MB39A136PFT-E1 [FUJITSU]

Switching Regulator/Controller, Current-mode, 1000kHz Switching Freq-Max, PDSO24;
MB39A136PFT-E1
型号: MB39A136PFT-E1
厂家: FUJITSU    FUJITSU
描述:

Switching Regulator/Controller, Current-mode, 1000kHz Switching Freq-Max, PDSO24

光电二极管
文件: 总52页 (文件大小:1898K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS04-27262-4E  
ASSP for Power Management Applications  
(General-Purpose DC/DC Converter)  
2ch PFM/PWM DC/DC converter IC  
with synchronous rectification  
MB39A136  
DESCRIPTION  
MB39A136 is 2ch step-down DC/DC converter IC of the current mode N-ch/N-ch synchronous rectification  
method. It contains the enhanced protection features, and supports the symmetrical-phase method and the  
ceramic capacitor. MB39A136 realizes rapid response, high efficiency, and low ripple voltage, and its high-  
frequency operation enables the miniaturization of inductors and I/O capacitors.  
FEATURES  
• High efficiency  
• For frequency setting by external resistor  
• Error Amp threshold voltage  
• Minimum output voltage value  
: 100 kHz to 1 MHz  
: 0.7 V 1.0%  
: 0.7 V  
• Wide range of power-supply voltage  
: 4.5 V to 25 V  
• PFM/PWM auto switching mode and fixed PWM mode selectable  
• Supports Symmetrical-Phase method  
• With built-in over voltage protection function  
• With built-in under voltage protection function  
• With built-in over current protection function  
• With built-in over-temperature protection function  
• With built-in soft start/stop circuit without load dependence  
• With built-in synchronous rectification type output steps for N-ch MOS FET  
• Standby current  
• Small package  
: 0 [μA] Typ  
: TSSOP-24  
APPLICATION  
• Digital TV  
• Photocopiers  
• Surveillance cameras  
• Set-top boxes (STB)  
• DVD players, DVD recorders  
• Projectors  
• IP phones  
• Vending machine  
• Consoles and other non-portable devices  
Copyright©2008-2013 FUJITSU SEMICONDUCTOR LIMITED All rights reserved  
2013.1  
MB39A136  
PIN ASSIGNMENT  
(TOP VIEW)  
CTL1  
CS1  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
CB1  
DRVH1  
LX1  
FB1  
3
COMP1  
ILIM1  
RT  
4
DRVL1  
VCC  
5
6
VB  
VREF  
CTL2  
ILIM2  
COMP2  
FB2  
7
GND  
DRVL2  
LX2  
8
9
10  
11  
12  
DRVH2  
CB2  
CS2  
MODE  
(FPT-24P-M09)  
2
DS04-27262-4E  
MB39A136  
PIN DESCRIPTION  
Pin No.  
Symbol  
CTL1  
CS1  
I/O  
Description  
1
2
I
I
CH1 control pin.  
CH1 soft-start time setting capacitor connection pin.  
CH1 Error amplifier inverted input pin.  
CH1 error amplifier output pin.  
3
FB1  
I
4
COMP1  
ILIM1  
RT  
O
I
5
CH1 over current detection level setting voltage input pin.  
Oscillation frequency setting resistor connection pin.  
Reference voltage output pin.  
6
O
I
7
VREF  
CTL2  
ILIM2  
COMP2  
FB2  
8
CH2 control pin.  
9
I
CH2 over current detection level setting voltage input pin.  
CH2 error amplifier output pin.  
10  
11  
12  
O
I
CH2 Error amplifier inverted input pin.  
CH2 soft-start time setting capacitor connection pin.  
CS2  
I
PFM/PWM switch pin. (CH1 and CH2 commonness) It becomes fixed  
PWM operation with the VREF connection, and it becomes PFM/PWM  
operation with the GND connection.  
13  
MODE  
I
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
CB2  
DRVH2  
LX2  
O
CH2 connection pin for boot strap capacitor.  
CH2 output pin for external high-side FET gate drive.  
CH2 inductor and external high-side FET source connection pin.  
CH2 output pin for external low-side FET gate drive.  
Ground pin.  
O
DRVL2  
GND  
O
VB  
Bias voltage output pin.  
VCC  
O
Power supply pin for reference voltage and control circuit.  
CH1 output pin for external low-side FET gate drive.  
CH1 inductor and external high-side FET source connection pin.  
CH1 output pin for external high-side FET gate drive.  
CH1 connection pin for boot strap capacitor.  
DRVL1  
LX1  
O
DRVH1  
CB1  
DS04-27262-4E  
3
MB39A136  
BLOCK DIAGRAM  
MODE  
RT  
VCC  
13  
6
20  
<CH1>  
<Soft-Start,  
Soft-Stop>  
VREF  
Clock  
generator  
ctl1  
<PFM Comp. >  
VB  
Bias  
Reg.  
5.5  
μA  
/uvp_out  
19  
24  
+
pfm1  
CS1  
/otp_out  
pfm2  
2
/uvlo  
ovp_out  
2.0 V  
70 kΩ  
ch.1  
ch.2  
COMP1  
FB1  
CB1  
180° out of phase  
4
3
Hi-side  
Drive  
<Error Amp>  
DRVH1  
LX1  
23  
22  
<I Comp.>  
+
+
RS-FF  
R Q  
Drive  
Logic  
+
S
intref  
VB  
CLK  
ILIM1  
DRVL1  
5
21  
Lo-side  
Drive  
Level  
Converter  
Vs  
<OVP Comp.>  
<Di Comp.>  
<UVP Comp.>  
+
+
+
intref  
x 1.15 V  
intref  
x 0.7 V  
ovp1  
uvp1  
<UVLO>  
ovp_out  
uvp_out  
VB  
ovp1  
ovp2  
50 μs  
S Q  
R
UVLO  
delay  
uvlo  
VREF  
UVLO  
uvp1  
uvp2  
512/fOSC  
delay  
S Q  
R
H:UVLO  
release  
otp_out  
OTP  
CB2  
<CH2>  
CS2  
14  
12  
The configuration of a control circuit is the same as that of CH1.  
DRVH2  
LX2  
15  
16  
COMP2  
FB2  
10  
11  
DRVL2  
17  
VB  
ctl1, ctl2  
ILIM2  
9
ON/OFF  
CTL1  
CTL2  
<REF> <CTL>  
(3.3 V)  
1
8
intref  
7
18  
GND  
VREF  
4
DS04-27262-4E  
MB39A136  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Parameter  
Symbol  
Conditions  
VCC pin  
Unit  
Min  
Max  
27  
Power-supply voltage  
CB pin input voltage  
LX pin input voltage  
VVCC  
VCB  
V
V
V
V
V
V
V
V
V
CB1, CB2 pins  
LX1, LX2 pins  
32  
VLX  
27  
Voltage between CB and LX  
Control input voltage  
VCBLX  
VI  
7
CTL1, CTL2 pins  
FB1, FB2 pins  
ILIM1, ILIM2 pins  
CS1, CS2 pins  
MODE pin  
27  
VFB  
VVREF + 0.3  
VVREF + 0.3  
VVREF + 0.3  
VVB + 0.3  
VILIM  
VCSx  
VMODE  
Input voltage  
DC DRVL1, DRVL2 pins,  
DRVH1, DRVH2 pins  
Output current  
IOUT  
60  
mA  
Power dissipation  
PD  
Ta ≤ + 25 °C  
1644  
mW  
Storage temperature  
TSTG  
55  
+ 150  
°C  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
DS04-27262-4E  
5
MB39A136  
RECOMMENDED OPERATING CONDITIONS  
Value  
Typ  
Parameter  
Symbol  
Conditions  
Unit  
Min  
Max  
Power supply voltage  
VVCC  
VCB  
4.5  
25.0  
V
V
CB pin  
input voltage  
30  
Reference voltage  
output current  
IVREF  
100  
μA  
Bias output current  
IVB  
VI  
CTL1, CTL2 pins  
FB1, FB2 pins  
ILIM1, ILIM2 pins  
CS1, CS2 pins  
MODE pin  
1  
0
mA  
V
CTL pin input voltage  
25  
VFB  
0
VVREF  
1.94  
VVREF  
VVREF  
V
VILIM  
VCS  
VMODE  
0.3  
0
V
Input voltage  
V
0
V
DRVH1, DRVH2 pins  
DRVL1, DRVL2 pins  
Duty 5% (t = 1/fOSC × Duty)  
Peak output current  
IOUT  
1200  
+ 1200  
mA  
Operation frequency  
range  
fOSC  
100  
500  
1000  
kHz  
Timing resistor  
RRT  
CCS  
CCB  
RT pin  
0.0075  
47  
0.0180  
0.1  
kΩ  
μF  
μF  
Soft start capacitor  
CB pin capacitor  
CS1, CS2 pins  
CB1, CB2 pins  
1.0  
Reference voltage  
output capacitor  
CVREF  
CVB  
Ta  
VREF pin  
VB pin  
0.1  
2.2  
1.0  
10  
μF  
μF  
°C  
Bias voltage output  
capacitor  
Operating ambient  
temperature  
30  
+ 25  
+ 85  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of  
the semiconductor device. All of the device's electrical characteristics are warranted when the  
device is operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges.  
Operation outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented  
onthedatasheet.Usersconsideringapplicationoutsidethelistedconditionsareadvisedtocontact  
their representatives beforehand.  
6
DS04-27262-4E  
MB39A136  
ELECTRICAL CHARACTERISTICS  
(Ta = + 25 °C, VCC pin = 15 V, CTL pin = 5 V, VREF pin = 0 A, VB pin = 0A)  
Value  
Pin  
No.  
Parameter  
Output voltage  
Symbol  
Conditions  
Unit  
Min  
Typ  
Max  
VVREF  
7
3.24  
3.30  
3.36  
V
VREF  
LINE  
Input stability  
Load stability  
7
7
VCC pin = 4.5 V to 25 V  
1
1
10  
10  
mV  
Reference  
Voltage  
Block  
VREF  
LOAD  
VREF pin = 0 A to  
100 μA  
mV  
[REF]  
Short-circuit out-  
put current  
VREF  
IOS  
7
VREF pin = 0 V  
14.5 10.0 7.5 mA  
Output voltage  
VVB  
19  
19  
4.85  
5.00  
10  
5.15  
100  
V
VB  
LINE  
Input stability  
VCC pin = 6 V to 25 V  
mV  
Bias Voltage  
Block  
[VB Reg.]  
VB  
LOAD  
Load stability  
19  
19  
VB pin = 0 A to 1 mA  
VB pin = 0 V  
10  
100  
mV  
Short-circuit out-  
put current  
VB  
IOS  
200 140 100 mA  
VTLH1  
VTHL1  
VH1  
19  
19  
19  
7
VB pin  
4.0  
3.4  
4.2  
3.6  
4.4  
3.8  
V
V
V
V
V
V
Threshold voltage  
Hysteresis width  
VB pin  
Under volt-  
age Lockout  
Protection  
Circuit Block  
[UVLO]  
VB pin  
0.6*  
2.9  
VTLH2  
VTHL2  
VH2  
VREF pin  
VREF pin  
VREF pin  
2.7  
2.5  
3.1  
2.9  
Threshold  
voltage  
7
2.7  
Hysteresis width  
Charge current  
7
0.2*  
CTL1, CTL2 pins = 5 V,  
CS1, CS2 pins = 0 V  
ICS  
2, 12  
7.9 5.5 4.2  
μA  
Soft-start  
end voltage  
Soft-start /  
Soft-stop  
Block  
[Soft-Start,  
Soft-Stop]  
VCS  
2, 12 CTL1, CTL2 pins = 5 V  
2.2  
49  
2.4  
70  
2.6  
91  
V
Electrical dis-  
charge resistance  
at soft-stop  
CTL1, CTL2 pins = 0 V,  
2, 12  
RDISCG  
kΩ  
CS1, CS2 pins = 0.5 V  
Soft-stop  
end voltage  
VDISCG  
fOSC  
2, 12 CTL1, CTL2 pins = 0 V  
0.1*  
500  
V
Oscillation  
frequency  
6
6
RT pin = 47 kΩ  
RT pin = 47 kΩ  
450  
550  
kHz  
Oscillation  
Clock  
Generator  
Block  
frequency when  
under voltage is  
detected  
fSHORT  
df/dT  
62.5  
3*  
kHz  
[OSC]  
Frequency  
Temperature  
variation  
6
Ta = − 30 °C to + 85 °C  
%
(Continued)  
DS04-27262-4E  
7
MB39A136  
(Ta = + 25 °C, VCC pin = 15 V, CTL pin = 5 V, VREF pin = 0 A, VB pin = 0 A)  
Value  
Typ  
0.693 0.700 0.707  
Pin  
No.  
Parameter  
Symbol  
Conditions  
Unit  
Min  
Max  
EVTH  
EVTHT  
IFB  
3, 11  
V
V
Threshold  
voltage  
3, 11 Ta = − 30 °C to + 85 °C 0.689* 0.700* 0.711*  
Input current  
3, 11 FB1, FB2 pins = 0 V  
0.1  
0
+ 0.1 μA  
FB1, FB2 pins = 0 V,  
4, 10 COMP1, COMP2 pins =  
1 V  
ISOURCE  
390 300 210 μA  
Error Amp  
Block  
[Error Amp1,  
Error Amp2]  
Output current  
FB1, FB2 pins =  
VREF pin,  
COMP1, COMP2 pins =  
1 V  
ISINK  
4, 10  
8.4  
12.0  
16.8 mA  
Output clamp  
voltage  
FB1, FB2 pins = 0 V,  
4, 10  
VILIM  
IILIM  
1.35  
1.50  
0
1.65  
V
ILIM1, ILIM2 pins = 1.5 V  
ILIM pin  
input current  
FB1, FB2 pins = 0 V,  
5, 9  
1  
+ 1  
μA  
ILIM1, ILIM2 pins = 1.5 V  
Over-voltage  
detecting  
voltage  
Over-voltage  
Protection  
Circuit Block  
[OVP Comp.]  
VOVP  
3, 11 FB1, FB2 pins  
0.776 0.805 0.835  
V
μs  
V
Over-voltage  
detection time  
tOVP  
3, 11  
49  
70  
91  
