NJU6823 [ETC]

128-common x (128+2)-RGB segment 4096-color STN Bitmap LCD Driver ; 128常见×( 128 + 2 ) -RGB段4096色STN液晶屏位图驱动
NJU6823
型号: NJU6823
厂家: ETC    ETC
描述:

128-common x (128+2)-RGB segment 4096-color STN Bitmap LCD Driver
128常见×( 128 + 2 ) -RGB段4096色STN液晶屏位图驱动

驱动 CD
文件: 总111页 (文件大小:998K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NJU6823  
Preliminary  
128-common x (128+2) RGB-Segment, in 4096-Color  
STN LCD DRIVER  
GENERAL DESCRIPTION  
PACKAGE OUTLINE  
The NJU6823 is a STN LCD driver with 128-common x  
(128+2) RGB-segment in 4096-color. It consists of  
384(128xRGB)-segment + 6(2xRGB)-icon segment, 128-  
common drivers, serial and parallel MPU interface circuits,  
internal power supply circuits, gradation palettes and  
196,608-bit for graphic display data RAM.  
Each segment driver outputs 16-gradation level out of  
32-gradation level of gradation palette.  
NJU6823CJ  
Since the NJU6823 provides low operating voltage of  
1.7V and low operating current, it is ideally suited for  
battery-powered handheld applications.  
FEATURES  
4096-color STN LCD driver  
LCD drivers  
128 commons, 128RGB-segments, 2 RGB-icon segments  
196,608-bit for graphic display  
Display data RAM (DDRAM)  
Color display mode  
16 gradation level out of 32-gradation level of gradation palette  
128 x 384 pixels in 16-gradation level or 128 x 384 pixels in B&W  
Black & white display mode  
256-color driving mode  
8/16bit Parallel interface directly-connective to 68/80 series MPU  
Programmable 8- or 16-bit data bus length for display data  
3-/4-line serial interface  
Programmable duty and bias ratios  
Programmable internal voltage booster (Maximum 6-times)  
Bias voltage adjustment circuits  
Programmable clock frequency  
Programmable contrast control using 128-step EVR  
Various instructions  
Display data read/write, Display ON/OFF, Reverse display ON/OFF, All pixels ON/OFF,  
column address, row address, N-line inversion, Initial display line, Initial COM line, Read-modify-write,  
Gradation mode control, Increment control, Data bus length, Discharge ON/OFF,  
Duty cycle ratio, LCD bias ratio, Boost level, EVR control, Power save ON/OFF, etc  
Low operating current  
Low logic supply voltage  
LCD driving supply voltage  
C-MOS technology  
Rectangle out look for COG  
Package  
1.7V to 3.3V  
5.0V to 18.0V  
Bumped chip / TCP  
02/11/22  
- 1 -  
NJU6823  
PAD LOCATION  
DMY44  
DMY45  
DMY46  
COM114  
COM127  
DMY47  
DMY71  
1
Note1) The same name PADs are shorted mutually in the LSI.  
Note2) The DMY PADs are electrically open.  
Chip Center  
Chip Size  
:X= 0µm, Y= 0µm  
:22.07mm x 2.55mm  
Chip Thickness  
Bump Size  
:625µm ± 25µm  
:28µm x 110µm(COM/SEG Output, DMY10 ~ DMY71),  
60µm x 100µm(Interface),  
28µm x 100µm(DMY0 ~ DMY9)  
:43µm(Min)  
Bump Pitch  
Bump Height  
Bump Material  
:14.0~22.5µm (Typical 18µm) <tolerance : ±3µm >  
:Au  
Alignment marks  
a
a: 30µm  
b: 6µm  
d
c: 120µm  
d: 27µm  
d
b
Alignment mark coordinates  
c
a
X=-10866µm, Y= 1106µm  
X= 10866µm, Y=-1106µm  
b
c
- 2 -  
NJU6823  
Y
X
- 3 -  
NJU6823  
DMY37  
DMY36  
DMY35  
COM50  
Y
X
COM63  
DMY34  
DMY10  
- 4 -  
NJU6823  
PAD COORDINATES 1  
Chip Size 22070µm x 2550µm (Chip Center 0µm x 0µm )  
PAD  
PAD  
No.  
PAD  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
No.  
1
No.  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
DMY0  
DMY1  
DMY2  
VSSA  
-10642.5 -1090.0 52  
-10599.5 -1090.0 53  
-10556.5 -1090.0 54  
-10475.5 -1090.0 55  
-10402.5 -1090.0 56  
-10293.0 -1090.0 57  
-10220.0 -1090.0 58  
-10110.5 -1090.0 59  
-10037.5 -1090.0 60  
-9928.0 -1090.0 61  
-9855.0 -1090.0 62  
-9745.5 -1090.0 63  
-9672.5 -1090.0 64  
-9563.0 -1090.0 65  
-9490.0 -1090.0 66  
-9380.5 -1090.0 67  
-9271.0 -1090.0 68  
-9198.0 -1090.0 69  
-9088.5 -1090.0 70  
-8979.0 -1090.0 71  
-8906.0 -1090.0 72  
-8796.5 -1090.0 73  
-8687.0 -1090.0 74  
-8614.0 -1090.0 75  
-8504.5 -1090.0 76  
-8395.0 -1090.0 77  
-8322.0 -1090.0 78  
-8212.5 -1090.0 79  
-8139.5 -1090.0 80  
-7993.5 -1090.0 81  
-7920.5 -1090.0 82  
-7774.5 -1090.0 83  
-7701.5 -1090.0 84  
-7555.5 -1090.0 85  
-7482.5 -1090.0 86  
D10  
D10  
-5584.5 -1090.0  
-5511.5 -1090.0  
-5365.5 -1090.0  
-5292.5 -1090.0  
-5146.5 -1090.0  
-5073.5 -1090.0  
-4927.5 -1090.0  
-4854.5 -1090.0  
-4708.5 -1090.0  
-4635.5 -1090.0  
-4489.5 -1090.0  
-4416.5 -1090.0  
-4197.5 -1090.0  
-4124.5 -1090.0  
-4051.5 -1090.0  
-3978.5 -1090.0  
-3905.5 -1090.0  
-3832.5 -1090.0  
-3759.5 -1090.0  
-3613.5 -1090.0  
-3540.5 -1090.0  
-3394.5 -1090.0  
-3321.5 -1090.0  
-3175.5 -1090.0  
-3102.5 -1090.0  
-2956.5 -1090.0  
-2883.5 -1090.0  
-2701.0 -1090.0  
-2628.0 -1090.0  
-2409.0 -1090.0  
-2336.0 -1090.0  
-2044.0 -1090.0  
-1971.0 -1090.0  
-1898.0 -1090.0  
-1825.0 -1090.0  
-1752.0 -1090.0  
-1679.0 -1090.0  
-1606.0 -1090.0  
-1460.0 -1090.0  
-1387.0 -1090.0  
-1277.5 -1090.0  
-1204.5 -1090.0  
-1095.0 -1090.0  
-1022.0 -1090.0  
V4A2  
VSSA  
VSSA  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
V1  
-292.0  
-182.5  
-109.5  
0.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
2
3
D11  
4
D11  
5
VSSA  
D12  
73.0  
6
SEL68  
SEL68  
VDDA  
D12  
146.0  
219.0  
292.0  
365.0  
511.0  
584.0  
657.0  
730.0  
803.0  
876.0  
7
D13  
8
D13  
9
VDDA  
D14  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
P/S  
D14  
P/S  
D15  
V1  
VSSA  
D15  
V1  
VSSA  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
CL  
V1  
RESb  
RESb  
DMY3  
CSb  
V1  
V1  
V2  
1022.0 -1090.0  
1095.0 -1090.0  
1168.0 -1090.0  
1241.0 -1090.0  
1314.0 -1090.0  
1387.0 -1090.0  
1533.0 -1090.0  
1606.0 -1090.0  
1679.0 -1090.0  
1752.0 -1090.0  
1825.0 -1090.0  
1898.0 -1090.0  
2044.0 -1090.0  
2117.0 -1090.0  
2190.0 -1090.0  
2263.0 -1090.0  
2336.0 -1090.0  
2409.0 -1090.0  
2555.0 -1090.0  
2628.0 -1090.0  
2701.0 -1090.0  
2774.0 -1090.0  
2847.0 -1090.0  
2920.0 -1090.0  
3029.5 -1090.0  
3102.5 -1090.0  
3175.5 -1090.0  
3248.5 -1090.0  
3321.5 -1090.0  
3394.5 -1090.0  
3504.0 -1090.0  
3577.0 -1090.0  
3650.0 -1090.0  
3723.0 -1090.0  
3796.0 -1090.0  
3869.0 -1090.0  
V2  
CSb  
V2  
DMY4  
RS  
V2  
V2  
RS  
CL  
V2  
DMY5  
WRb  
WRb  
DMY6  
RDb  
FLM  
FLM  
FR  
V3  
V3  
V3  
FR  
V3  
CLK  
CLK  
OSC1  
OSC1  
OSC2  
OSC2  
VSS  
V3  
RDb  
V3  
VDDA  
V4  
VDDA  
V4  
D0/SCL  
D0/SCL  
D1/SDA  
D1/SDA  
D2  
V4  
V4  
V4  
VSS  
V4  
VSS  
VREG  
VREG  
VREG  
VREG  
VREG  
VREG  
VREF  
VREF  
VREF  
VREF  
VREF  
VREF  
VBA  
VBA  
VBA  
VBA  
VBA  
VBA  
D2  
VSS  
36 D3/SMODE -7336.5 -1090.0 87  
37 D3/SMODE -7263.5 -1090.0 88  
VSS  
VSS  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
D4/SPOL  
D4/SPOL  
D5  
-7117.5 -1090.0 89  
-7044.5 -1090.0 90  
-6898.5 -1090.0 91  
-6825.5 -1090.0 92  
-6679.5 -1090.0 93  
-6606.5 -1090.0 94  
-6460.5 -1090.0 95  
-6387.5 -1090.0 96  
-6241.5 -1090.0 97  
-6168.5 -1090.0 98  
-6022.5 -1090.0 99  
-5949.5 -1090.0 100  
-5803.5 -1090.0 101  
-5730.5 -1090.0 102  
VSS  
V1A1  
V1A1  
VDDA  
VDDA  
V1A2  
V1A2  
VSSA  
VSSA  
V4A1  
V4A1  
VDDA  
VDDA  
V4A2  
D5  
D6  
D6  
D7  
D7  
-912.5  
-839.5  
-730.0  
-657.0  
-547.5  
-474.5  
-365.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
-1090.0  
VSSA  
VSSA  
D8  
D8  
D9  
D9  
- 5 -  
NJU6823  
PAD COORDINATES 2  
Chip Size 22070µm x 2550µm (Chip Center 0µm x 0µm )  
PAD  
PAD  
No.  
PAD  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
No.  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
No.  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
302  
303  
304  
305  
306  
VSSH  
VSSH  
VSSH  
VSSH  
VSSH  
VSSH  
VSSH  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
VEE  
C1+  
C1+  
C1+  
C1+  
C1+  
C1+  
C1-  
4051.5 -1090.0 205  
4124.5 -1090.0 206  
4197.5 -1090.0 207  
4270.5 -1090.0 208  
4343.5 -1090.0 209  
4416.5 -1090.0 210  
4489.5 -1090.0 211  
4672.0 -1090.0 212  
4745.0 -1090.0 213  
4818.0 -1090.0 214  
4891.0 -1090.0 215  
4964.0 -1090.0 216  
5037.0 -1090.0 217  
5110.0 -1090.0 218  
5292.5 -1090.0 219  
5365.5 -1090.0 220  
5438.5 -1090.0 221  
5511.5 -1090.0 222  
5584.5 -1090.0 223  
5657.5 -1090.0 224  
5730.5 -1090.0 225  
5840.0 -1090.0 226  
5913.0 -1090.0 227  
5986.0 -1090.0 228  
6059.0 -1090.0 229  
6132.0 -1090.0 230  
6205.0 -1090.0 231  
6314.5 -1090.0 232  
6387.5 -1090.0 233  
6460.5 -1090.0 234  
6533.5 -1090.0 235  
6606.5 -1090.0 236  
6679.5 -1090.0 237  
6789.0 -1090.0 238  
6862.0 -1090.0 239  
6935.0 -1090.0 240  
7008.0 -1090.0 241  
7081.0 -1090.0 242  
7154.0 -1090.0 243  
7263.5 -1090.0 244  
7336.5 -1090.0 245  
7409.5 -1090.0 246  
7482.5 -1090.0 247  
7555.5 -1090.0 248  
7628.5 -1090.0 249  
7738.0 -1090.0 250  
7811.0 -1090.0 251  
7884.0 -1090.0 252  
7957.0 -1090.0 253  
8030.0 -1090.0 254  
8103.0 -1090.0 255  
C3-  
C3-  
8212.5 -1090.0  
8285.5 -1090.0  
8358.5 -1090.0  
8431.5 -1090.0  
8504.5 -1090.0  
8577.5 -1090.0  
8687.0 -1090.0  
8760.0 -1090.0  
8833.0 -1090.0  
8906.0 -1090.0  
8979.0 -1090.0  
9052.0 -1090.0  
9161.5 -1090.0  
9234.5 -1090.0  
9307.5 -1090.0  
9380.5 -1090.0  
9453.5 -1090.0  
9526.5 -1090.0  
9636.0 -1090.0  
9709.0 -1090.0  
9782.0 -1090.0  
9855.0 -1090.0  
9928.0 -1090.0  
10001.0 -1090.0  
10110.5 -1090.0  
10183.5 -1090.0  
10256.5 -1090.0  
10329.5 -1090.0  
10402.5 -1090.0  
10475.5 -1090.0  
10556.5 -1090.0  
10599.5 -1090.0  
10642.5 -1090.0  
10845.0 -881.5  
10845.0 -838.5  
10845.0 -795.5  
10845.0 -752.5  
10845.0 -709.5  
10845.0 -666.5  
10845.0 -623.5  
10845.0 -580.5  
10845.0 -537.5  
10845.0 -494.5  
10845.0 -451.5  
10845.0 -408.5  
10845.0 -365.5  
10845.0 -322.5  
10845.0 -279.5  
10845.0 -236.5  
10845.0 -193.5  
10845.0 -150.5  
DMY28  
DMY29  
DMY30  
DMY31  
DMY32  
DMY33  
DMY34  
COM63  
COM62  
COM61  
COM60  
COM59  
COM58  
COM57  
COM56  
COM55  
COM54  
COM53  
COM52  
COM51  
COM50  
DMY35  
DMY36  
DMY37  
DMY38  
DMY39  
DMY40  
COM49  
COM48  
COM47  
COM46  
COM45  
COM44  
COM43  
COM42  
COM41  
COM40  
COM39  
COM38  
COM37  
COM36  
COM35  
COM34  
COM33  
COM32  
COM31  
COM30  
COM29  
COM28  
COM27  
COM26  
10845.0 -107.5  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
10845.0  
-64.5  
-21.5  
21.5  
C3-  
C3-  
C3-  
64.5  
C3-  
107.5  
150.5  
193.5  
236.5  
279.5  
322.5  
365.5  
408.5  
451.5  
494.5  
537.5  
580.5  
623.5  
666.5  
709.5  
752.5  
795.5  
838.5  
881.5  
C4+  
C4+  
C4+  
C4+  
C4+  
C4+  
C4-  
C4-  
C4-  
C4-  
C4-  
C4-  
C5+  
C5+  
C5+  
C5+  
C5+  
C5+  
C5-  
10642.5 1085.0  
10599.5 1085.0  
10556.5 1085.0  
10513.5 1085.0  
10470.5 1085.0  
10427.5 1085.0  
10384.5 1085.0  
10341.5 1085.0  
10298.5 1085.0  
10255.5 1085.0  
10212.5 1085.0  
10169.5 1085.0  
10126.5 1085.0  
10083.5 1085.0  
10040.5 1085.0  
C5-  
C5-  
C5-  
C1-  
C5-  
C1-  
C5-  
C1-  
DMY7  
DMY8  
DMY9  
DMY10  
DMY11  
DMY12  
DMY13  
DMY14  
DMY15  
DMY16  
DMY17  
DMY18  
DMY19  
DMY20  
DMY21  
DMY22  
DMY23  
DMY24  
DMY25  
DMY26  
DMY27  
C1-  
C1-  
C2+  
C2+  
C2+  
C2+  
C2+  
C2+  
C2-  
9997.5  
9954.5  
9911.5  
9868.5  
9825.5  
9782.5  
9739.5  
9696.5  
9653.5  
9610.5  
9567.5  
9524.5  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
C2-  
C2-  
C2-  
C2-  
C2-  
C3+  
C3+  
C3+  
C3+  
C3+  
C3+  
- 6 -  
NJU6823  
PAD COORDINATES 3  
Chip Size 22070µm x 2550µm (Chip Center 0µm x 0µm )  
PAD  
PAD  
No.  
PAD  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
No.  
307  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326  
327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344  
345  
346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
No.  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
COM25  
COM24  
COM23  
COM22  
COM21  
COM20  
COM19  
COM18  
COM17  
COM16  
COM15  
COM14  
COM13  
COM12  
COM11  
COM10  
COM9  
9481.5 1085.0 358  
9438.5 1085.0 359  
9395.5 1085.0 360  
9352.5 1085.0 361  
9309.5 1085.0 362  
9266.5 1085.0 363  
9223.5 1085.0 364  
9180.5 1085.0 365  
9137.5 1085.0 366  
9094.5 1085.0 367  
9051.5 1085.0 368  
9008.5 1085.0 369  
8965.5 1085.0 370  
8922.5 1085.0 371  
8879.5 1085.0 372  
8836.5 1085.0 373  
8793.5 1085.0 374  
8750.5 1085.0 375  
8707.5 1085.0 376  
8664.5 1085.0 377  
8621.5 1085.0 378  
8578.5 1085.0 379  
8535.5 1085.0 380  
8492.5 1085.0 381  
8449.5 1085.0 382  
8406.5 1085.0 383  
8363.5 1085.0 384  
8320.5 1085.0 385  
8277.5 1085.0 386  
8234.5 1085.0 387  
8191.5 1085.0 388  
8148.5 1085.0 389  
8105.5 1085.0 390  
8062.5 1085.0 391  
8019.5 1085.0 392  
7976.5 1085.0 393  
7933.5 1085.0 394  
7890.5 1085.0 395  
7847.5 1085.0 396  
7804.5 1085.0 397  
7761.5 1085.0 398  
7718.5 1085.0 399  
7675.5 1085.0 400  
7632.5 1085.0 401  
7589.5 1085.0 402  
7546.5 1085.0 403  
7503.5 1085.0 404  
7460.5 1085.0 405  
7417.5 1085.0 406  
7374.5 1085.0 407  
7331.5 1085.0 408  
SEGB7  
SEGC7  
SEGA8  
7288.5 1085.0  
7245.5 1085.0  
7202.5 1085.0  
7159.5 1085.0  
SEGB24  
SEGC24  
SEGA25  
SEGB25  
SEGC25  
SEGA26  
SEGB26  
SEGC26  
SEGA27  
SEGB27  
SEGC27  
SEGA28  
SEGB28  
SEGC28  
SEGA29  
SEGB29  
SEGC29  
SEGA30  
SEGB30  
SEGC30  
SEGA31  
SEGB31  
SEGC31  
SEGA32  
SEGB32  
SEGC32  
SEGA33  
SEGB33  
SEGC33  
SEGA34  
SEGB34  
SEGC34  
SEGA35  
SEGB35  
SEGC35  
SEGA36  
SEGB36  
SEGC36  
SEGA37  
SEGB37  
SEGC37  
SEGA38  
SEGB38  
SEGC38  
SEGA39  
SEGB39  
SEGC39  
SEGA40  
SEGB40  
SEGC40  
SEGA41  
5095.5  
5052.5  
5009.5  
4966.5  
4923.5  
4880.5  
4837.5  
4794.5  
4751.5  
4708.5  
4665.5  
4622.5  
4579.5  
4536.5  
4493.5  
4450.5  
4407.5  
4364.5  
4321.5  
4278.5  
4235.5  
4192.5  
4149.5  
4106.5  
4063.5  
4020.5  
3977.5  
3934.5  
3891.5  
3848.5  
3805.5  
3762.5  
3719.5  
3676.5  
3633.5  
3590.5  
3547.5  
3504.5  
3461.5  
3418.5  
3375.5  
3332.5  
3289.5  
3246.5  
3203.5  
3160.5  
3117.5  
3074.5  
3031.5  
2988.5  
2945.5  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
SEGB8  
SEGC8  
SEGA9  
SEGB9  
7116.5  
1085.0  
7073.5 1085.0  
7030.5 1085.0  
6987.5 1085.0  
6944.5 1085.0  
6901.5 1085.0  
6858.5 1085.0  
6815.5 1085.0  
6772.5 1085.0  
6729.5 1085.0  
6686.5 1085.0  
6643.5 1085.0  
6600.5 1085.0  
6557.5 1085.0  
6514.5 1085.0  
6471.5 1085.0  
6428.5 1085.0  
6385.5 1085.0  
6342.5 1085.0  
6299.5 1085.0  
6256.5 1085.0  
6213.5 1085.0  
6170.5 1085.0  
6127.5 1085.0  
6084.5 1085.0  
6041.5 1085.0  
5998.5 1085.0  
5955.5 1085.0  
5912.5 1085.0  
5869.5 1085.0  
5826.5 1085.0  
5783.5 1085.0  
5740.5 1085.0  
5697.5 1085.0  
5654.5 1085.0  
SEGC9  
SEGA10  
SEGB10  
SEGC10  
SEGA11  
SEGB11  
SEGC11  
SEGA12  
SEGB12  
SEGC12  
SEGA13  
SEGB13  
SEGC13  
SEGA14  
SEGB14  
SEGC14  
SEGA15  
SEGB15  
SEGC15  
SEGA16  
SEGB16  
SEGC16  
SEGA17  
SEGB17  
SEGC17  
SEGA18  
SEGB18  
SEGC18  
SEGA19  
SEGB19  
SEGC19  
SEGA20  
SEGB20  
SEGC20  
SEGA21  
SEGB21  
SEGC21  
SEGA22  
SEGB22  
SEGC22  
SEGA23  
SEGB23  
SEGC23  
SEGA24  
COM8  
COM7  
COM6  
COM5  
COM4  
COM3  
COM2  
COM1  
COM0  
SEGSA0  
SEGSB0  
SEGSC0  
SEGA0  
SEGB0  
SEGC0  
SEGA1  
SEGB1  
SEGC1  
SEGA2  
SEGB2  
SEGC2  
SEGA2  
SEGB3  
SEGC3  
SEGA4  
SEGB4  
SEGC4  
SEGA5  
SEGB5  
SEGC5  
SEGA6  
SEGB6  
SEGC6  
SEGA7  
5611.5  
1085.0  
5568.5 1085.0  
5525.5 1085.0  
5482.5 1085.0  
5439.5 1085.0  
5396.5 1085.0  
5353.5 1085.0  
5310.5 1085.0  
5267.5 1085.0  
5224.5 1085.0  
5181.5 1085.0  
5138.5 1085.0  
- 7 -  
NJU6823  
PAD COORDINATES 4  
Chip Size 22070µm x 2550µm (Chip Center 0µm x 0µm )  
PAD  
PAD  
No.  
PAD  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
No.  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
No.  
562  
563  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
610  
611  
612  
SEGB41  
SEGC41  
SEGA42  
SEGB42  
SEGC42  
SEGA43  
SEGB43  
SEGC43  
SEGA44  
SEGB44  
SEGC44  
SEGA45  
SEGB45  
SEGC45  
SEGA46  
SEGB46  
SEGC46  
SEGA47  
SEGB47  
SEGC47  
SEGA48  
SEGB48  
SEGC48  
SEGA49  
SEGB49  
SEGC49  
SEGA50  
SEGB50  
SEGC50  
SEGA51  
SEGB51  
SEGC51  
SEGA52  
SEGB52  
SEGC52  
SEGA53  
SEGB53  
SEGC53  
SEGA54  
SEGB54  
SEGC54  
SEGA55  
SEGB55  
SEGC55  
SEGA56  
SEGB56  
SEGC56  
SEGA57  
SEGB57  
SEGC57  
SEGA58  
2902.5 1085.0  
2859.5 1085.0  
2816.5 1085.0  
2773.5 1085.0  
2730.5 1085.0  
2687.5 1085.0  
2644.5 1085.0  
2601.5 1085.0  
2558.5 1085.0  
2515.5 1085.0  
2472.5 1085.0  
2429.5 1085.0  
2386.5 1085.0  
2343.5 1085.0  
2300.5 1085.0  
2257.5 1085.0  
2214.5 1085.0  
2171.5 1085.0  
2128.5 1085.0  
2085.5 1085.0  
2042.5 1085.0  
1999.5 1085.0  
1956.5 1085.0  
1913.5 1085.0  
1870.5 1085.0  
1827.5 1085.0  
1784.5 1085.0  
1741.5 1085.0  
1698.5 1085.0  
1655.5 1085.0  
1612.5 1085.0  
1569.5 1085.0  
1526.5 1085.0  
1483.5 1085.0  
1440.5 1085.0  
1397.5 1085.0  
1354.5 1085.0  
1311.5 1085.0  
1268.5 1085.0  
1225.5 1085.0  
1182.5 1085.0  
1139.5 1085.0  
1096.5 1085.0  
1053.5 1085.0  
1010.5 1085.0  
967.5 1085.0  
924.5 1085.0  
881.5 1085.0  
838.5 1085.0  
795.5 1085.0  
752.5 1085.0  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
560  
561  
SEGB58  
SEGC58  
SEGA59  
SEGB59  
SEGC59  
SEGA60  
SEGB60  
SEGC60  
SEGA61  
SEGB61  
SEGC61  
SEGA62  
SEGB62  
SEGC62  
SEGA63  
SEGB63  
SEGC63  
SEGA64  
SEGB64  
SEGC64  
SEGA65  
SEGB65  
SEGC65  
SEGA66  
SEGB66  
SEGC66  
SEGA67  
SEGB67  
SEGC67  
SEGA68  
SEGB68  
SEGC68  
SEGA69  
SEGB69  
SEGC69  
SEGA70  
SEGB70  
SEGC70  
SEGA71  
SEGB71  
SEGC71  
SEGA72  
SEGB72  
SEGC72  
SEGA73  
SEGB73  
SEGC73  
SEGA74  
SEGB74  
SEGC74  
SEGA75  
709.5  
666.5  
623.5  
580.5  
537.5  
494.5  
451.5  
408.5  
365.5  
322.5  
279.5  
236.5  
193.5  
150.5  
107.5  
64.5  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
1085.0  
SEGB75  
SEGC75  
SEGA76  
SEGB76  
SEGC76  
SEGA77  
SEGB77  
SEGC77  
SEGA78  
SEGB78  
SEGC78  
SEGA79  
SEGB79  
SEGC79  
SEGA80  
SEGB80  
SEGC80  
SEGA81  
SEGB81  
SEGC81  
SEGA82  
SEGB82  
SEGC82  
SEGA83  
SEGB83  
SEGC83  
SEGA84  
SEGB84  
SEGC84  
SEGA85  
SEGB85  
SEGC85  
SEGA86  
SEGB86  
SEGC86  
SEGA87  
SEGB87  
SEGC87  
SEGA88  
SEGB88  
SEGC88  
SEGA89  
SEGB89  
SEGC89  
SEGA90  
SEGB90  
SEGC90  
SEGA91  
SEGB91  
SEGC91  
SEGA92  
-1483.5 1085.0  
-1526.5 1085.0  
-1569.5 1085.0  
-1612.5 1085.0  
-1655.5 1085.0  
-1698.5 1085.0  
-1741.5 1085.0  
-1784.5 1085.0  
-1827.5 1085.0  
-1870.5 1085.0  
-1913.5 1085.0  
-1956.5 1085.0  
-1999.5 1085.0  
-2042.5 1085.0  
-2085.5 1085.0  
-2128.5 1085.0  
-2171.5 1085.0  
-2214.5 1085.0  
-2257.5 1085.0  
-2300.5 1085.0  
-2343.5 1085.0  
-2386.5 1085.0  
-2429.5 1085.0  
-2472.5 1085.0  
-2515.5 1085.0  
-2558.5 1085.0  
-2601.5 1085.0  
-2644.5 1085.0  
-2687.5 1085.0  
-2730.5 1085.0  
-2773.5 1085.0  
-2816.5 1085.0  
-2859.5 1085.0  
-2902.5 1085.0  
-2945.5 1085.0  
-2988.5 1085.0  
-3031.5 1085.0  
-3074.5 1085.0  
-3117.5 1085.0  
-3160.5 1085.0  
-3203.5 1085.0  
-3246.5 1085.0  
-3289.5 1085.0  
-3332.5 1085.0  
-3375.5 1085.0  
-3418.5 1085.0  
-3461.5 1085.0  
-3504.5 1085.0  
-3547.5 1085.0  
-3590.5 1085.0  
-3633.5 1085.0  
21.5  
-21.5  
-64.5  
-107.5  
-150.5  
-193.5  
-236.5  
-279.5  
-322.5  
-365.5  
-408.5  
-451.5  
-494.5  
-537.5  
-580.5  
-623.5  
-666.5  
-709.5  
-752.5  
-795.5  
-838.5  
-881.5  
-924.5  
-967.5  
-1010.5 1085.0  
-1053.5 1085.0  
-1096.5 1085.0  
-1139.5 1085.0  
-1182.5 1085.0  
-1225.5 1085.0  
-1268.5 1085.0  
-1311.5 1085.0  
-1354.5 1085.0  
-1397.5 1085.0  
-1440.5 1085.0  
- 8 -  
NJU6823  
PAD COORDINATES 5  
Chip Size 22070µm x 2550µm (Chip Center 0µm x 0µm )  
PAD  
PAD  
No.  
PAD  
Terminal  
SEGB92  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
No.  
613  
614  
615  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
650  
651  
652  
653  
654  
655  
656  
657  
658  
659  
660  
661  
662  
663  
No.  
715  
716  
717  
718  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
760  
761  
762  
763  
764  
765  
-3676.5 1085.0  
664  
665  
666  
667  
668  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701  
702  
703  
704  
705  
706  
707  
708  
709  
710  
711  
712  
713  
714  
SEGB109  
SEGC109  
SEGA110  
SEGB110  
SEGC110  
SEGA111  
SEGB111  
SEGC111  
SEGA112  
SEGB112  
SEGC112  
SEGA113  
SEGB113  
SEGC113  
SEGA114  
SEGB114  
SEGC114  
SEGA115  
SEGB115  
SEGC115  
SEGA116  
SEGB116  
SEGC116  
SEGA117  
SEGB117  
SEGC117  
SEGA118  
SEGB118  
SEGC118  
SEGA119  
SEGB119  
SEGC119  
SEGA120  
SEGB120  
SEGC120  
SEGA121  
SEGB121  
SEGC121  
SEGA122  
SEGB122  
SEGC122  
SEGA123  
SEGB123  
SEGC123  
SEGA124  
SEGB124  
SEGC124  
SEGA125  
SEGB125  
SEGC125  
SEGA126  
-5869.5 1085.0  
-5912.5 1085.0  
-5955.5 1085.0  
-5998.5 1085.0  
-6041.5 1085.0  
-6084.5 1085.0  
-6127.5 1085.0  
-6170.5 1085.0  
-6213.5 1085.0  
-6256.5 1085.0  
-6299.5 1085.0  
-6342.5 1085.0  
-6385.5 1085.0  
-6428.5 1085.0  
-6471.5 1085.0  
-6514.5 1085.0  
-6557.5 1085.0  
-6600.5 1085.0  
-6643.5 1085.0  
-6686.5 1085.0  
-6729.5 1085.0  
-6772.5 1085.0  
-6815.5 1085.0  
-6858.5 1085.0  
-6901.5 1085.0  
-6944.5 1085.0  
-6987.5 1085.0  
-7030.5 1085.0  
-7073.5 1085.0  
-7116.5 1085.0  
-7159.5 1085.0  
-7202.5 1085.0  
-7245.5 1085.0  
-7288.5 1085.0  
-7331.5 1085.0  
-7374.5 1085.0  
-7417.5 1085.0  
-7460.5 1085.0  
-7503.5 1085.0  
-7546.5 1085.0  
-7589.5 1085.0  
-7632.5 1085.0  
-7675.5 1085.0  
-7718.5 1085.0  
-7761.5 1085.0  
-7804.5 1085.0  
-7847.5 1085.0  
-7890.5 1085.0  
-7933.5 1085.0  
-7976.5 1085.0  
-8019.5 1085.0  
SEGB126  
SEGC126  
SEGA127  
SEGB127  
SEGC127  
SEGSA1  
SEGSB1  
SEGSC1  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COM80  
COM81  
COM82  
COM83  
COM84  
COM85  
COM86  
COM87  
COM88  
COM89  
COM90  
COM91  
COM92  
COM93  
COM94  
COM95  
COM96  
COM97  
COM98  
COM99  
COM100  
COM101  
COM102  
COM103  
COM104  
COM105  
COM106  
-8062.5 1085.0  
-8105.5 1085.0  
-8148.5 1085.0  
-8191.5 1085.0  
-8234.5 1085.0  
-8277.5 1085.0  
-8320.5 1085.0  
-8363.5 1085.0  
-8406.5 1085.0  
-8449.5 1085.0  
-8492.5 1085.0  
-8535.5 1085.0  
-8578.5 1085.0  
-8621.5 1085.0  
-8664.5 1085.0  
-8707.5 1085.0  
-8750.5 1085.0  
-8793.5 1085.0  
-8836.5 1085.0  
-8879.5 1085.0  
-8922.5 1085.0  
-8965.5 1085.0  
-9008.5 1085.0  
-9051.5 1085.0  
-9094.5 1085.0  
-9137.5 1085.0  
-9180.5 1085.0  
-9223.5 1085.0  
-9266.5 1085.0  
-9309.5 1085.0  
-9352.5 1085.0  
-9395.5 1085.0  
