MB39C001PVB [FUJITSU]

Switching Regulator, Current-mode, 1.3A, 1200kHz Switching Freq-Max, BICMOS, PBCC18, PLASTIC, LCC-18;
MB39C001PVB
型号: MB39C001PVB
厂家: FUJITSU    FUJITSU
描述:

Switching Regulator, Current-mode, 1.3A, 1200kHz Switching Freq-Max, BICMOS, PBCC18, PLASTIC, LCC-18

信息通信管理 开关
文件: 总34页 (文件大小:378K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FUJITSU SEMICONDUCTOR  
DATA SHEET  
DS04-27243-1E  
ASSP For Power Supply Applications  
(Switching FET Integrated DC/DC Converter)  
1ch PFM/PWM Synchronous  
Rectification Step-down Regulator  
MB39C001  
DESCRIPTION  
The MB39C001 is a synchronous rectification type of single-channel, step-down DC/DC converter IC using current  
mode control.  
The MB39C001 integrates switching FETs, an oscillator, error amplifier, voltage detector, and a reference voltage  
generator in a 18-pin BCC package. The required external components are only a coil and decoupling capacitors.  
The MB39C001 is small in size, and can achieve a DC/DC converter highly effective in the full load range, and it  
is the best for internal power supplies for portable devices such as cellular phones, PDAs and DSC.  
FEATURES  
• High efficiency  
: 96% Max  
• Quiescent current  
: 20 µA (in PFM mode)  
• Output current (DC/DC) : 600 mA Max  
• Input voltage range  
: 2.5 V to 5.5 V  
• Oscillation frequency  
• No flyback diode needed  
: 1.0 MHz (in PWM mode)  
• Low dropout operation : 100% on-duty support  
(Continued)  
PACKAGE  
18-pin plastic BCC  
(LCC-18P-M05)  
MB39C001  
(Continued)  
• High-precision reference voltage generator integrated : 1.25 V ± 2% (with no load)  
• Output voltage select function integrated  
: Capable of selecting internal setting (3 bits) or  
external setting  
• Built-in switching FETs  
: PMOS 0.43 (Typ) , NMOS 0.32 (Typ)  
• Current mode control providing quick transition response to inputs/loads  
• Built-in temperature protection function  
• Low consumption current at shutdown mode  
• Built-in undervoltage lockout protection circuit (UVLO) : Circuit actuation voltage of 2.3 V (Typ)  
• Small package : BCC-18P  
: 1 µA or less  
2
MB39C001  
PIN ASSIGNMENT  
(TOP VIEW)  
DVDD1  
14  
VSET1  
VSET2  
VSET3  
11  
13  
12  
DVDD2  
15  
10  
AVDD  
CNT  
9
8
7
VSEL  
16  
17  
18  
MB39C001  
AGND  
DGND1  
DGND2  
VREFIN  
6
POWER GOOD  
1
2
3
4
5
LX1  
LX2  
VRSEL  
OUT  
VREF  
LCC-18P-M05  
PIN DESCRIPTION  
Pin No.  
Symbol  
I/O  
Description  
Inductor connection output terminals. Connect mutually and use the LX1  
and LX2 terminal. They enter the high impedance state at shutdown.  
1, 2  
LX1, LX2  
O
I
Reference voltage switch terminal. (Refer (2) “Setting output voltages”  
in APPLICATION NOTES)  
3
VRSEL  
4
5
OUT  
I
Output voltage feedback terminal.  
VREF  
O
Reference voltage (1.25 V) output terminal.  
POWERGOOD circuit output terminal.  
An N-ch MOS open-drain circuit is connected.  
6
POWER GOOD  
O
I
7
8
VREFIN  
AGND  
Error amplifier (ErrorAmp) noninverting input terminal.  
Control block ground terminal.  
9
CNT  
I
Control input terminal (L : Shutdown, H : Normal operation ) .  
Control block power-supply terminal.  
10  
AVDD  
11  
VSET3  
I
I
I
Output voltage setting terminal. (Refer (2) “Setting output voltages” in  
APPLICATION NOTES)  
12  
VSET2  
13  
VSET1  
14, 15  
DVDD1, DVDD2  
Drive block power-supply terminal.  
Output voltage switch terminal. (Refer (2) “Setting output voltages” in  
APPLICATION NOTES.)  
16  
VSEL  
I
17, 18 DGND1, DGND2  
Drive block ground terminal.  
3
MB39C001  
I/O TERMINAL EQUIVALENT CIRCUIT DIAGRAM  
DVDD1  
DVDD2  
AVDD  
LX1  
LX2  
VREF  
DGND1  
DGND2  
AGND  
AVDD  
POWER GOOD  
VRSEL,  
VSET1,  
VSET2,  
VSET3,  
AGND  
VSEL  
AGND  
AVDD  
VREFIN  
OUT  
AGND  
AVDD  
CNT  
AGND  
* : ESD protection element  
4
MB39C001  
BLOCK DIAGRAM  
VIN  
AVDD DVDD2  
10  
DVDD1  
15 14  
CNT  
9
To each block  
ERR  
Amplifier  
OUT  
4
+
Iout  
Comparator  
R
6
POWER GOOD  
DET  
PFM/PWM  
Logic  
Control  
VSEL  
16  
LX1  
LX2  
VOUT  
VSET1  
13  
1
2
VSET2  
12  
SELECT  
L
VSET3  
11  
C
VREF  
5
1.25 V  
Ref  
7
3
8
18 17  
VREFIN  
VRSEL  
AGND DGND2 DGND1  
5
MB39C001  
FUNCTIONS  
About the Current Mode  
Conventional voltage mode control compares the voltage (Vc) obtained by applying negative feedback to the  
output voltage using the ErrAmp with the reference triangular waveform (Vtri) to control the on-duty cycle, thereby  
regulating the output voltage.  
