflow Temperatures  
Package Thickness  
Volume mm3  
<350  
Volume mm3  
350-2000  
Volume mm3  
>2000  
<1.6 mm  
1.6 mm – 2.5 mm  
2.5 mm  
260 +0°C*  
260 +0°C*  
250 +0°C*  
260 +0°C*  
250 +0°C*  
245 +0°C*  
260 +0°C*  
245 +0°C*  
245 +0°C*  
*Tolerance: The device manufacturer/supplier shall assure process compatibility up to and  
including the stated classification temperature (this means Peak reflow temperature +0°C.  
For example 260°C+0°C) at the rated MSL level.  
Reliability Test Program  
Test item  
SOLDERABILITY  
Method  
MIL-STD-883D-2003  
MIL-STD-883D-1005.7  
JESD-22-B,A102  
MIL-STD-883D-1011.9  
MIL-STD-883D-3015.7  
JESD 78  
Description  
245°C, 5 SEC  
1000 Hrs Bias @125°C  
168 Hrs, 100%RH, 121°C  
-65°C~150°C, 200 Cycles  
VHBM > 2KV, VMM > 200V  
10ms, 1tr > 100mA  
HOLT  
PCT  
TST  
ESD  
Latch-Up  
Carrier Tape & Reel Dimension  
t
D
P
Po  
E
P1  
F
W
Ao  
D1  
Ko  
Copyright ANPEC Electronics Corp.  
Rev. A.3 - Mar., 2005  
17  
www.anpec.com.tw  
APW7062B  
Carrier Tape & Reel Dimension  
T2  
J
C
A
B
T1  
A
B
C
J
T1  
T2  
W
P
8
t
E
Application  
13.0 + 0.5  
16.0 ± 0.3  
330REF 100REF  
2 ± 0.5 16.5REF 2.5 ± 025  
1.75  
- 0.2  
SOP-14  
(150mil)  
F
D
D1  
Po  
P1  
Ao  
Ko  
0.50 +  
1.50  
φ
φ
7.5  
4.0  
2.0  
6.5  
2.10  
0.3 0.05  
±
0.1  
(MIN)  
(mm)  
Cover Tape Dimensions  
Application  
SOP- 14  
Carrier Width  
Cover Tape Width  
Devices Per Reel  
24  
21.3  
2500  
Customer Service  
Anpec Electronics Corp.  
Head Office :  
5F, No. 2 Li-Hsin Road, SBIP,  
Hsin-Chu, Taiwan, R.O.C.  
Tel : 886-3-5642000  
Fax : 886-3-5642050  
Taipei Branch :  
7F, No. 137, Lane 235, Pac Chiao Rd.,  
Hsin Tien City, Taipei Hsien, Taiwan, R. O. C.  
Tel : 886-2-89191368  
Fax : 886-2-89191369  
Copyright ANPEC Electronics Corp.  
Rev. A.3 - Mar., 2005  
18  
www.anpec.com.tw  

相关型号:

APW7062B_08

Synchronous Buck PWM Controller
ANPEC

APW7063

Synchronous Buck PWM and Linear Controller
ANPEC

APW7063KC-TR

Synchronous Buck PWM and Linear Controller
ANPEC

APW7063KC-TRG

Synchronous Buck PWM and Linear Controller
ANPEC

APW7063KC-TRL

Synchronous Buck PWM and Linear Controller
ANPEC

APW7063KC-TU

Synchronous Buck PWM and Linear Controller
ANPEC

APW7063KC-TUL

Synchronous Buck PWM and Linear Controller
ANPEC

APW7063_09

Synchronous Buck PWM and Linear Controller
ANPEC

APW7064

Synchronous Buck PWM Controller
ANPEC

APW7064KAE-TRG

Synchronous Buck PWM Controller
ANPEC

APW7065

Synchronous Buck PWM Controller
ANPEC

APW7065C

Synchronous Buck PWM Controller
ANPEC