-9438.5 1085.0  
-9481.5 1085.0  
-9524.5 1085.0  
-9567.5 1085.0  
-9610.5 1085.0  
-9653.5 1085.0  
-9696.5 1085.0  
-9739.5 1085.0  
-9782.5 1085.0  
-9825.5 1085.0  
-9868.5 1085.0  
-9911.5 1085.0  
-9954.5 1085.0  
-9997.5 1085.0  
-10040.5 1085.0  
-10083.5 1085.0  
-10126.5 1085.0  
-10169.5 1085.0  
-10212.5 1085.0  
SEGC92 -3719.5 1085.0  
SEGA93  
SEGB93  
-3762.5 1085.0  
-3805.5 1085.0  
SEGC93 -3848.5 1085.0  
SEGA94  
SEGB94  
-3891.5 1085.0  
-3934.5 1085.0  
SEGC94 -3977.5 1085.0  
SEGA95  
SEGB95  
-4020.5 1085.0  
-4063.5 1085.0  
SEGC95 -4106.5 1085.0  
SEGA96  
SEGB96  
-4149.5 1085.0  
-4192.5 1085.0  
SEGC96 -4235.5 1085.0  
SEGA97  
SEGB97  
-4278.5 1085.0  
-4321.5 1085.0  
SEGC97 -4364.5 1085.0  
SEGA98  
SEGB98  
-4407.5 1085.0  
-4450.5 1085.0  
SEGC98 -4493.5 1085.0  
SEGA99  
SEGB99  
-4536.5 1085.0  
-4579.5 1085.0  
SEGC99 -4622.5 1085.0  
SEGA100 -4665.5 1085.0  
SEGB100 -4708.5 1085.0  
SEGC100 -4751.5 1085.0  
SEGA101 -4794.5 1085.0  
SEGB101 -4837.5 1085.0  
SEGC101 -4880.5 1085.0  
SEGA102 -4923.5 1085.0  
SEGB102 -4966.5 1085.0  
SEGC102 -5009.5 1085.0  
SEGA103 -5052.5 1085.0  
SEGB103 -5095.5 1085.0  
SEGC103 -5138.5 1085.0  
SEGA104 -5181.5 1085.0  
SEGB104 -5224.5 1085.0  
SEGC104 -5267.5 1085.0  
SEGA105 -5310.5 1085.0  
SEGB105 -5353.5 1085.0  
SEGC105 -5396.5 1085.0  
SEGA106 -5439.5 1085.0  
SEGB106 -5482.5 1085.0  
SEGC106 -5525.5 1085.0  
SEGA107 -5568.5 1085.0  
SEGB107 -5611.5 1085.0  
SEGC107 -5654.5 1085.0  
SEGA108 -5697.5 1085.0  
SEGB108 -5740.5 1085.0  
SEGC108 -5783.5 1085.0  
SEGA109 -5826.5 1085.0  
- 9 -  
NJU6823  
PAD COORDINATES 6  
Chip Size 22070µm x 2550µm (Chip Center 0µm x 0µm )  
PAD  
PAD  
No.  
817  
PAD  
Terminal  
X(µm)  
Y(µm)  
Terminal  
DMY71  
X(µm)  
Y(µm)  
Terminal  
X(µm)  
Y(µm)  
No.  
766  
767  
768  
769  
770  
771  
772  
773  
774  
775  
776  
777  
778  
779  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789  
790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
810  
811  
812  
813  
814  
815  
816  
No.  
COM107 -10255.5 1085.0  
COM108 -10298.5 1085.0  
COM109 -10341.5 1085.0  
-10845.0 -881.5  
COM110  
COM111  
COM112  
COM113  
DMY41  
DMY42  
DMY43  
DMY44  
DMY45  
DMY46  
COM114  
COM115  
COM116  
COM117  
COM118  
COM119  
-10384.5 1085.0  
-10427.5 1085.0  
-10470.5 1085.0  
-10513.5 1085.0  
-10556.5 1085.0  
-10599.5 1085.0  
-10642.5 1085.0  
-10845.0 881.5  
-10845.0 838.5  
-10845.0 795.5  
-10845.0 752.5  
-10845.0 709.5  
-10845.0 666.5  
-10845.0 623.5  
-10845.0 580.5  
-10845.0 537.5  
COM120 -10845.0 494.5  
COM121 -10845.0 451.5  
COM122 -10845.0 408.5  
COM123 -10845.0 365.5  
COM124 -10845.0 322.5  
COM125 -10845.0 279.5  
COM126 -10845.0 236.5  
COM127 -10845.0 193.5  
DMY47  
DMY48  
DMY49  
DMY50  
DMY51  
DMY52  
DMY53  
DMY54  
DMY55  
DMY56  
DMY57  
DMY58  
DMY59  
DMY60  
DMY61  
DMY62  
DMY63  
DMY64  
DMY65  
DMY66  
DMY67  
DMY68  
DMY69  
DMY70  
-10845.0 150.5  
-10845.0 107.5  
-10845.0  
-10845.0  
64.5  
21.5  
-10845.0 -21.5  
-10845.0 -64.5  
-10845.0 -107.5  
-10845.0 -150.5  
-10845.0 -193.5  
-10845.0 -236.5  
-10845.0 -279.5  
-10845.0 -322.5  
-10845.0 -365.5  
-10845.0 -408.5  
-10845.0 -451.5  
-10845.0 -494.5  
-10845.0 -537.5  
-10845.0 -580.5  
-10845.0 -623.5  
-10845.0 -666.5  
-10845.0 -709.5  
-10845.0 -752.5  
-10845.0 -795.5  
-10845.0 -838.5  
- 10 -  
NJU6823  
BLOCK DIAGRAM  
VSSH  
VSS  
VSSA  
VVDDA  
VDD  
Segment Driver  
Common Driver  
5
VLCD, V1 -V4  
Gradation Circuit  
Data Latch Circuit  
Shift Register  
V1A1, V1A2,  
V4A1, V4A2  
4
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
Voltage  
booster  
Voltage  
regulator  
VOUT  
VEE  
Display Data RAM  
(DD RAM)  
128x128x(4+4+4)bit  
VREF  
VBA  
VREG  
D15  
Column Address Decoder  
Column Address Counter  
Column Address Register  
D14  
FR  
D13  
RAM  
Interface  
Display  
Timing  
Generator  
FLM  
CL  
D12  
D11  
D10  
D9  
CLK  
D8  
OSC2  
OSC1  
Oscillator  
D7  
D6  
D5  
D4/SPOL  
D3/SMODE  
D2  
Instruction  
Decoder  
Register Read  
Control  
Bus Holder  
Pole Control  
Internal Bus  
D1/SDA  
D0/SCL  
MPU Interface  
CSb RS  
RDb WRb P/S  
SEL68 RESb  
- 11 -  
NJU6823  
POWER SUPPLY CIRCUITS BLOCK DIAGRAM  
Reference  
+
-
+
-
Voltage  
VBA  
VLCD  
Generator  
+
-
Voltage regulator  
V1  
VREG  
VREF  
+
-
+
-
V2  
Gain  
+
-
V3  
Control  
(1x-7x)  
E.V.R  
1/2VREG  
+
-
V4  
EVR register  
V1/V4 Bias Voltage  
Adjustment  
Boost level register  
V1A1 V1A2 V4A1 V4A2  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
Voltage  
Booster  
VOUT  
VEE  
- 12 -  
NJU6823  
TERMINAL DESCRIPTION 1  
No.  
Symbol  
VDD  
I/O  
Function  
64~70  
83~89  
154~160  
8,9,  
Power  
Power  
Power  
Power  
Power supply for logic circuits  
VSS  
GND for logic circuits  
VSSH  
VDDA  
GND for high voltage circuits  
This terminal is internally connected to the VDD level.  
This terminal is used to fix the selection terminals to the VDD  
level.  
28,29,  
92,93,  
100,101  
Note) Do not use this terminal for a main power supply.  
This terminal is internally connected to the VSS level.  
This terminal is used to fix the selection terminals to the VSS  
level.  
4,5,  
VSSA  
Power  
12,13,  
46,47,  
96,97,  
Note) Do not use this terminal for a main GND.  
104,105  
106~111  
112~117  
118~123  
124~129  
130~135  
VLCD  
V1  
Power/O LCD driving voltages  
When the internal voltage booster is not used, external LCD  
V2  
driving voltages (V1 to V4 and VLCD) must be supplied onto these  
terminals. The external voltages must be maintained with the  
following relation.  
V3  
V4  
VSS<V4<V3<V2<V1<VLCD  
When the internal voltage booster is used, the LCD driving  
voltages (V1 to V4 and VLCD) are enabled by the “Power control”  
instruction. The capacitors between the VSS and these terminals  
are necessary.  
175~180  
181~186  
187~192  
193~198  
199~204  
205~210  
211~216  
217~222  
223~228  
229~234  
148~153  
142~147  
168~174  
C1+  
C1-  
O
O
O
O
O
Capacitor connection terminals for the voltage booster  
C2+  
C2-  
Capacitor connection terminals for the voltage booster  
Capacitor connection terminals for the voltage booster  
Capacitor connection terminals for the voltage booster  
Capacitor connection terminals for the voltage booster  
C3+  
C3-  
C4+  
C4-  
C5+  
C5-  
VBA  
VREF  
VEE  
O
I
Power  
Output of the reference-voltage generator  
Input of the voltage regulator  
Input of the voltage booster  
This terminal is normally connected to the VDD level.  
161~167  
VOUT  
Power/O Output of the voltage booster  
Input for high voltage circuits in using external power supply  
136~141  
90,91  
VREG  
V1A1  
V1A2  
V4A1  
V4A2  
RESb  
O
I
Output of the voltage regulator  
V1 bias voltage adjustment terminal  
94,95  
98,99  
I
I
I
V4 bias voltage adjustment terminal  
102,103  
14,15  
Reset  
Active “0”  
6,7  
SEL68  
MPU interface type select  
SEL86  
Status  
H
L
68 series  
80 series  
- 13 -  
NJU6823  
TERMINAL DESCRIPTION 2  
No.  
Symbol  
D0/SCL  
I/O  
I/O  
Function  
30,31  
Parallel interface:  
D7 to D0 : 8-bit bi-directional bus  
In the parallel interface mode (P/S=“1”), these terminals  
connect to 8-bit bi-directional MPU bus.  
32,33  
36,37  
D1/SDA  
I/O  
I/O  
Serial interface:  
SDA : serial data  
D3/SMODE  
SCL : serial clock  
SMODE : 3-/4-line serial interface mode selection  
SPOL : RS polarity selection (in the 3-line serial interface mode)  
38,39  
D4/SPOL  
I/O  
I/O  
In the 3-/4-line serial interface mode (P/S=“0”), the D0 terminal is  
assigned to the SCL and the D1 terminal to the SDA.  
In the 3-line serial interface mode, the D4 terminal is assigned to  
the SPOL.  
34,35  
40,41  
42,43  
44,45  
D2  
D5  
D6  
D7  
Serial data on the SDA is fetched at the rising edge of the SCL  
signal in the order of the D7, D6…D0, and the fetched data is  
converted into 8-bit parallel data at the falling edge of the 8th  
SCL signal.  
The SCL signal must be set to “0” after data transmissions or  
during non-access.  
48,49  
50,51  
52,53  
54,55  
56,57  
58,59  
60,61  
62,63  
17,18  
D8  
D9  
I/O  
8-bit bi-directional bus  
In the 16-bit data bus mode, these terminals are assigned to the  
upper 8-bit data bus.  
D10  
D11  
D12  
D13  
D14  
D15  
In the serial interface mode or 8-bit data bus mode of the parallel  
interface, these terminals must be fixed to “1” or “0”.  
I
I
Chip select  
CSb  
Active “0”  
20,21  
Resister select  
RS  
This signal distinguishes transferred data as an instruction or  
display data as follows.  
RS  
Distinct.  
H
L
Instruction  
Display data  
26,27  
23,24  
I
I
80 series MPU interface (P/S=“1”, SEL68=“0”)  
RDb signal. Active “0”.  
RDb (E)  
68 series MPU interface (P/S=“1”, SEL68=“1”)  
Enable signal. Active “1”.  
80 series MPU interface (P/S=“1”, SEL68=“0”)  
WRb signal. Active “0”.  
WRb (R/W)  
68 series MPU interface (P/S=“1”, SEL68=“1”)  
R/W signal.  
R/W  
Status  
H
Read  
L
Write  
- 14 -  
NJU6823  
TERMINAL DESCRIPTION 3  
No.  
10,11  
Symbol  
P/S  
I/O  
I
Function  
Parallel / serial interface mode selection  
Chip  
Data/  
Read/Writ  
e
RDb, WRb  
P/S  
Data  
Serial clock  
-
Select  
Instruction  
H
L
CSb  
RS  
D0 ~ D7  
CSb  
RS  
SDA (D1)  
Write only  
SCL (D0)  
Since the D15 to D5 and D2 terminals are in the high impedance in the  
serial inter face mode (P/S=”0”), they must be fixed to “1” or “0”. The  
RDb and WRb terminals also must be “1” or “0”.  
71,72  
CL  
O
This terminal must be opened.  
73,74  
75,76  
77,78  
FLM  
FR  
O
O
O
This terminal must be opened.  
This terminal must be opened.  
CLK  
This terminal must be opened.  
79,80  
OSC1  
I
OSC  
81,82  
OSC2  
O
When the internal oscillator clock is used, OSC1 terminal must be  
fixed to “1” or “0”, and the OSC2 terminal must be opened. When the  
oscillation frequency from the internal oscillator is adjusted by an  
external resistor between OSC1 terminal and OSC2.  
When an external oscillator is used, external clock is input to the  
OSC1 terminal or an external resistor is connected between the OSC1  
and OSC2 terminals.  
- 15 -  
NJU6823  
TERMINAL DESCRIPTION 4  
No.  
336~719  
Symbol  
I/O  
O
Function  
SEGA0 ~ SEGA127  
,
Segment output  
SEGB0 ~ SEGB127  
,
SEGC0 ~ SEGC127  
REV Mode  
Turn-off  
Turn-on  
0
1
1
0
Normal  
Reverse  
These terminals output LCD driving waveforms in accordance  
with the combination of the FR signal and display data.  
In the B/W mode  
FR signal  
Display data  
Normal display mode  
V2  
VLCD  
V2  
V 3  
VSS  
V3  
Reverse  
mode  
display  
VLCD  
VSS  
333,720  
334,721  
335,722  
332~283,  
276~263,  
723~772,  
779~792  
SEGSA0, SEGSA1  
SEGSB0, SEGSB1  
SEGSC0, SEGSC1  
COM0 ~ COM127  
O
O
Icon segment output terminal  
These terminals are assigned at both edge of normal segment  
output terminals line for out line frame display.  
Common output  
These terminals output LCD driving waveforms in accordance  
with the combination of the FR signal and scanning data.  
Data  
H
FR  
H
H
L
Output level  
VSS  
V1  
L
H
VLCD  
V4  
L
L
(Terminal No. 1~3,16,19,22,25,235~262,277~282,773~778,793~817 are dummy.)  
- 16 -  
NJU6823  
Functional Description  
(1) MPU Interface  
(1-1) Selection of parallel / serial interface mode  
The P/S terminal is used to select parallel or serial interface mode as shown in the following table. In the  
serial interface mode, it is not possible to read out display data from the DDRAM and status from the  
internal registers.  
Table1  
WRb  
WRb  
-
P/S  
H
P/S mode  
Parallel I/F  
Serial I/F  
CSb  
CSb  
CSb  
RS  
RS  
RS  
RDb  
RDb  
-
SEL68  
SEL68  
-
SDA  
SDA  
SCL  
SCL  
Data  
D7-D0 (D15-D0)  
L
-
Note 1) “ -” : Fix to “1” or “0”.  
(1-2) Selection of MPU interface type  
In the parallel interface mode, the SEL68 terminal is used to select 68- or 80-series MPU interface type  
as shown in the following table.  
Table2  
WRb  
R/W  
WRb  
SEL68  
MPU type  
68 series MPU  
80 series MPU  
CSb  
CSb  
CSb  
RS  
RS  
RS  
RDb  
E
RDb  
Data  
D7-D0 (D15-D0)  
D7-D0 (D15-D0)  
H
L
(1-3) Data distinction  
In the parallel interface mode, the combination of RS, RDb, and WRb (R/W) signals distinguishes  
transferred data between the LSI and MPU as instruction or display data, as shown in the following table.  
Table3  
68 series  
80 series  
Function  
RS  
RDb  
WRb  
R/W  
Read out instruction data  
Write instruction data  
Read out display data  
Write display data  
H
H
L
H
L
H
L
H
L
L
H
H
L
L
L
H
(1-4) Selection of serial interface mode  
In the serial interface mode, the SMODE terminal is used to select the 3- or 4-line serial interface mode  
as shown in the following table.  
Table4  
SMODE  
Serial interface mode  
H
L
3-line  
4-line  
- 17 -  
NJU6823  
(1-5) 4-line serial interface mode  
In the 4-line serial interface mode, when the chip select is active (CSb=“0”), the SDA and the SCL are  
enabled. When the chip select is not active (CSb=“1”), the SDA and the SCL are disabled and the internal  
shift register and the counter are being initialized. The 8-bit serial data on the SDA is fetched at the rising  
edge of the SCL signal (serial clock) in order of the D7, D6…D0, and the fetched data is converted into the  
8-bit parallel data at the rising edge of the 8th SCL signal.  
In the 4-line serial interface mode, the transferred data on the SDA is distinguished as display data or  
instruction data in accordance with the condition of the RS signal.  
Table5  
RS  
H
L
Data distinction  
Instruction data  
Display data  
Since the serial interface operation is sensitive to external noises, the SCL should be set to “0” after data  
transmissions or during non-access. To release a mal-function caused by the external noises, the chip-  
selected status should be released (CSb=“1”) after each of the 8-bit data transmissions. The following  
figure illustrates the interface timing for the 4-line serial interface operation.  
CSb  
RS  
VALID  
D0  
SDA  
D7  
1
D6  
2
D5  
3
D4  
4
D3  
5
D2  
D1  
SCL  
6
7
8
Fig1 4-line serial interface timing  
(1-6) 3-line serial interface mode  
In the 3-line serial interface mode, when the chip select is active (CSb=“0”), the SDA and SCL are  
enabled. When the chip select is not active (CSb=“1”), the SDA and SCL are disabled and the internal shift  
register and counter are being initialized. 9-bit serial data on the SDA is fetched at the rising edge of the  
SCL signal in order of the RS, D7, D6…D0, and the fetched data is converted into the 9-bit parallel data at  
the rising edge of the 9th SCL signal.  
In the 3-line serial interface mode, data on the SDA is distinguished as display data or instruction data in  
accordance with the condition of the RS bit of the SDA data and the status of the SPOL, as follows.  
Table6  
SPOL=L  
Data distinction  
SPOL=H  
Data distinction  
RS  
L
H
RS  
L
H
Display data  
Instruction data  
Instruction data  
Display data  
- 18 -  
NJU6823  
Since the serial interface operation is sensitive to external noises, the SCL must be set to “0” after data  
transmissions or during non-access. To release a mal-function caused by the external noises, the chip-  
selected status should be released (CSb=“1”) after each of 9-bit data transmissions. The following figure  
illustrates the interface timing of the 3-line serial interface operation.  
CSb  
SDA  
SCL  
RS  
1
D7  
2
D6  
D5  
4
D4  
5
D3  
D2  
D1  
D0  
3
6
7
8
9
Fig2 3-line serial interface timing  
- 19 -  
NJU6823  
(2) Access to the DDRAM  
When the CSb signal is ”0”, the transferred data from MPU is written into the DDRAM or instruction register  
in accordance with the condition of the RS signal.  
When the RS signal is “1”, the transferred data is distinguished as display data. After the “column address”  
and “row address” instructions are executed, the display data can be written into the DDRAM by the “display  
data write” instruction. The display data is written at the rising edge of the WRb signal in the 80 series MPU  
mode, or at the falling edge of the E signal in the 68 series MPU mode.  
Table6  
RS  
L
H
Data  
Display RAM Data  
Internal Command Register  
In the sequence of the “display data read” operation, the transferred data from MPU is temporarily held in the  
internal bus-holder, then transferred to the internal data-bus. When the “display data read” operation is  
executed just after the “column address” and “row address” instructions or “display data write” instruction,  
unexpected data on the bus-holder is read out at the 1st execution, then the data of designated DDRAM  
address is read out from the 2nd execution. For this reason, a dummy read cycle must be executed to avoid  
the unexpected 1st data read.  
Display data write operation  
n
n+1  
n+2  
n+3  
n+4  
D0 to D15  
WRb  
n
n+1  
n+2  
n+3  
n+4  
Bus Holder  
WRb  
Display data read operation  
WRb  
D0 to D7(D0 to D15)  
n
n
n+1  
Data Read  
n+1 Address n+2 Address  
n+2  
Data Read  
Address Set  
n
Dummy  
Read  
Data Read  
n Address  
RDb  
Fig3  
Note) In the16-bit data bus mode, instruction data must be 16-bit as well as the display data.  
- 20 -  
NJU6823  
(3) Access to the instruction register  
Each instruction resisters is assigned to each address between 0H and FH, and the content of the instruction  
register can be read out by the combination of the “Instruction resister address” and ”Instruction resister read”.  
WRb  
M
m
N
n
D0 to D7  
RDb  
Instruction resister  
Instruction resister Instruction resister Instruction resister  
address set  
contents read  
address set  
contents read  
Fig4  
(4) 8-/16-bit data bus length for display data (in the parallel interface mode)  
The 8- or 16-bit data bus length for display data is determined by the “WLS” of the “Data bus length”  
instruction.  
In the 16-bit data bus mode, instruction data must be 16-bit data (D15 to D0) as well as display data. However,  
for the access to the instruction register, the only lower 8-bit data (D7 to D0) of the 16-bit data is valid. For the  
access to the DDRAM, all of the 16-bit data (D15 to D0) is valid.  
Table8  
WLS  
L
H
Data bus length mode  
8-bit  
16-bit  
(5) Initial display line register  
The initial display line resister specifies the line address, corresponding to the initial COM line, by the “Initial  
display line” instruction. The initial COM line signifies the common driver, starting scanning the display data in  
the DDRAM, and specified by the “Initial COM line” instruction.  
The line address, established in the initial display line resister, is preset into the line counter whenever the  
FLM signal becomes “1”. At the rising edge of the CL signal, the line counter is counted-up and addressed 384-  
bit display data corresponding to the counted-up line address, is latched into the data latch circuit. At the falling  
edge of the CL signal, the latched data outputs to the segment drivers.  
- 21 -  
NJU6823  
(6) DDRAM mapping  
The DDRAM is capable of 1,536-bit (12-bit x 128-segment) for the column address and 128-bit for the row  
address.  
In the gradation mode, each pixel for RGB corresponds to successive 3-segment drivers, and each segment  
driver has 16-gradation. Therefore, the LSI can drive up to 128x128 pixels in 4096-color display (16-gradation x  
16-gradation x 16-gradation).  
In the 8-bit data bus length mode  
column-address  
0H  
1H  
5bit  
FEH  
7bit  
FFH  
5bit  
0 H  
7bit  
row-address  
7FH  
0 H  
7bit  
5bit  
7bit  
5bit  
column-address  
column-address  
column-address  
0H  
4bit  
1H  
8bit  
FEH  
4bit  
FFH  
8bit  
ABS=’1’  
row-address  
7FH  
0 H  
4bit  
8bit  
4bit  
8bit  
0H  
8bit  
1H  
8bit  
BEH  
8bit  
BFH  
8bit  
HSW=’1’  
row-address  
7FH  
0 H  
8bit  
8bit  
8bit  
8bit  
0H  
8bit  
1H  
8bit  
7EH  
8bit  
7FH  
8bit  
C256=’1’  
row-address  
7FH  
8bit  
8bit  
8bit  
8bit  
Fig5  
- 22 -  
NJU6823  
In the 16-bit data bus length mode  
column-address  
0H  
7FH  
12bit  
0 H  
12bit  
row-address  
7FH  
12bit  
12bit  
Fig6  
In the B&W mode, only MSB data from each 4-bit display data group in the DDRAM is used. Therefore, 384 x  
128 pixels in the B&W and 128 x 128 pixels in the 8-gradation are available.  
The range of the column address varies depending on data bus length. The range between 00H and FFH is  
used in the 8-bit data bus length and the range between 00H and 7FH is in the 16-bit data bus length.  
The increments for the column address and row address are set to the auto-increment mode by  
programming the “AXI” and “AYI” registers of the “Increment control” instruction. In this mode, the contents of  
the column address and row address counters automatically increment whenever the DDRAM is accessed.  
The column address and row address counters, independent of the line counter. They are used to designate  
the column and row addresses for the display data transferred from MPU. On the other hand, the line counter is  
used to generate the line address, and output display data to the segment drivers, being synchronized with the  
display control timing of the FLM and CL signals.  
- 23 -  
NJU6823  
REF  
SWAP  
WLS  
ABS  
HSW  
REF  
256  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
WLS  
ABS  
HSW  
REF  
256  
A3  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
- 24 -  
NJU6823  
REF  
SWAP  
WLS  
ABS  
HSW  
REF  
256  
WLS  
ABS  
HSW  
REF  
256  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
A3  
A2  
A1  
A0  
B3  
B2  
B1  
B0  
C3  
C2  
C1  
C0  
- 25 -  
NJU6823  
(7) Window addressing mode  
In addition to the above usual DDRAM addressing, it is possible to access some part of DDRAM in using the  
window addressing mode, in which the start and end points are designated. The start point is determined by the  
“column address” and “row address” instructions, and the end point is determined by the “Window end column  
address” and “Window end row address” instructions, The setting example of the window addressing is listed,  
as follows.  
1. Set WIN=1, AXI=1 and AYI=1 by the “Increment control” instruction  
2. Set the start point by the “column address” and “row address” instructions  