Current mode control uses the oscillator (rectangular waveform generator) , and the voltage (VIDET) obtained by  
applying I-V conversion to the current which flows into SW FET, and uses them in place of the triangular waveform.  
Current-mode control compares the voltage (Vc) obtained by applying negative feedback to the output voltage  
using the ErrAmp with VIDET to control the on-duty cycle, thereby regulating the output voltage.  
Voltage mode control model  
Current mode control model  
VIN  
VIN  
Oscillator  
Vc  
+
S
Vc  
Q
R
+
SR-FF  
Vtri  
VIDET  
Vc  
VIDET  
Vc  
Vtri  
tON  
tOFF  
tOFF  
tON  
Note : The above models illustrate principles of operation; they are slightly different from actual  
operations of the IC.  
Function of Each Block  
• PFM/PWM Logic Control Circuit  
This circuit controls the synchronous rectification of internal P-channel MOS FET and N-channel MOS FET  
at the frequency (1 MHz), set by the internal oscillator (rectangular waveform oscillator) during normal oper-  
ation. Under light loads, the circuit performs intermittent (burst) operation.  
The precaution of the penetration current caused by synchronous rectification and the reverse current flowing  
during discontinuous operation are performed to this circuit.  
• Iout Comparator Circuit  
This circuit detects the current (ILX) flowing from the internal P-channel MOS FET to the external inductor.  
The circuit compares the output of ErrAmp with VIDET, obtained by applying I-V conversion to the ILX peak current  
(IPK), and approaches the PFM/PWM Logic Control circuit to turn off the internal P-channel MOS FET.  
6
MB39C001  
• ErrAmp phase compensation circuit  
This circuit compares reference voltages such as VREF with output voltages. The IC contains a phase com-  
pensation circuit and adjusted for the best operation of this IC, and it is eliminating the need for nominating a  
phase compensation circuit and adding an external component for phase compensation.  
• VREF circuit  
A high-accuracy reference voltage is generated by a BGR (band gap reference) circuit. The output voltage is  
1.25 V (Typ).  
• SELECT circuit  
This circuit is used to select a pre-set output voltage. The voltage can be set by changing the division resistance  
value at the earlier stage of the ErrAmp.  
• DET circuit  
This circuit monitors the OUT terminal voltage. When that voltage reaches the output set voltage, the open-  
drain output at the POWER GOOD terminal is turned on.  
• Protection circuit  
An over temperature protection circuit is built in the IC as a protection circuit.  
The over temperature protection circuit turns off both of the N-channel and P-channel SW FETs when the  
junction temperature reaches 135°C.  
Also, when the junction temperature falls to 110 °C, the over temperature protection circuit operates normally.  
Although the IC has no overcurrent protection circuit as a dedicated circuit, it uses current mode control for  
voltage control, and thus the peak-current value is monitored and controlled at any time. (The maximum peak-  
current value is 1 A.)  
7
MB39C001  
ABSOLUTE MAXIMUM RATINGS  
Ratings  
Unit  
Parameter  
Symbol  
Condition  
Min  
Max  
AVDD, DVDD1, and DVDD2  
terminals  
Power supply voltage  
VIN  
7
V
OUT terminal  
0.3  
0.3  
0.3  
VDD + 0.3  
VDD + 0.3  
CNT, VSEL, VSET1, VSET2,  
VSET3, and VRSEL terminals  
Input voltage  
VI  
V
VREFIN terminal  
VDD + 0.3  
7
POWER GOOD pull-up voltage  
LX voltage  
VIPG  
VLX  
IPK  
V
V
LX1/LX2 terminal  
LX1/LX2 terminal  
Ta + 25 °C  
0.3  
VDD + 0.3  
1.3  
LX peak current  
A
Power dissipation  
PD  
540*  
mV  
°C  
°C  
Operating ambient temperature  
Storage temperature  
Ta  
40  
+ 85  
TSTG  
55  
+ 125  
* : The package is mounted on a 10x10-cm square, dual sided epoxy board.  
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,  
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.  
RECOMMENDED OPERATING CONDITIONS  
Values  
Parameter  
Symbol  
Condition  
Unit  
Min  
Typ  
Max  
AVDD, DVDD1, and  
DVDD2 terminals  
Power supply voltage  
VIN  
2.5  
3.7  
5.5  
V
VREFIN voltage  
LX current  
VRIN  
ILX  
VIN – VOUT 0.7 V*  
0.3  
0.7  
600  
1
V
mA  
mA  
POWERGOOD current  
IPG  
* : The output possible current can be tends to decrease when the voltage difference between the power supply  
voltage (VIN) and DC/DC converter output voltage (VOUT) is small. This is because of an effect of slope compen-  
sation; it does not lead to the breakdown of the device. If it is the using condition which suppresses the output  
current, it is possible to use it also with “VIN-VOUT<0.7 V”.  
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the  
semiconductor device. All of the device’s electrical characteristics are warranted when the device is  
operated within these ranges.  
Always use semiconductor devices within their recommended operating condition ranges. Operation  
outside these ranges may adversely affect reliability and could result in device failure.  
No warranty is made with respect to uses, operating conditions, or combinations not represented on  
the data sheet. Users considering application outside the listed conditions are advised to contact their  
FUJITSU representatives beforehand.  
8
MB39C001  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise specified , VIN = 3.7 V, CNT = 3.7 V, VSET1 = VSET2 = 0 V, VSET3 = VSEL = 3.7 V,  
VRSEL = 0 V, Ta = +25°C)  
Values  
Symbol  
Parameter  
Pin No.  