Under-voltage  
detecting  
voltage  
Under-voltage  
Protection  
Circuit Block  
[UVP Comp.]  
VUVP  
3, 11 FB1, FB2 pins  
0.450 0.490 0.531  
512/  
Under-voltage  
detection time  
tUVP  
3, 11  
s
fOSC  
Over-tempera-  
TOTPH  
Junction temperature  
+ 160*  
°C  
ture Protection Detection  
Circuit Block  
[OTP]  
temperature  
TOTPL  
Junction temperature  
+ 135*  
°C  
Synchronous  
rectification stop  
voltage  
VTHLX  
VPFM  
VPWM  
IMODE  
22, 16 LX1, LX2 pins  
13 MODE pin  
0
0*  
0
1.4  
mV  
V
PFM/PWM  
mode condition  
PFM Control  
Circuit Block  
(MODE)  
Fixed PWM  
mode  
condition  
13 MODE pin  
2.2  
1  
VVREF  
V
MODE pin input  
current  
13 MODE pin = 0 V  
+ 1  
μA  
(Continued)  
8
DS04-27262-4E  
MB39A136  
(Ta = + 25 °C, VCC pin = 15 V, CTL pin = 5 V, VREF pin = 0 A, VB pin = 0 A)  
Value  
Pin  
No.  
Parameter  
Symbol  
Conditions  
Unit  
Min  
Typ  
Max  
DRVH1, DRVH2 pins =  
100 mA  
RON_MH  
RON_ML  
RON_SH  
RON_SL  
23, 15  
4
7
Ω
Ω
Ω
Ω
High-side  
output  
on-resistance  
DRVH1, DRVH2 pins =  
100 mA  
23, 15  
21, 17  
21, 17  
1.0  
4
3.5  
7
DRVL1, DRVL2 pins =  
100 mA  
Low-side  
output  
on-resistance  
DRVL1, DRVL2 pins =  
100 mA  
0.75  
1.70  
LX1, LX2 pins = 0 V,  
CB1, CB2 pins = 5 V  
Output source  
current  
23, 15, DRVH1, DRVH2 pins,  
21, 17 DRVL1, DRVL2 pins =  
2.5 V  
ISOURCE  
0.5*  
A
Duty 5%  
Output Block  
[DRV]  
LX1, LX2 pins = 0 V,  
CB1, CB2 pins = 5 V  
23, 15 DRVH1, DRVH2 pins =  
2.5 V  
0.9*  
1.2*  
A
A
Duty 5%  
Output sink  
current  
ISINK  
LX1, LX2 pins = 0 V,  
CB1, CB2 pins = 5 V  
21, 17 DRVL1, DRVL2 pins =  
2.5 V  
Duty 5%  
Minimum on  
time  
COMP1, COMP2 pins =  
tON  
DMAX  
tD  
23, 15  
1 V  
75  
250*  
80  
ns  
%
Maximum  
on-duty  
23, 15 FB1, FB2 pins = 0 V  
23, 21, LX1, LX2 pins = 0 V,  
15, 17 CB1, CB2 pins = 5 V  
Dead time  
60  
ns  
Maximum  
current sense  
voltage  
VRANGE  
22, 16 VCC pin LX1, LX2 pins  
5.4  
220*  
6.8  
8.2  
mV  
V/V  
mV  
Voltage  
conversion  
gain  
ALV  
22, 16  
22, 16  
Level  
Converter  
Block  
Offset voltage  
at voltage  
conversion  
VIO  
300  
[LVCNV]  
Slope  
compensation SLOPE 22, 16  
inclination  
2*  
V/V  
LX pin  
input current  
ILX  
22, 16 LX1, LX2 pins = VCC pin 320  
420  
600  
μA  
(Continued)  
DS04-27262-4E  
9
MB39A136  
(Continued)  
(Ta = + 25 °C, VCC pin = 15 V, CTL pin = 5 V, VREF pin = 0 A, VB pin = 0 A)  
Value  
Pin  
No.  
Parameter  
Symbol  
Conditions  
Unit  
Min  
2
Typ  
Max  
25  
ON condition  
OFF condition  
Control Block Hysteresis  
[CTL1, CTL2] width  
VON  
1, 8 CTL1, CTL2 pins  
1, 8 CTL1, CTL2 pins  
V
V
VOFF  
0
0.8  
VH  
1, 8 CTL1, CTL2 pins  
0.4*  
V
ICTLH  
ICTLL  
1, 8 CTL1, CTL2 pins = 5 V  
1, 8 CTL1, CTL2 pins = 0 V  
25  
0
40  
1
μA  
μA  
Input current  
Standby  
current  
ICCS  
20  
CTL1, CTL2 pins = 0 V  
0
10  
μA  
General  
LX1, LX2 pins = 0 V,  
FB1, FB2 pins = 1.0 V,  
MODE pin = VREF pin  
Power-supply  
current  
ICC  
20  
3.3  
4.7  
mA  
* : This value is not be specified. This should be used as a reference to support designing the circuits.  
10  
DS04-27262-4E  
MB39A136  
TYPICAL CHARACTERISTICS  
Typical data  
Power dissipation  
Power dissipation vs. Operating ambient temperature  
2000  
1800  
1600  
1400  
1200  
1000  
800  
1644  
600  
400  
200  
0
50  
25  
0
+25  
+50  
+75  
+100  
+125  
Operating ambient temperature Ta ( °C)  
VREF bias voltage vs.  
Error Amp threshold voltage vs.  
Operating ambient temperature  
Operating ambient temperature  
3.36  
3.34  
3.32  
3.3  
0.71  
0.705  
0.7  
CH1  
CH2  
3.28  
3.26  
3.24  
VCC = 15 V  
fosc = 500 kHz  
VCC = 15 V  
fosc = 500 kHz  
0.695  
0.69  
-40  
-20  
0
+20  
+40  
+60  
+80 +100  
-40  
-20  
0
+20 +40 +60  
+80 +100  
Operating ambient temperature Ta ( °C)  
Operating ambient temperature Ta ( °C)  
(Continued)  
DS04-27262-4E  
11  
MB39A136  
(Continued)  
Oscillation frequency vs.  
Operating ambient temperature  
Dead time vs.  
Operating ambient temperature  
90  
80  
70  
60  
50  
40  
30  
505  
500  
495  
490  
485  
480  
475  
VCC = 15 V  
VCC = 15 V  
fosc = 500 kHz  
tD2  
tD1  
-40  
-20  
0
+20 +40 +60 +80 +100  
-40  
-20  
0
+20  
+40  
+60  
+80 +100  
Operating ambient temperature Ta ( °C)  
Operating ambient temperature Ta( °C)  
tD1 : period from DRVL off to DRVH on  
tD2 : period from DRVH off to DRVL on  
Oscillation frequency vs. Timing resistor value  
VB bias voltage vs. VB bias output current  
1000  
6
5.5  
VCC = 6 V  
VCC = 15 V  
Ta = + 25°C  
5
4.5  
VCC = 5 V  
4
3.5  
3
VCC = 4.5 V  
fosc = 500 kHz  
Ta = + 25°C  
2.5  
2
100  
-0.025 -0.02 -0.015 -0.01 -0.005  
0
10  
100  
1000  
Timing resistor value RRT (kΩ)  
VB bias output current IVB (A)  
Maximum duty cycle vs.  
Power supply voltage  
Maximum duty cycle vs.  
Operating ambient temperature  
80  
79  
78  
77  
76  
75  
80  
79  
78  
77  
76  
75  
VCC = 15 V  
fosc = 500 kHz  
fosc = 500 kHz  
Ta = + 25°C  
CH2  
CH1  
CH2  
CH1  
0
10  
20  
30  
-40  
-20  
0
+20 +40 +60 +80 +100  
Power supply voltage VVCC (V)  
Operating ambient temperature Ta ( °C)  
12  
DS04-27262-4E  
MB39A136  
FUNCTION DESCRIPTION  
1. Current Mode  
It uses the current waveform from the switching (Q1) as a control waveform to control the output voltage, as  
described below:  
1 : The clock (CK) from the internal clock generator (OSC) sets RS-FF and turns on the high-side FET.  
2 : Turning on the high-side FET causes the inductor current (IL) rise. Generate Vs that converts this current  
into the voltage.  
3 : The current comparator (I Comp.) compares this Vs with the output (COMP) from the error amplifier  
(Error Amp) that is negative-feedback from the output voltage (Vo).  
4 : When I Comp. detects that Vs exceeds COMP, it resets RS-FF and turns off high-side FET.  
5 : The clock (CK) from the clock generator (OSC) turns on the high-side FET again.  
Thus, switching is repeated.  
Operate so that the FB electrical potential may become INTREF electrical potential, and stabilize the output  
voltage as a feedback control.  
VIN  
<Error Amp>  
DRVH  
Q1  
FB  
<I Comp.>  
+
RS-FF  
Current  
Sense  
R
Drive  
Logic  
COMP  
Q
+
IL  
VO  
S
INTREF  
CK  
DRVL  
Q2  
OSC  
Vs  
Rs  
1
4
5
OSC(CK)  
IL  
3
COMP  
Vs  
2
t
off  
DRVH  
t
on  
DS04-27262-4E  
13  
MB39A136  
(1) Reference Voltage Block (REF)  
The reference voltage circuit (REF) generates a temperature-compensated reference voltage (3.3 [V] Typ)  
using the voltage supplied from the VCC pin. The voltage is used as the reference voltage for the IC's internal  
circuit. The reference voltage can be used to supply a load current of up to 100 μA to an external device  
through the VREF pin.  
(2) Bias Voltage Block (VB Reg.)  
Bias Voltage Block (VB Reg.) generates the reference voltage used for IC’s internal circuit, using the voltage  
supplied from the VCC pin. The reference voltage is a temperature-compensated stable voltage (5 [V] Typ)  
to supply a current of up to 100 mA through the VB pin.  
(3) Under Voltage Lockout Protection Circuit Block (UVLO)  
The circuit protects against IC malfunction and system destruction/deterioration in a transitional state or a  
momentary drop when a bias voltage (VB) or an internal reference voltage (VREF) starts. It detects a voltage  
drop at the VB pin or the VREF pin and stops IC operation. When voltages at the VB pin and the VREF pin  
exceed the threshold voltage of the under voltage lockout protection circuit, the system is restored.  
(4) Soft-start/Soft-stop Block (Soft-Start, Soft-Stop)  
Soft-start  
It protects a rush current or an output voltage (VOx) from overshooting at the output start. Since the lamp  
voltage generated by charging the capacitor connecting to the CSx pin is used for the reference voltage of  
the error amplifier (Error Amp), it can set the soft-start time independent of a load of the output (VOx). When  
the IC starts with “H” level of the CTLx pin, the capacitor at the CSx pin (CS) starts to be charged at 5.5 μA.  
The output voltage (VOx) during the soft-start period rises in proportion to the voltage at the CSx pin generated  
by charging the capacitor at the CSx pin.  
During the soft-start with 0.8 V > voltage at CS1 and CS2 pins, operations are as follows:  
• Fixed PWM operation only (fixed PWM even if MODE pin is set to “L)  
• Over-voltage protection function and under-voltage protection function are invalid.  
Soft-stop  
It discharges electrical charges stored in a smoothing capacitor at output stop. Setting the CTLx pin to “L”  
level starts the soft-stop function independent of a load of output (Vox). Since the capacitor connecting to  
the CSx pin starts to discharge through the IC-built-in soft-stop discharging resistance (70 [kΩ] Typ) when  
the CTLx pin sets at “L” level enters its lamp voltage into the error amplifier (Error Amp), the soft-stop time  
can be set independent of a load of output (VOx). When discharging causes the voltage at the CSx pin to  
drop below 100 mV (Typ), the IC shuts down and changes to the stand-by state. In addition, the soft-stop  
function operates after the under-voltage protection circuit block (UVP Comp.) is latched or after the over-  
temperature protection circuit block (OTP) detects over-temperature.  
During the soft-stop with, 0.8 V > voltage at CS1 and CS2 pins, operations are as follows:  
• Fixed PWM operation only (fixed PWM even if MODE pin is set to “L)  
• Over-voltage protection function and under-voltage protection function are invalid.  
(5) Clock Generator Block (OSC)  
The clock generator has the built-in oscillation frequency setting capacitor and generates a clock that  
180°phase shifted from each channel by connecting the oscillation frequency setting resistor to the RT pin  
(Symmetrical-Phase method).  
14  
DS04-27262-4E  
MB39A136  
(6-1) Error Amp Block (Error Amp1, Error Amp2)  
The error amplifiers (Error Amp1 and Error Amp2) detect the output voltage from the DC/DC converter and  
output to the current comparators (I Comp.1 and I Comp.2). The output voltage setting resistor externally  
connected to FB1 and FB2 pins allows an arbitrary output voltage to be set.  
In addition, since an external resistor and an external capacitor serially connected between COMP1 and  