3. Set the end point by the “Window end column address” and “Window end row address” instructions  
4. Enable to access to the DDRAM in the window addressing mode  
In the window addressing mode (WIN=1, AXI=1, AYI=1), the read-modify-write operation is available by  
setting “0” to the “AIM” register of the ”Increment control” instruction.  
And in the window addressing mode, the following start and end point must be maintained to abide a  
malfunction.  
AX (column address of start point) < EX (column address of end point) < Maximum of column address  
AY (row address of start point) < EY (row address of end point) < Maximum of row address  
column address  
(X, Y)  
Start point  
End point  
Window display area  
(X, Y)  
Whole DDRAM area  
Fig7  
(8) Reverse display ON/OFF  
The “Reverse display ON/OFF” function is used to reverse the display data without changing the contents of  
the DDRAM.  
Table9  
REV  
Display  
Normal  
DDRAM data Display data  
0
1
0
1
0
1
1
0
0
1
Reverse  
(9) Segment direction  
The “Segment direction” function is used to reverse the assignment for the segment drivers and column  
address, and it is possible to reduce the restrictions for the placement of the LSI on the LCD modules.  
- 26 -  
NJU6823  
(10)The relationship among the DDRAM column address, display data and segment drivers  
In the color mode, and 16-bit data bus mode  
HSW ABS REF SWAP  
Column address / bit / segment assign  
*
*
0
0
0
1
0
1
X=00H  
X=7FH  
ꢂꢃ  
ꢂꢃ  
X=7FH  
X=00H  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
HSW ABS REF SWAP  
Column address / bit / segment assign  
*
*
0
0
0
1
1
0
X=00H  
X=7FH  
ꢂꢃ  
ꢂꢃ  
X=7FH  
X=00H  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
HSW ABS REF SWAP  
Column address / bit / segment assign  
*
*
1
1
0
1
0
1
X=00H  
X=7FH  
ꢂꢃ  
ꢂꢃ  
X=7FH  
X=00H  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
HSW ABS REF SWAP  
Column address / bit / segment assign  
*
*
1
1
0
1
1
0
X=00H  
X=7FH  
ꢂꢃ  
ꢂꢃ  
X=7FH  
X=00H  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
- 27 -  
NJU6823  
In the color mode, and 8-bit data bus mode  
HSW ABS REF SWAP  
Column address / bit / segment assign  
0
0
0
0
0
1
0
1
X=00H  
X=FEH  
X=01H  
X=FFH  
ꢂꢃ  
ꢂꢃ  
X=FEH  
X=00H  
X=FFH  
X=01H  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
HSW ABS REF SWAP  
Column address / bit / segment assign  
0
0
0
0
0
1
1
0
X=00H  
X=FEH  
X=01H  
X=FFH  
ꢂꢃ  
ꢂꢃ  
X=FEH  
X=00H  
X=FFH  
X=01H  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
HSW ABS REF SWAP  
Column address / bit / segment assign  
0
0
1
1
0
1
0
1
X=00H  
X=01H  
X=FFH  
ꢂꢃ  
ꢂꢃ  
X=FEH  
X=00H  
X=FFH  
X=FEH  
X=01H  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
HSW ABS REF SWAP  
Column address / bit / segment assign  
0
0
1
1
0
1
1
0
X=00H  
X=FEH  
X=01H  
X=FFH  
ꢂꢃ  
ꢂꢃ  
X=FEH  
X=00H  
X=FFH  
X=01H  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
- 28 -  
NJU6823  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
SEGA  
0
SEGC  
0
SEGC  
0
SEGA  
0
Palette A  
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
Palette A  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEGB  
0
SEGB  
0
SEGB  
0
SEGB  
0
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
SEGC  
0
SEGA  
0
SEGA  
0
SEGC  
0
SEGA  
1
SEGC  
1
SEGC  
1
SEGA  
1
SEGB  
1
SEGB  
1
SEGB  
1
SEGB  
1
SEGC  
1
SEGA  
1
SEGA  
1
SEGC  
1
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEGA  
126  
SEGC  
126  
SEGC  
126  
SEGA  
126  
Palette A  
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
Palette A  
Palette B  
Palette C  
SEGB  
126  
SEGB  
126  
SEGB  
126  
SEGB  
126  
SEGC  
126  
SEGA  
126  
SEGA  
126  
SEGC  
126  
SEGA  
127  
SEGC  
127  
SEGC  
127  
SEGA  
127  
SEGB  
127  
SEGB  
127  
SEGB  
127  
SEGB  
127  
SEGC  
127  
SEGA  
127  
SEGA  
127  
SEGC  
127  
- 29 -  
NJU6823  
In the color mode, 8-bit data bus mode, and C256 mode (C256=1)  
HSW ABS REF SWAP  
Column address / bit / segment assign  
*
*
*
*
0
1
0
1
X=00H  
X=7FH  
ꢂꢃ  
ꢂꢃ  
X=7FH  
X=00H  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
HSW ABS REF SWAP  
Column address / bit / segment assign  
*
*
*
*
0
1
1
0
X=00H  
X=7FH  
ꢂꢃ  
ꢂꢃ  
X=7FH  
X=00H  
ꢂꢃ  
ꢂꢃ  
ꢂꢃ  
- 30 -  
NJU6823  
In the B&W mode, and 16-bit data bus mode  
HSW ABS REF SWAP  
Column address / bit / segment assign  
*
*
0
0
0
1
0
1
X=00H  
X=7FH  
ꢂꢃ  
ꢂꢃ  
X=7FH  
X=00H  
ꢂꢃ  
ꢂꢃ  
HSW ABS REF SWAP  
Column address / bit / segment assign  
*
*
0
0
0
1
1
0
X=00H  
X=7FH  
ꢂꢃ  
ꢂꢃ  
X=7FH  
X=00H  
ꢂꢃ  
ꢂꢃ  
HSW ABS REF SWAP  
Column address / bit / segment assign  
*
*
1
1
0
1
0
1
X=00H  
X=7FH  
ꢂꢃ  
ꢂꢃ  
X=7FH  
X=00H  
ꢂꢃ  
ꢂꢃ  
HSW ABS REF SWAP  
Column address / bit / segment assign  
*
*
1
1
0
1
1
0
X=00H  
X=7FH  
ꢂꢃ  
ꢂꢃ  
X=7FH  
X=00H  
ꢂꢃ  
ꢂꢃ  
- 31 -  
NJU6823  
In the B&W mode, and 8-bit data bus mode  
HSW ABS REF SWAP  
Column address / bit / segment assign  
0
0
0
0
0
1
0
1
X=00H  
X=FEH  
X=01H  
X=FFH  
ꢂꢃ  
ꢂꢃ  
X=FEH  
X=00H  
X=FFH  
X=01H  
ꢂꢃ  
ꢂꢃ  
HSW ABS REF SWAP  
Column address / bit / segment assign  
0
0
0
0
1
1
0
X=00H  
X=FEH  
X=01H  
X=FFH  
ꢂꢃ  
ꢂꢃ  
X=FEH  
X=00H  
X=FFH  
X=01H  
0
ꢂꢃ  
ꢂꢃ  
HSW ABS REF SWAP  
Column address / bit / segment assign  
0
0
1
1
0
1
0
1
X=00H  
X=01H  
X=FFH  
ꢂꢃ  
ꢂꢃ  
X=FEH  
X=00H  
X=FFH  
X=FEH  
X=01H  
ꢂꢃ  
ꢂꢃ  
HSW ABS REF SWAP  
Column address / bit / segment assign  
0
0
1
1
0
1
1
0
X=00H  
X=FEH  
X=01H  
X=FFH  
ꢂꢃ  
ꢂꢃ  
X=FEH  
X=00H  
X=FFH  
X=01H  
ꢂꢃ  
ꢂꢃ  
- 32 -  
NJU6823  
SEGA 0  
SEGB 0  
SEGC 0  
SEGA 1  
SEGB 1  
SEGC 1  
SEGC 0  
SEGB 0  
SEGA 0  
SEGC 1  
SEGB 1  
SEGA 1  
SEGC 0  
SEGB 0  
SEGA 0  
SEGC 1  
SEGB 1  
SEGA 1  
SEGA 0  
SEGB 0  
SEGC 0  
SEGA 1  
SEGB 1  
SEGC 1  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEGA 126  
SEGB 126  
SEGC 126  
SEGA 127  
SEGB 127  
SEGC 127  
SEGC 126  
SEGB 126  
SEGA 126  
SEGC 127  
SEGB 127  
SEGA 127  
SEGC 126  
SEGB 126  
SEGA 126  
SEGC 127  
SEGB 127  
SEGA 127  
SEGA 126  
SEGB 126  
SEGC 126  
SEGA 127  
SEGB 127  
SEGC 127  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
- 33 -  
NJU6823  
Bit assignments between write and read data (in the 16-bit data bus mode)  
ABS=0  
Write data  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
*
D5  
*
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
*
Read data  
D15  
D14  
D13  
D12  
*
D10  
D9  
D8  
D7  
ABS=1  
Write data  
D15  
D14  
D13  
D12  
D11  
D11  
D10  
D10  
D9  
D9  
D8  
D8  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0  
D0  
Read data  
*
*
*
*
Examples of write and read data (In the 8 bit bus mode)  
ABS=0, HSW=0, C256=0 (Address; 00, 02……FC,FEH)  
Write data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D0  
Read data  
D7  
D6  
D5  
D4  
1
D2  
D1  
ABS=0, HSW=0, C256=0 (Address; 01,03……FD,FFH)  
Write data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D1  
D0  
1
Read data  
D7  
1
1
D4  
D3  
D2  
ABS=1, HSW=0, C256=0 (Address; 00, 02……FC,FEH)  
Write data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D0  
Read data  
1
1
1
1
D3  
D2  
D1  
ABS=1, HSW=0, C256=0 (Address; 01,03……FD,FFH)  
Write data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D1  
D0  
D0  
Read data  
D7  
D6  
D5  
D4  
D3  
D2  
ABS=0, HSW=1, C256=0 (Address; 00, 01……BE,BFH)  
Write data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D0  
Read data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
ABS=0, HSW=0, C256=1 (Address; 00, 01…… 7E ,7FH)  
Write data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D0  
Read data  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
*:Invalid Data  
- 34 -  
NJU6823  
Icon segment register address bit assignment  
In the color mode, and 16-bit data bus mode  
REF  
SWAP  
Column address / bit segment assign  
0
1
0
1
X=00H  
X=01H  
X=01H  
X=00H  
REF  
SWAP  
Column address / bit segment assign  
0
1
1
0
X=00H  
X=01H  
X=01H  
X=00H  
In the color mode, and 8-bit data bus mode  
REF  
SWAP  
Column address / bit segment assign  
0
1
0
1
X=00H  
X=03H  
X=01H  
X=02H  
X=02H  
X=01H  
X=03H  
X=00H  
REF  
SWAP  
Column address / bit segment assign  
0
1
1
0
X=00H  
X=03H  
X=01H  
X=02H  
X=02H  
X=01H  
X=03H  
X=00H  
- 35 -  
NJU6823  
In the B/W mode, and 16-bit data bus mode  
REF  
SWAP  
Column address / bit segment assign  
0
1
0
X=00H  
X=01H  
X=01H  
X=00H  
1
REF  
SWAP  
Column address / bit segment assign  
0
1
1
0
X=00H  
X=01H  
X=01H  
X=00H  
In the B/W mode, and 8-bit data bus mode  
REF  
SWAP  
Column address / bit segment assign  
0
1
0
1
X=00H  
X=03H  
X=01H  
X=02H  
X=02H  
X=01H  
X=03H  
X=00H  
REF  
SWAP  
Column address / bit segment assign  
0
1
1
0
X=00H  
X=03H  
X=01H  
X=02H  
X=02H  
X=01H  
X=03H  
X=00H  
- 36 -  
NJU6823  
(11)Gradation palette  
In the gradation mode, either variable or fixed gradation mode is selected by programming the “PWM”  
register of the “Gradation control” instruction.  
PWM=0:  
Variable gradation mode  
(Select 16 gradation levels out of 32-gradation level of the gradation palette)  
PWM=1:  
Fixed gradation mode  
(Fixed 8-gradation levels)  
In these modes, each of the gradation palettes Aj, Bj and Cj can select 16-gradation level out of 32-gradation  
level by setting 5-bit data to the “PA” registers in the “Gradation palette j” instructions (j=0 to Fh).  
For instance, the gradation palettes Aj correspond to the SEGAi, the Bj to SEGBi and the Cj to SEGCi (j=0 to  
15, i=0 to 127).  
- 37 -  
NJU6823  
Correspondence between display data and gradation palettes  
Table 10 (Palette Aj, Palette Bj, Palette Cj (j=0 to 15))  
(MSB) Display data (LSB)  
Gradation palette  
Palette 0  
Palette 1  
Palette 2  
Palette 3  
Palette 4  
Palette 5  
Palette 6  
Palette 7  
Palette 8  
Palette 9  
Palette10  
Palette11  
Palette12  
Palette13  
Palette14  
Palette15  
Default palette value  
0 0 0 0 0  
0 0 0 1 1  
0 0 1 0 1  
0 0 1 1 1  
0 1 0 0 1  
0 1 0 1 1  
0 1 1 0 1  
0 1 1 1 1  
1 0 0 0 1  
1 0 0 1 1  
1 0 1 0 1  
1 0 1 1 1  
1 1 0 0 1  
1 1 0 1 1  
1 1 1 0 1  
1 1 1 1 1  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Gradation palette table (Variable gradation mode, PWM=”0”, MON=”0”)  
Table 11 (Palette Aj, Palette Bj, Palette Cj (j=0 to 15))  
Palette  
Gradation  
level  
Palette value  
Gradation level  
Gradation palette  
Gradation palette  
value  
0 0 0 0 0  
0 0 0 0 1  
0 0 0 1 0  
0 0 0 1 1  
0 0 1 0 0  
0 0 1 0 1  
0 0 1 1 0  
0 0 1 1 1  
0 1 0 0 0  
0 1 0 0 1  
0 1 0 1 0  
0 1 0 1 1  
0 1 1 0 0  
0 1 1 0 1  
0 1 1 1 0  
0 1 1 1 1  
0
Palette 0(default)  
1 0 0 0 0  
1 0 0 0 1  
1 0 0 1 0  
1 0 0 1 1  
1 0 1 0 0  
1 0 1 0 1  
1 0 1 1 0  
1 0 1 1 1  
1 1 0 0 0  
1 1 0 0 1  
1 1 0 1 0  
1 1 0 1 1  
1 1 1 0 0  
1 1 1 0 1  
1 1 1 1 0  
1 1 1 1 1  
16/31  
17/31  
18/31  
19/31  
20/31  
21/31  
22/31  
23/31  
24/31  
25/31  
26/31  
27/31  
28/31  
29/31  
30/31  
31/31  
1/31  
2/31  
3/31  
4/31  
5/31  
6/31  
7/31  
8/31  
9/31  
10/31  
11/31  
12/31  
13/31  
14/31  
15/31  
Palette 0(default)8  
Palette 9(default)  
Palette 10(default)  
Palette 11(default)  
Palette 12(default)  
Palette 13(default)  
Palette 14(default)  
Palette 15(default)  
Palette 1(default)  
Palette 2(default)  
Palette 3(default)  
Palette 4(default)  
Palette 5(default)  
Palette 6(default)  
Palette 7(default)  
- 38 -  
NJU6823  
Gradation palette table (Fixed gradation mode, PWM=”1”, MON=”0”)  
Table 12 8-gradation segment drivers  
(MSB) Display data (LSB)  
Gradation  
level  
(MSB) Display data (LSB)  
Gradation level  
0/7  
0
0
*
*
0
0
0
*
0/7  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
*
*
*
*
*
*
*
1/7  
2/7  
3/7  
4/7  
5/7  
6/7  
7/7  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
*
*
*
*
*
*
*
*
*
*
*
*
*
*
3/7  
5/7  
7/7  
Correspondence between display data and gradation level (B&W mode, MON=”1”)  
Table 13  
Gradation  
(MSB) Display data (LSB)  
level  
0
1
*
*
*
*
*
*
0
1
*:Don’t care  
- 39 -  
NJU6823  
(12)Gradation control and display data  
(12-1) Gradation mode  
In the graduation mode, each pixel for RGB corresponds to successive 3 segment drivers, and each  
segment driver provides 16-gradation PWM output by controlling 4 bit display data of the DDRAM.  
Accordingly, the LSI can drive up to 128x128 pixels in 4096-color (16-gradation x 16-gradation x 16-  
gradation = 4-bit x 4-bit x 4-bit).  
In addition, the LSI can transfer the display data for the RGB by 16-bit at once or 8-bit two-times. The  
data assignment between gradation palettes and segment drivers varies in accordance with setting for the  
“SWAP” and “REF” registers of the "Display control (2)" instruction.  
(REF, SWAP)=(0, 0) or (1, 1)  
SEGAi  
SEGBi  
SEGCi  
(i=0 to 127)  
Gradation palette  
j=0 to 15  
Palette Aj  
Palette Bj  
Palette Cj  
Gradation control circuit  
Display data in DDRAM  
0
0
0
0
0
0
0
1
1
1
1
1
MSB  
LSB MSB  
LSB MSB  
LSB  
Display data from MPU  
Column address:2nH:2n+1H  
0
D7  
(D
3
D
2  
(D7 D
6  
(D
7
D
6  
0
D6  
0
0
D4  
D
0  
D4  
*
0
0
0
1
D7  
D
4  
D
0  
*
1
1
1
D2  
D
1  
D
5  
*
1
D5  
D
1  
D
5  
D
5  
D2  
D
7  
D
3  
D
4  
D1  
D
6  
D2  
D
3  
D0  
D
5  
D1  
D
2  
D4  
D
3  
D7  
D
1  
D3  
D
2  
D
6  
D
0  
D1  
D
0
)  
D4
)  
* )  
ABS=1  
HSW=1  
C256=1  
Note) DDRAM column address  
:2nH ,2nH+1H  
:FEH -2nH , FFH-(2nH+1H)  
(REF=”0”)  
(REF=”1”)  
HSW=1; 00H to BFH, C256=1; 00H to 7FH  
- 40 -  
NJU6823  
(REF, SWAP)=(0, 1) or (1, 0)  
SEGAi  
SEGBi  
SEGCi  
(i=0 to 127)  
Gradation palette  
j=0 to 15  
Palette Aj  
Palette Bj  
Palette Cj  
Gradation control circuit  
Display data in DDRAM  
1
LSB  
1
1
0
1
1
0
0
0
0
0
0
0
1
0
1
0
MSB  
MSB LSB  
MSB LSB  
Display data from MPU  
0
0
0
0
1
1
1
D
7  
D
6  
D
5  
D1  
D5  
D
4  
D0  
D4  
D
2  
D7  
D3  
D
1  
D6  
D2  
D
0  
D5  
D1  
D
7  
D4  
D0  
D
4  
D3  
D7  
D
3  
D2  
D6  
D
2  
D1  
D5  
D
1  
Column address:2nH:2n+1H  
ABS=1  
HSW=1  
(D3 D2  
D0
)  
(D7 D6  
(D7 D
6  
D4
)  
* )  
C256=1  
D
5  
*
D4  
D
3  
D2  
*
D1  
D
0  
*
Note) DDRAM column address  
: 2nH ,2nH+1H  
: FEH -2nH , FFH-(2nH+1H)  
(REF=”0”)  
(REF=”1”)  
HSW=1; 00H to BFH, C256=; 00H to 7FH  
In the 16-bit data bus mode, the data assignments between the gradation palettes and the segment  
drivers vary in accordance with setting for the “SWAP” and “REF” bit of the "Display control (2)" instruction  
as well as the assignment in the 8-bit data bus mode.  
(REF, SWAP)=(0, 0) or (1, 1)  
SEGAi  
SEGBi  
SEGCi  
(i=0 to 127)  
Gradation palette  
j=0 to 15  
Palette Aj  
Palette Bj  
Palette Cj  
Gradation control circuit  
Display data in DDRAM  
0
MSB  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
LSB  
LSB MSB  
LSB MSB  
Display data from MPU  
0
0
0
0
1
1
1
1
1
D15 D14 D13 D12 D10 D9  
(D
11
D
10
D
9
D
8
D
7
D
6  
Note) DDRAM column address :nH  
D8  
D7  
D4  
D3  
D2  
D1  
Column address; nH  
D
5  
D
4  
D
3  
D
2  
D
1  
D
0
)  
ABS=1  
(REF=”0”)  
:7FH - nH(REF=”1”)  
- 41 -  
NJU6823  
(REF, SWAP)=(0, 1) or (1, 0)  
SEGAi  
SEGBi  
SEGCi  
i=0 to 127  
Gradation palette  
j=0 to 15  
Palette Aj  
Palette Bj  
Palette Cj  
Gradation control circuit  
Display data in DDRAM  
1
LSB  
1
0
1
0
1
1
0
0
0
0
0
0
0
1
0
1
0
MSB  
MSB LSB  
MSB LSB  
Display data from MPU  
0
0
0
1
1
1
D
15
D14 D
13
D12 D
10
D
9  
D
8  
D5  
D7  
D4  
D4  
D3  
D
3  
D2  
D2  
D1  
D1  
D0
)  
Column address ; nH  
(D11 D10 D9  
D8  
D7  
D6  
ABS=1  
Note) DDRAM column address  
:nH  
(REF=”0”)  
:7FH -nH (REF=”1”)  
- 42 -  
NJU6823  
(12-2) B&W mode (MON=”1”)  
In the B&W mode, 3 bits of the MSB data are used in both of the 16-bit and 8-bit data bus modes.  
In the 16-bit data bus mode (Similarly 8-bit data bus access)  
(REF, SWAP)=(0, 0) or (1, 1)  
SEGAi  
SEGBi  
SEGCi  
(i=0 to 127)  
Gradation palette  
j=0 to 15  
Palette Aj  
Palette Bj  
Palette Cj  
Gradation control circuit  
Display data in DDRAM  
0
MSB  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
LSB  
LSB MSB  
LSB MSB  
Display data in DDRAM  
0
0
0
0
1
1
1
1
1
D15 D14 D13 D12 D10 D9  
(D11 D10 D9 D8 D7 D6  
: nH  
D8  
D5  
D7  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
D0
)  
Column address; nH  
ABS=1  
Note) DDRAM column address  
(REF=”0”)  
(REF=”1”)  
: 7FH-nH  
(REF, SWAP)=(0, 1) or (1, 0)  
SEGAi  
SEGBi  
SEGCi  
(i=0 to 127)  
Gradation palette  
j=0 to 15  
Palette Aj  
Palette Bj  
Palette Cj  
Gradation control circuit  
Display data in DDRAM  
1
LSB  
1
0
1
0
1
1
0
0
0
0
0
0
0
1
0
1
0
MSB  
MSB LSB  
MSB LSB  
Display data in DDRAM  
0
0
0
1
1
1
D15 D14 D13 D12 D10 D9  
(D11 D
10
D
9
D
8
D7 D
6  
D8  
D
5  
D7  
D4  
D4  
D
3  
D3  
D2  
D2  
D1  
D1  
D
0
)  
Column address; nH  
ABS=1  
Note ) DDRAM column address  
: nH  
: 7FH-nH  
(REF=”0”)  
(REF=”1”)  
The correlation of display data with gradation control is also applied to Icon segment.  
- 43 -  
NJU6823  
(13)Display timing generator  
The display-timing generator creates the timing pulses such as the CL, the FLM, the FR and the CLK by  
dividing the oscillation frequency oscillate an external or internal resister mode. The each of timing pulses is  
outputted through the each output terminals by “SON”=1.  
(14)LCD line clock (CL)  
The LCD line clock (CL) is used as a count-up signal for the line counter and a latch signal for the data latch  
circuit. At the rising edge of the CL signal, the line counter is counted-up and the 384-bit display data,  
corresponding to this line address, is latched into the data latch circuit. And at the falling edge of the CL signal,  
this latched data output on the segment drivers. Read out timing of the display data, from DDRAM to the latch  
circuits is completely independent of the access timing to the MPU. For this reason, the MPU can access to the  
LSI regardless of an internal operation.  
(15)LCD alternate signal (FR) and LCD synchronous signal (FLM)  
The FR and FLM signals are created from the CL signal. The FR signal is used to alternate the crystal  
polarization on a LCD panel. It is programmed that the FR signal is toggle on every frame in the default setting  
or once every N lines in the N-line inversion mode. The FLM signal is used to indicate a start line of a new  
display frame. It presets an initial display line address of the line counter when the FLM signal becomes ”1”.  
(16) Data latch circuit  
The data latch circuit is used temporarily store the display data that will output to the segment drivers. The  
display data in this circuit is updated in synchronization of the CL signal.  
The “All pixels ON/OFF”, “Display ON/OFF” and “Reverse display ON/OFF” instructions change the display  
data in this circuit but do not change the display data of the DDRAM.  
(17)Common and segment drivers  
The LSI includes 384+6-segment drivers and 128-common drivers. The common drivers generate the LCD  
driving waveforms composed of the VLCD, V1, V4 and VSS in accordance with the FR signal and scanning data.  
The segment drivers generate waveforms composed of the VLCD, V2, V3 and VSS in accordance with the FR  
signal and display data.  
- 44 -  
NJU6823  
LCD Driving waveforms (In the B&W mode, Reverse display OFF, 1/129 duty)  
COM0  
1
2
3
4
5
1
2
3
4
5
1
129  
129  
129  
COM1  
CL  
FLM  
FR  
VLCD  
V1  
V2  
COM0  
V3  
V4  
VSS  
VLCD  
V1  
V2  
COM1  
SEG0  
V3  
V4  
VSS  
VLCD  
V1  
V2  
V3  
V4  
VSS  
VLCD  
V1  
SEG1  
V2  
V3  
V4  
VSS  
Fig 8  
- 45 -  
NJU6823  
(18)Icon Segment Driver Circuit  
Each 3 outputs (SEGSA0 to SEGSA1, SEGSB0 to SEGSB1, SEGSC0 to SEGSC1) placed at both edges of  
normal segment output terminals line are Segment outputs for Icon. Although normal Segment output generates  
the LCD driving voltage corresponding with the data in Display Data RAM, Icon segment driver provides the  
register instead of the display data RAM. The data corresponding to SEGSA0, SEGSB0 and SEGSC0 are in 12-  
bit register and output the same driving voltage on the row direction. (The data corresponding to SEGSA1,  
SEGSB1 and SEGSC1 are same as SEGSA0, SEGSB0 and SEGSC0.)  
The outputs of SEGSA0 to SEGSA1 assign the same gradation pallet as SEGA0 to SEGA127, SEGSB0 to  
SEGSB1 are SEGB0 to SEGB127 and SEGSC0 to SEGSC1 are SEGC0 to SEGC127.  
Icon Segment Driver Circuit operates for the outline frame display or background. These displays are  
changed in accordance with attribute of ALLON or REV command, but no change by LREV command.  
The capacity of register corresponding with Icon segment driver (SEGSA0 to SEGSA1, SEGSB0 to SEGSB1,  
SEGSC0 to SEGSC1) is 24 bits. The access to from this register performed at DMY="1"..  
Table14  
80 type  
68type  
RS  
DMY  
Function  
R/W  
H
RDb  
WRb  
L
L
L
L
0
0
1
1
L
H
L
H
L
Display data read  
L
Display data write  
H
H
L
Icon segment register read  
Icon segment register read  
L
H
Read out function from the Icon segment register is restricted as same as the display data read out function  
from Display Data RAM. After address set, the addressed data does not come out by the first read instruction  
immediately but comes out by the second read instruction. Therefore, one dummy read out function is required  
for data read from Icon segment register after the address set or the data write operation.  
When the Icon segment registers are accessed in DMY="1", the valid addressing is just a column address.  
Because of 24 bits Icon register, the valid addresses are "00h", "01h", "02h" and "03h" in 8-bit mode, and "00h"  
and "01h" in 16-bit mode.  
When the Icon segment registers are accessed in DMY="1", the data write operation into Icon register is  
enabled with the increment operation.  
the column addressing operates in accordance with the status of REF (Segment output order setting  
register) register and the column address increment operates as shown below. But the auto carry up operation  
like as the maximum address to "00h" does not operate of the display data RAM access.  
00h -> Max.  
8-bit data bus mode (DMY=”1”)  
Column address  
00H, 01H: SEGSA0, SEGSB0, SEGSC0  
02H, 03H: SEGSA1, SEGSB1, SEGSC1  
16-bit data bus mode (DMY=”1”)  
Column address  
00H:  
01H:  
SEGSA0, SEGSB0, SEGSC0  
SEGSA1, SEGSB1, SEGSC1  
Note) Refer the “Icon segment register address bit assignment” in (10) The relationship among the DDRAM  