Condition  
Unit  
Min  
1.21 1.25 1.29  
VREFIN = 0.6 V, VRSEL = 3.7 V 100 40  
Typ  
Max  
Reference voltage  
Input current  
VREF  
IREFIN  
VOUT  
5
7
VREF = 0 mA  
V
nA  
V
Output voltage  
Load current = −200 mA*l  
1.764 1.8 1.836  
2.5 V < DVDD = AVDD < 5.5 V*2  
Load current = 0 mA  
Input stability  
Load stability  
Line  
Load  
ROUT  
40  
20  
mV  
mV  
4
200 mA > Load current >  
600 mA  
OUT terminal  
Input impedance  
OUT = 2.0 V  
OUT = 90%  
1.01  
MΩ  
DC/DC  
converter LX peak current  
IPK  
fosc  
fSHORT  
tPG  
1
A
block  
1, 2  
6
0.8  
1.0  
170  
80  
1.2 MHz  
240 kHz  
µs  
Oscillation  
frequency  
OUT = 0 V  
100  
Rise delay time  
SW PMOS-FET  
ON resistor  
RPMOS  
RNMOS  
ILEAK  
LX1 + LX2 = −100 mA  
LX1 + LX2 = 100 mA  
0.43  
0.32  
SW NMOS-FET  
ON resistor  
1, 2  
SW FET leak  
current  
1
µA  
Input threshold  
voltage  
3,9,11, CNT, VSEL, VSET1, VSET2,  
12,13,16 VSET3, VRSEL terminal  
VTH  
0.3  
1.0  
0
1.5  
1
V
Output  
voltage  
select  
block  
9
CNT terminal  
µA  
µA  
Input current  
II  
3,11,12, VSEL, VSET1, VSET2, VSET3,  
13,16 VRSEL terminal  
0.1  
1
Over temperature  
protection (junc-  
tion temperature)  
TOTPH  
135*  
110*  
°C  
°C  
4
TOTPL  
Protection  
circuit  
block  
VTHH  
2.3  
V
V
UVLO  
threshold voltage  
VTHL  
4, 10,  
2.15  
14, 15  
UVLO hysteresis  
width  
VHYS  
0.15  
V
* : Standard design value  
(Continued)  
9
MB39C001  
(Continued)  
(Unless otherwise specified , VIN = 3.7 V, CNT = 3.7 V, VSET1 = VSET2 = 0 V, VSET3 = VSEL = 3.7 V,  
VRSEL = 0 V, Ta = +25°C)  
Values  
Unit  
Symbol  
Parameter  
Pin No.  
4, 6  
Condition  
Min  
86  
Typ Max  
VTHHPG  
VTHLPG  
VHYSPG  
VOL  
90  
88  
2
94  
92  
%
%
Threshold voltage  
*3  
POWER  
GOOD  
circuit  
84  
Hysteresis width  
Output voltage  
Output current  
%
POWER GOOD = 25 µA  
POWER GOOD = 5.5 V  
0.1  
1
V
block  
6
IOH  
µA  
Powersupplycurrent  
at shutdown  
IVDD1  
IVDD2  
IVDD3  
CNT = 0 V, All circuits = OFF*4  
1
µA  
µA  
10, 14,  
15  
Powersupplycurrent  
on standby  
General  
Load current = 0 mA  
20  
35  
Powersupplycurrent  
during operation  
VOUT = 90% or OUT = 1.62 V*5  
300  
400 µA  
* : Standard design value  
*1 : Refer (2) “Setting output voltages” in APPLICATION NOTES.)  
*2 : The minimum VIN value is 2.5 V or “output voltage setting value + 0.4 V”, either high one.  
*3 : Detection to the output voltage setting value by VSET1 to VSET3. Refer (2) “Setting output voltages”  
in APPLICATION NOTES.)  
*4 : The sum of the currents flowing to the AVDD terminal, DVDD1 terminal, and DVDD2 terminal.  
*5 : Current consumption at a duty cycle of 100% (with the main SW FET full-on). The SW FET gate drive current  
is not included because of a full-on state (not performing SW operation). And, the load current is not similarly  
included.  
10  
MB39C001  
TYPICAL OPERATING CHARACTERISTICS  
(The following characteristics are provided for setup reference purposes only; they are not guaranteed  
characteristics.)  
Conversion efficiency vs. Load current  
Conversion efficiency vs. Load current  
100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 2.7 V  
VIN = 2.7 V  
VIN = 3.7 V  
VIN = 3.7 V  
VIN = 4.5 V  
VIN = 4.5 V Ta = +25 °C  
L = 3.3 µH  
Ta = +25 °C  
L = 3.3 µH  
C = 10 µF  
C = 10 µF  
VOUT = 1.8 V  
VOUT = 2.5 V  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Load current IOUT (mA)  
Load current IOUT (mA)  
Conversion efficiency vs. Load current  
Output voltage vs. Load current  
1.84  
1.82  
1.80  
1.78  
1.76  
1.74  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 3.7 V  
VIN = 4.5 V  
Ta = +25 °C  
L = 3.3 µH  
C = 10 µF  
Ta = +25 °C  
VIN = 3.7 V  
VOUT = 1.8 V  
VOUT = 3.3 V  
0
100  
200  
300  
400  
500  
600  
0.1  
1
10  
100  
1000  
Load current IOUT (mA)  
Load current IOUT (mA)  
(Continued)  
11  
MB39C001  
Output voltage vs. Power supply voltage  
Reference voltage vs. Ambient temperature  
1.30  
1.90  
1.88  
1.86  
1.84  
1.82  
1.80  
1.78  
1.76  
1.74  
1.72  
1.70  
1.28  
1.26  
IOUT = 0 A  
IOUT = 0 A  
1.24  
IOUT = 600 mA  
IOUT = 600 mA  
1.22  
VIN = 3.7 V  
VOUT = 1.8 V  
Ta = +25 °C  
VOUT = 1.8 V  
1.20  
50  
25  
0
25  
50  
75  
100  
2.0  
3.0  
4.0  
5.0  
6.0  
Power supply voltage VIN (V)  
Ambient temperature Ta ( °C)  
Oscillation frequency vs. Power supply voltage  
Oscillation frequency vs. Ambient temperature  
1.2  
1.2  
1.1  
1.0  
0.9  
1.1  
1.0  
0.9  
Ta = +25 °C  
VOUT = 1.8 V  
VIN = 3.7 V  
IOUT = 600 mA  
IOUT = 600 mA  
0.8  
0.8  
50  
25  
0
25  
50  
75  
100  
2
3
4
5
6
Power supply voltage VIN (V)  
Ambient temperature Ta ( °C)  
(Continued)  
12  
MB39C001  
Power supply current vs.  