FB1 pins and between COMP2 and FB2 pins allow an arbitrary loop gain to be set, it is possible for the  
system to compensate a phase stably.  
(6-2) Over Current Detection (Protection) Block (ILIM)  
It is the current detection circuit to restrict an output current (IOX). The over current detection block (ILIM)  
compares an output waveform of the level converter of each channel (see “(12) Level Converter Block  
(LVCNV)”) with the ILIMx pin voltage in every cycle. As a load resistance (ROX) drops, a load current (IOX)  
increases. Therefore, theoutputwaveformofthelevelconverterexceedstheILIMpinvoltageofeachchannel.  
At this time, the output current can be restricted by turning off FET on the high-side and suppressing a peak  
value of the inductor current.  
As a result, the output voltage (VOX) should drop.  
Furthermore, if the output voltage drops and the electrical potential at the FBx pin drops below 0.3 V, the  
oscillation frequency (fOSC) drops to 1/8.  
(7) Over-voltage Protection Circuit Block (OVP Comp.)  
The circuit protects a device connecting to the output when the output voltage (VOx) rises.  
It compares 1.15 times (Typ) of the internal reference voltage (INTREF) (0.7 V) that is non-inverting-entered  
into the error amplifier with the feedback voltage that is inverting-entered into the error amplifier and if it  
detects the state where the latter is higher than the former by 50 μs (Typ). It stops the voltage output by  
setting the RS latch, setting the DRVHx pin to “L” level, setting the DRVLx pin to “H” level, turning off the  
high-side FETs, and turning on the low-side FETs.  
The conditions below cancel the protection function:  
• Setting CTL1 and CTL2 to “L”.  
• Setting the power supply voltage below the UVLO threshold voltage (VTHL1 and VTHL2).  
(8) Under-voltage Protection Circuit Block (UVP Comp.)  
It protects a device connecting to the output by stopping the output when the output voltage (VOX) drops.  
It compares 0.7 times (Typ) of the internal reference voltage (INTREF) (0.7 V) that is non-inverting-entered  
into the error amplifier with the feedback voltage that is inverting-entered into the error amplifier and if it  
detects the state where the latter is lower than the former by 512/fosc [s](Typ), it stops the voltage output for  
both channels by setting the RS latch.  
The conditions below cancel the protection function:  
• Setting CTL1 and CTL2 to “L”.  
• Setting the power supply voltage below the UVLO threshold voltage (VTHL1 and VTHL2).  
(9) Over temperature Protection Circuit Block (OTP)  
The circuit protects an IC from heat-destruction. If the temperature at the joint part reaches +160 °C, the  
circuit stops the voltage output for both channels by discharging the capacitor connecting to the CSx pin  
through the soft-stop discharging resistance (70 [kΩ] Typ) in the IC.  
In addition, if the temperature at the joint part drops to +135 °C, the output restarts again through the soft-  
start function.  
Make sure to design the DC/DC power supply system so that the over temperature protection does not start  
frequently.  
DS04-27262-4E  
15  
MB39A136  
(10) PFM Control Circuit Block (MODE)  
It sets the control mode of the IC and makes control at automatic PFM/PWM switching.  
MODE pin connection  
Control mode  
Features  
Automatic PFM/PWM  
switching  
“L” (GND)  
Highly-efficient at light load  
Stable oscillation frequency  
Stable switching ripple voltage  
Excellent in rapid load change characteristic at  
heavy load to light load  
“H” (VREF)  
Fixed PWM  
Automatic PFM/PWM switching mode operation  
It compares the LX1 pin and the LX2 pin voltages with GND electrical potential at Di Comp. In the comparison,  
the negative voltage at the LX pin causes the low-side FET to set on, positive voltage causes it to set off (Di  
Comp. method) . As a result, the method restricts the back flow of the inductor current at a light load and  
makes the switching of the inductor current discontinuous (DCM) . Such an operation allows the oscillation  
frequency to drop, resulting in high efficiency at a light load.  
(11) Output Block (DRV)  
The output circuit is configured in CMOS type for both of the high-side and the low-side, allowing the external  
N-ch MOS FET to drive.  
(12) Level Converter Block (LVCNV)  
Thecircuitdetectsandconvertsthecurrentwhenthehigh-sideFETturnson. Itconvertsthevoltagewaveform  
between drain side (VCC pin voltage) and the source side (LX1 and LX2 pin voltage) on the high-side FET  
into the voltage waveform for GND reference.  
Note: x : Each channel number  
(13) Control Block (CTL1, CTL2)  
The circuit controls on/off of the output from the IC.  
Control function table  
DC/DC converter  
(VO1)  
DC/DC converter  
(VO2)  
CTL1  
CTL2  
Remarks  
L
H
L
L
L
OFF  
ON  
OFF  
OFF  
ON  
Standby  
H
H
OFF  
ON  
H
ON  
16  
DS04-27262-4E  
MB39A136  
PROTECTION FUNCTION TABLE  
The following table shows the state of each pin when each protection function operates.  
Output of each pin after detection  
DC/DC output  
dropping opera-  
tion  
Detection  
Protection Function  
condition  
VREF  
VB  
DRVHx  
DRVLx  
Under Voltage Lock Out  
Protection  
(UVLO)  
VB < 3.6 V  
VREF < 2.7 V  
Self-discharge by  
load  
< 2.7 V  
< 3.6 V  
L
L
Electricaldischarge  
by soft-stop func-  
tion  
Under Voltage Protection  
(UVP)  
FBx < 0.49 V  
3.3 V  
3.3 V  
5 V  
5 V  
L
L
L
Over Voltage Protection  
(OVP)  
FBx > 0.805 V  
H
0 V clamping  
The output voltage  
is dropping to keep  
constant output cur-  
rent.  
Over Current Protection  
(ILIM)  
COMPx > ILIMx  
3.3 V  
5V  
switching switching  
Over Temperature  
Protection  
(OTP)  
Tj > + 160 °C  
3.3 V  
3.3 V  
5 V  
5 V  
L
L
L
L
Electricaldischarge  
by soft-stop func-  
tion  
CONTROL  
(CTL)  
CTLx : HL  
(CSx > 0.1 V)  
Note: x is the each channel number  
DS04-27262-4E  
17  
MB39A136  
I/O PIN EQUIVALENT CIRCUIT DIAGRAM  
VREF pin  
CTL1, CTL2 pins  
VB  
VCC  
CTL1,CTL2  
VREF  
ESD protection element  
GND  
GND  
VB pin  
CS1, CS2 pins  
VCC  
VREF  
VB  
CS1,CS2  
GND  
GND  
FB1, FB2 pins  
COMP1, COMP2 pins  
VREF  
VREF  
FB1,FB2  
COMP1,  
COMP2  
GND  
GND  
(Continued)  
18  
DS04-27262-4E  
MB39A136  
(Continued)  
ILM1, ILM2 pins  
RT pin  
VREF  
VREF  
VB  
ILIM1,ILIM2  
RT  
GND  
GND  
MODE pin  
CB1, CB2, DRVH1, DRVH2, LX1, LX2 pins  
CB1,CB2  
VREF  
MODE  
GND  
VREF  
DRVH1,  
DRVH2  
LX1,LX2  
DRVL1, DRVL2 pins  
GND  
VB  
DRVL1,DRVL2  
GND  
DS04-27262-4E  
19  
MB39A136  
EXAMPLE APPLICATION CIRCUIT  
R21  
VREF  
MODE  
V
IN  
C13  
RT  
VCC  
(4.5 V to 25 V)  
13  
6
20  
MB39A136  
VB  
19  
24  
CS1  
C7  
<CH1>  
2
A
A
D2  
VO1  
Q1  
L1  
COMP1  
CB1  
4
3
C5  
R8-1  
R8-2  
R23  
C9  
DRVH1  
LX1  
FB1  
23  
22  
R9  
R11  
R12  
Q1  
C2-1  
C2-2  
C2-3  
ILIM1  
DRVL1  
5
21  
C1  
C14  
B
D2  
VO2  
Q2  
L2  
CB2  
CS2  
14  
<CH2>  
12  
C6  
B
C8  
DRVH2  
LX2  
15  
16  
COMP2  
R25  
10  
11  
C11  
R14-1  
R14-2  
FB2  
Q2  
C4-1  
C4-2  
C4-3  
DRVL2  
17  
R15  
C3-1  
C3-2  
R17  
ILIM2  
R18  
9
1 CTL1  
8
CTL2  
7
18  
GND  
VREF  
C15  
20  
DS04-27262-4E  
MB39A136  
PARTS LIST  
Compo-  
nent  
Item  
Specification  
Vendor  
Package  
Parts Name  
Remark  
VDS = 30 V,  
ID = 8 A,  
Dual type  
(2 elements)  
Q1  
N-ch FET  
N-ch FET  
RENESAS  
SO-8  
μPA2755  
μPA2755  
Ron = 21 mΩ  
VDS = 30 V,  
ID = 8 A,  
Ron = 21 mΩ  
Dual type  
(2 elements)  
Q2  
RENESAS  
SO-8  
VF = 0.35 V  
at IF = 0.2 A  
D2  
L1  
Diode  
ON Semi SOT-323 BAT54AWT1  
Dual type  
1.5 μH  
(6.2 mΩ, 8.9 A)  
Inductor  
TDK  
VLF10040T-1R5N  
3.3 μH  
L2  
Inductor  
TDK  
TDK  
VLF10045T-3R3N  
C3225JC1E226M  
(9.7 mΩ, 6.9 A)  
C1  
Ceramic capacitor  
22 μF (25 V)  
3225  
C2-1  
C2-2  
C2-3  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
22 μF (10 V)  
22 μF (10 V)  
22 μF (10 V)  
TDK  
TDK  
TDK  
3216  
3216  
3216  
C3216JB1A226M  
C3216JB1A226M  
C3216JB1A226M  
3 capacitors  
in parallel  
C3-1  
C3-2  
Ceramic capacitor  
Ceramic capacitor  
22 μF (25 V)  
22 μF (25 V)  
TDK  
TDK  
3225  
3225  
C3225JC1E226M 2 capacitors  
C3225JC1E226M in parallel  
C4-1  
C4-2  
C4-3  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
22 μF (10 V)  
22 μF (10 V)  
22 μF (10 V)  
TDK  
TDK  
TDK  
3216  
3216  
3216  
C3216JB1A226M  
3 capacitors  
C3216JB1A226M  
in parallel  
C3216JB1A226M  
C5  
C6  
Ceramic capacitor  
Ceramic capacitor  
0.1 μF (50 V)  
0.1 μF (50 V)  
TDK  
TDK  
TDK  
TDK  
TDK  
TDK  
TDK  
TDK  
TDK  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
1608  
C1608JB1H104K  
C1608JB1H104K  
C1608JB1H223K  
C1608JB1H223K  
C1608CH1H821J  
C1608CH1H102J  
C1608JB1H103K  
C1608JB1C225K  
C1608JB1H104K  
C7  
Ceramic capacitor 0.022 μF (50 V)  
Ceramic capacitor 0.022 μF (50 V)  
C8  
C9  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
820 pF (50 V)  
1000 pF (50 V)  
0.01 μF (50 V)  
2.2 μF (16 V)  
0.1 μF (50 V)  
C11  
C13  
C14  
C15  
R8-1  
R8-2  
1.6 kΩ  
9.1 kΩ  
SSM  
SSM  
1608  
1608  
RR0816P162D  
RR0816P912D  
2 capacitors  
in series  
Resistor  
R9  
Resistor  
Resistor  
Resistor  
15 kΩ  
56 kΩ  
47 kΩ  
SSM  
SSM  
SSM  
1608  
1608  
1608  
RR0816P153D  
RR0816P563D  
RR0816P473D  
R11  
R12  
R14-1  
R14-2  
1.8 kΩ  
39 kΩ  
SSM  
SSM  
1608  
1608  
RR0816P182D  
RR0816P393D  
2 capacitors  
in series  
Resistor  
Resistor  
R15  
11 kΩ  
SSM  
1608  
RR0816P113D  
(Continued)  
DS04-27262-4E  
21  
MB39A136  
(Continued)  
Compo-  
Item  
Specification  
Vendor  
Package  
Parts Name  
Remark  
nent  
R17  
R18  
R21  
R23  
R25  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
56 kΩ  
56 kΩ  
82 kΩ  
22 kΩ  
56 kΩ  
SSM  
SSM  
SSM  
SSM  
SSM  
1608  
1608  
1608  
1608  
1608  
RR0816P563D  
RR0816P563D  
RR0816P823D  
RR0816P223D  
RR0816P563D  
RENESAS : Renesas Electronics Corporation  
ON Semi : ON Semiconductor  
TDK  
SSM  
: TDK Corporation  
: SUSUMU Co.,Ltd.  
22  
DS04-27262-4E  
MB39A136  
APPLICATION NOTE  
Setting method for PFM/PWM and fixed PWM modes  
For the setting method for each mode, see“FUNCTION DESCRIPTION (10) PFM Control Circuit Block  
(MODE)”.  
Cautions at PFM/PWM mode  