column address, display data and segment drivers. Both of Icon segment register and Display data RAM  
operate a same address counter so that the address is set again in the status transition of DMY = "0" to "1"  
or "1" to "0".  
- 46 -  
NJU6823  
Examples for the dummy segment registers (DMY=”1”)  
(In the 16-bit data bus mode, gradation mode, (REF,SWAP)=(0,0))  
Column address: 00H  
SEGSA0  
SEGSB0  
SEGSC0  
Gradation palette  
Palette Aj  
Palette Bj  
Palette Cj  
j=0 to 15  
Gradation control circuit  
Display data in DDRAM  
Display data in DDRAM  
0
MSB  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
LSB  
LSB MSB  
LSB MSB  
0
0
0
0
1
1
1
1
1
D15 D14 D13 D12 D10 D9  
D8  
D7  
D4  
D3  
D2  
D1  
(D11 D10 D9 D8 D7 D6  
D5  
D4  
D3  
D2  
D1  
D0)  
ABS=1  
Column address: 01H  
SEGSA1  
SEGSB1  
SEGSC1  
Gradation palette  
j=0 to 15  
Palette Aj  
Palette Bj  
Palette Cj  
Gradation control circuit  
Display data in DDRAM  
0
MSB  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
LSB  
LSB MSB  
LSB MSB  
Display data in DDRAM  
0
0
0
0
1
1
1
1
1
D15 D14 D13 D12 D10 D9  
D8  
D7  
D4  
D3  
D2  
D1  
(D11 D
10
D
9
D
8
D7 D
6  
D
5  
D4  
D
3  
D2  
D1  
D
0
)  
ABS=1  
- 47 -  
NJU6823  
(19)Oscillator  
The oscillator generates internal clocks for the display timing and the voltage booster. Since the LSI has internal  
capacitor (C) and resistor (R) for the oscillation, external capacitor and resistor are not usually required. However,  
in case that an external resistor is used, the resister is connected between the OSC1 and OSC2 terminals. The  
external resistor becomes enabled by setting “1” to the “CKS” register of “Data bus length” instruction. When the  
internal oscillator is not used, the external clocks with 50% duty cycle ratio must be input to the OSC1 terminal.  
In addition, the feed back resister for the oscillation is varied by programming the “Rf” register of the “Frequency  
control” instruction, so that it is possible to optimize the frame frequency for a LCD panel. Setting examples of the  
MON (B&W /Gradation) and the PWM (Variable gradation /Fixed gradation) are described, as follows.  
Internal oscillation mode (CKS=0)  
Symbol  
MON PWM  
Display mode  
f1  
f2  
f3  
0
0
1
0
1
*
Variable gradation mode  
Fixed gradation mode  
B&W mode  
*: Don’t care  
External resistor oscillation mode(CKS=1)  
The internal clocks must be adjusted to the same frequency as the one in using the internal oscillation  
mode, and the “MON” and “PWM” registers must be set as well.  
External clock input mode(CKS=1)  
The external clocks must be adjusted to the same frequency as the one in using the internal oscillation  
mode, and the “MON” and “PWM” registers must be set as well.  
(20)Power supply circuits  
The internal power supply circuits are composed of the voltage booster, the electrical variable resister (EVR),  
the voltage regulator, reference voltage generator and the voltage followers.  
The condition of the power supply circuits is arranged by programming the “DCON” and “AMPON” registers  
on the “Power control” instruction. For this arrangement, some parts of the internal power supply circuits are  
activated in using an external power supply, as shown in the following table.  
Table 15  
Voltage followers  
DCON  
AMPON  
Voltage booster  
Voltage regulator  
External voltage  
Note  
EVR  
0
0
1
0
1
1
Disable  
Disable  
Enable  
Disable  
Enable  
Enable  
1, 3  
2, 3  
V
OUT, VLCD, V1, V2, V3, V4  
VOUT  
Note1) The internal power circuits are not used. The external VOUT is required and the C1+, C1-, C2+, C2-, C3+,  
C3-, C4+, C4-, C5+, C5-, VREF, VREG and VEE terminals must be open.  
Note2) The internal power circuits except the voltage booster are used. The external VOUT is required and the  
C1+, C1-, C2+, C2-, C3+, C3-, C4+, C4-, C5+, C5- and VEE terminals must be open. The reference voltage is  
required to VREF terminal.  
Note3) The relation among the voltages should be maintained as follows.  
VOUT VLCD V1 V2 V3 V4 VSS  
- 48 -  
NJU6823  
(21)Voltage booster  
The voltage booster generates maximum 6x voltage of the VEE level. It is programmed so that the boost level  
is selected out of 1x, 2x, 3x, 4x, 5x and 6x by the “Boost level select” instruction. The boosted voltage VOUT  
must not exceed beyond the value of 18.0V, otherwise the voltage stress may cause a permanent damage to  
the LSI.  
Boosted voltages  
VOUT=18V  
VOUT=9V  
VEE=3V  
VSS=0V  
VEE=3V  
VSS=0V  
6-time boost  
3-time boost  
Capacitor connections for the voltage Booster  
6-time boost  
5-time boost  
C1+  
C1-  
C1+  
+
+
+
+
+
+
+
+
+
+
C1-  
C2+  
C2-  
C2+  
C2-  
C3+  
C3-  
C3+  
C3-  
C4+  
C4-  
C4+  
C4-  
C5+  
C5-  
C5+  
C5-  
VOUT  
VSS  
VOUT  
VSS  
+
4-time boost  
3-time boost  
2-time boost  
C1+  
C1-  
C1+  
C1-  
C1+  
C1-  
+
+
+
+
+
+
+
C2+  
C2-  
C2+  
C2-  
C2+  
C2-  
C3+  
C3-  
C3+  
C3-  
C3+  
C3-  
C4+  
C4-  
C4+  
C4-  
C4+  
C4-  
C5+  
C5-  
C5+  
C5-  
C5+  
C5-  
VOUT  
VSS  
VOUT  
VSS  
VOUT  
VSS  
+
+
Fig 9  
- 49 -  
NJU6823  
(22)Reference voltage generator  
The reference voltage generator is used to produce the reference voltage (VBA), which is output from the VBA  
terminal and should be input to the VREF terminal.  
VBA = VEE x 0.9  
(23)Voltage regulator  
The voltage regulator, composed of the gain control circuit and an operational amplifier, and is used to gain  
the reference voltage (VREF) and to create the regulated voltage (VREG). The VREG is used as an input voltage to  
the EVR circuits, which is programmed by the “VU” register of the “Boost level” instruction.  
VREG = VREF x N  
(N: register value for the boost level)  
(24)Electrical variable resister (EVR)  
The EVR is variable within 128-step, and is used to fine-tune the LCD driving voltage (VLCD) by programming  
the “DV” register in the “EVR control” instruction, so that it is possible to optimize the contrast level for a LCD  
panels.  
VLCD = 0.5 x VREG + M (VREG - 0.5 x VREG) / 127 (M: register value for the EVR)  
(25)LCD driving voltage generation circuit  
LCD driving voltage generation circuit generates the VLCD voltage levels as VLCD, V1, V2, V3 and V4 with  
internal E.V.R and the Bleeder resistors. The bias ratio of the LCD driving voltage is selected out of 1/5, 1/6, 1/7,  
1/8, 1/9, 1/10, 1/11 and 1/12.  
In using the internal power supply, the capacitors CA2 must be connected to the VLCD, V1, V2, V3 and V4  
terminals, and the CA2 value must be determined by the evaluation with actual LCD modules.  
In using the external power supply, the external LCD driving voltages such as the VLCD, V1, V2, V3 and V4 are  
supplied and the internal power supply circuits must be set to “OFF” by DCON = AMPON = "0". In this mode,  
voltage booster terminals such as C1+, C1-, C2+, C2-, C3+, C3-, C4+, C4-, C5+, C5-, VEE, VREF and VREG must be  
opened.  
In case that the voltage booster is not used but only some parts of internal power supply circuits (Voltage  
followers, Voltage regulator and EVR) are used, the C1+, C1-, C2+, C2-, C3+, C3-, C4+, C4-, C5+ and C5-  
terminals must be opened. And, the external power supply is input to the VOUT terminal, and the reference  
voltage to the VREF terminal. The capacitor CA3 must connect to the VREG terminal for voltage stabilization.  
< Bias adjustment function >  
NJU6823 prepares bias adjustment terminals V1A1, V1A2, V4A1 and V4A2 for fine adjustment of V1 and V4  
out of voltages.  
The status combination of V1A1 terminal and V1A2 can adjust V1 voltage in below table and V4A1 and V4A2  
can adjust V4 voltage. These adjustment performes by the connection change between the Bleeder resistors  
and the output buffer operational amplifier as voltage follower circuit.  
V1A1  
V1A2  
Fluctuation  
V4A1  
V4A2  
Fluctuation  
terminal  
terminal  
voltage [mV] *1  
terminal  
terminal  
voltage [mV] *1  
0
0
1
1
0
1
0
1
0
+5  
-5  
0
0
1
1
0
1
0
1
0
+5  
-5  
+10  
-10  
note 1) The fluctuation voltage is a adjusted voltage against the default voltage at (V1A1, V1A2 = "0, 0" and  
V4A1, V4A2 = "0, 0"). The "+" mark means a direction of voltage fluctuation to VLCD and the "-" is to VSS.  
Note 2) The fluctuation voltage is an ideal value.  
Note 3) The fluctuation voltage is at VLCD=13.5V.  
Note 4) "0" of V1A1, V1A2, V4A1 and V4A2 means VSS and "1" means VDD.  
- 50 -  
NJU6823  
Connections of the capacitors for voltage boost  
Using all of the internal power supply circuits  
(6-time boost)  
Using only external power supply circuits  
VDD  
VDD  
VDD  
VEE  
VDD  
VEE  
CA1  
CA1  
VBA  
VBA  
VREF  
VREG  
VREF  
CA3  
VREG  
CA3  
VSS  
VSS  
C1-  
C1+  
C2-  
C2+  
C3-  
C3+  
C4-  
C4+  
C5-  
C5+  
C1-  
C1+  
C2-  
C2+  
C3-  
C3+  
C4-  
C4+  
C5-  
C5+  
CA1  
CA1  
CA1  
CA1  
CA1  
NJU6823  
NJU6823  
VOUT  
VOUT  
CA1  
VSS  
CA1  
VLCD  
V1  
VLCD  
V1  
VLCD  
V1  
CA2  
CA2  
CA2  
CA2  
CA2  
External  
V2  
V2  
V3  
V4  
V2  
Power  
circuit  
V3  
V3  
V4  
V4  
VSS  
CA2  
CA2  
CA2  
Fig 10  
Fig11  
CA2  
Reference values  
CA1  
CA2  
CA3  
1.0 to 4.7uF  
1.0 to 2.2uF  
0.1uF  
Note1) B grade capacitor is recommended for CA1-CA3. Testing actual samples with an LCD panel is  
recommended to decide an optimum value of these capacitors.  
Note2) Parasitic resistance on the power supply lines (VDD, VSS, VEE, VSSH, VOUT, VLCD, V1, V2, V3 and V4)  
reduces the step-up efficiency of the voltage booster, and may have an impact on the LSI’s operation  
and display quality. To minimize this impact, use the shortest possible wires and place the capacitors  
to be as close as possible to the LSI.  
- 51 -  
NJU6823  
Using internal power supply circuits  
Using internal power supply circuit  
Without the reference voltage generator(2)  
(6-time boost)  
Without the reference voltage generator(1)  
(6-time boost)  
VDD  
VDD  
VDD  
VDD  
VEE  
VEE  
CA1  
CA1  
VBA  
VBA  
VREF  
VREF  
VREG  
VREG  
CA3  
VSS  
CA1  
CA3  
VSS  
C1-  
C1-  
CA1  
C1+  
C1+  
C2-  
CA1  
C2-  
CA1  
C2+  
C2+  
C3-  
C3-  
CA1  
CA1  
C3+  
C3+  
C4-  
C4-  
CA1  
CA1  
NJU6823  
CA1  
CA1  
NJU6823  
C4+  
C5-  
C5+  
C4+  
C5-  
C5+  
VOUT  
VOUT  
CA1  
VSS  
CA1  
VSS  
VLCD  
V1  
VLCD  
V1  
CA2  
CA2  
CA2  
CA2  
CA2  
CA2  
CA2  
CA2  
CA2  
CA2  
V2  
V2  
V3  
V3  
V4  
V4  
VSS  
VSS  
Fig 12  
Fig 13  
Reference value  
CA1  
CA2  
CA3  
1.0 to 4.7µF  
1.0 to 2.2µF  
0.1µF  
Note1) B grade capacitor is recommended for CA1-CA3. Testing actual samples with an LCD panel is  
recommended to decide an optimum value of these capacitors.  
Note2) Parasitic resistance on the power supply lines (VDD, VSS, VEE, VSSH, VOUT, VLCD, V1, V2, V3 and V4)  
reduces the step-up efficiency of the voltage booster, and may have an impact on the LSI’s operation  
and display quality. To minimize this impact, use the shortest possible wires and place the capacitors  
to be as close as possible to the LSI.  
- 52 -  
NJU6823  
Using internal power supply circuits  
Without the voltage booster  
VDD  
VDD  
VEE  
CA
1  
VBA  
CA3  
VREF  
VREG  
CA3  
VSS  
VSS  
C1-  
C1+  
C2-  
C2+  
C3-  
C3+  
C4-  
C4+  
C5-  
C5+  
NJU6823  
External  
Power  
circuit  
CA
1  
VOUT  
VLCD  
V1  
CA2  
CA2  
CA2  
CA2  
CA2  
V2  
V3  
V1  
VSS  
Fig 14  
Reference value  
CA1  
CA2  
CA3  
1.0 to 4.7µF  
1.0 to 2.2µF  
0.1µF  
Note1) B grade capacitor is recommended for CA1-CA3. Testing actual samples with an LCD panel is  
recommended to decide an optimum value of these capacitors.  
Note2) Parasitic resistance on the power supply lines (VDD, VSS, VEE, VSSH, VOUT, VLCD, V1, V2, V3 and V4)  
reduces the step-up efficiency of the voltage booster, and may have an impact on the LSI’s operation  
and display quality. To minimize this impact, use the shortest possible wires and place the capacitors  
to be as close as possible to the LSI.  
- 53 -  
NJU6823  
(26) Partial display function  
The partial display function is used to partially specify some parts of display area on LCD panels. By using  
this function, LCD modules can work in lower duty cycle ratio, lower LCD bias ratio, lower boost level and lower  
LCD driving voltage. It is usually used to display a time and calendar, and is also used to optimize the LSI  
condition in accordance with the display size. It can be programmed to select the duty cycle ratio (1/17, 1/25,  
1/33, 1/41, 1/49, 1/57, 1/65, 1/73, 1/81, 1/89, 1/97, 1/105, 1/113, 1/121, 1/129, in DSE=0), the LCD bias ratio,  
the boost level and the EVR value by the instructions.  
Partial display image  
NJRC  
LCD DRIVER  
Low Power and  
Low Voltage  
LCD DRIVER  
Partial display  
Normal display  
Partial display sequence  
Optional status  
Display OFF (ON/OFF=”0”)  
Internal Power supply OFF (DCON=”0”, AMPON=”0”)  
WAIT  
Setting for LCD driving voltage-related functions  
Internal Power supply ON (DCON=”1”, AMPON=”1”)  
- Boost level  
- EVR value  
- LCD bias ratio  
WAIT  
- Duty cycle ratio  
- Initial display line  
- Initial COM line  
- Other instructions  
Setting for display-related functions  
Display ON (ON/OFF =”1”)  
Partial display Status  
- 54 -  
NJU6823  
(27) Discharge circuit  
Discharge circuit is used to discharge the electric charge of the capacitors on the V1 to V4 and VLCD terminals.  
This circuit is activated by setting “0” to the “DIS” register of the “Discharge” instruction or by setting “RESb”  
terminal to ”0” level. The “Discharge ON/OFF” instruction is usually required just after the internal power supply  
is turned off by setting “0” into the “DCON” and “AMPON” registers, or just after the external power supply is  
turned off. During the discharge operation, the internal or external power supply must not be turned on.  
(28)Reset circuit  
The reset circuit initializes the LSI into the following default status. It is activated by setting the RESb terminal  
to “0”. The RESb terminal is usually required to connect to MPU reset terminal in order that the LSI can be  
initialized at the same timing of the MPU.  
Default status  
1. DDRAM display data  
2. Column address  
3. Row address  
:Undefined  
:(00)H  
:(00)H  
4. Initial display line  
5. Display ON/OFF  
6. Reverse display ON/OFF  
7. Duty cycle ratio  
8. N-line Inversion ON/OFF  
9. COM scan direction  
10. Increment mode  
:(0)H (1st line)  
:OFF  
:OFF (normal)  
:1/129 duty(DSE=0)  
:OFF  
:COM0 COM127  
:OFF  
11. Reverse SEG direction  
12. SWAP mode  
13. EVR value  
14. Internal power supply  
15. Display mode  
16. LCD bias ratio  
:OFF (normal)  
:OFF (normal)  
:(0, 0, 0, 0, 0, 0, 0)  
:OFF  
:Gradation display mode  
:1/9 bias  
17. Gradation Palette 0  
18. Gradation Palette 1  
19. Gradation Palette 2  
20. Gradation Palette 3  
21. Gradation Palette 4  
22. Gradation Palette 5  
23. Gradation Palette 6  
24. Gradation Palette 7  
25. Gradation Palette 8  
26. Gradation Palette 9  
27. Gradation Palette 10  
28. Gradation Palette 11  
29. Gradation Palette 12  
30. Gradation Palette 13  
31. Gradation Palette 14  
32. Gradation Palette 15  
33. Gradation mode control  
34. Data bus length  
:(0, 0, 0, 0, 0)  
:(0, 0, 0, 1, 1)  
:(0, 0, 1, 0, 1)  
:(0, 0, 1, 1, 1)  
:(0, 1, 0, 0, 1)  
:(0, 1, 0, 1, 1)  
:(0, 1, 1, 0, 1)  
:(0, 1, 1, 1, 1)  
:(1, 0, 0, 0, 1)  
:(1, 0, 0, 1, 1)  
:(1, 0, 1, 0, 1)  
:(1, 0, 1, 1, 1)  
:(1, 1, 0, 0, 1)  
:(1, 1, 0, 1, 1)  
:(1, 1, 1, 0, 1)  
:(1, 1, 1, 1, 1)  
:Variable gradation mode  
:8-bit data bus length  
:(DIS, DIS2)=(0, 0)  
35. Discharge circuit  
- 55 -  
NJU6823  
(29)Power supply ON/OFF sequences  
The following paragraphs describe power supply ON/OFF sequences, which are to protect the LSI from over  
current.  
(29-1) Using an external power supply  
Power supply ON sequence  
Logic voltage (VDD) must be always input first, and next the LCD driving voltages (V1 to V4 and VLCD  
)
are turned on. In using the external VOUT, the VDD must be input first, next the reset operation must be  
performed, and finally the VOUT can be input.  
Power supply OFF sequence  
Either the reset operation, cutting off the V1 to V4 and VLCD from the LSI by the RESb terminal or the  
“Power control” instruction must be performed first, and next the VDD is turned off. It is recommended  
that a series-resister between 50and 100is added on the VLCD line (or VOUT line in using only the  
external VOUT voltage) in order to protect the LSI from the over current.  
(29-2) Using the internal power supply circuits  
Power supply ON sequence  
The VDD must be input first, next the reset operation must be performed, and finally the V1 to V4 and  
VLCD can be turned on by setting “1” to the “DCON” and “AMPON” registers of the “Power control”  
instruction.  
Power supply OFF sequence  
Either the reset operation by the RESb terminal or the “Power control” instruction must be  
performed first, and next the input voltage for the voltage booster (VEE) and the VDD can be turned off.  
If the VEE is supplied from different power sources for VDD, the VEE is turned off first, and next the VDD  
is turned off.  
- 56 -  
NJU6823  
(30)Referential instruction sequences  
(30-1) Initialization in using the internal power supply circuits  
VDD, VEE power ON  
Wait for power-ON stabilization  
RESET Input  
WAIT  
Setting for LCD driving voltage-related functions  
End of initialization  
- EVR value  
- LCD bias ratio  
- Power control (DCON=”1”, AMPON=”1”)  
(30-2) Display data writing  
End of Initialization  
Setting for display-related functions  
- Initial display line  
- Increment mode  
- Column address  
- Row address  
Display data write  
Display ON (ON/OFF =”1”)  
- 57 -  
NJU6823  
(30-3) Power OFF  
Optional status  
- All COM/SEG output VSS level.  
Power save or reset operation  
Discharge ON  
WAIT  
VEE, VDD power OFF  
- 58 -  
NJU6823  
(31)Instruction table  
Instruction Table (1)  
Code (80 series MPU I/F)  
Code  
Functions  
Instructions  
WRb  
CSb RS RDb  
RE2 RE1 RE0 D7 D6 D5 D4 D3  
D2  
D1  
D0  
Display data write  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0/1 0/1 0/1  
0/1 0/1 0/1  
Write Data  
Write display data to DDRAM  
Display data read  
column address  
Read Data  
Read display data from DDRAM  
DDRAM column address  
DDRAM column address  
DDRAM row address  
AX3  
AX7  
AY3  
*
AX2  
AX6  
AY2  
AY6  
LA2  
LA6  
N2  
AX1  
AX5  
AY1  
AY5  
LA1  
LA5  
N1  
AX0  
AX4  
AY0  
AY4  
LA0  
LA4  
N0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
(Lower) [0H]  
column address  
(Upper) [1H]  
row address  
(Lower) [2H]  
row address  
(Upper) [3H]  
DDRAM row address  
Initial display line  
(Lower) [4H]  
Row address for an initial COM line  
(Scan start line)  
LA3  
*
Initial display line  
(Upper) [5H]  
Row address for an initial COM line  
(Scan start line)  
N-line inversion  
(Lower) [6H]  
N3  
*
The number of N-line inversion  
N-line inversion  
(Upper) [7H]  
N6  
N5  
N4  
The number of N-line inversion  
SHIFT: Common direction  
Display control (1)  
ALL  
ON  
ON/ MON: Gradation or B/W display mode  
SHIFT MON  
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
OFF  
ALLON: All pixels ON/OFF  
ON/OFF: Display ON/OFF  
[8H]  
[9H]  
REV: Reverse display ON/OFF  
NLIN: N-line inversion ON/OFF,  
SWAP: SWAP mode ON/OFF  
REF: Segment direction  
Display control (2)  
REV NLIN SWAP REF  
WIN: Window addressing mode ON/OFF  
AIM: Read-modify-write ON/OFF  
AYI: Row auto-increment mode ON/OFF  
AXI: Column auto-increment mode  
ON/OFF  
AMPON: Voltage followers ON/OFF  
HALT: Power save ON/OFF  
DCON: Voltage booster ON/OFF  
ACL: Reset  
Increment control  
Power control  
WIN  
AIM  
AYI  
AXI  
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
1
[AH]  
[BH]  
AMP  
ON  
DC  
ON  
HALT  
ACL  
Duty cycle ratio  
Boost level  
DS3 DS2 DS1 DS0  
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
Sets LCD duty cycle ratio  
Sets boost level  
[CH]  
[DH]  
[EH]  
[FH]  
VU2 VU1 VU0  
*
*
LCD bias ratio  
RE register  
B2  
B1  
B0  
Sets LCD bias ratio  
RE flag set  
TST0 RE2 RE1 RE0  
0/1 0/1 0/1  
Note 1)  
*
: Don’t care.  
Note 2) [ NH ] : Address of instruction register  
Note 3)  
The dual instructions including upper and lower bytes is enabled after either upper or lower  
bytes are set into the register. The only “EVR control” instruction is enabled after both of the  
upper and lower bytes are set.  
- 59 -  
NJU6823  
Instruction Table (2)  
Instructions  
Code (80 series MPU I/F)  
Code  
Functions  
WRb  
CSb RS RDb  
RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0  
Gradation palette A0/A8  
(Lower) [0H]  
Sets palette values to gradation  
palette A0(PS=0)/A8(PS=1)  
PA03/ PA02/ PA01/ PA00/  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
PA83 PA82 PA81 PA80  
Gradation palette A0/A8  
(Upper) [1H]  
Sets palette values to gradation  
palette A0(PS=0)/A8(PS=1)  
PA04/  
*
*
*
PA84  
Gradation palette A1/A9  
(Lower) [2H]  
Sets palette values to gradation  
palette A1(PS=0)/A9(PS=1)  
PA13/ PA12/ PA11/ PA10/  
PA93 PA92 PA91 PA90  
Gradation palette A1/A9  
(Upper) [3H]  
Sets palette values to gradation  
palette A1(PS=0)/A9(PS=1)  
PA14/  
*
*
*
PA94  
Gradation palette A2/A10  
(Lower) [4H]  
Sets palette values to gradation  
palette A2(PS=0)/A10(PS=1)  
PA23/ PA22/ PA21/ PA20/  
PA103 PA102 PA101 PA100  
Gradation palette A2/A10  
(Upper) [5H]  
Sets palette values to gradation  
palette A2(PS=0)/A10(PS=1)  
PA24/  
*
*
*
PA104  
Gradation palette A3/A11  
(Lower) [6H]  
Sets palette values to gradation  
palette A3(PS=0)/A11(PS=1)  
PA33/ PA32/ PA31/ PA30/  
PA113 PA112 PA111 PA110  
Gradation palette A3/A11  
(Upper) [7H]  
Sets palette values to gradation  
palette A3(PS=0)/A11(PS=1)  
PA34/  
*
*
*
PA114  
Gradation palette A4/A12  
(Lower) [8H]  
Sets palette values to gradation  
palette A4(PS=0)/A12(PS=1)  
PA43/ PA42/ PA41/ PA40/  
PA123 PA122 PA121 PA120  
Gradation palette A4/A12  
(Upper) [9H]  
Sets palette values to gradation  
palette A4(PS=0)/A12(PS=1)  
PA44/  
*
*
*
PA124  
Gradation palette A5/A13  
(Lower) [AH]  
Sets palette values to gradation  
palette A5(PS=0)/A13(PS=1)  
PA53/ PA52/ PA51/ PA50/  
PA133 PA132 PA131 PA130  