Ambient temperature  
Power supply current vs.  
Power supply voltage  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Ta = +25 °C  
VIN = 3.7 V  
VOUT = 1.8 V  
IOUT = 0 A  
VIN = 3.7 V  
VOUT = 1.8 V  
IOUT = 0 A  
0
0
2
3
4
5
6
50  
25  
0
25  
50  
75  
100  
Power supply voltage VIN (V)  
Ambient temperature Ta ( °C)  
SW FET ON resistance vs.  
Power supply voltage  
Oscillation frequency VREFIN voltage  
0.7  
1.2  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Pch  
Nch  
Ta = +25 °C  
VIN = 3.7 V  
IOUT = 200 mA  
Ta = +25 °C  
2
3
4
5
6
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
VREFIN voltage (V)  
Power supply voltage VIN (V)  
(Continued)  
13  
MB39C001  
Nch SW FET ON resistance vs.  
Ambient temperature  
Pch SW FET ON resistance vs.  
Ambient temperature  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VIN = 2.5 V  
VIN = 2.5 V  
VIN = 3.7 V  
VIN = 3.7 V  
VIN = 5.5 V  
VIN = 5.5 V  
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
Ambient temperature Ta ( °C)  
Ambient temperature Ta ( °C)  
Power dissipation vs.  
Ambient temperature  
600  
540  
500  
400  
300  
210  
200  
100  
0
50 25  
0
25  
50  
7585 100 125  
Ambient temperature Ta ( °C)  
(Continued)  
14  
MB39C001  
Output waveforms at load sudden changes  
VOUT 200 mV/div  
IOUT 0.5 A/div  
VIN = 3.7 V  
VOUT = 1.8 V  
IOUT = 0 mA to 600 mA  
20 µs/div  
Output waveforms at load sudden changes  
VOUT 200 mV/div  
IOUT 0.5 A/div  
VIN = 3.7 V  
VOUT = 1.8 V  
IOUT = 200 mA to 600 mA  
20 µs/div  
(Continued)  
15  
MB39C001  
Output waveforms at load sudden changes  
VOUT 200 mV/div  
IOUT 0.5 A/div  
VIN = 3.7 V  
VOUT = 1.8 V  
IOUT = 100 mA to 600 mA  
20 µs/div  
Switching waveforms (continuous operation)  
VOUT 20 mV/div  
VLX 2 V/div  
ILX 0.5 A/div  
VIN = 3.7 V  
VOUT = 1.8 V  
IOUT = 600 mA  
400 ns/div  
(Continued)  
16  
MB39C001  
(Continued)  
Switching waveforms (during burst operation)  
VOUT 100 mV/div  
VLX 2 V/div  
ILX 0.5 A/div  
VIN = 3.7 V  
VOUT = 1.8 V  
IOUT = 100 mA  
2 µs/div  
CNT terminal response characteristics  
VOUT 1 V/div  
ILX 0.5 A/div  
VCNT 2 V/div  
VIN = 3.7 V  
VOUT = 1.8 V  
IOUT = 600 mA  
20 µs/div  
17  
MB39C001  
TYPICAL OPERATING CHARACTERISTICS MEASUREMENT CIRCUIT  
VDD  
VDD  
VDD  
VIN  
AVDD  
OUT  
DVDD1, DVDD2  
LX1, LX2  
C2  
C5  
VOUT  
Load current  
L1  
VRSEL  
× 3  
VSET1 to VSET3  
CNT  
C1  
lOUT  
GND  
R1  
AGND  
DGND1, DGND2  
COMPONENT  
ITEM  
Specification  
Vendor  
ssm  
Parts No.  
PFR05Q-105-D-1  
C2012JB1A475K  
C1608JB1H103K  
C2012JB0J106M  
VLF4012AT-3R3M  
R1  
C2  
C5  
C1  
L1  
Resistor  
1 MΩ  
4.7 µF  
0.01 µF  
10 µF  
Ceramic condenser  
Ceramic condenser  
Ceramic condenser  
Inductor  
TDK  
TDK  
TDK  
3.3 µH  
TDK  
ssm : SUSUMU CO., LTD.  
TDK : TDK Corporation  
Note : The above components are recommended parts confirmed by Fujitsu to operate normally.  
18  
MB39C001  
APPLICATION NOTES  
(1) Selection of components  
• Selection of external inductor  
The design of the inductor is basically unnecessary. This IC is designed to operate efficiently with a 3.3 µH  
inductor.  
Select the inductor whose rated saturation current is larger than the LX peak current in the operating conditions,  
and select the inductor whose DC resistance is as low as possible (150 mor less is recommended) .  
The LX peak current value (IPK) is obtained from the following formula :  
VIN VOUT  
D
1
2
(VIN VOUT) VOUT  
2 L fsw VIN  
IPK = IOUT +  
= IOUT +  
L
fsw  
L
: External inductor value  
IOUT : Load current  
VIN : Power supply voltage  
VOUT : Output setting voltage  
D
: Switching on-duty cycle ( = VOUT / VIN)  
fosc : Switching frequency (fixed at 1 MHz)  
Example : Peak current maximum value (IPK) : At VIN = 3.7 V, VOUT = 1.8 V, IOUT = 0.6 A, L = 3.3 µH.  
(VIN VOUT) VOUT  
(3.7 V 1.8 V) 1.8 V  
IPK = IOUT +  
= 0.6 A +  
=: 0.74 A  
2 L fsw VIN  
2 3.3 µH 1 MHz 3.7 V  
• Selection of I/O condenser  
• Select the DVDD input condenser whose equivalent series resistance (ESR) is low in particular, to suppress  
the loss by ripple currents.  