If a load current drops rapidly because of rapid load change and others, it tends to take a lot of time to restore  
overshooting of an output voltage.  
As a result, the over-voltage protection may operate.  
In this case, solution are possible by the addition of the load resistance of value to be able to restore the  
output voltage in the over-voltage detection time.  
Setting method of output voltage  
Set it by adjusting the output voltage setting zero-power resistance ratio.  
R1 + R2  
VO =  
× 0.7  
R2  
VO  
: Output setting voltage [V]  
R1, R2 : Output setting resistor value [Ω]  
VO  
R1  
FB1  
FB2  
R2  
Make sure that the setting does not exceed the maximum on-duty.  
Calculate the on-duty by the following formula:  
VO + RON_Sync × IOMAX  
DMAX_Min =  
VIN RON_Main × IOMAX + RON_Sync × IOMAX  
DMAX_Min : Minimum value of the maximum on-duty cycle  
VIN  
VO  
: Power supply voltage of switching system [V]  
: Output setting voltage [V]  
RON_Main : High-side FET ON resistance [Ω]  
RON_Sync : Low-side FET ON resistance [Ω]  
IOMAX  
: Maximum load current[A]  
DS04-27262-4E  
23  
MB39A136  
Oscillation frequency setting method  
Set it by adjusting the RT pin resistor value.  
1.09  
12  
fOSC =  
9
RRT × 40 × 10 − + 300 × 10 −  
RRT  
: RT resistor value [Ω]  
: Oscillation frequency [Hz]  
fOSC  
The oscillation frequency must set for on-time (tON) to become 300ns or more.  
Calculate the on-time by the following formula.  
VO  
tON =  
VIN × fOSC  
tON  
VIN  
VO  
: On-time [s]  
: Power supply voltage of switching system [V]  
: Output setting voltage [V]  
: Oscillation frequency [Hz]  
fOSC  
24  
DS04-27262-4E  
MB39A136  
Setting method of soft-start time  
Calculate the soft-start time by the following formula.  
tS = 1.4 × 105 × CCS  
ts  
: Soft-start time[s] (Time to becoming output 100%)  
: CS pin capacitor value [F]  
CCS  
Calculate delay time until the soft-start beginning by the following formula.  
td1 = 30 × CVB + 290 × CVREF + 1.455 × 104 × CCS  
td1  
: Delay time including VB voltage and VREF voltage starts [s]  
CCS  
CVB  
CVREF  
: CS pin capacitor value [F]  
: VB pin capacitor value [F]  
: VREF pin capacitor value [F] (0.1 [μF] Typ)  
Calculate delay time for starting while one channel has already started (UVLO released : VB, VREF output  
before) by the following formula.  
td2 = 1.455 × 104 × CCS  
td2  
: Delay time for starting while one channel has already started [s]  
CCS  
: CS pin capacitor value [F]  
Calculate the discharge time at the soft-stop by the following formula.  
tdis = 1.44 × 105 × CCS  
tdis  
: Discharge time [s]  
CCS  
: CS pin capacitor value [F]  
In addition, calculate the delay time to the discharge starting by the following formula.  
td3 = 7.87 × 104 × CCS  
td3  
: Delay time until discharge start [s]  
CCS  
: CS pin capacitor value [F]  
ts  
t
dis  
CTL1  
CTL2  
VO1  
VO2  
t
d2  
td1  
td3  
DS04-27262-4E  
25  
MB39A136  
• Simultaneous operation of plural channels  
Soft-start/soft-stop operation according to the same timing as two channels can be achieved by even con-  
necting it as shown in the figure below at the power supply on/off.  
<Connection example 1> When you adjust the soft-start time  
Make the CS capacitor common. Connect CTL1 and CTL2.  
Note: In this case, the soft-start time (ts), the discharge time (tdis), and the delay time (td1, td2, td3) decrease  
in the half value of compared with when CS capacitor is connected to each channel.  
DC/DC 1 : Vo = 1.2 V setting  
CS1  
V
< DC/DC 2 >  
1.8 V  
< DC/DC 1 >  
Vo  
MB39A136  
1.2 V  
CTL  
CTL1  
CTL2  
CTL  
CS2  
CS  
capacitor  
t
DC/DC 2 : Vo = 1.8 V setting  
26  
DS04-27262-4E  
MB39A136  
Setting method of over current detection value  
It is possible to set over-current detection value (ILIM) by adjusting the over-current detection setting resistor  
value ratio.  
Calculate the over current detection setting resistor value by the following formula.  
3.3 × R2  
R1 + R2  
0.3  
9
VIN VO  
VO  
× (200 × 10 −  
ILIM =  
+
)
6.8 × RON  
L
2 × fOSC × VIN  
200 × 103 R1 + R2 30 × 103  
ILIM  
: Over current detection value [A]  
R1, R2 : ILIM setting resistor value [Ω]*  
L
: Inductor value [H]  
VIN  
VO  
fOSC  
RON  
: Power supply voltage of switching system [V]  
: Output setting voltage [V]  
: Oscillation frequency [Hz]  
: High-side FET ON resistance [Ω]  
*
Since the over current detection value depends on the on-resistance of FET, the over current detection  
setting resistor value ratio should be adjusted in consideration of the temperature characteristics of the on-  
resistance. When the temperature at the FET joint part rises by + 100 °C, the on-resistance of FET increases  
to about 1.5 times.  
Inductor current  
VREF  
Over-current  
detection value  
I
LIM  
R1  
R2  
I
O
ILIM*  
Time  
0
*
If the over current detection function is not used, connect the ILIM pin (ILIM1 and ILIM2) to the VREF pin.  
DS04-27262-4E  
27  
MB39A136  
Selection of smoothing inductor  
The inductor value selects the value that the ripple current peak-to-peak value becomes 50% or less of the  
maximum load current as a rough standard. Calculate the inductor value in this case by the following formula.  
VIN VO  
LOR × IOMAX  
VO  
L ≥  
×
VIN × fOSC  
L
: Inductor value [H]  
IOMAX  
LOR  
VIN  
: Maximum load current [A]  
: Ripple current peak-to-peak value of Maximum load current ratio (=0.5)  
: Power supply voltage of switching system [V]  
: Output setting voltage [V]  
VO  
fOSC  
: Oscillation frequency [Hz]  
An inductor ripple current value limited on the principle of operation is necessary for this device. However,  
when it uses the high-side FET of the low Ron resistance, the switching ripple voltage become small, and  
the inductor ripple current value may become insufficient. This should be solved by the oscillation frequency  
or reducing the inductor value.  
Select the one of the inductor value that meets a requirement listed below.  
VIN VO  
ΔVRON  
VO  
L ≤  
×
× RON  
VIN × fOSC  
L
: Inductor value [H]  
VIN  
VO  
: Power supply voltage of switching system [V]  
: Output setting voltage [V]  
fOSC  
ΔVRON  
RON  
: Oscillation frequency [Hz]  
: Ripple voltage [V] (20 mV or more is recommended)  
: High-side FET ON resistance [Ω]  
It is necessary to calculate the maximum current value that flows to the inductor to judge whether the electric  
current that flows to the inductor is a rated value or less. Calculate the maximum current value of the inductor  
by the following formula.  
ΔIL  
2
VIN VO  
VO  
ILMAX IoMAX +  
, ΔIL =  
×
L
VIN × fOSC  
ILMAX  
IoMAX  
ΔIL  
L
: Maximum current value of inductor [A]  
: Maximum load current [A]  
: Ripple current peak-to-peak value of inductor [A]  
: Inductor value [H]  
VIN  
VO  
: Power supply voltage of switching system [V]  
: Output setting voltage [V]  
fOSC  
: Oscillation frequency [Hz]  
Inductor current  
ILMAX  
IoMAX  
ΔIL  
t
0
28  
DS04-27262-4E  
MB39A136  
Selection of SWFET  
The switching ripple voltage generated between drain and sources on high-side FET is necessary for this  
device operation. Select the one of the SWFET of on-resistance that satisfies the following formula.  
ΔVRON_Main  
ΔIL  
VRONMAX  
ΔIL  
RON_Main ≥  
, RON_Main ≤  
ILIM +  
2
RON_Main  
ΔIL  
: High-side FET ON resistance [Ω]  
: Ripple current peak-to-peak value of inductor [A]  
ΔVRON_Main : High-side FET ripple voltage [V] (20mV or more is recommended)  
ILIM  
: Over current detection value [A]  
VRONMAX  
: Maximum current sense voltage [V] (240mV or less is recommended)  
Select FET ratings with a margin enough for the input voltage and the load current. Ratings with the over-  
current detection setting value or more are recommended.  
Calculate a necessary rated value of high-side FET and low-side FET by the following formula.  
ΔIL  
2
ID > IoMAX +  
ID  
: Rated drain current [A]  
IoMAX  
ΔIL  
: Maximum load current [A]  
: Ripple current peak-to-peak value of inductor [A]  
VDS > VIN  
VDS  
VIN  
: Rated voltage between drain and source [V]  
: Power supply voltage of switching system [V]  
VGS > VB  
VGS  
VB  
: Rated voltage between gate and source [V]  
: VB voltage [V]  
Moreover, it is necessary to calculate the loss of SWFET to judge whether a permissible loss of SWFET is  
a rated value or less. Calculate the loss on high-side FET by the following formula.  
PMainFET = PRON_Main + PSW_Main  
PMainFET  
PRON_Main : High-side FET conduction loss [W]  
PSW_Main : High-side FET SW loss [W]  
: High-side FET loss [W]  
DS04-27262-4E  
29  
MB39A136  
High-side FET conduction loss  
VO  
2
PRON_Main = IoMAX ×  
× RON_Main  
VIN  
PRON_Main : High-side FET conduction loss [W]  
IOMAX  
VIN  
: Maximum load current [A]  
: Power supply voltage of switching system [V]  
: Output voltage [V]  
VO  
RON_Main  
: High-side FET ON resistance [Ω]  
High-side FET SW loss  
VIN × fOSC × (Ibtm × tr + Itop × tf)  
PSW_Main =  
2
PSW_Main : High-side FET SW loss [W]  
VIN  
fOSC  
Ibtm  
Itop  
tr  
: Power supply voltage of switching system [V]  
: Oscillation frequency [Hz]  
: Ripple current bottom value of inductor [A]  
: Ripple current top value of inductor [A]  
: Turn-on time on high-side FET [s]  
: Turn-off time on high-side FET[s]  
tf  
Calculate the Ibtm, the Itop, the tr and the tf simply by the following formula.  
ΔIL  
2
Ibtm = IOMAX −  
ΔIL  
2
Itop = IOMAX +  
Qgd × 4  
5 Vgs (on)  
Qgd × 1  
Vgs (on)  
tr =  
tf =  
IOMAX  
ΔIL  
Qgd  
: Maximum load current [A]  
: Ripple current peak-to-peak value of inductor [A]  
: Quantity of charge between gate and drain on high-side FET [C]  
Vgs (on) : Voltage between gate and source in Qgd on high-side FET [V]  
30  
DS04-27262-4E  
MB39A136  
Calculate the loss on low-side FET by the following formula.  
VO  
2
PSyncFET = PRon_Sync* = IoMAX × (1 −  
) × Ron_Sync  
VIN  
PSyncFET : Low-side FET loss [W]  
PRon_Sync : Low-side FET conduction loss [W]  
IOMAX  
VIN  
: Maximum load current [A]  
: Power supply voltage of switching system [V]  
: Output voltage [V]  
VO  
Ron_Sync : Low-side FET on-resistance [Ω]  
* : The transition voltage of the voltage between drain and source on low-side FET is generally small, and the  
switching loss is omitted here for the small one as it is possible to disregard it.  