Gradation palette A5/A13  
(Upper) [BH]  
Sets palette values to gradation  
palette A5(PS=0)/A13(PS=1)  
PA54/  
*
*
*
PA134  
Gradation palette A6/A14  
(Lower) [CH]  
Sets palette values to gradation  
palette A6(PS=0)/A14(PS=1)  
PA63/ PA62/ PA61/ PA60/  
PA143 PA142 PA141 PA140  
Gradation palette A6/A14  
(Upper) [DH]  
Sets palette values to gradation  
palette A6(PS=0)/A14(PS=1)  
PA64/  
*
*
*
PA144  
RE register  
[FH]  
TST0 RE2 RE1 RE0  
0/1 0/1 0/1  
RE flag set  
Note 1)  
*
: Don’t care.  
Note 2) [ NH ] : Address of Instruction register  
Note 3)  
The dual instructions including upper and lower bytes is enabled after either upper or lower  
bytes are set into the register. The only “EVR control” instruction is enabled after both of the  
upper and lower bytes are set.  
- 60 -  
NJU6823  
Instruction Table (3)  
Code (80 series MPU I/F)  
Code  
Instructions  
Functions  
WRb  
CSb RS RDb  
RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0  
Gradation palette A7/A15  
(Lower) [0H]  
Sets palette values to gradation  
palette A7(PS=0)/A15(PS=1)  
PA73/ PA72/ PA71/ PA70/  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
PA153 PA152 PA151 PA150  
Gradation palette A7/A15  
(Upper) [1H]  
Sets palette values to gradation  
palette A7(PS=0)/A15(PS=1)  
PA74/  
*
*
*
PA154  
Gradation palette B0/B8  
(Lower) [2H]  
Sets palette values to gradation  
palette B0(PS=0)/B8(PS=1)  
PB03/ PB02/ PB01/ PB00/  
PB83 PB82 PB81 PB80  
Gradation palette B0/B8  
(Upper) [3H]  
Sets palette values to gradation  
palette B0(PS=0)/B8(PS=1)  
PB04/  
*
*
*
PB84  
Gradation palette B1/B9  
(Lower) [4H]  
Sets palette values to gradation  
palette B1(PS=0)/B9(PS=1)  
PB13/ PB12/ PB11/ PB10/  
PB93 PB92 PB91 PB90  
Gradation palette B1/B9  
(Upper) [5H]  
Sets palette values to gradation  
palette B1(PS=0)/B9(PS=1)  
PB14/  
*
*
*
PB94  
Gradation palette B2/B10  
(Lower) [6H]  
Sets palette values to gradation  
palette B2(PS=0)/B10(PS=1)  
PB23/ PB22/ PB21/ PB20/  
PB103 PB102 PB101 PB100  
Gradation palette B2/B10  
(Upper) [7H]  
Sets palette values to gradation  
palette B2(PS=0)/B10(PS=1)  
PB24/  
*
*
*
PB104  
Gradation palette B3/B11  
(Lower) [8H]  
Sets palette values to gradation  
palette B3(PS=0)/B11(PS=1)  
PB33/ PB32/ PB31/ PB30/  
PB113 PB112 PB111 PB110  
Gradation palette B3/B11  
(Upper) [9H]  
Sets palette values to gradation  
palette B3(PS=0)/B11(PS=1)  
PB34/  
*
*
*
PB114  
Gradation palette B4/B12  
(Lower) [AH]  
Sets palette values to gradation  
palette B4(PS=0)/B12(PS=1)  
PB43/ PB42/ PB41/ PB40/  
PB123 PB122 PB121 PB120  
Gradation palette B4/B12  
(Upper) [BH]  
Sets palette values to gradation  
palette B4(PS=0)/B12(PS=1)  
PB44/  
*
*
*
PB124  
Gradation palette B5/B13  
(Lower) [CH]  
Sets palette values to gradation  
palette B5(PS=0)/B13(PS=1)  
PB53/ PB52/ PB51/ PB50/  
PB133 PB132 PB131 PB130  
Gradation palette B5/B13  
(Upper) [DH]  
Sets palette values to gradation  
palette B5(PS=0)/B13(PS=1)  
PB54/  
*
*
*
PB134  
RE register  
[FH]  
TST0 RE2 RE1 RE0  
0/1 0/1 0/1  
RE flag set  
Note 1)  
*
: Don’t care.  
Note 2) [ NH ] : Address of Instruction register  
Note 3)  
The dual instructions including upper and lower bytes is enabled after either upper or lower  
bytes are set into the register. The only “EVR control” instruction is enabled after both of the  
upper and lower bytes are set.  
- 61 -  
NJU6823  
Instruction Table (4)  
Instructions  
Code (80 series MPU I/F)  
Code  
Functions  
WRb  
CSb RS RDb  
RE2 RE1 RE0 D7  
D6  
0
D5  
0
D4  
D3 D2  
D1 D0  
Gradation palette B6/B14  
(Lower) [0H]  
Sets palette values to gradation  
palette B6(PS=0)/B14(PS=1)  
PB63/ PB62/ PB61/ PB60/  
PB143 PB142 PB141 PB140  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
Gradation palette B6/B14  
(Upper) [1H]  
Sets palette values to gradation  
palette B6(PS=0)/B14(PS=1)  
PB64/  
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
1
*
*
*
PB144  
Gradation palette B7/B15  
(Lower) [2H]  
Sets palette values to gradation  
palette B7(PS=0)/B15(PS=1)  
PB73/ PB72/ PB71/ PB70/  
PB153 PB152 PB151 PB150  
Gradation palette B7/B15  
(Upper) [3H]  
Sets palette values to gradation  
palette B7(PS=0)/B15(PS=1)  
PB74/  
*
*
*
PB154  
Gradation palette C0/C8  
(Lower) [4H]  
Sets palette values to gradation  
palette C0(PS=0)/C8(PS=1)  
PC03/ PC02/ PC01/ PC00/  
PC83 PC82 PC81 PC80  
Gradation palette C0/C8  
(Upper) [5H]  
Sets palette values to gradation  
palette C0(PS=0)/C8(PS=1)  
PC04/  
*
*
*
PC84  
Gradation palette C1/C9  
(Lower) [6H]  
Sets palette values to gradation  
palette C1(PS=0)/C9(PS=1)  
PC13/ PC12/ PC11/ PC10/  
PC93 PC92 PC91 PC90  
Gradation palette C1/C9  
(Upper) [7H]  
Sets palette values to gradation  
palette C1(PS=0)/C9(PS=1)  
PC14/  
*
*
*
PC94  
Gradation palette C2/C10  
(Lower) [8H]  
Sets palette values to gradation  
palette C2(PS=0)/C10(PS=1)  
PC23/ PC22/ PC21/ PC20/  
PC103 PC102 PC101 PC100  
Gradation palette C2/C10  
(Upper) [9H]  
Sets palette values to gradation  
palette C2(PS=0)/C10(PS=1)  
PC24/  
*
*
*
PC104  
Gradation palette C3/C11  
(Lower) [AH]  
Sets palette values to gradation  
palette C3(PS=0)/C11(PS=1)  
PC33/ PC32/ PC31/ PC30/  
PC113 PC112 PC111 PC110  
Gradation palette C3/C11  
(Upper) [BH]  
Sets palette values to gradation  
palette C3(PS=0)/C11(PS=1)  
PC34/  
*
*
*
PC114  
Gradation palette C4/C12  
(Lower) [CH]  
Sets palette values to gradation  
palette C4(PS=0)/C12(PS=1)  
PC43/ PC42/ PC41/ PC40/  
PC123 PC122 PC121 PC120  
Gradation palette C4/C12  
(Upper) [DH]  
Sets palette values to gradation  
palette C4(PS=0)/C12(PS=1)  
PC44/  
*
*
*
PC124  
RE register  
[FH]  
TST0 RE2 RE1 RE0  
0/1 0/1 0/1  
RE flag set  
Note 1)  
*
: Don’t care.  
Note 2) [ NH ] : Address of Instruction register  
Note 3)  
The dual instructions including upper and lower bytes is enabled after either upper or lower  
bytes are set into the register. The only “EVR control” instruction is enabled after both of the  
upper and lower bytes are set.  
- 62 -  
NJU6823  
Instruction Table (5)  
Code (80 series MPU I/F)  
Code  
Instructions  
Functions  
WRb  
CSb RS RDb  
RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0  
Gradation palette C5/C13  
(Lower) [0H]  
Sets palette values to gradation  
palette C5(PS=0)/C13(PS=1)  
PC53/ PC52/ PC51/ PC50/  
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
PC133 PC132 PC131 PC130  
Gradation palette C5/C13  
(Upper) [1H]  
Sets palette values to gradation  
palette C5(PS=0)/C13(PS=1)  
PC54/  
*
*
*
PC134  
Gradation palette C6/C14  
(Lower) [2H]  
Sets palette values to gradation  
palette C6(PS=0)/C14(PS=1)  
PC63/P PC62/ PC61/ PC60/  
C143 PC142 PC141 PC140  
Gradation palette C6/C14  
(Upper) [3H]  
Sets palette values to gradation  
palette C6(PS=0)/C14(PS=1)  
PC64/  
*
*
*
PC144  
Gradation palette C7/C15  
(Lower) [4H]  
Sets palette values to gradation  
palette C7(PS=0)/C15(PS=1)  
PC73/ PC72/ PC71/ PC70/  
PC153 PC152 PC151 PC150  
Gradation palette C7/C15  
(Upper) [5H]  
Sets palette values to gradation  
palette C7(PS=0)/C15(PS=1)  
PC74/  
*
*
*
PC154  
Initial COM line  
[6H]  
SC3 SC2 SC1 SC0  
Sets scan-starting common driver  
Display control Signal/  
Duty Select  
[7H]  
SON : Display clock ON/OFF  
DSE : Duty-1 ON/OFF  
SON  
DSE  
0
0
0
1
1
1
1
1
1
0
0
0
1
1
1
0
0
0
0
0
0
0
1
1
1
0
0
1
0
0
1
0
1
*
*
PWM : Variable/Fixed gradation mode  
Gradation mode control  
PWM C256 FDC1 FDC2 C256 : 256-Color Mode ON/OFF  
[8H]  
FDC : Boost Clock  
HSW : High speed access ON/OFF  
Data bus length  
[9H]  
ABS : ABS mode ON/OFF  
HSW ABS CKS WLS  
CKS : Internal/external oscilation  
WLS : Display data Length  
EVR control  
Sets EVR level  
DV3 DV2 DV1 DV0  
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
*
0
0
1
1
1
1
*
1
1
0
1
1
0
*
0
1
1
0
1
0
*
(Lower) [AH]  
(Lower bit)  
EVR control  
Sets EVR level  
DV6 DV5 DV4  
RF2 RF1 RF0  
*
*
*
(Upper) [BH]  
(Upper bit)  
Frequency control  
[DH]  
Oscillation frequency  
Discharge ON/OFF  
[EH]  
Discharge the electric charge in  
capacitors on V1 to V4 and VLCD  
DIS  
DIS2  
*
RE register  
[FH]  
TST0 RE2 RE1 RE0  
Reading address  
Read Data  
0/1 0/1 0/1  
RE flag  
Instruction register address  
[CH]  
1
0
0
Sets instruction register address  
Read out instruction register data  
Instruction register read  
0/1 0/1 0/1  
Note 1)  
*
: Don’t care.  
Note 2) [ NH ] : Address of Instruction register  
Note 3)  
The dual instructions including upper and lower bytes is enabled after either upper or lower  
bytes are set into the register. The only “EVR control” instruction is enabled after both of the  
upper and lower bytes are set.  
Note 4)  
CKS=0: Internal oscillation mode (default)  
CKS=1: External oscillation mode  
- 63 -  
NJU6823  
Instruction Table (6)  
Instructions  
Code (80 series MPU I/F)  
Code  
Functions  
WRb  
CSb RS RDb  
RE2 RE1 RE0 D7 D6 D5 D4 D3 D2 D1 D0  
Window end  
column address  
(Lower) [0H]  
Window end  
column address  
(Upper) [1H]  
EX3 EX2 EX1 EX0  
EX7 EX6 EX5 EX4  
EY3 EY2 EY1 EY0  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
Sets column address for end point  
Sets column address for end point  
Sets row address for end point  
Sets row address for end point  
Sets address for reverse line  
Sets address for reverse line  
Sets address for reverse line  
Sets address for reverse line  
Window end row address  
(Lower) [2H]  
Window end row address  
(Upper) [3H]  
*
EY6 EY5 EY4  
Initial reverse line  
(Lower) [4H]  
LS3 LS2 LS1 LS0  
Initial reverse line  
(Upper) [5H]  
*
LS6 LS5 LS4  
Last reverse line  
(Lower) [6H]  
LE3 LE2 LE1 LE0  
Last reverse line  
(Upper) [7H]  
*
LE6 LE5 LE4  
Reverse line display  
ON/OFF  
BT : Blink type setting  
BT LREV  
*
*
*
LREV : Reverse line display ON/OFF  
[8H]  
Gradation palette setting  
control  
address  
[9H]  
/
Icon SEG  
set  
PS : gradation setting  
PS  
DMY  
0
1
1
0
1
1
0
0
1
1
1
0
0
1
*
DMY : Icon SEG address set  
PWM control  
PWM PWM PWM PWM  
0
0
1
1
1
1
0
0
1
1
0
1
1
1
0
1
Sets PWM mode  
RE flag  
S
A
B
C
[AH]  
[FH]  
RE register  
TST0 RE2 RE1 RE0  
0/1 0/1 0/1  
Note 1)  
*
: Don’t care.  
Note 2) [ NH ] : Address of Instruction register  
Note 3)  
The dual instructions including upper and lower bytes is enabled after either upper or lower  
bytes are set into the register. The only “EVR control” instruction is enabled after both of the  
upper and lower bytes are set.  
- 64 -  
NJU6823  
(32)Instruction descriptions  
This chapter provides detail descriptions and instruction registers. Nonexistent instruction codes must not be  
set into the LSI.  
(32-1) Display data write  
The “Display data write” instruction is used to write 8-bit display data into the DDRAM.  
WRb  
CSb RS RDb  
RE2 RE1 RE0  
0/1 0/1 0/1  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
1
0
Display data  
(32-2) Display data read  
The “Display data read” instruction is used to read out 8-bit display data from the DDRAM, where the  
column address and row address must be specified beforehand by the “column address” and “row  
address” instructions. The dummy read is required just after the “column address” and “row address”  
instructions.  
WRb  
CSb RS RDb  
RE2 RE1 RE0  
0/1 0/1 0/1  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
1
Display data  
(32-3) Column address  
The “column address” instruction is used to specify the column address for the display data’s reading  
and writing operations. It requires dual bytes for lower 4-bit and upper 4-bit data. The instruction for the  
lower 4-bit data must be executed first, next the instruction for the upper 4-bit.  
WRb  
CSb RS RDb  
RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
0
0
AX3 AX2 AX1 AX0  
WRb  
CSb RS RDb  
RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
D2  
D1  
D0  
0
1
1
0
0
0
0
AX7 AX6 AX5 AX4  
(32-4) Row address  
The “row address” instruction is used to specify the row address for the display data read and write  
operations. It requires dual bytes for lower 4-bit and upper 3-bit data. The instruction for the lower 4-bit  
data must be executed first, next the instruction for upper 3-bit. The row address is specified in between  
00H and 7FH. The setting for nonexistent row address between 80H and FFH is prohibited.  
WRb  
CSb RS RDb  
RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
0
0
AY3 AY2  
AY1 AY0  
WRb  
CSb RS RDb  
RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
D1  
D0  
0
1
1
0
0
0
0
AY6  
AY5 AY4  
- 65 -  
NJU6823  
(32-5) Initial display line  
The “Initial display line” instruction is used to specify the line address corresponding to the initial COM  
line. The initial COM line specified by the “Initial COM line” instruction and indicates the common driver  
that starts scanning data.  
WRb  
CSb RS RDb  
RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
0
0
LA3  
LA2  
LA1 LA0  
WRb  
CSb RS RDb  
RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
D1  
D0  
0
1
1
0
0
0
0
LA6  
LA5 LA4  
LA6  
0
0
LA5  
0
0
LA4  
0
0
LA3  
0
0
LA2  
0
0
LA1  
0
0
LA0  
0
1
Line address  
0
1
:
:
:
:
1
1
1
1
1
1
1
127  
(32-6) N-line inversion  
The “N-line inversion” instruction is used to control the alternate rates of the liquid crystal direction. It is  
programmed to select the N value between 2 and 128, and the FR signal toggles once every N lines by  
setting “1” into the “NLIN” register of the “Display control (2)” instruction. When the N-line inversion is  
disabled by setting “0” into the “NLIN” register, the FR signal toggles by the frame.  
WRb  
CSb RS RDb  
RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
0
0
N3  
N2  
N1  
N0  
WRb  
CSb RS RDb  
RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
D1  
D0  
0
1
1
0
0
0
0
N6  
N5  
N4  
N6  
0
0
N5  
0
0
N4  
0
0
N3  
0
0
N2  
0
0
N1  
0
0
N0  
0
1
N value  
Inhibited  
2
:
:
:
:
0
0
1
0
0
0
0
128  
- 66 -  
NJU6823  
N-line Inversion Timing (1/129 duty cycle ratio)  
N-line inversion OFF  
1st line  
3rd line  
128th line  
1st line  
2nd line  
129th line  
CL  
FLM  
FR  
N-line inversion ON  
N-line control  
1st line  
3rd line  
N line  
2nd line  
2nd line  
1st line  
CL  
FR  
(32-7) Display control (1)  
The “Display control (1)” instruction is used to control display conditions by setting the “Display ON/OFF”,  
“All pixels ON/OFF”, ”Display mode” and “Common direction” registers.  
WRb  
CSb RS RDb  
RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
SHIFT  
MON  
ALLON ON/OFF  
0
1
1
0
0
0
0
ON/OFF register  
ON/OFF=0 : Display OFF (All COM/SEG output Vss level.)  
ON/OFF=1 : Display ON  
All ON register  
The “All pixels ON/OFF” register is used to turn on all pixels without changing the display data of  
the DDRAM. The setting for the “All pixels ON/OFF” register has a priority over the “Reverse display  
ON/OFF” register.  
ALLON=0  
ALLON=1  
: Normal  
: All pixels turn on.  
MON register  
MON=0  
MON=1  
: Gradation mode  
: B&W mode  
SHIFT register  
SHIFT=0  
SHIFT=1  
: COM0 COM127  
: COM127 COM0  
- 67 -  
NJU6823  
(32-8) Display control (2)  
The “Display control (2)” instruction is used to control display conditions by setting the “Segment  
direction”, “SWAP mode ON/OFF”, “N-line inversion ON/OFF” and “Reverse display ON/OFF” registers.  
WRb  
CSb RS RDb  
RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
D2  
D1  
D0  
REV  
NLIN  
SWAP  
REF  
0
1
1
0
0
0
0
REF register  
The “REF” register is used to reverse the assignment between segment drivers and column  
address, and it is possible to reduce restrictions for placement of the LSI on the LCD modules. For  
more information, see (10) “The relation among the DDRAM column address, display data and  
segment drivers”.  
SWAP register  
The “SWAP” register is used to reverse the arrangement of the display data in the DDRAM.  
SWAP=0  
SWAP=1  
: SWAP mode OFF  
: SWAP mode ON  
(Normal)  
SWAP=”0”  
SWAP=”1”  
Write data  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 d6 d5 d4 d3 d2 d1 d0  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
RAM data  
d0 d1 d2 d3 d4 d5 d6 d7  
D7 D6 D5 D4 D3 D2 D1 D0  
Read data  
NLIN register  
The “NLIN” is used to enable or disable the N-line inversion.  
NLIN=0  
NLIN=1  
: N-line inversion OFF  
: N-line inversion ON  
(The FR signal toggles by the flame.)  
(The FR signal toggles once every N frames.)  
REV register  
The “REV” register is used to enable or disable the reverse display mode that reverses the polarity  
of display data without changing display data of the DDRAM.  
REV=0  
REV=1  
: Reverse display mode OFF  
: Reverse display mode ON  
REV  
Display  
Normal  
DDRAM data Display data  
0
1
0
1
0
1
1
0
0
1
Reverse  
- 68 -  
NJU6823  
(32-9) Increment control  
The “Increment control” instruction is used for the increment mode. In using the auto-increment mode,  
DDRAM address automatically increments (+1) whenever the DDRAM is accessed by the “Display data  
write” or “Display data read” instruction. Therefore, once “Display data write” or “Display data read”  
instruction is established, it is possible to continuously access to the DDRAM without the “column address”  
and “row address” instructions. The settings for the “AIM”, “AXI” and “AYI” registers are listed in the  
following tables.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
0
0
WIN AIM AYI AXI  
AIM, AYI and AXI registers  
AIM  
0
1
Increment mode  
Auto-increment for both of the display data read and write operations  
Auto-increment for the display write operation (Read modify write)  
Note  
1
2
Note 1) It is effective for usual operations accessing successive addresses.  
Note 2) It is effective for the read-modify-write operation.  
AYI  
0
AXI  
0
Increment mode  
Note  
No auto-increment  
1
2
3
0
1
Auto-increment for the column address  
Auto-increment for the row address  
Auto-increment for the column address and row  
address  
1
0
1
1
4
Note 1) Auto-increment is disabled regardless of the “AIM” register.  
Note 2) Auto-increment of the column address is enabled in accordance with the “AIM” register.  
MAXH  
00H  
MAXH in the 8-bit data bus mode  
: FFH  
MAXH in the 16-bit data bus mode : 7FH  
Note 3) Auto-increment of the row address is enabled in accordance with the “AIM” register.  
7FH  
00H  
Note 4) Auto-increment of the column address and the row address are enabled. The row address  
increments whenever the column address reaches to the MAXH.  
MaxH  
00H  
7FH  
00H  
column address  
row address  
MAXH in the 8-bit data bus mode  
: FFH  
MAXH in the 16-bit data bus mode : 7FH  
- 69 -  
NJU6823  
WIN register  
The “WIN” register is used to access to the DDRAM for the window display area, where the start point is  
determined by the “column address” and “row address” instructions, and the end point by the “Window  
end column address “and ”Window end row address” instructions. The setting sequence for the window  
display area is listed as follows. For more detail, see (7) “Window addressing mode”.  
WIN=0 :Window addressing mode OFF  
WIN=1 :Window addressing mode ON  
1. Set WIN=1, AXI=1, and AYI=1 by “Increment control” instruction.  
2. Set the start point by the “column address” and “row address” instructions  
3. Set the end point by the “Window end column address” and “Window end row address” instructions  
4. Enable to access to the DDRAM in the window addressing mode  
START  
END  
END  
START  
Address  
Address  
Address  
Address  
column address  
row address  
- 70 -  
NJU6823  
(32-10) Power control  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
1
D3  
D2  
D1  
D0  
AMPON HALT DCON  
ACL  
0
1
1
0
0
0
0
ACL register  
The “ACL” register is used to initialize the internal power supply circuits.  
ACL=0  
ACL=1  
: Initialization OFF (Normal)  
: Initialization ON  
When the data of the “ACL register” is read out by the “Instruction register read” instruction, the  
read-out data is “1” during the initialization and “0” after the initialization. This initialization is  
performed by using the signal produced by 2 clocks on the OSC1. For this reason, the wait time for 2  
clocks of the OSC1 is necessary until next instruction.  
DCON register  
The “DCON” register is used to enable or disable the voltage booster.  
DCON=0  
DCON=1  
: Voltage booster OFF  
: Voltage booster ON  
HALT register  
The “HALT” register is used to enable or disable the power save mode. It is possible to reduce  
operating current down to stand-by level. The internal status in the power save mode is listed below.  
HALT=0  
HALT=1  
: Power save OFF (Normal)  
: Power save ON  
Internal status in the power save mode  
The oscillation circuits and internal power supply circuits are halted.  
All segment and common drivers output VSS level.  
The clock input into the OSC1 is inhibited.  
The display data in the DDRAM is maintained.  
The operational modes before the power save mode are maintained.  
The V1 to V4 and VLCD are in the high impedance.  
As a power save ON sequence, the “Display OFF” must be executed first, next the “Power save  
ON” instruction, and then all common and segment drivers output the VSS level. And as power save  
OFF sequence, the “Power save OFF” instruction is executed first, next the “Display ON” instruction.  
If the “Power save OFF” instruction is executed in the display ON status, unexpected pixels may  
instantly turn on.  
AMPON register  
The “AMPON” register is used to enable or disable the voltage followers, voltage regulator and EVR.  
AMPON=0 : The voltage followers, voltage regulator and the EVR OFF  
AMPON=1 : The voltage followers, voltage regulator and the EVR ON  
- 71 -  
NJU6823  
(32-11) Duty cycle ratio  
The “Duty cycle ratio” instruction is used to select LCD duty cycle ratio for the partial display function.  
The partial display function specifies some parts of display area on a LCD panel in the condition of lower  
duty cycle ratio, lower LCD bias ratio, lower boost level and lower LCD driving voltage. Therefore, it is  
possible to optimize the LSI’s conditions with extremely low power consumption.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
0
0
0
DS3 DS2 DS1 DS0  
Duty cycle ratio  