• Better line regulation and load regulation characteristics can be obtained by adding an input condenser im-  
mediately close to AVDD. Although the appropriate capacitance may be different depending on the layout  
design, the reference range for selection is from , 1000 pF to 0.01 µF.  
• The output condenser should also have low equivalent series resistance (ESR). The ripple current of the  
fluctuation portion of the inductor current, it flows into the output condenser. The ripple voltage is the product  
of this fluctuation portion and ESR, it is generated at the output. The output capacitance significantly affects  
the stability of operation as a DC/DC converter. In principle, an output condenser of about 10 µF is recom-  
mended. If there is a problem with the ripple voltage, you can work around the problem by selecting one with  
large capacitance.  
• Condenser types  
Selecting ceramic condenser for both of input and output is effective for reduction in ESR and size. Since  
power supply circuits are heat generators, you should avoid using ceramic condenser which have an F tem-  
peraturecharacteristic(-80% to+20%). YoushouldusethosewithaBcharacteristic(± 10% to± 20%)orthelike.  
Avoid using normal electrolytic condenser as their ESR is high.  
Tantalum condenser are effective for reduction in ESR but are very dangerous as they have a disadvantage,  
they establish a short mode if a failure occurs. When using a Tantalum condenser, choose one with a fuse.  
19  
MB39C001  
(2) Setting output voltages  
When output voltages are set in advance, only treat the control terminals as shown in the table below. Any  
additional component such as a voltage dividing resistor is not required.  
As VSET1 to VSET3, VSEL, and VRSEL terminals have built-in pull-down equal circuits, their level is equal to  
“L” when opened.  
Note : For a circuit configuration example, refer (1) “Setting 1.8-V output using the internal reference voltage”  
in APPLICATION EXAMPLES.  
Output voltage setting table 1  
VSET1  
VSET2  
VSET3  
VSEL  
VRSEL  
VOUT  
1.1 V  
0.8 V  
1.2 V  
1.3 V  
1.1 V  
1.5 V  
1.1 V  
1.8 V  
2.5 V  
2.8 V  
3.3 V  
L
L
L
L
L
X
L
H
H
L
L
H
X
L
L
H
H
H
L
L
H
L
H
L
H
L
L
L
H
H
H
H
H
L
L
H
X
X
X
H
L
L
H
H
H
X : Don’t care  
To set arbitrary voltages other than above, set VRSEL to “H” and apply voltage to VREFIN. The voltage applied  
to VREFIN is supplied either from external or by dividing VREF using a resistor. The output voltage using  
VREFIN with VREF resistor-divided is obtained from the following formula :  
R8  
1.25  
0.6  
VOUT = (Output voltage setting value) Kv  
Kv =  
R7 + R8  
R8  
R7 + R8  
(VREFIN voltage :  
× 1.25 Refer (4) “VREFIN terminal in NOTES ON CIRCUIT DESIGN”.  
Note : For a circuit configuration example, refer (2) “Supplying the VREF terminal voltage to the reference voltage  
external input (VREFIN) after resistor voltage division and setting the VOUT voltage to 1.25 V with VOUT setting  
gain doubled” in APPLICATION EXAMPLES.  
The output voltage is determined by the resistor ratio. Select the resistance value so that the current flowing  
through the resistor does not exceed the rated VREF current (1 mA) .  
20  
MB39C001  
Output voltage setting table 2  
VSET1  
VSET2  
VSET3  
VSEL  
VRSEL  
VOUT (Outputvoltagesettingvalue×Kv)  
1.1 V × Kv  
L
L
L
L
L
X
L
H
0.8 V × Kv  
H
L
L
H
X
L
1.2 V × Kv  
L
H
H
H
L
L
1.3 V × Kv  
H
L
1.1 V × Kv  
H
L
H
L
H
1.5 V × Kv  
L
H
H
H
H
H
1.1 V × Kv  
L
L
H
X
X
X
1.8 V × Kv  
H
L
2.5 V × Kv  
L
H
H
2.8 V × Kv  
H
3.3 V × Kv  
X : Don’t care  
(3) About conversion efficiency  
The conversion efficiency can be improved by reducing the loss of the DC/DC converter circuit.  
The total loss (PLOSS) of the DC/DC converter is roughly divided as follows :  
PLOSS = PCONT + PSW + PC  
PCONT : Control system circuit loss (The power used for this IC to operate, including the the gate driving power  
for internal SW FETs)  
PSW : Switching loss (The loss caused during switching of the IC's internal SW FETs)  
PC  
: Continuity loss (The loss caused when currents flow through the IC's internal SW FETs and external  
circuits )  
The IC's control circuit loss (PCONT) is extremely small, which is about 1 mW (IIN = 300 µA) * , at VIN = 3.7 V.  
As the IC contains FETs which can switch faster with smaller power, the continuity loss (PC) is more predominant  
as the loss during heavy-load operation than the control circuit loss (PCONT) and switching loss (PSW) .  
Further the continuity loss (PC) is divided roughly, into the loss by internal SW FET ON-resistance and by external  
inductor series resistance.  
2
PC = IOUT (RDC + D RONp + (1 D) RONn)  
D
: Switching on-duty cycle ( = VOUT / VIN)  
RONp : Internal Pch SW FET ON resistance  
RONn : Internal Nch SW FET ON resistance  
RDC : External inductor series resistance  
IOUT = Load current  
21  
MB39C001  
The above formula indicates that it is important to reduce RDC as much as possible to improve efficiency by  
selecting components.  
* : The loss is caused during continuous operation. When the load is light, the IC performs burst operation, thereby  
further suppressing the loss (IIN = about 30 µA with no load). The mode is changed depending on the peak  
current value Ipk flowing into SW FETs, at a threshold value of about 150 mA.  
(4) Power dissipation and temperature examination  
The IC is so efficient that no examination is required in most cases. But if the IC is used at a low power supply  
voltage, heavy load, high output voltage, or high temperature, it requires further examination for higher efficiency.  