The gate drive power of SWFET is supplied by LDO in IC, therefore all SWFET allowable maximum total  
charge (QgTotalMax) of 2ch is determined by the following formula.  
0.095  
QgTotalMax ≤  
fOSC  
QgTotalMax : SWFET allowable maximum total charge [C]  
fOSC  
: Oscillation frequency [Hz]  
Selection of fly-back diode  
When the conversion efficiency is valued, the improved property of the conversion efficiency is possible by  
the addition of the fly-back diode. Thought it is usually unnecessary. The effect is achieved in the condition  
where the oscillation frequency is high or output voltage is lower. Select schottky barrier diode (SBD) that  
the forward current is as small as possible. In this DC/DC control IC, the period for the electric current flows  
to fly back diode is limited to synchronous rectification period (60 ns × 2) because of using the synchronous  
rectification method. Therefore, select the one that the electric current of fly back diode doesn't exceed  
ratings of forward current surge peak (IFSM).Calculate the forward current surge peak ratings of fly back  
diode by the following formula.  
ΔIL  
2
IFSM IoMAX +  
IFSM  
: Forward current surge peak ratings of fly back diode [A]  
: Maximum load current [A]  
IoMAX  
ΔIL  
: Ripple current peak-to-peak value of inductor [A]  
Calculate ratings of the fly-back diode by the following formula:  
VR_Fly > VIN  
VR_Fly  
VIN  
: Reverse voltage of fly-back diode direct current [V]  
: Power supply voltage of switching system [V]  
DS04-27262-4E  
31  
MB39A136  
Selection of output capacitor  
This device supports a small ceramic capacitor of the ESR. The ceramic capacitor that is low ESR is an  
ideal to reduce the ripple voltage compared with other capacitor. Use the tantalum capacitor and the polymer  
capacitor of the low ESR when a mass capacitor is needed as the ceramic capacitor can not support. To  
the output voltage, the ripple voltage by the switching operation of DC/DC is generated. Discuss the lower  
bound of output capacitor value according to an allowable ripple voltage. Calculate the output ripple voltage  
from the following formula.  
1
ΔVO = (  
+ ESR) × ΔIL  
2π × fOSC × CO  
ΔVO  
: Switching ripple voltage [V]  
ESR  
ΔIL  
CO  
: Series resistance component of output capacitor [Ω]  
: Ripple current peak-to-peak value of inductor [A]  
: Output capacitor value [F]  
fOSC  
: Oscillation frequency [Hz]  
Notes: • The ripple voltage can be reduced by raising the oscillation frequency and the inductor value besides  
capacitor.  
• Capacitor has frequency characteristic, the temperature characteristic, and the electrode bias char-  
acteristic, etc. The effective capacitor value might become extremely small depending on the condition.  
Note the effective capacitor value in the condition.  
Calculate ratings of the output capacitor by the following formula:  
VCO > VO  
VCO  
VO  
: Withstand voltage of the output capacitor [V]  
: Output voltage [V]  
Note: Select the capacitor rating with withstand voltage allowing a margin enough for the output voltage.  
In addition, use the allowable ripple current with an enough margin, if it has a rating.  
Calculate an allowable ripple current of the output capacitor by the following formula:  
ΔIL  
Irms ≥  
23  
Irms  
: Allowable ripple current (effective value) [A]  
ΔIL  
: Ripple current peak-to-peak value of inductor [A]  
32  
DS04-27262-4E  
MB39A136  
Selection of input capacitor  
Select the input capacitor whose ESR is as small as possible. The ceramic capacitor is an ideal. Use the  
tantalum capacitor and the polymer capacitor of the low ESR when a mass capacitor is needed as the  
ceramic capacitor can not support. To the power supply voltage, the ripple voltage by the switching operation  
of DC/DC is generated. Discuss the lower bound of input capacitor according to an allowable ripple voltage.  
Calculate the ripple voltage of the power supply from the following formula.  
IOMAX  
CIN  
VO  
ΔIL  
2
ΔVIN =  
×
+ ESR × (IOMAX +  
)
VIN × fOSC  
ΔVIN  
IOMAX  
CIN  
: Switching system power supply ripple voltage peak-to-peak value [V]  
: Maximum load current value [A]  
: Input capacitor value [F]  
VIN  
: Power supply voltage of switching system [V]  
: Output setting voltage [V]  
VO  
fOSC  
ESR  
ΔIL  
: Oscillation frequency [Hz]  
: Series resistance component of input capacitor [Ω]  
: Ripple current peak-to-peak value of inductor [A]  
Notes: • The ripple voltage of the power supply can be reduced by raising the oscillation frequency besides  
capacitor.  
• Capacitor has frequency characteristic, the temperature characteristic, and the electrode bias char-  
acteristic, etc. The effective capacitor value might become extremely small depending on the condition.  
Note the effective capacitor value in the condition.  
Calculate ratings of the input capacitor by the following formula:  
VCIN > VIN  
VCIN  
VIN  
: Withstand voltage of the input capacitor [V]  
: Power supply voltage of switching system [V]  
Note: Select the capacitor rating with withstand voltage with margin enough for the input voltage.  
In addition, use the allowable ripple current with an enough margin, if it has a rating.  
Calculate an allowable ripple current by the following formula:  
VO × (VIN VO)  
Irms IOMAX ×  
VIN  
Irms  
IOMAX  
VIN  
: Allowable ripple current (effective value) [A]  
: Maximum load current value [A]  
: Power supply voltage of switching system [V]  
: Output voltage [V]  
VO  
DS04-27262-4E  
33  
MB39A136  
Selection of boot strap diode  
Select Schottky barrier diode (SBD), that forward current is as small as possible. The electric current that  
drives the gate of high-side FET flows to SBD of the bootstrap circuit. Calculate the mean current by the  
following formula. Select it so as not to exceed the electric current ratings.  
ID Qg × fOSC  
ID  
: Forward current [A]  
Qg  
fOSC  
: Total quantity of charge of gate on high-side FET [C]  
: Oscillation frequency [Hz]  
Calculate ratings of the boot strap diode by the following formula:  
VR_BOOT > VIN  
VR_BOOT : Reverse voltage of boot strap diode direct current [V]  
VIN  
: Power supply voltage of switching system [V]  
Selection of boot strap capacitor  
To drive the gate of high-side FET, the bootstrap capacitor must have enough stored charge. Therefore, a  
minimum value as a target is assumed the capacitor which can store electric charge 10 times that of the Qg  
on high-side FET. And select the boot strap capacitor.  
Qg  
CBOOT 10 ×  
VB  
CBOOT  
Qg  
: Boot strap capacitor [F]  
: Amount of gate charge on high-side FET [C]  
: VB voltage [V]  
VB  
Calculate ratings of the boot strap capacitor by the following formula:  
VCBOOT > VB  
VCBOOT  
VB  
: Withstand voltage of the boot strap capacitor [V]  
: VB voltage [V]  
34  
DS04-27262-4E  
MB39A136  
Design of phase compensation circuit  
Assume the phase compensation circuit of 1pole-1zero to be a standard in this device.  
1pole-1zero phase compensation circuit  
VO  
Rc  
Cc  
R1  
R2  
-
To I Comp.  
FB  
+
COMP  
Error  
Amp  
INTREF  
As for crossover frequency (fCO) that shows the band width of the control loop of DC/DC. The higher it is, the  
more excellent the rapid response becomes, however, the possibility of causing the oscillation due to phase  
margin shortage increases. Though this crossover frequency (fCO) can be arbitrarily set, make 1/10 of the  
oscillation frequencies (fosc) a standard, and set it to the upper limit. Moreover, set the phase margin at least  
to 30 °C, and 45 °C or more if possible as a reference.  
Set the constants of Rc and Cc of the phase compensation circuit using the following formula as a target.  
(VIN VO) ALVCNV × RON_Main × fCO × 2π × CO × VO  
RC =  
CC =  
× R1  
VIN × fOSC × L × IOMAX  
CO × VO  
RC × IOMAX  
RC  
CC  
VIN  
VO  
: Phase compensation resistor value [Ω]  
: Phase compensation capacitor value [F]  
: Power supply voltage of switching system [V]  
: Output setting voltage [V]  
fOSC  
IOMAX  
L
: Oscillation frequency [Hz]  
: Maximum load current value [A]  
: Inductor value [H]  
CO  
: Output capacitor value [F]  
RON_Main : High-side FET ON resistance[Ω]  
R1  
: Output setting resistor value [Ω]  
ALVCNV  
: Level converter voltage gain [V/V]  
On-duty 50% : ALVCNV = 6.8  
On-duty > 50% : ALVCNV = 13.6  
fCO  
: Cross-over frequency (arbitrary setting) [Hz]  
DS04-27262-4E  
35  
MB39A136  
VB pin capacitor  
2.2 μF is assumed to be a standard, and when Qg of SWFET used is large, it is necessary to adjust it. To  
drive the gate of high-side FET, the bootstrap capacitor must have enough stored charge. Therefore, a  
minimum value as a target is assumed the capacitor, which can store electric charge 100 times that of the  
Qg of the SWFET. And select it.  
Qg  
CVB 100 ×  
VB  
CVB  
Qg  
VB  
: VB pin capacitor value [F]  
: Total amount of gate charge of 2 ch respectively: high-side FET and low-side FET  
[C]  
: VB voltage [V]  
Calculate ratings of the VB pin capacitor by the following formula:  
VCVB > VB  
VCVB : Withstand voltage of the VB pin capacitor [V]  
VB  
: VB voltage [V]  
36  
DS04-27262-4E  
MB39A136  
VB regulator  
In the condition for which the potential difference between VCC and VB is insufficient, the decrease in the  
voltage of VB happens because of power output on-resistance and load current (mean current of all external  
FET gate driving current and load current of internal IC) of the VB regulator. Stop the switching operation  
when the voltage of VB decreases and it reaches threshold voltage (VTHL1) of the under voltage lockout  
protection circuit. Therefore, set oscillation frequency or external FET or I/O potential difference of the VB  
regulator using the following formula as a target when you use this IC.  
VCC VB (VTHL1) + (Qg × fOSC + ICC) × RVB  
VCC  
: Power supply voltage [V] (VIN)  
: Threshold voltage of VB under-voltage lockout protection circuit [V]  
(3.8 [V] Max )  
VB (VTHL1)  
: Total amount of gate charge of 2 ch respectively: high-side FET and low-side FET  
[C]  
Qg  
fOSC  
ICC  
: Oscillation frequency [Hz]  
: Power supply current [A] (4.7 × 103[A]=: Load current of VB (LDO) )  