Row way  
displays  
DS3  
DS2  
DS1  
DS0  
DSE=0  
1/129  
1/121  
1/113  
1/105  
1/97  
DSE=1  
1/128  
1/120  
1/112  
1/104  
1/96  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
128 commons  
120 commons  
112 commons  
104 commons  
96 commons  
88 commons  
80 commons  
72 commons  
64 commons  
56 commons  
48 commons  
40 commons  
32 commons  
24 commons  
16 commons  
1/89  
1/88  
1/81  
1/80  
1/73  
1/72  
1/65  
1/64  
1/56  
1/57  
1/48  
1/49  
1/41  
1/40  
1/33  
1/32  
1/25  
1/24  
1/17  
1/16  
Inhibited  
The duty cycle ratio is controlled by the “DS3 to DS0” registers of the “Duty cycle ratio” instruction and the “DSE”  
register of the “Display Clock / Duty-1” instruction.  
DSE=”0”  
DSE=”1”  
: The number of commons + 1  
(Duty cycle ratio in the default setting)  
: The number of commons (Duty-1)  
When the “DSE” is “0”, all common drivers output non-selective levels in period of last common.  
And the segment drivers output the same data for the last line as the data for previous line: For  
instance they output the same data for the 128th and 129th lines when the duty cycle ratio is set to  
1/129. For the setting of the “DSE” register, see (32-17) “Display clock / Duty-1”.  
(32-12) Boost level  
The “Boost level” is used to select the multiple of the voltage booster for the partial display function.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
*
D2  
D1  
D0  
0
1
1
0
0
0
0
VU2 VU1 VU0  
VU2 VU1  
VU0  
0
Boost level  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
1-time (No boost)  
2-time  
1
0
3-time  
1
4-time  
0
5-time  
1
6-time  
0
Inhibited  
Inhibited  
1
- 72 -  
NJU6823  
(32-13) LCD bias ratio  
The “LCD bias ratio” is used to select the LCD bias ratio for the partial display function.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
1
D4  
0
D3  
*
D2  
B2  
D1  
B1  
D0  
B0  
0
1
1
0
0
0
0
B2  
0
0
0
0
1
1
1
1
B1  
0
0
1
1
0
0
1
1
B0  
0
1
0
1
0
1
0
1
LCD bias ratio  
1/9  
1/8  
1/7  
1/6  
1/5  
1/10  
1/11  
1/12  
(32-14) RE flag  
The “RE flag” registers are used to determine the contents for the RE registers (RE2, RE1 and RE0) and  
it is possible to access to the instruction registers.  
The data in the “TST0” register must be “0”, and it is used maker tests only.  
CSb RS RDb WRb RE2 RE1 RE0  
0/1 0/1 0/1  
D7  
1
D6  
1
D5  
1
D4  
1
D3  
D2  
D1  
D0  
0
1
1
0
TST0 RE2 RE1 RE0  
- 73 -  
NJU6823  
(32-15) Gradation palette A, B and C  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PA03  
/
PA02  
/
PA01  
/
PA00/  
0
1
1
0
0
0
1
PA83  
PA82  
PA81  
PA80  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA04  
/
0
1
1
0
0
0
1
PA84  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PA13  
/
PA12  
/
PA11/ PA10/  
0
1
1
0
0
0
1
PA93  
PA92  
PA91  
PA90  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA14  
/
0
1
1
0
0
0
1
PA94  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
PA23  
D2  
PA22  
D1  
PA21  
D0  
PA20/  
/
/
/
0
1
1
0
0
0
1
PA103 PA102 PA101 PA100  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA24  
/
0
1
1
0
0
0
1
PA104  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
PA33  
D2  
PA32  
D1  
PA31  
D0  
PA30/  
/
/
/
0
1
1
0
0
0
1
PA113 PA112 PA111 PA110  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA34  
/
0
1
1
0
0
0
1
PA114  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
PA43  
D2  
PA42  
D1  
PA41  
D0  
PA40/  
/
/
/
0
1
1
0
0
0
1
PA123 PA122 PA121 PA120  
- 74 -  
NJU6823  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA44  
/
0
1
1
0
0
0
1
PA124  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
PA53  
D2  
PA52  
D1  
PA51  
D0  
PA50/  
/
/
/
0
1
1
0
0
0
1
PA133 PA132 PA131 PA130  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA54  
/
0
1
1
0
0
0
1
PA134  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
PA63  
D2  
PA62  
D1  
PA61  
D0  
PA60/  
/
/
/
0
1
1
0
0
0
1
PA143 PA142 PA141 PA140  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA64  
/
0
1
1
0
0
0
1
PA144  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
PA73  
D2  
PA72  
D1  
PA71  
D0  
PA70/  
/
/
/
0
1
1
0
0
1
0
PA153 PA152 PA151 PA150  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PA74  
/
0
1
1
0
0
1
0
PA154  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PB03  
/
PB02  
/
PB01  
/
PB00/  
0
1
1
0
0
1
0
PB83  
PB82  
PB81  
PB80  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB04  
/
0
1
1
0
0
1
0
PB84  
- 75 -  
NJU6823  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PB13  
/
PB12  
/
PB11/ PB10/  
0
1
1
0
0
1
0
PB93  
PB92  
PB91  
PB90  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB14  
/
0
1
1
0
0
1
0
PB94  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
PB23  
D2  
PB22  
D1  
PB21  
D0  
PB20/  
/
/
/
0
1
1
0
0
1
0
PB103 PB102 PB101 PB100  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB24  
/
0
1
1
0
0
1
0
PB104  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
PB33  
D2  
PB32  
D1  
PB31  
D0  
PB30/  
/
/
/
0
1
1
0
0
1
0
PB113 PB112 PB111 PB110  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB34  
/
0
1
1
0
0
1
0
PB114  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
PB43  
D2  
PB42  
D1  
PB41  
D0  
PB40/  
/
/
/
0
1
1
0
0
1
0
PB123 PB122 PB121 PB120  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB44  
/
0
1
1
0
0
1
0
PB124  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
PB53  
D2  
PB52  
D1  
PB51  
D0  
PB50/  
/
/
/
0
1
1
0
0
1
0
PB133 PB132 PB131 PB130  
- 76 -  
NJU6823  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB54  
/
0
1
1
0
0
1
0
PB134  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
PB63  
D2  
PB62  
D1  
PB61  
D0  
PB60/  
/
/
/
0
1
1
0
0
1
1
PB143 PB142 PB141 PB140  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB64  
/
0
1
1
0
0
1
1
PB144  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
PB73  
D2  
PB72  
D1  
PB71  
D0  
PB70/  
/
/
/
0
1
1
0
0
1
1
PB153 PB152 PB151 PB150  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PB74  
/
0
1
1
0
0
1
1
PB154  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PC03/ PC02/ PC01/ PC00/  
0
1
1
0
0
1
1
PC83  
PC82  
PC81  
PC80  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC04/  
PC84  
0
1
1
0
0
1
1
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PC13/ PC12/ PC11/ PC10/  
0
1
1
0
0
1
1
PC93  
PC92  
PC91  
PC90  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC14/  
PC94  
0
1
1
0
0
1
1
- 77 -  
NJU6823  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PC23/ PC22/ PC21/ PC20/  
PC103 PC102 PC101 PC100  
0
1
1
0
0
1
1
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC24/  
PC104  
0
1
1
0
0
1
1
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PC33/ PC32/ PC31/ PC30/  
PC113 PC112 PC111 PC110  
0
1
1
0
0
1
1
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC34/  
PC114  
0
1
1
0
0
1
1
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PC43/ PC42/ PC41/ PC40/  
PC123 PC122 PC121 PC120  
0
1
1
0
0
1
1
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC44/  
PC124  
0
1
1
0
0
1
1
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PC53/ PC52/ PC51/ PC50/  
PC133 PC132 PC131 PC130  
0
1
1
0
1
0
0
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC54/  
PC134  
0
1
1
0
1
0
0
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PC63/ PC62/ PC61/ PC60/  
PC143 PC142 PC141 PC140  
0
1
1
0
1
0
0
- 78 -  
NJU6823  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC64/  
PC144  
0
1
1
0
1
0
0
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PC73/ PC72/ PC71/ PC70/  
PC153 PC152 PC151 PC150  
0
1
1
0
1
0
0
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
*
D1  
*
D0  
PC74/  
PC154  
0
1
1
0
1
0
0
Gradation Palette Table (Variable gradation mode, PWM=”0” and MON=”0”)  
(Palette Aj, Palette Bj, Palette Cj, (j=0 to 15))  
Gradation  
Level  
Gradation  
Palette Value  
0 0 0 0 0  
0 0 0 0 1  
0 0 0 1 0  
0 0 0 1 1  
0 0 1 0 0  
0 0 1 0 1  
0 0 1 1 0  
0 0 1 1 1  
0 1 0 0 0  
0 1 0 0 1  
0 1 0 1 0  
0 1 0 1 1  
0 1 1 0 0  
0 1 1 0 1  
0 1 1 1 0  
0 1 1 1 1  
Note  
Palette Value  
Note  
Level  
16/31  
Gradation Palette 0  
Initial Value  
0/31  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0 0  
0 0  
0 0  
0 0  
0 1  
0 1  
0 1  
0 1  
1 0  
1 0  
1 0  
1 0  
1 1  
1 1  
1 1  
1 1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Gradation Palette 8  
Initial Value  
1/31  
17/31  
18/31  
19/31  
20/31  
21/31  
22/31  
23/31  
24/31  
25/31  
26/31  
27/31  
28/31  
29/31  
30/31  
31/31  
2/31  
Gradation Palette 1  
Initial Value  
Gradation Palette 9  
Initial Value  
3/31  
4/31  
Gradation Palette2  
Initial Value  
Gradation Palette 10  
Initial Value  
5/31  
6/31  
Gradation Palette 3  
Initial Value  
Gradation Palette 11  
Initial Value  
7/31  
8/31  
Gradation Palette 4  
Initial Value  
Gradation Palette 12  
Initial Value  
9/31  
10/31  
11/31  
12/31  
13/31  
14/31  
15/31  
Gradation Palette 5  
Initial Value  
Gradation Palette 13  
Initial Value  
Gradation Palette 6  
Initial Value  
Gradation Palette 14  
Initial Value  
Gradation Palette 7  
Initial Value  
Gradation Palette 15  
Initial Value  
- 79 -  
NJU6823  
(32-16) Initial COM line  
The “Initial COM line” instruction is used to specify the common driver that starts scanning the display  
data. The line address, corresponding to the initial COM line, is specified by the “Initial display line”  
instruction.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
1
0
0
SC3 SC2 SC1 SC0  
SC3  
0
SC2 SC1 SC0  
Initial COM line (SHIFT=0)  
COM0  
Initial COM line (SHIFT=1)  
COM127  
COM123  
COM119  
COM111  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
COM4  
0
COM8  
0
COM16  
0
COM24  
COM103  
COM95  
0
COM32  
0
COM40  
COM87  
0
COM48  
COM79  
1
COM56  
COM71  
1
COM64  
COM63  
1
COM72  
COM55  
1
COM80  
COM47  
1
COM88  
COM39  
1
COM96  
COM31  
1
COM104  
COM112  
COM23  
1
COM15  
SHIFT=0: Positive scan direction  
SHIFT=1: Negative scan direction  
(for instance, COM0 COM127  
)
(for instance, COM127 COM0)  
(32-17) Display clock / Duty-1  
The “Display clock / Duty-1” instruction is used to enable or disable the display clocks (CL, FLM, FR, and CLK),  
and to control ON/OFF of the “Duty-1”. For more detail about the “Duty-1”, see (32-11) “Duty cycle ratio”.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
*
D1  
D0  
SON  
0
1
1
0
1
0
0
DSE  
SON=0:  
SON=1:  
CL, FLM, FR, and CLK outputs level “0”.  
CL, FLM, FR, and CLK outputs are active.  
DSE=0:  
DSE=1:  
Duty -1 OFF  
Duty -1 ON  
- 80 -  
NJU6823  
(32-18) Gradation mode control  
The “Gradation mode control” is used to select display mode as follows.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
PWM C256  
0
1
1
0
1
0
0
FDC1 FDC2  
PWM register  
PWM=0:  
Variable gradation mode  
(Variable 16-gradation levels out of 32-gradation level of the gradation palette)  
Fixed gradation mode  
PWM=1:  
(Fixed 8-gradation levels)  
C256 register  
C256=0  
C256=1  
256-color mode OFF (4,096-color in the default setting)  
256-color mode ON  
FDC1 and FDC2 register  
FDC1  
FDC2  
Boost Clock  
0
0
1
1
0
1
0
1
×1  
×2  
×4  
×1/2  
- 81 -  
NJU6823  
(32-19)Data bus length  
The “Data bus length” instruction is used to select the 8- or 16- bit data bus length and determine the  
internal or external oscillation. In the 16-bit data bus mode, instruction data must be 16-bit (D15 to D0) as  
well as display data. However, for the access to the instruction registers, the lower 8-bit data (D7 to D0) of  
the 16-bit data is valid. For the access to the DDRAM, all of the 16-bit data (D15 to D0) is valid.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
D2  
D1  
D0  
0
1
1
0
1
0
0
HSW ABS CKS WLS  
HSW register  
HSW =0:  
HSW=1:  
High Speed access mode OFF  
High Speed access mode ON (only in the 8-bit data bus length)  
ABS register  
ABS=0:  
ABS=1:  
ABS mode OFF (normal)  
ABS mode ON  
WLS register  
WLS=0:  
WLS =1:  
8-bit data bus length  
16-bit data bus length  
CKS register  
CKS =0:  
Internal oscillation  
(The OSC1 terminal must be fixd “1” or “0”.)  
External oscillation  
CKS =1:  
(By the external clock into the OSC1 or external resister between the OSC1 and  
OSC2. OSC2 should be open when clock is inputted from OSC1.)  
- 82 -  
NJU6823  
(32-20) EVR control  
The “EVR control” instruction is used to fine-tune the LCD driving voltage (VLCD) so that it is possible to  
optimize the contrast level for a LCD panel.  
This instruction must be programmed by upper 3-bit data first, next lower 4-bit data. And it becomes  
enabled when the lower 4-bit data is programmed, so that it can prevent unexpected high voltage for the  
VLCD from being generated.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
1
0
0
DV3 DV2 DV1 DV0  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
1
D3  
*
D2  
D1  
D0  
0
1
1
0
1
0
0
DV6 DV5 DV4  
DV6 DV5 DV4 DV3 DV2 DV1 DV0  
VLCD  
0
0
0
0
0
0
0
0
:
0
0
0
0
0
1
Low  
:
:
:
:
1
1
1
1
1
1
1
High  
The formula of the VLCD is shown below.  
VLCD [V] = 0.5 x VREG + M (VREG – 0.5 x VREG) / 127  
V
BA = VEE x 0.9  
VBA  
VREF  
VREG  
N
: Output voltage of the reference voltage generator  
: Input voltage of the voltage regulator  
: Output voltage of the voltage regulator  
: Register value for the voltage booster  
: Register value for the EVR  
VREG = VREF x N  
M
- 83 -  
NJU6823  
(32-21) Frequency control  
The “Frequency control” instruction is used to control the frame frequency for a LCD panel.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
1
D3  
*
D2  
D1  
D0  
0
1
1
0
1
0
0
Rf2  
Rf1  
Rf0  
Rfx register (x=0, 1, 2)  
The “Rfx” register is used to determine the feed back resister value for the internal oscillator and it is  
possible to adjust the frame frequency for the LCD modules.  
Rf 2 Rf 1 Rf 0  
Feedback resistor value  
Reference value  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0.8 x reference value  
0.9 x reference value  
1.1 x reference value  
1.2 x reference value  
0.7 x reference value  
1.3 x reference value  
Inhibited  
(32-22) Discharge ON/OFF  
Discharge circuit is used to discharge the electric charge of the capacitors on the V1 to V4 and the VLCD  
terminals. The “Discharge ON/OFF” instruction is usually required just after the internal power supply is turned  
off by setting “0” into the “DCON” and “AMPON” registers, or just after the external power supply is turned off.  
During the discharge operation, the internal or external power supply must not be turned on.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
1
D4  
0
D3  
*
D2  
*
D1  
D0  
0
1
1
0
1
0
0
DIS2 DIS  
DIS=0:  
DIS=1:  
Discharge OFF  
Discharge ON  
(Capacitors on the VLCD, V1, V2, V3 and V4)  
(Capacitors on the VLCD, V1, V2, V3 and V4)  
DIS2=0:  
DIS2=1:  
Discharge OFF  
Discharge ON  
(Resistance between VOUT and VEE)  
(Resistance between VOUT and VEE)  
Note ) VOUT and VEE are internally connected with the resistor (100ktypical) in the power-ON  
.
- 84 -  
NJU6823  
(32-23) Instruction register address  
The “Instruction register address” is used to specify the instruction register address, so that it is possible  
to read out the contents of the instruction registers in combination with the “Instruction register read”  
instruction.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
1
0
0
RA3 RA2 RA1 RA0  
(32-24) Instruction register read  
The “Instruction register read” instruction is used to read out the contents of the instruction register in  
combination with the “Instruction register address” instruction.  
CSb RS RDb WRb RE2 RE1 RE0  
0/1 0/1 0/1  
D7  
*
D6  
*
D5  
*
D4  
*
D3  
D2  
D1  
D0  
0
1
0
1
Internal register data read  
(32-25) Window end column address  
The “Window end column address” is used to specify the column address for the window end point. The  
lower 4-bit data is required to be programmed first and then the upper 4-bit data can be programmed.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
1
0
1
EX3 EX2 EX1 EX0  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
0
D4  
1
D3  
D2  
D1  
D0  
0
1
1
0
1
0
1
EX7 EX6 EX5 EX4  
(32-26) Window end row address set  
The “Window end row address” is used to specify the row address for the window end point. The lower  
4-bit data is required to be programmed first and then the upper 4-bit data can be programmed.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
1
0
1
EY3 EY2 EY1 EY0  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
*
D2  
D1  
D0  
0
1
1
0
1
0
1
EY6 EY5 EY4  
- 85 -  
NJU6823  
(32-27) Initial reverse line  
The “Initial reverse line” instruction is used to specify the initial reverse line address for the reverse line  
display. Lower 4-bit data must be programmed first, next upper 3-bit data. It is programmed in between  
00H and 7FH and the line address beyond 7FH is inhibited. The address relation: LSi < LEi (i=7 to 0) must  
be maintained in the reverse line display.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
1
0
1
LS3 LS2 LS1 LS0  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
0
D4  
1
D3  
*
D2  
D1  
D0  
0
1
1
0
1
0
1
LS6 LS5 LS4  
(32-28) Last reverse line  
The “Last reverse line” instruction is used to specify the last reverse line address for the reverse line  
display. Lower 4-bit must be programmed first, next upper 3-bit data. It is programmed in between 00H and  
7FH and the line address beyond 7FH is inhibited. The address relation: LSi < LEi (i=7 to 0) must be  
maintained in the reverse line display.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
0
D3  
D2  
D1  
D0  
0
1
1
0
1
0
1
LE3 LE2 LE1 LE0  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
*
D2  
D1  
D0  
0
1
1
0
1
0
1
LE6 LE5 LE4  
(32-29) Reverse line display ON/OFF  
The “Reverse line display ON/OFF” is used to enable or disable the reverse line display for the blink  
operation and determine the reverse line display mode.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
0
D3  
*
D2  
*
D1  
D0  
0
1
1
0
1
0
1
BT LREV  
LREV register  
The “LREV” register is used to enable or disable the reverse line display.  
LREV =0:  
LREV =1:  
Reverse line display OFF (Normal)  
Reverse line display ON  
- 86 -  
NJU6823  
BT register  
The “BT” register is used to determine the reverse line display mode in the reverse line display ON  
(LREV=1) status.  
BT =0:  
BT =1:  
Normal reverse line display  
Blink once every 32 frames  
Display examples in the LREV=”1” and BT=”1”  
ꢂꢀꢀꢀꢂ  
ꢀꢂꢂꢂꢀ  
ꢀꢂꢂꢂꢂ  
ꢂꢀꢀꢀꢂ  
ꢂꢂꢂꢂꢀ  
ꢀꢂꢂꢂꢀ  
ꢂꢀꢀꢀꢂ  
ꢂꢂꢂꢂꢂ  
ꢀꢂꢂꢂꢀ  
ꢂꢀꢀꢀꢂ  
ꢂꢀꢀꢀꢀ  
ꢀꢂꢂꢂꢀ  
ꢀꢀꢀꢀꢂ  
ꢂꢀꢀꢀꢂ  
ꢀꢂꢂꢂꢀ  
ꢀꢀꢀꢀꢀ  
Blink once every 32 frames  
NJRC  
LCD DRIVER  
Low Power and  
Low Voltage  
Blink once every 32 frames  
NJRC  
Initial reverse line address  
Last reverse line address  
LCD DRIVER  
Low Power and  
Low Voltage  
- 87 -  
NJU6823  
(32-30) Gradation Palette setting control  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
0
D4  
1
D3  
*
D2  
*
D1  
D0  
0
1
1
0
1
0
1
DMY PS  
PS register  
PS=0: Lower 8 Gradation setting  
PS=1: Upper 8 Gradation setting  
DMY register  
Although segment drivers in normal condition output LCD driving voltage corresponding to data in  
Display data RAM, Icon segment driver output LCD driving voltage corresponding to registers. The 24  
bits register corresponds to SEGSA0 ~ SEGSA1, SEGSB0 ~ SEGSB1, SEGSC0 ~ SEGSC1.  
DMY=0: Normal RAM access  
DMY =1: Icon segment driver RAM access  
- 88 -  
NJU6823  
(32-31) PWM control  
The “PWM control” is used to determine the PWM type for segment waveforms, where the type can be  
specified for each of the SEGAi, SEGBi and SEGCi (i=0-127) drivers.  
CSb RS RDb WRb RE2 RE1 RE0  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
D2  
D1  
D0  
PWMS PWMA PWMB PWMC  
0
1
1
0
1
0
1
PWMS register  
PWMS=0: Type 1  
PWMS=1: Type 2  
PWMA, B and C registers  
The “PWMA, PWMB and PWMC” registers are used to select the type 1-O or type 1-E.  
PWMZ=0 (Z=A, B and C): Type 1-O  
PWMZ=1 (Z=A, B and C): Type 1-E  
PWM type1 (PWMS=”0”)  
Odd line  
Even line  
“H”  
“L”  
CL  
VLCD  
V2  
Type-O  
Type-E  
SEG  
VLCD  
V2  
PWM type2 (PWMS=”1”)  
“H”  
CL  
“L”  
VLCD  
V2  
SEG  
- 89 -  
NJU6823  
(33)The relationship between Common drivers and row addresses  
Row address assignment of common drivers is programmed by the “ SHIFT ” register of the “ Display control  
(1) ” , “ Duty cycle ratio ”, “ Internal display line ” and “ Initial COM line ” instructions.  
When initial display line is “0”  
If the “ SHIFT “ is “ 0 “, the scan direction is normal. When the “ LA0 to LA6 ” registers of the “ Initial  
display line “instruction is “ 0 “, the “ MY “ corresponding to the initial COM line is “ 0 “ and is increasing  
during display.  
When initial display line is not “0”  
If the “ SHIFT “ is “ 1 “, the scan direction is inversed. When the “ LA0 to LA6 ” registers of the “ Initial  
display line “instruction is not “ 0 “, the “ MY “ corresponding to the initial COM line is this setting value and  
is increasing during display.  
The following are examples of setting the start-line 0 or 5 at 1/129, 1/128, or 1/17 duty.  
- 90 -  
NJU6823  
(33-1) Initial display line “0”, 1/129 duty cycle (Common forward scan, DSE=”0”)  
SHIFT=”0”(Common forward scan), DS3, 2  
,
,
0=”0000”, LA6….LA0=”00000000”(Initial display line 0)  
1
SC3  
SC2  
SC1  
SC0  
0000  
0
0001  
124  
0010  
120  
0011  
112  
0100  
104  
0101  
96  
0110  
88  
0111  
80  
1000  
72  
1001  
64  
1010  
56  
1011  
48  
1100  
40  
1101  
32  
1110  
24  
1111  
16  
COM0  
COM1  
COM2  
COM3  
127  
0
COM4  
COM5  
COM6  
COM7  
127  
0
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COM80  
COM81  
COM82  
COM83  
COM84  
COM85  
COM86  
COM87  
COM88  
COM89  
COM90  
COM91  
COM92  
COM93  
COM94  
COM95  
COM96  
:
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
COM103  
COM104  
:
127  
0
COM111  
COM112  
:
127  
0
COM125  
COM126  
COM127  
127  
127  
123  
127  
119  
127  
111  
127  
103  
127  
95  
127  
87  
127  
79  
127  
71  
127  
63  
127  
55  
127  
47  
127  
39  
127  
31  
127  
23  
127  
15  
127  
(129th COM period) *1  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