The internal loss (P) is roughly obtained from the following formula :  
2
P = IOUT (D RONp + (1 D) RONn)  
D
: Switching on-duty cycle ( = VOUT / VIN)  
RONp : Internal Pch SW FET ON resistance  
RONn : Internal Nch SW FET ON resistance  
IOUT = Load current  
The loss expressed by the above formula is mainly continuity loss. The internal loss includes the switching loss  
and the control circuit loss as well but they are so small compared to the continuity loss they can be ignored.  
In this IC with RONp greater than RONn, the larger the on-duty cycle, the greater the loss.  
When assuming VIN = 3.7 V, Ta = 70 °C, VOUT = 1.8 V, and IOUT = 0.6 A, for example, RONp = 0.48 and  
RONn = 0.39 according to the graph “SW FET ON resistance vs. Ambient temperature”. The IC's internal  
loss P is 156 mW. According to the graph “Power dissipation vs. ambient temperature”, the power dissipation  
at an ambient temperature Ta of 70 °C is 300 mW and the internal loss is smaller than the power dissipation.  
(5) Transient response  
The IC contains an optimized version of ErrAmp, providing favorable transient response characteristics.  
The response characteristics such as response time, overshoot, and undershoot, are checked usually by chang-  
ing suddenly IOUT, with VIN and VOUT left constant.  
(6) Example of designing board layout  
For stable operation, the IC requires the optimized design of board layout.  
Pay attention to the following points during layout design.  
• Connect the GND terminals (AGND, DGND1, DGND2) and power terminals (AVDD, DVDD1, DVDD2) imme-  
diately near the IC.  
• Place the DVDD input condenser (C2) near DVDD and DGND. If the power supply or ground plains exists on  
any other board layer, place TH (through hole) close to the condenser terminal.  
• Place the AVDD input condenser (C5) near AVDD and AGND. If the power supply or ground plains exists on  
any other board layer, place TH (through hole) close to the condenser terminal.  
22  
MB39C001  
• Place the GND side terminal of the output condenser (C1) as near DGND of the IC and the GND side terminal  
of the input condenser (C2). If the ground plains exists on any other board layer, place TH close to the GND  
side terminal of the condenser. For wiring to OUT, start close to the VOUT side terminal of the output condenser  
(CI). Note that the OUT terminal is highly sensitive and should be wired as apart from the wiring of the LX  
terminal of the IC.  
• Large currents flow among the input condenser (C2, C5), output condenser (C1), external inductor (L1), and  
this IC. Place these components near the IC, to minimize the loop area made up of these components. Also,  
mount these components on the same layer and wire them without using any TH. Wire these nets using as  
bold, short, and straight patterns (plains layout is advisable).  
• For the IC mounted layer, provide a ground plane.  
Recommended layout drawing (with only important wiring)  
TH  
VIN  
C2  
C5  
MB39C001  
GND  
C1  
L1  
VOUT  
23  
MB39C001  
NOTES ON CIRCUIT DESIGN  
(1) GND Potential  
Connect AGND and DGND to GND of the power supply circuit, so that they have equal potential.  
(2) Control input terminals  
• The voltages applied to the CNT, VSET1 to VSET3, VSEL, and VRSEL terminals must not exceed the absolute  
maximum rating (VDD + 0.3 V). Applying a voltage exceeding the absolute maximum rating may cause  
permanent damage to the LSI. If it is inevitable, insert a resistor of about 20 kbetween a terminal of the  
controller (such as a CPU) and the control terminal of the IC. This prevents a latch-up to some extent.  
Note : Finally, judge right or wrong of the adoption after confirming it is unquestionable under your system require-  
ments as permanent measure.  
• The CNT terminal has no internal pull-down resistor function (while the VSET1 to VSET3, VSEL, and VRSEL  
have one). If the terminal of the controller (such as the CPU) connected to the CNT terminal can enter a high  
impedance state an unpredictable malfunction may occur. To prevent this, a pull-down resistor (of about  
1 M) should be connected to the CNT terminal.  
• If the fall time of the CNT terminal is long, the output (VOUT) may cause an overshoot when the load is light.  
Be careful not to let the rise time and fall time exceed 500 µs.  
(3) Power supply input  
• If the rise time or fall time of the supply voltage (VIN) is long, a malfunction may occurs. Be careful not to let  
the rise time and fall time exceed 100 ms.  
• If the power supply voltage fluctuates around the UVLO detection voltage (between 2.15 and 2.3 V) when the  
power supply is turned on or shut off. The output is stopped by under-voltage and restarted by restored voltage  
repeatedly and there is a possibility that chattering is generated in VOUT. Although the UVLO detection voltage  
has a hysteresis of 0.15 V, fluctuation over 0.15 V cannot be suppressed. Be careful to prevent the supply  
voltage from going up and down near UVLO.  
• If the CNT terminal becomes "L" from "H" when the supply voltage (VIN) becomes lower than the output voltage  
(VOUT), the IC may cause a latch-up by the action of an external inductor. Although this is an operating condition  
unintended for normal use, it can occur frequently when the power supply voltage is shut off with light loads.  
Even if a latch-up occurs by normal shutdown, the latch-up is cleared when the power supply voltage goes  
below 0.8 V. Therefore, there are few things which become problem, when the power supply is turned back  
on again. If the power supply is turned back on with the power supply voltage exceeding 0.8 V, the IC may  
be broken by an excessive current due to a latch-up. This problem can be worked around by either of the  
following two methods :  
When the CNT terminal becomes "L" from "H" as the power supply voltage goes down, be sure to lower  
the power supply voltage to 0.8 V or less before turning the power supply back on again.  
Add a Schottky barrier diode as shown in the latch-up preventive circuit example.  