RVB  
: VB output on-resistance [Ω] (100 Ω (The reference value at VCC = 4.5 V) )  
If the I/O potential difference is small, the problem can be solved by connecting the VB pin and the VCC pin.  
The conditions of the input voltage range are as follows:  
VIN input voltage ranges:  
25 V  
4.5 V  
6.0 V  
(1) For 4.5 V < VIN < 6.0 V  
(1)  
(3)  
Connect VB pin to VCC.  
(2) When the input voltage range steps over 6.0 V  
Normal use (VCC to VB not connected)  
(3) For 6.0 V VIN  
Normal use (VCC to VB not connected)  
(2)  
Note that if the I/O potential difference is not enough when used, use the actual machine to check carefully  
the operations at the normal operation, start operation, and stop operation. In particular, care is needed  
when the input voltage range over 6 V.  
DS04-27262-4E  
37  
MB39A136  
Power dissipation and the thermal design  
As for this IC, considerations of the power dissipation and thermal design are not necessary in most cases  
because of its high efficiency. However, they are necessary for the use at the conditions of a high power  
supply voltage, a high oscillation frequency, high load, and the high temperature.  
Calculate IC internal loss (PIC) by the following formula.  
PIC = VCC × (ICC + Qg × fOSC)  
PIC  
VCC  
ICC  
: IC internal loss [W]  
: Power supply voltage (VIN) [V]  
: Power supply current [A] (4.7 [mA] Max)  
: All SWFET total quantity of charge for ch 2 [C] (Total with Vgs = 5 V)  
: Oscillation frequency[Hz]  
Qg  
fOSC  
Calculate junction temperature (Tj) by the following formula.  
Tj = Ta + θja × PIC  
Tj  
: Junction temperature [ °C] (+150 [ °C] Max)  
: Ambient temperature [ °C]  
: TSSOP-24 Package thermal resistance (76 °C/W)  
: IC internal loss [W]  
Ta  
θja  
PIC  
Handling of the pins when using a single channel  
Although this device is a 2-channel DC/DC converter control IC, it is also able to be used as a 1-channel  
DC/DC converter by handling the pins of the unused channel as shown in the following diagram.  
“Open”  
Open”  
Open”  
CBx  
FBx  
COMPx  
DRVHx  
DRVLx  
CSx  
CTLx  
LXx  
ILIMx  
Note: x is the unused channel number.  
38  
DS04-27262-4E  
MB39A136  
Board layout  
Consider the points listed below and do the layout design.  
• Provide the ground plane as much as possible on the IC mounted face. Connect bypass capacitor con-  
nected with the VCC and VB pins, and GND pin of the switching system parts with switching system GND  
(PGND). Connect other GND connection pins with control system GND (AGND), and separate each GND,  
and try not to pass the heavy current path through the control system GND (AGND) as much as possible.  
In that case, connect control system GND (AGND) and switching system GND (PGND) right under IC.  
• Connect the switching system parts as much as possible on the surface. Avoid the connection through the  
through-hole as much as possible.  
• As for GND pins of the switching system parts, provide the through hole at the proximal place, and connect  
it with GND of internal layer.  
• Pay the most attention to the loop composed of input capacitor (CIN), SWFET, and fly-back diode (SBD).  
Consider making the current loop as small as possible.  
• Place the boot strap capacitor (CBOOT1, CBOOT2) proximal to CBx and LXx pins of IC as much as possible.  
• This device monitors the voltage between drain and source on high-side FET as voltage between VCC  
and LX pins. Place the input capacitor (CIN) and the high-side FET of each CH proximally as much as  
possible. Draw out the wiring to VCC pin from the proximal place to the input capacitor of CH1 and CH2.  
As for the net of the LXx pin, draw it out from the proximal place to the source pin on high-side FET.  
Moreover, a large electric current flows momentary in the net of the LXx pin. Wire the linewidth of about  
0.8mm to be a standard, as short as possible.  
• Large electric current flows momentary in the net of DRVHx and DRVLx pins connected with the gate of  
SWFET. Wire the linewidth of about 0.8mm to be a standard, as short as possible.  
• By-pass capacitor (CVCC, CVREF, CVB) connected with VREF, VCC, and VB, and the resistor (RRT) connected  
with the RT pin should be placed close to the pin as much as possible. Also connect the GND pin of the  
by-pass capacitor with GND of internal layer in the proximal through-hole.  
• Consider the net connected with RT, FBx, and the COMPx pins to keep away from a Switching system  
parts as much as possible because it is sensitive to the noise. Moreover, place the output voltage setting  
resistor and the phase compensation circuit element connected with this net close to the IC as much as  
possible, and try to make the net as short as possible. In addition, for the internal layer right under the  
installing part, provide the control system GND (AGND) of few ripple and few spike noises, or provide the  
ground plane of the power supply voltage as much as possible.  
Switching system parts : Input capacitor (CIN), SWFET, Fly-back diode (SBD), Inductor (L),  
Output capacitor (CO)  
Note: x : Each channel number  
Layout example of switching components  
To the VCC pin Through-hole  
High-side FET High-side FET  
Layout example of IC  
C
BOOT1  
1pin  
CVCC  
A
GND  
V
IN  
Through-hole  
R
RT  
CIN  
To the LX2  
pin  
CIN  
To the LX1 pin  
P
GND  
VB  
Low-side  
FET  
Low-side FET  
PGND  
C
CVREF  
SBD (option)  
SBD (option)  
CO  
CO  
CBOOT2  
L
L
P
GND  
AGND  
Vo1 Vo2  
AGND and PGND are connected right under IC.  
Output voltage  
Vo1 feedback  
Output voltage  
Vo2 feedback  
Internal  
Surface  
layer  
DS04-27262-4E  
39  
MB39A136  
REFERENCE DATA  
CH1 Conversion Efficiency  
Conversion Efficiency vs. Load Current  
CH2 Conversion Efficiency  
Conversion Efficiency vs. Load Current  
100  
100  
CH2  
95  
CH1  
95  
90  
85  
80  
75  
70  
65  
60  
VIN = 12 V  
V
IN = 12 V  
1 = 1.2 V  
V
O
2 = 3.3 V  
V
O
90  
85  
80  
75  
70  
65  
60  
fosc = 300 kHz  
Ta = + 25°C  
fosc = 300 kHz  
Ta = + 25°C  
PFM/PWM  
PFM/PWM  
Fixed PWM  
Fixed PWM  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
Load Current IO1(A)  
Load Current I 2 (A)  
O
CH1 Load Regulation  
Output Voltage vs. Load Current  
CH2 Load Regulation  
Output Voltage vs. Load Current  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
3.60  
3.50  
3.40  
3.30  
3.20  
3.10  
3.00  
V
IN = 12 V  
1 = 1.2 V  
V
IN = 12 V  
2 = 3.3 V  
V
O
V
O
MODE = VREF  
fosc = 300 kHz  
Ta = + 25°C  
MODE = VREF  
fosc = 300 kHz  
Ta = + 25°C  
0
1
2
3
4
5
0
1
2
3
4
5
Load Current IO1(A)  
Load Current I  
O
2 (A)  
(Continued)  
40  
DS04-27262-4E  
MB39A136  
(Continued)  
CH1  
CH2  
Load Sudden Change Waveform  
Load Sudden Change Waveform  
IO1 : 1 A/div  
IO2 : 1 A/div  
2 A  
2 A  
0 A  
0 A  
100 s/div  
μ
100 s/div  
μ
VO1 : 200 mV/div (1.2 V offset)  
VO2 : 200 mV/div (3.3 V offset)  
VIN = 12 V, VO1 = 1.2 V  
IO1 = 0←→2 A, fOSC = 300 kHz, Ta = + 25 °C  
VIN = 12 V, VO2 = 3.3 V  
IO2 = 0←→2 A, fOSC = 300 kHz, Ta = + 25 °C  
CTL Startup Waveform  
CTL Stop Waveform  
CTL1, 2 : 5 V/div  
CTL1, 2 : 5 V/div  
VO2: 1 V/div  
VO2: 1 V/div  
VO1: 1 V/div  
VO1: 1 V/div  
1 ms/div  
1 ms/div  
VIN = 12 V, fOSC = 300 kHz, Ta = + 25 °C, Soft-start setting time = 3.0 ms  
VO1 = 1.2 V, IO1 = 5 A (0.24 Ω) , VO2 = 3.3 V, IO2 = 5 A (0.66 Ω)  
Normal operation Over current protection Under voltage protection operation waveform  
VO1 : 0.5 V/div  
VIN = 12 V  
VO1 = 1.2 V  
1
fOSC = 300 kHz  
Ta = + 25 °C  
CS1 : 2 V/div  
2
LX1 : 10 V/div  
IO1 : 10 A/div  
3
4
500 s/div  
μ
Normal operation  
Over current  
Under voltage  
protection operation  
protection operation  
DS04-27262-4E  
41  
MB39A136  
USAGE PRECAUTION  
1. Do not configure the IC over the maximum ratings.  
If the IC is used over the maximum ratings, the LSI may be permanently damaged.  
It is preferable for the device to be normally operated within the recommended usage conditions. Usage  
outside of these conditions can have an adverse effect on the reliability of the LSI.  
2. Use the device within the recommended operating conditions.  
TherecommendedvaluesguaranteethenormalLSIoperationundertherecommendedoperatingconditions.  
The electrical ratings are guaranteed when the device is used within the recommended operating conditions  
and under the conditions stated for each item.  
3. Printed circuit board ground lines should be set up with consideration for common  
impedance.  
4. Take appropriate measures against static electricity.  
• Containers for semiconductor materials should have anti-static protection or be made of conductive ma-  
terial.  
• After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.  
• Work platforms, tools, and instruments should be properly grounded.  
• Working personnel should be grounded with resistance of 250 kΩ to 1 MΩ in series between body and  
ground.  
5. Do not apply negative voltages.  
The use of negative voltages below 0.3 V may make the parasitic transistor activated, and can cause  
malfunctions.  
42  
DS04-27262-4E  
MB39A136  
ORDERING INFORMATION  
Part number  
Package  
Remarks  
24-pin plastic TSSOP  
(FPT-24P-M09)  
MB39A136PFT  
EV BOARD ORDERING INFORMATION  
Part number  
EV board version No.  
Remarks  
MB39A136EVB-01  
MB39A136EVB-01 Rev2.0  
TSSOP-24  
DS04-27262-4E  
43  
MB39A136  
RoHS COMPLIANCE INFORMATION OF LEAD (Pb) FREE VERSION  
The LSI products of FUJITSU SEMICONDUCTOR with “E1” are compliant with RoHS Directive, and has  
observed the standard of lead, cadmium, mercury, Hexavalent chromium, polybrominated biphenyls (PBB),  
and polybrominated diphenyl ethers (PBDE). A product whose part number has trailing characters “E1” is  
RoHS compliant.  
MARKING FORMAT (Lead Free version)  
39A136  
XXXX  
E1  
XXX  
Lead Free version  
INDEX  
44  
DS04-27262-4E  
MB39A136  
LABELING SAMPLE (Lead free version)  
Lead-free mark  
JEITA logo JEDEC logo  
MB123456P - 789 - GE1  
(3N) 1MB123456P-789-GE1 1000  
G
Pb  
(3N)2 1561190005 107210  
QC PASS  
PCS  
1,000  
MB123456P - 789 - GE1  
ASSEMBLED IN JAPAN  
2006/03/01  
MB123456P - 789 - GE1  
1/1  
1561190005  
0605 - Z01A 1000  
“ASSEMBLED IN CHINA” is printed on the label  
of a product assembled in China.  
The part number of a lead-free product has  