*1 : 129th COM period is not selected.  
- 91 -  
NJU6823  
(33-2) Initial display line “0”, 1/17 duty cycle (Common backward scan, DSE=”0”)  
SHIFT=”0”(Common backward scan), DS3, 2, , 0=”1110”, LA6….LA0=”00000000”(Initial display line 0)  
1
SC3  
SC2  
SC1  
SC0  
0000  
0
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COM80  
COM81  
COM82  
COM83  
COM84  
COM85  
COM86  
COM87  
COM88  
:
0
0
15  
0
15  
15  
0
15  
0
15  
0
15  
0
15  
0
15  
0
15  
0
15  
0
15  
0
COM95  
COM96  
:
15  
0
COM103  
COM104  
:
15  
0
COM111  
COM112  
:
15  
0
COM119  
:
15  
15  
COM127  
15  
15  
(17th COM period) *1  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
*1 : 17th COM period is not selected.  
- 92 -  
NJU6823  
(33-3) Initial display line “0”, 1/129 duty cycle (Common backward scan, DSE=”0”)  
SHIFT=”1”(Common backward scan), DS3, 2  
,
,
0=”0000”, LA6….LA0=”00000000”(Initial display line 0)  
1
SC3  
SC2  
SC1  
SC0  
0000  
127  
0001  
123  
0010  
119  
0011  
111  
0100  
103  
0101  
95  
0110  
87  
0111  
79  
1000  
71  
1001  
63  
1010  
55  
1011  
47  
1100  
39  
1101  
31  
1110  
23  
1111  
15  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
:
COM15  
COM16  
:
0
127  
COM23  
COM24  
:
0
127  
COM31  
COM32  
:
0
127  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COM80  
COM81  
COM82  
COM83  
COM84  
COM85  
COM86  
COM87  
COM88  
COM89  
COM90  
COM91  
COM92  
COM93  
COM94  
COM95  
COM96  
COM97  
COM98  
COM99  
COM100  
COM101  
COM102  
COM103  
COM104  
COM105  
COM106  
COM107  
COM108  
COM109  
COM110  
COM111  
COM112  
COM113  
COM114  
COM115  
COM116  
COM117  
COM118  
COM119  
COM120  
COM121  
COM122  
COM123  
COM124  
COM125  
COM126  
COM127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
124  
127  
120  
127  
112  
127  
104  
127  
96  
127  
88  
127  
80  
127  
72  
127  
64  
127  
56  
127  
48  
127  
40  
127  
32  
127  
24  
127  
16  
127  
(129th COM period) *1  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
*1 : 129th COM period is not selected.  
- 93 -  
NJU6823  
(33-4) Initial display line “5”, 1/129 duty cycle (Common forward scan, DSE=”0”)  
SHIFT=”0”(Common forward scan), DS3, 2  
,
,
0=”0000”, LA6….LA0=”00000101”(Initial display line 5)  
1
SC3  
SC2  
SC1  
SC0  
0000  
5
0001  
1
0010  
0011  
117  
0100  
109  
0101  
101  
0110  
93  
0111  
85  
1000  
77  
1001  
69  
1010  
61  
1011  
53  
1100  
45  
1101  
37  
1110  
29  
1111  
21  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
:
125  
126  
127  
0
5
5
127  
0
5
127  
0
5
127  
0
5
127  
0
5
127  
0
5
127  
0
5
127  
0
5
127  
0
5
127  
0
COM80  
COM81  
COM82  
COM83  
:
COM88  
COM89  
COM90  
COM91  
:
COM96  
COM97  
COM98  
COM99  
:
COM104  
COM105  
COM106  
COM107  
:
5
127  
0
5
127  
0
5
127  
0
5
127  
0
COM112  
:
5
COM122  
COM123  
COM124  
COM125  
COM126  
COM127  
127  
0
:
127  
0
127  
4
127  
124  
127  
116  
127  
108  
127  
100  
127  
92  
127  
84  
127  
76  
127  
68  
127  
60  
127  
52  
127  
44  
127  
38  
127  
28  
127  
20  
127  
(129th COM period) *1  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initial display line  
*1 : 129th COM period is not selected.  
- 94 -  
NJU6823  
(33-5) Initial display line “0”, 1/128 duty cycle (Common forward scan, DSE=”1”)  
SHIFT=”0”(Common forward scan), DS3, 2  
,
,
0=”0000”, LA6….LA0=”00000000”(Initial display line 0) DSE=”1”  
1
SC3  
SC2  
SC1  
SC0  
0000  
0
0001  
124  
0010  
120  
0011  
112  
0100  
104  
0101  
96  
0110  
88  
0111  
80  
1000  
72  
1001  
64  
1010  
56  
1011  
48  
1100  
40  
1101  
32  
1110  
24  
1111  
16  
COM0  
COM1  
COM2  
COM3  
127  
0
COM4  
COM5  
COM6  
COM7  
127  
0
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM20  
COM21  
COM22  
COM23  
COM24  
COM25  
COM26  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COM64  
COM65  
COM66  
COM67  
COM68  
COM69  
COM70  
COM71  
COM72  
COM73  
COM74  
COM75  
COM76  
COM77  
COM78  
COM79  
COM80  
COM81  
COM82  
COM83  
COM84  
COM85  
COM86  
COM87  
COM88  
COM89  
COM90  
COM91  
COM92  
COM93  
COM94  
COM95  
COM96  
:
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
127  
0
COM103  
COM104  
:
127  
0
COM111  
COM112  
:
COM125  
COM126  
COM127  
127  
0
127  
123  
119  
111  
79  
71  
63  
55  
47  
39  
31  
23  
15  
DS: Duty cycle ratio, SC: Initial COM line, LA: Initi1a0l3 displ9a5y line87  
- 95 -  
NJU6823  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
Supply Voltage (1)  
Supply Voltage (2)  
Supply Voltage (3)  
Supply Voltage (4)  
Supply Voltage (5)  
Supply Voltage (6)  
Input Voltage  
SYMBOL  
VDD  
CONDITION  
TERMINAL  
VDD  
RATING  
-0.3 to +4.0  
UNIT  
V
VEE  
VEE  
-0.3 to +4.0  
V
VOUT  
VOUT  
-0.3 to +19.0  
-0.3 to +19.0  
-0.3 to +19.0  
-0.3 to VLCD + 0.3  
-0.3 to VDD + 0.3  
-45 to +125  
V
VSS=0V  
VREG  
VREG  
V
Ta = +25°C  
VLCD  
VLCD  
V
V1, V2, V3, V4  
VI  
V1, V2, V3, V4  
*1  
V
V
Storage Temperature  
Tstg  
°C  
Note 1) D0 to D15, CSb, RS, RDb, WRb, OSC1, RESb, TEST1, TEST2, terminals.  
Note 2) To stabilize the voltage booster operation, decoupling capacitors must be connected between the  
VDD and VSS pins and between the VEE and VSSH pins.  
RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
Supply Voltage  
SYMBOL  
VDD1  
TERMINAL  
VDD  
MIN  
1.7  
2.4  
2.4  
5
TYP  
MAX  
3.3  
UNIT  
V
NOTE  
*1  
VDD2  
3.3  
V
*2  
VEE  
VEE  
VLCD  
VOUT  
VREG  
VREF  
3.3  
V
*3  
*4  
VLCD  
18.0  
18.0  
OUT × 0.9  
3.3  
V
VOUT  
VREG  
VREF  
V
Operating Voltage  
V
V
2.1  
-30  
V
*5  
Operating  
Topr  
85  
°C  
Temperature  
Note1) Applies to the condition when the reference voltage generator is not used.  
Note2) Applies to the condition when the reference voltage generator is used.  
Note3) Applies to the condition when the voltage booster is used.  
Note4) The following relationship among the supply voltages must be maintained.  
VSS<V4<V3<V2<V1<VLCD<VOUT  
Note5) The relationship: VREF<VEE must be maintained.  
- 96 -  
NJU6823  
DC CHARACTERISTICS 1  
VSS = 0V, VDD = +1.7 to +3.3V, Ta = -30 to +85°C  
SYM  
PARAMETER  
BOL  
CONDITION  
MIN  
TYP  
MAX  
UNIT NOTE  
VIH  
VIL  
VOH1  
VOL1  
VOH2  
VOL2  
ILI  
High level input voltage  
Low level input voltage  
High level output voltage  
Low level output voltage  
High level output voltage  
Low level output voltage  
Input leakage current  
0.8 VDD  
0
VDD  
V
V
*1  
*1  
*2  
*2  
*3  
*3  
*4  
*5  
0.2VDD  
IOH = -0.4mA  
VDD - 0.4  
V
IOL = 0.4mA  
0.4  
V
IOH = -0.1mA  
IOL = 0.1mA  
VI = VSS or VDD  
VI = VSS or VDD  
VDD - 0.4  
V
0.4  
10  
10  
2
4
15  
710  
160  
22.9  
V
-10  
-10  
µA  
µA  
ILO  
Output leakage current  
VLCD = 10V  
VLCD = 6V  
VDD = 3V  
1
2
RON1  
Driver ON-resistance  
*6  
|VON| = 0.5V  
kΩ  
µA  
ISTB  
*7  
CSb=VDD, Ta=25°C  
Stand-by current  
fOSC1  
fOSC2  
fOSC3  
fr1  
fr2  
fr3  
490  
110  
15.9  
600  
135.5  
19.4  
575  
135  
19.6  
*8  
*9  
*10  
VDD = 3V  
Internal oscillation  
Frequency  
kHz  
Ta = 25°C  
Rf=12kΩ  
Rf=62kΩ  
Rf=470kΩ  
External oscillation  
Frequency  
kHz  
V
*11  
*12  
N-time booster (N=2 to 6)  
Voltage converter  
output voltage  
(N x VEE  
)
VOUT  
IDD1  
IDD2  
IDD3  
IDD4  
IDD5  
IDD6  
VBA  
x 0.95  
RL = 500k(VOUT - VSS  
)
VDD = 3V, 6-time booster  
Whole ON pattern  
Supply current (1)  
Supply current (2)  
Supply current (3)  
Supply current (4)  
Supply current (5)  
Supply current (6)  
VBA Operating voltage  
760  
930  
1140  
1400  
780  
VDD = 3V, 6-time booster  
Checker pattern  
VDD = 3V, 5-time booster  
Whole ON pattern  
520  
*13  
µA  
VDD = 3V, 5-time booster  
Checker pattern  
650  
980  
VDD = 3V, 4-time booster  
Whole ON pattern  
360  
540  
VDD = 3V, 4-time booster  
Checker pattern  
450  
680  
(0.9 VEE  
)
(0.9 VEE  
)
VEE = 2.4 to 3.3V  
VEE = 2.4 to 3.3V  
0.9 VEE  
V
V
*14  
*15  
x 0.98  
x 1.02  
(VREF x N)  
x 0.97  
(VREF x N)  
x 1.03  
VREG  
(VREF x N)  
VREG Operating voltage  
VREF = 0.9 x VEE  
N-time booster (N=2 to 6)  
V2  
V3  
VD12  
VD34  
VD24  
-100  
-100  
-30  
-30  
-30  
0
0
0
0
0
+100  
+100  
+30  
+30  
+30  
Output Voltage  
mV  
*16  
- 97 -  
NJU6823  
CLOCK and FRAME FREQUENCY  
Display duty cycle ratio (1/D) <DSE=0>  
1/73 to 1/41 1/33 to 1/25  
PARAMETER SYMBOL  
NOTE  
FLM  
Display mode  
1/128 to 1/81  
fOSC / (62xD)  
1/17  
16 Gradation mode  
fOSC / (62xDx2) fOSC / (62xDx4) fOSC / (62xDx8)  
fOSC / (14xDx2) fOSC / (14xDx4) fOSC / (14xDx8)  
Internal  
fOSC  
Simplified  
f
OSC / (14xD)  
OSC / (2xD)  
fCK / (62xD)  
CK / (14xD)  
CK / (2xD)  
clock  
8 gradation mode  
B&W mode  
f
fOSC / (2xDx2)  
fCK / (62xDx2)  
fCK / (14xDx2)  
fCK / (2xDx2)  
fOSC / (2xDx4)  
fCK / (62xDx4)  
fCK / (14xDx4)  
fCK / (2xDx4)  
fOSC / (2xDx8)  
fCK / (62xDx8)  
fCK / (14xDx8)  
fCK / (2xDx8)  
16 Gradation mode  
External  
fCK  
Simplified  
f
clock  
8 gradation mode  
B&W mode  
f
- 98 -  
NJU6823  
APPLIED TERMINALS and CONDITIONS  
Note 1)  
Note 2)  
Note 3)  
Note 4)  
Note 5)  
D0-D15, CSb, RS, RDb, WRb, P/S, SEL68, RESb  
D0-D15  
CL, FLM, FR, CLK  
CSb, RS, SEL68, RDb, WRb, P/S, RESb, OSC1  
D0-D15 in the high impedance  
Note 6)  
SEGA0-SEGA127, SEGB0-SEGB127, SEGC0-SEGC127, COM0-COM127 and  
SEGSA0-SEGSA1, SEGSB0-SEGSB1, SEGSC0-SEGSC1  
- Defines the resistance between the COM/SEG terminals and the power supply terminals (VLCD  
,
V1, V2, V3 and V4) at the condition of 0.5V deference and 1/9 LCD bias ratio.  
Note 7)  
Note 8)  
VDD  
- The oscillator is halted, CSb=”1” (disabled), No-load onto the segment and common drivers  
OSC  
- Defines the internal oscillation frequency at (Rf2, Rf1, Rf0)=(0,0,0) in the variable gradation  
mode.  
Note 9)  
OSC  
- Defines the internal oscillation frequency at (Rf2, Rf1, Rf0)=(0,0,0) in the fixed gradation mode.  
Note 10)  
OSC  
- Defines the internal oscillation frequency at (Rf2, Rf1, Rf0)=(0,0,0) in the Black & White mode.  
Note 11)  
Note 12)  
VDD=3V, Ta=25°C  
VOUT  
- Applies to the condition when the internal voltage booster, the internal oscillator and the  
internal power circuits are used.  
- VEE=2.4V to 3.3V, EVR= (1,1,1,1,1,1,1), 1/5 to 1/12 LCD bias, 1/129 duty cycle, No-load on  
COM/SEG drivers.  
- RL=500Kbetween the VOUT and the VSS, CA1=CA2=1.0uF, CA3=0.1uF, DCON=”1”,  
AMPON=”1”  
Note 13)  
VDD  
- Applies to the condition using the internal oscillator and internal power circuits, no access  
between the LSI and MPU.  
- EVR= (1,1,1,1,1,1,1), All pixels turned-on or checkerboard display in gradation mode. No-load  
on the COM/SEG drivers.  
- VDD=VEE, VREF=0.9VEE, CA1=CA2=1.0uF, CA3=0.1uF, DCON=”1”, AMPON=”1”, NLIN=”0”, 1/129  
Duty cycle, Ta=25°C  
Note 14)  
Note 15)  
VBA  
- Applies to the condition that VBA=VREF and voltage booster N= 1. DCON=”0”, VOUT=13.5V input.  
VREG  
- VEE=2.4V to 3.3V, VREF=0.9VEE, VOUT=18V, 1/5 to 1/12 LCD bias ratio, 1/129 duty cycle,  
EVR=(1,1,1,1,1,1,1)  
- Checkerboard display, No-load on the COM/SEG drivers, the voltage booster N=2 to 6,  
V1A1, V1A2, V4A1, V4A2 = “0”. CA1=CA2=1.0uF, CA3=0.1uF, DCON=”0”, AMPON=”1”, NLIN=”0”  
VLCD, V1, V2, V3, V4  
Note 16)  
- VEE=3.0V, VREF=0.9VEE, VOUT=15V, 1/5 to 1/12 LCD Bias, EVR= (1,1,1,1,1,1,1), Display OFF,  
No-load on the COM/SEG drivers, voltage booster N=5, V1A1, V1A2, V4A1, V4A2 = “0”.  
CA1=CA2=1.0uF, CA3=0.1uF, DCON=”0”, AMPON=”1”  
VLCD  
(1)  
(2)  
VD12: (1)-(2)  
VD34: (3)-(4)  
VD24: (2)-(4)  
V1  
V2  
V3  
V4  
VSS  
(3)  
(4)  
- 99 -  
NJU6823  
AC CHARACTERISTICS  
Write operation (80-type MPU)  
tAS8  
tAH8  
CSb  
RS  
WRb  
tWRLW8  
tWRHW8  
tDS8  
tDH8  
D0 to D15  
tCYC8  
MIN.  
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL CONDITION  
MAX.  
UNIT  
TERMINAL  
Address hold time  
tAH8  
0
ns  
CSb  
Address setup time  
tAS8  
0
ns  
RS  
System cycle time  
tCYC8  
90  
35  
35  
ns  
ns  
ns  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tWRLW8  
WRb  
tWRHW8  
Data setup time  
Data hold time  
tDS8  
tDH8  
30  
5
ns  
ns  
D0 to D15  
(VDD=2.2 to 2.5V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
tAH8  
0
ns  
CSb  
Address setup time  
tAS8  
0
ns  
RS  
System cycle time  
tCYC8  
160  
70  
ns  
ns  
ns  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tWRLW8  
WRb  
tWRHW8  
70  
Data setup time  
Data hold time  
tDS8  
tDH8  
40  
5
ns  
ns  
D0 to D15  
(VDD=1.7 to 2.2V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
tAH8  
0
ns  
CSb  
Address setup time  
tAS8  
0
ns  
RS  
System cycle time  
tCYC8  
180  
80  
ns  
ns  
ns  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
tWRLW8  
WRb  
tWRHW8  
80  
Data setup time  
tDS8  
70  
ns  
ns  
D0 to D15  
Data hold time  
tDH8  
10  
Note) Each timing is specified based on 20% and 80% of VDD.  
- 100 -  
NJU6823  
Read operation (80-type MPU)  
tAS8  
tAH8  
CSb  
RS  
tWRLR8  
RDb  
tWRHR8  
tRDH8  
D0 to D15  
tRDD8  
tCYC8  
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
tAH8  
0
ns  
CSb  
Address setup time  
tAS8  
0
ns  
RS  
System cycle time  
tCYC8  
tWRLR8  
tWRHR8  
180  
80  
ns  
ns  
ns  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
RDb  
80  
Read Data delay time  
Read Data hold time  
TRDD8  
TRDH8  
60  
ns  
ns  
CL=15pF  
D0 to D15  
0
(VDD=2.2 to 2.5V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
tAH8  
0
ns  
CSb  
Address setup time  
tAS8  
0
ns  
RS  
System cycle time  
tCYC8  
tWRLR8  
tWRHR8  
180  
80  
ns  
ns  
ns  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
RDb  
80  
Read Data delay time  
Read Data hold time  
TRDD8  
60  
ns  
ns  
CL=15pF  
TRDH8  
D0 to D15  
0
(VDD=1.7 to 2.2V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
tAH8  
0
ns  
CSb  
Address setup time  
tAS8  
0
ns  
RS  
System cycle time  
tCYC8  
tWRLR8  
tWRHR8  
250  
120  
120  
ns  
ns  
ns  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
RDb  
Read Data delay time  
tRDD8  
110  
ns  
ns  
CL=15pF  
tRDH8  
D0 to D15  
Read Data hold time  
0
Note) Each timing is specified based on 20% and 80% of VDD.  
- 101  
NJU6823  
Write operation (68-type MPU)  
tAS6  
tAH6  
CSb  
RS  
R/W  
(WRb)  
tELW6  
tEHW6  
E
(RDb)  
tDS6  
tDH6  
D0 to D15  
tCYC6  
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
tAH6  
0
ns  
CSb  
Address setup time  
tAS6  
0
ns  
RS  
System cycle time  
tCYC6  
tELW6  
tEHW6  
90  
35  
35  
ns  
ns  
ns  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
E
Data setup time  
Data hold time  
tDS6  
tDH6  
40  
5
ns  
ns  
D0 to D15  
(VDD=2.2 to 2.5V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
tAH6  
0
ns  
CSb  
Address setup time  
tAS6  
0
ns  
RS  
System cycle time  
tCYC6  
tELW6  
tEHW6  
160  
70  
ns  
ns  
ns  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
E
70  
Data setup time  
Data hold time  
tDS6  
tDH6  
50  
5
ns  
ns  
D0 to D15  
(VDD=1.7 to 2.2V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
tAH6  
0
ns  
CSb  
Address setup time  
tAS6  
0
ns  
RS  
System cycle time  
tCYC6  
tELW6  
tEHW6  
180  
80  
ns  
ns  
ns  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
E
80  
Data setup time  
tDS6  
70  
ns  
ns  
D0 to D15  
Data hold time  
tDH6  
10  
Note) Each timing is specified based on 20% and 80% of VDD.  
- 102 -  
NJU6823  
Read operation (68-type MPU)  
tAS6  
tAH6  
CSb  
RS  
R/W  
(WRb)  
tELR6  
tEHR6  
E
(RDb)  
tRDH6  
D0 to D15  
tRDD6  
tCYC6  
MIN.  
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL  
CONDITION  
MAX.  
UNIT  
TERMINAL  
Address hold time  
tAH6  
0
ns  
CSb  
RS  
Address setup time  
tAS6  
0
ns  
System cycle time  
tCYC6  
tELR6  
tEHR6  
180  
80  
ns  
ns  
ns  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
E
80  
Read Data delay time  
Read Data hold time  
tRDD6  
tRDH6  
ns  
ns  
70  
CL=15pF  
D0 to D15  
0
(VDD=2.2 to 2.5V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL  
CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
tAH6  
0
ns  
CSb  
Address setup time  
tAS6  
0
ns  
RS  
System cycle time  
tCYC6  
tELR6  
tEHR6  
180  
80  
ns  
ns  
ns  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
E
80  
Read Data delay time  
Read Data hold time  
tRDD6  
tRDH6  
ns  
ns  
70  
CL=15pF  
D0 to D15  
0
(VDD=1.7 to 2.2V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL  
CONDITION  
MIN.  
MAX.  
UNIT  
TERMINAL  
Address hold time  
tAH6  
0
ns  
CSb  
Address setup time  
tAS6  
0
ns  
RS  
System cycle time  
tCYC6  
tELR6  
tEHR6  
250  
120  
120  
ns  
ns  
ns  
Enable ”L” level pulse width  
Enable ”H” level pulse width  
E
Read Data delay time  
tRDD6  
ns  
ns  
110  
CL=15pF  
D0 to D15  
0
Read Data hold time  
tRDH6  
Note) Each timing is specified based on 20% and 80% of VDD.  
- 103  
NJU6823  
Serial interface  
tCSH  
tCSS  
CSb  
RS  
tASS  
tAHS  
tSLW  
tSHW  
SCL  
tCYCS  
tDSS  
tDHS  
SDA  
(VDD=2.5 to 3.3V, Ta=-30 to +85°C)  
UNIT  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
TERMINAL  
Serial clock cycle  
tCYCS  
tSHW  
tSLW  
tASS  
tAHS  
tDSS  
tDHS  
50  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL ”H” level pulse width  
SCL ”L” level pulse width  
Address setup time  
Address hold time  
Data setup time  
SCL  
RS  
SDA  
Data hold time  
CSb – SCL time  
CSb hold time  
tCSS  
20  
ns  
CSb  
tCSH  
20  
ns  
(VDD=2.2 to 2.5V, Ta=-30 to +85°C)  
UNIT  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
TERMINAL  
Serial clock cycle  
tCYCS  
tSHW  
tSLW  
tASS  
tAHS  
tDSS  
tDHS  
50  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL ”H” level pulse width  
SCL ”L” level pulse width  
Address setup time  
Address hold time  
Data setup time  
SCL  
RS  
SDA  
Data hold time  
CSb – SCL time  
CSb hold time  
tCSS  
20  
ns  
CSb  
tCSH  
20  
ns  
(VDD=1.7 to 2.2V, Ta=-30 to +85°C)  
UNIT  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
TERMINAL  
Serial clock cycle  
tCYCS  
tSHW  
tSLW  
tASS  
tAHS  
tDSS  
tDHS  
80  
35  
35  
35  
35  
35  
35  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL ”H” level pulse width  
SCL ”L” level pulse width  
Address setup time  
Address hold time  
Data setup time  
SCL  
RS  
SDA  
Data hold time  
CSb – SCL time  
tCSS  
35  
ns  
CSb  
tCSH  
35  
ns  
CSb hold time  
Note) Each timing is specified based on 20% and 80% of VDD.  
- 104 -  
NJU6823  
Display control timing  
CLK  
tDCL  
CL  
tDFLM  
tDFLM  
FLM  
tFR  
FR  
Output timing  
PARAMETER  
FLM delay time  
FR delay time  
CL delay time  
(VDD=2.4 to 3.3V, Ta=-30 to +85°C)  
SYMBOL CONDITION  
tDFLM CL=15pF  
MIN.  
MAX.  
500  
UNIT  
ns  
ns  
TERMINAL  
FLM  
0
0
0
tFR  
500  
200  
FR  
tDCL  
ns  
CL  
Output timing  
(VDD=1.7 to 2.4V, Ta=-30 to +85°C)  
PARAMETER  
SYMBOL CONDITION  
tDFLM CL=15pF  
MIN.  
MAX.  
1000  
1000  
200  
UNIT  
ns  
TERMINAL  
FLM  
FLM delay time  
FR delay time  
CL delay time  
0
0
0
tFR  
ns  
FR  
tDCL  
ns  
CL  
Note) Each timing is specified based on 20% and 80% of VDD.  
- 105  
NJU6823  
Input clock timing  
tCKLW  
tCKHW  
OSC1  
(VDD=1.7 to 3.3V, Ta=-30 to +85°C)  
UNIT  
PARAMETER  
SYMBOL CONDITION  
MIN.  
MAX.  
1.02  
1.02  
4.55  
4.55  
31.4  
31.4  
TERMINAL  
OSC1  
OSC1 “H” level pulse width (1)  
OSC1 “L” level pulse width (1)  
OSC1 “H” level pulse width (2)  
OSC1 “L” level pulse width (2)  
OSC1 “H” level pulse width (3)  
OSC1 “L” level pulse width (3)  
tCKHW1  
tCKLW1  
tCKHW2  
tCKLW2  
tCKHW3  
tCKLW3  
0.70  
0.70  
3.13  
3.13  
21.8  
21.8  
µs  
µs  
µs  
µs  
µs  
µs  
1
OSC1  
2
OSC1  
3
Note) Each timing is specified based on 20% and 80% of VDD.  
Note 1) Applied to the variable gradation mode / MON=”0”,PWM=”0”  
Note 2) Applied to the fixed gradation mode / MON=”0”,PWM=”1”  
Note 3) Applied to the B&W mode / MON=”1”  
- 106 -  
NJU6823  
Reset input timing  
RESb  
tRW  
tR  
Internal circuit  
status  
During reset  
End of reset  
(VDD=2.4 to 3.3V, Ta=-30 to +85°C)  
UNIT  
PARAMETER  
SYMBOL CONDITION  
MIN.  
10.0  
MAX.  
Terminal  
Reset time  
tR  
1.0  
µs  
µs  
RESb “L” level pulse width  
tRW  
RESb  
(VDD=1.7 to 2.4V, Ta=-30 to +85°C)  
UNIT  
PARAMETER  
Reset time  
SYMBOL CONDITION  
MIN.  
10.0  
MAX.  
Terminal  
tR  
1.5  
µs  
µs  
RESb “L” level pulse width  
tRW  
RESb  
Note) Each timing is specified based on 20% and 80% of VDD.  
- 107  
NJU6823  
Typical characteristic  
PARAMETER  
Basic delay time of gate  
SYMBOL  
Ta=+25°C, VSS=0V, VDD=3.0V  
MIN  
TYP  
10  
MAX  
UNIT  
ns  
Input output terminal type  
(a) Input circuit  
VDD  
Terminals:  
CSb, RS, RDb, WRb, SEL68,  
P/S, RESb  
I
Input signal  
VSS(0V)  
(b) Output circuit  
Terminals:  
FLM, CL, FR, CLK  
VDD  
Output control signal  
Output signal  
O
VSS(0V)  
(c) Input/Output circuit  
VDD  
Terminals:  
D0 to D15  
I/O  
Input signal  
VSS(0V)  
VSS(0V)  
Input control signal  
VDD  
Output control signal  
Output signal  
VSS(0V)  
- 108 -  
NJU6823  
(d) Display output circuit  
VLCD  
VLCD  
VLCD  
V1/V2  
Output control  
signal 1  
Output control signal 2  
Output control signal 4  
O
Output control  
signal 3  
VSS(0V)  
V3/V4  
VSS(0V)  
VSS(0V)  
Terminals:  
SEGA0 to SEGA127  
SEGB0 to SEGB127  
SEGC0 to SEGC127  
COM0 to COM127  
- 109  
NJU6823  
APPLICATION CIRCUIT EXAMPLES  
(1) MPU Connections  
80-type MPU interface  
1.7V to 3.3V  
VCC  
VDD  
A
0  
RS  
A1 to A7  
(80-type MPU)  
IORQb  
Decoder  
8
7
CSb  
D0 to D7  
D0 to D7  
RDb  
WRb  
RDb  
WRb  
RESb  
RESb  
VSS  
GND  
RESET  
68-type MPU interface  
1.7V to 3.3V  
VCC  
VDD  
A
0  
RS  
A1 to A15  
(68-type MPU) 
VMA  
Decoder  
8
15  
CSb  
D0 to D7  
E
D0 to D7  
RDb(E)  
WRb(R/W)  
R/W  
RESb  
RESb  
VSS  
GND  
RESET  
Serial interface  
1.7V to 3.3V  
VCC  
VDD  
A
0  
A
1
to A
7  
RS  
Decoder  
RESET  
7
CSb  
(MPU)  
PORT1  
PORT2  
RESb  
SDA  
SCL  
RESb  
VSS  
GND  
- 110 -  
NJU6823  
[CAUTION]  
The specifications on this databook are only  
given for information , without any guarantee  
as regards either mistakes or omissions. The  
application circuits in this databook are  
described only to show representative usages  
of the product and not intended for the  
guarantee or permission of any right including  
the industrial rights.  
- 111  