Note, however, that this work around adversely affects the regulation or conversion efficiency when the  
application uses an extremely small load current. When selecting the Schottky barrier diode, pay attention  
to the following points :  
Reverse current [IR]  
Select a diode whose reverse current is smaller than the load current. (If a diode whose reverse current  
is greater than the load current is adopted, the output voltage (VOUT) is raised by the reverse current,  
and the regulation deteriorates.  
24  
MB39C001  
Forward voltage [VF]  
The forward voltage must be smaller than the voltage triggering latch-up. Select a diode whose forward  
voltage is about 0.5 V or less.  
Non repetitive peak surge current [IFSM]  
Select a diode whose non repetitive peak surge current is greater than the peak reverse current. The  
peak current is different depending on the operating conditions; the reference value is 1 A to 3 A.  
Latch-up preventive circuit example  
Schottky barrier diode  
for latch-up prevention  
VIN  
10  
14  
15  
AVDD DVDD1 DVDD2  
1
2
LX1  
LX2  
VOUT  
4
OUT  
AGND DGND1 DGND2  
17 18  
8
(4) VREFIN terminal  
When the VREFIN terminal is used, the switching frequency is lowered if the VREFIN voltage is 0.5 V or less.  
When the load current (IOUT) is 100 mA or less, the VREFIN voltage should fall within the range of 0.5 to 0.7 V.  
The VREFIN voltage can be between 0.3 and 0.7 V if the switching frequency lowered is acceptable when the  
load current (IOUT) is 100 mA or less.  
(5) POWER GOOD terminal  
The POWER GOOD terminal always monitors the OUT terminal voltage, with no exception, even when the  
output voltage is changed by switching the terminals such as VSET1 to VSET3 and VSEL. When the output  
voltage rises slowly with heavy loads, the POWER GOOD terminal become "H" until the output voltage becomes  
90% of the setting voltage.  
Be careful when using the POWER GOOD terminal to reset a load circuit which uses a CPU. Be careful that  
the POWER GOOD terminal temporarily becomes “H” level when dynamically changing the voltage, thereby  
resetting the circuit accidentally at an unintended timing.  
(6) Output overcurrent protection  
This IC uses current mode control which provides a certain level of overcurrent protection. If LX is connected  
to VDD or GND, or VOUT is connected to GND with an extremely low resistor of 0.1 or less, the IC may not be  
protected from overcurrents and it is break down.  
The IC is apt to break down, when the inductance element of the short-circuit route is large or when the output  
voltage is high. To prevent the IC from breaking due to a short-circuit, it is advisable to insert a resistor of about  
1 kbetween the OUT terminal and VOUT.  
25  
MB39C001  
APPLICATION EXAMPLES  
(1) Output setting of 1.8 V by reference voltage use of internal  
C5  
0.01 µF  
C2  
4.7 µF  
VIN  
10  
14  
DVDD1  
15  
DVDD2  
AVDD  
VOUT  
LX1  
13  
12  
11  
16  
1
2
VSET1  
VSET2  
VSET3  
VSEL  
L1  
3.3 µH  
C1  
10 µF  
LX2  
OUT  
4
6
R2  
R6  
1 MΩ  
20 kΩ  
CPU  
9
CNT  
APLI  
POWER GOOD  
R1  
1 MΩ  
3
5
7
VRSEL  
VREF  
VREFIN  
AGND DGND1 DGND2  
17 18  
8
(2) Supplying the VREF terminal voltage to the reference voltage external input (VREFIN) after resistor  
voltage division, the VOUT voltage is set to 1.25 V by the OUT setting gain twice  
C5  
0.01 µF  
C2  
4.7 µF  
VIN  
10  
14  
DVDD1  
15  
DVDD2  
AVDD  
VOUT  
LX1  
13  
12  
11  
16  
1
2
VSET1  
VSET2  
VSET3  
VSEL  
L1  
3.3 µH  
C1  
10 µF  
LX2  
OUT  
4
6
R2  
20 kΩ  
CPU  
9
CNT  
APLI  
POWER GOOD  
R1  
1 MΩ  
3
5
7
VRSEL  
VREF  
R7  
100 kΩ  
VREFIN  
R8  
VREFIN  
0.6  
100 kΩ  
AGND DGND1 DGND2  
17 18  
VOUT = (Output voltage setting value ) ×  
8
1.2  
0.6  
R8  
=
VREFIN = 2 ×  
VREF  
R7 + R8  
100 k  
= 2 ×  
× 1.25 = 1.25 V  
100 k + 100 k  
26  
MB39C001  
(3) Supplying an external voltage to the reference voltage external input (VREFIN), the VOUT voltage is set  
by the VOUT setting gain triple  
C5  
0.01 µF  
C2  
4.7 µF  
VIN  
10  
14  
DVDD1 DVDD2  
LX1  
15  
AVDD  
VOUT  
13  
12  
11  
16  
1
2
VSET1  
VSET2  
VSET3  
VSEL  
L1  
3.3 µH  
C1  
10 µF  
LX2  
OUT  
4
6
R2  
20 kΩ  
CPU  
DAC  
9
CNT  
APLI  
POWER GOOD  
R1  
1 MΩ  
3
5
7
VRSEL  
VREF  
VREFIN  
AGND DGND1 DGND2  
17 18  
VREFIN  
0.6  
8
VOUT = (Output voltage setting value ) ×  
1.8  
=
VREFIN = 3 × VREFIN  
0.6  
The components for the above example are listed below.  