the trailing characters “E1”.  
DS04-27262-4E  
45  
MB39A136  
MB39A136PFT  
RECOMMENDED CONDITIONS OF MOISTURE SENSITIVITY LEVEL  
[FUJITSU SEMICONDUCTOR Recommended Mounting Conditions]  
Item  
Condition  
IR (infrared reflow) , Manual soldering (partial heating method)  
2 times  
Mounting Method  
Mounting times  
Please use it within two years after  
Before opening  
Manufacture.  
From opening to the 2nd  
Less than 8 days  
reflow  
Storage period  
When the storage period after  
opening was exceeded  
Please process within 8 days  
after baking (125 °C, 24h)  
Storage conditions  
5 °C to 30 °C, 70%RH or less (the lowest possible humidity)  
[Mounting Conditions]  
(1) IR (infrared reflow)  
260°C  
255°C  
Main heating  
170 °C  
to  
190 °C  
(b)  
(c)  
(d)  
(e)  
RT  
(a)  
(d')  
“H” level : 260 °C Max  
(a) Temperature increase gradient : Average 1 °C/s to 4 °C/s  
(b) Preliminary heating  
: Temperature 170 °C to 190 °C, 60 s to 180 s  
(c) Temperature increase gradient : Average 1 °C/s to 4 °C/s  
(d) Peak temperature  
(d’) Main heating  
: Temperature 260 °C Max; 255 °C or more, 10 s or less  
: Temperature 230 °C or more, 40 s or less  
or  
Temperature 225 °C or more, 60 s or less  
or  
Temperature 220 °C or more, 80 s or less  
(e) Cooling  
: Natural cooling or forced cooling  
Note: Temperature : on the top of the package body  
(2) Manual soldering (partial heating method)  
Temperature at the tip of an soldering iron: 400 °C max  
Time: Five seconds or below per pin  
46  
DS04-27262-4E  
MB39A136  
PACKAGE DIMENSIONS  
24-pin plastic TSSOP  
Lead pitch  
0.50 mm  
4.40 mm × 6.50 mm  
Gullwing  
Package width  
package length  
×
Lead shape  
Sealing method  
Mounting height  
Weight  
Plastic mold  
1.20 mm MAX  
0.08 g  
(FPT-24P-M09)  
24-pin plastic TSSOP  
Note 1) Pins width and pins thickness include plating thickness.  
Note 2) Pins width do not include tie bar cutting remainder.  
Note 3) #: These dimensions do not include resin protrusion.  
(FPT-24P-M09)  
#
6.50±0.10(.256±.004)  
0.145±0.045  
(.0057±.0018)  
24  
13  
BTM E-MARK  
#
4.40±0.10 6.40±0.20  
(.252±.008)  
(.173±.004)  
INDEX  
Details of "A" part  
1.10 +00..1150  
.043 +..000064  
(Mounting height)  
1
12  
"A"  
0.20 +00..0027  
.008 +..000013  
0.50(.020)  
M
0.13(.005)  
0~8°  
0.10±0.05  
(.004±.002)  
0.60±0.15  
(.024±.006)  
(Stand off)  
0.10(.004)  
Dimensions in mm (inches).  
Note: The values in parentheses are reference values.  
C
2007-2010 FUJITSU SEMICONDUCTOR LIMITED F24032S-c-2-5  
Please check the latest package dimension at the following URL.  
http://edevice.fujitsu.com/package/en-search/  
DS04-27262-4E  
47  
MB39A136  
MAJOR CHANGES IN THIS EDITION  
A change on a page is indicated by a vertical line drawn on the left side of that page.  
Page  
Section  
Change Results  
ELECTRICAL CHARACTERISTICS  
Revised the minimum value of “Maximum on-duty” in  
9
“Output Block [DRV]”:  
72 75  
48  
DS04-27262-4E  
MB39A136  
CONTENTS  
page  
- DESCRIPTION .................................................................................................................................................... 1  
- FEATURES .......................................................................................................................................................... 1  
- APPLICATION ..................................................................................................................................................... 1  
- PIN ASSIGNMENT ............................................................................................................................................. 2  
- PIN DESCRIPTION ............................................................................................................................................ 3  
- BLOCK DIAGRAM .............................................................................................................................................. 4  
- ABSOLUTE MAXIMUM RATINGS ................................................................................................................... 5  
- RECOMMENDED OPERATING CONDITIONS ............................................................................................ 6  
- ELECTRICAL CHARACTERISTICS ................................................................................................................ 7  
- TYPICAL CHARACTERISTICS ........................................................................................................................ 11  
- FUNCTION DESCRIPTION .............................................................................................................................. 13  
- PROTECTION FUNCTION TABLE .................................................................................................................. 17  
- I/O PIN EQUIVALENT CIRCUIT DIAGRAM ................................................................................................... 18  
- EXAMPLE APPLICATION CIRCUIT ................................................................................................................ 20  
- PARTS LIST ......................................................................................................................................................... 21  
- APPLICATION NOTE ......................................................................................................................................... 23  
- REFERENCE DATA ........................................................................................................................................... 40  
- USAGE PRECAUTION ...................................................................................................................................... 42  
- ORDERING INFORMATION ............................................................................................................................. 43  
- EV BOARD ORDERING INFORMATION ....................................................................................................... 43  
- RoHS COMPLIANCE INFORMATION OF LEAD (Pb) FREE VERSION ................................................... 44  
- MARKING FORMAT (Lead Free version) ....................................................................................................... 44  
- LABELING SAMPLE (Lead free version) ........................................................................................................ 45  
- MB39A136PFT RECOMMENDED CONDITIONS OF MOISTURE SENSITIVITY LEVEL ..................... 46  
- PACKAGE DIMENSIONS .................................................................................................................................. 47  
- MAJOR CHANGES IN THIS EDITION ............................................................................................................ 48  
DS04-27262-4E  
49  
MB39A136  
MEMO  
50  
DS04-27262-4E  
MB39A136  
MEMO  
DS04-27262-4E  
51  
MB39A136  
FUJITSU SEMICONDUCTOR LIMITED  
Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome,  
Kohoku-ku Yokohama Kanagawa 222-0033, Japan  
Tel: +81-45-415-5858  
http://jp.fujitsu.com/fsl/en/  
For further information please contact:  
North and South America  
Asia Pacific  
FUJITSU SEMICONDUCTOR AMERICA, INC.  
1250 E. Arques Avenue, M/S 333  
Sunnyvale, CA 94085-5401, U.S.A.  
Tel: +1-408-737-5600 Fax: +1-408-737-5999  
http://us.fujitsu.com/micro/  
FUJITSU SEMICONDUCTOR ASIA PTE. LTD.  
151 Lorong Chuan,  
#05-08 New Tech Park 556741 Singapore  
Tel : +65-6281-0770 Fax : +65-6281-0220  
http://sg.fujitsu.com/semiconductor/  
Europe  
FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD.  
30F, Kerry Parkside, 1155 Fang Dian Road, Pudong District,  
Shanghai 201204, China  
Tel : +86-21-6146-3688 Fax : +86-21-6146-3660  
http://cn.fujitsu.com/fss/  
FUJITSU SEMICONDUCTOR EUROPE GmbH  
Pittlerstrasse 47, 63225 Langen, Germany  
Tel: +49-6103-690-0 Fax: +49-6103-690-122  
http://emea.fujitsu.com/semiconductor/  
Korea  
FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD.  
2/F, Green 18 Building, Hong Kong Science Park,  
Shatin, N.T., Hong Kong  
Tel : +852-2736-3232 Fax : +852-2314-4207  
http://cn.fujitsu.com/fsp/  
FUJITSU SEMICONDUCTOR KOREA LTD.  
902 Kosmo Tower Building, 1002 Daechi-Dong,  
Gangnam-Gu, Seoul 135-280, Republic of Korea  
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111  
http://kr.fujitsu.com/fsk/  
Specifications are subject to change without notice. For further information please contact each office.  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with sales representatives before ordering.  
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose  
of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does  
not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating  
the device based on such information, you must assume any responsibility arising out of such use of the information.  
FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information.  
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use  
or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any  
third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right  
by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or  
other rights of third parties which would result from the use of information contained herein.  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without  
limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured  
as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect  
to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in  
nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in  
weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).  
Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages aris-  
ing in connection with above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures  
by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-  
current levels and other abnormal operating conditions.  
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations  
of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.  
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.  
Edited: Sales Promotion Department  