相关型号:

NJU6824

128-common x (128+2) RGB-Segment, in 4096-Color STN LCD DRIVER
NJRC

NJU6824CJ

Liquid Crystal Driver, 518-Segment, CMOS, 22.07 X 2.55 MM, DIE-817
NJRC

NJU6824H

Liquid Crystal Driver, 518-Segment, CMOS, TCP
NJRC

NJU6825

162-common x 128-RGB segment 4096-color STN Bitmap LCD Driver
ETC

NJU6825CJ

Liquid Crystal Driver, 546-Segment, CMOS, DIE-786
NJRC

NJU6825CJ-Z

Liquid Crystal Driver, 546-Segment, CMOS, BUMP, DIE-786
NJRC

NJU6825H

Liquid Crystal Driver, 546-Segment, CMOS, TCP
NJRC

NJU6854

132COMMON x 132RGB LCD DRIVER FOR 65,536 - COLOR STN DISPLAY
NJRC

NJU6854CJ

暂无描述
NJRC

NJU7001

LOW VOLTAGE C-MOS OPERATIONAL AMPLIFIER
NJRC

NJU7001/02/04

Low Voltage C-MOS Operational Amplifier
NJRC

NJU7001D

LOW VOLTAGE C-MOS OPERATIONAL AMPLIFIER
NJRC