相关型号:

MB39A145PFT-E1

Switching Regulator/Controller, Voltage-mode, 1000kHz Switching Freq-Max, PDSO24,
CYPRESS

MB39A214APFT

Dual Switching Controller, Voltage-mode, 1.2A, 1000kHz Switching Freq-Max, CMOS, PDSO24, 4.40 X 6.50 MM, 1.20 MM HEIGHT, 0.50 MM PITCH, PLASTIC, TSSOP-24
FUJITSU

MB39A214APFT

Dual Switching Controller
SPANSION

MB39A214APFT-E1

Switching Regulator/Controller, Voltage-mode, 0.06A, 1000kHz Switching Freq-Max, CMOS, PDSO24,
SPANSION

MB39A214PFT

Dual Switching Controller, 1.2A, 1000kHz Switching Freq-Max, PDSO24, 4.40 X 6.50 MM, 1.20 MM HEIGHT, 0.50 MM PITCH, PLASTIC, TSSOP-24
SPANSION

MB39C001PVB

Switching Regulator, Current-mode, 1.3A, 1200kHz Switching Freq-Max, BICMOS, PBCC18, PLASTIC, LCC-18
FUJITSU

MB39C006A

1 ch DC/DC Converter IC Built-in Switching FET & POWERGOOD function, PFM/PWM Synchronous Rectification, and Down Conversion Support
FUJITSU

MB39C006AEVB-06

1 ch DC/DC Converter IC Built-in Switching FET & POWERGOOD function, PFM/PWM Synchronous Rectification, and Down Conversion Support
FUJITSU

MB39C006APN

1 ch DC/DC Converter IC Built-in Switching FET & POWERGOOD function, PFM/PWM Synchronous Rectification, and Down Conversion Support
FUJITSU

MB39C006APN-XXXE1

Switching Regulator, Current-mode, 1.8A, 3840kHz Switching Freq-Max, PDSO10, 3 X 3 MM, 0.75 MM HEIGHT, 0.50 MM PITCH, ROHS COMPLIANT, PLASTIC, SON-10
FUJITSU

MB39C006APNE1

Switching Regulator, Voltage-mode, 1.8A, 3840kHz Switching Freq-Max, PDSO10, ROHS COMPLIANT, PLASTIC, SON-10
FUJITSU

MB39C006APNE1

Switching Regulator,
CYPRESS