Manufacturer  
TDK  
Component  
Part name  
Inductor  
Specification  
Model name  
VLF4012AT-3R3M  
C2012JB0J106M  
C2012JB1A475K  
C1608JB1H103K  
PFR05Q-105-D-1  
RR0816P-203-D  
PFR05Q-105-D-1  
RR0816P-104-D  
RR0816P-104-D  
L1  
C1  
C2  
C5  
R1  
R2  
R6  
R7  
R8  
3.3 µH  
10 µF  
4.7 µF  
20% RDC = 120 mΩ  
20% 6.3 V  
Ceramic condenser  
Ceramic condenser  
Ceramic condenser  
Resistor  
TDK  
10% 10 V  
TDK  
0.0 1 µF 10% 50 V  
TDK  
1 MΩ  
20 kΩ  
1 MΩ  
0.5%  
0.5%  
0.5%  
0.5%  
0.5%  
ssm  
Resistor  
ssm  
Resistor  
ssm  
Resistor  
100 kΩ  
100 kΩ  
ssm  
Resistor  
ssm  
TDK  
ssm  
: TDK Corporation  
: SUSUMU CO., LTD.  
27  
MB39C001  
NOTES ON USE  
1. Do not exceed maximum ratings.  
Using the LSI beyond maximum ratings may generate a parasitic transistor, resulting in permanent damage to  
the LSI due to a latch-up. The LSI should be used under the recommended operating conditions and exceeding  
any of the recommended conditions may adversely affect LSI reliability.  
2. Use under recommended operating conditions.  
The recommended operating conditions are reommended values that guarantee the normal operation of the LSI.  
The values of electrical characteristics are guaranteed when the LSI is used under the recommended operating  
conditions with each parameter falling in the specified range.  
3. Take measures against static electricity.  
• Containers for semiconductors must be antistatic or conductive.  
• When storing or carrying a printed circuit board with components mounted, put it in a conductive bag or  
container.  
• The work table, tools, and measuring instruments must be properly grounded.  
• The worker must put on a grounding device containing 250 kto 1 Mresistors in series.  
4. Do not apply a negative voltage.  
Applying a negative voltage of 0.3 V or less to an LSI may generate a parasitic transistor, resulting malfunction.  
ORDERING INFORMATION  
Model  
MB39C001PVB  
Package  
Remarks  
18-pin plastic BCC  
(LCC-18P-M05)  
28  
MB39C001  
PACKAGE DIMENSIONS  
18-pin plastic BCC  
(LCC-18P-M05)  
2.31(.090)  
TYP  
2.70±0.10  
(.106±.004)  
0.45±0.05  
(.018±.002)  
0.45(.018)  
TYP.  
10  
15  
15  
10  
(Mount height)  
2.01(.079)  
TYP  
INDEX AREA  
2.40±0.10  
(.094±.004)  
0.90(.035)  
REF  
1.90(.075)  
REF  
"A"  
0.45(.018)  
TYP.  
"C"  
"B"  
0.075±0.025  
(.003±.001)  
(Stand off)  
1
6
1.35(.053)  
REF  
6
1
2.28(.090)  
REF  
Details of "A" part  
Details of "B" part  
C0.10(.004)  
Details of "C" part  
0.36±0.06  
0.05(.002)  
0.36±0.06  
(.014±.002)  
0.25±0.06  
(.010±.002)  
0.14(.006)  
MIN.  
(.014±.002)  
0.25±0.06  
0.28±0.06  
0.28±0.06  
(.010±.002)  
(.011±.002)  
(.011±.002)  
C
2003 FUJITSU LIMITED C18058S-c-1-1  
Unit : mm (inches)  
Note : Parenthesized values are reference values.  
29  
MB39C001  
EVALUATION BOARD SPECIFICATIONS  
The MB39C001 evaluation board is a surface-mounting board of a single-channel down-conversion circuit. The  
output voltage can be set by switch of each SW (*1), and supplies the current of up to 600 mA at a power supply  
voltage from 2.5 V to 5.5 V (*2).  
*1 : For setting the output voltage, refer (2) "Setting output voltages" in APPLICATION NOTES.  
*2 : The current can be supplied when “VIN - VOUT 0.7 V”. It can be supplied even “VIN - VOUT < 0.7 V” when under  
operating conditions in which the output current is suppressed.  
Terminal Description  
Symbol  
Function  
Power supply terminal.  
VIN = 2.5 V to 5.5 V (3.7 V Typ)  
VIN  
OUT  
DC/DC converter output terminal.  
Power supply terminal for mode setting SW.  
Connect with VIN and use it.  
VCTL  
Power control terminal.  
CNT  
VCNT = 0 V to 0.3 V : Shutdown  
VCNT = 1.5 V to VIN : Normal operation  
POWER_GOOD  
VREF  
Fixed at “L” ( = 0 V) , when the OUT voltage reaches the output setting voltage.  
Reference voltage output terminal.  
External reference voltage input terminal.  
When an external reference voltage is used, this terminal supplies it.  
VREFIN  
GND  
DC/DC converter ground terminal.  
MB39C001 ground terminal.  
AGND  
• Switch Description  
SW  
1
Name  
FUNCTION  
Remarks  
VSEL  
VSET1  
VSET2  
VSET3  
VRSEL  
Output voltage setting  
Output voltage setting  
Output voltage setting  
Output voltage setting  
Reference voltage setting  
2
For details on each setting, refer (2) "Setting output  
voltages" in APPLICATION NOTES.  
3
4
5
• Setup and checkup  
(1) Setup  
Connect the power supply terminal of the power supply to VIN, VCTL, and CNT and its ground terminal to GND.  
Connect the OUT side to the required loading device or measuring instrument.  
Set SW1 (VSEL) and SW4 (VSET3) to ON; SW2 (VSET1), SW3 (VSET2), and SW5 (VRSEL) to OFF. (Set the  
output to 1.8 V using the internal reference voltage.)  
(2) Checkup  
Supply power to VIN. The IC is working normally when the OUT voltage is 1.8 V (Typ) .  
30  
MB39C001  
• On-board Component Layout  
Top side (Top View)  
1
2
3
4
5
6
AGND  
SW1  
VCTL  
CNT  
VIN  
GND  
OUT  
VREFIN  
C5  
M1  
C2  
R8  
R7  
POWER_GOOD  
VREF  
R6  
C1  
C3  
L1  
Bottom side (Top View)  
31  
MB39C001  
Board Layout  
Top Side (Layer1)  
In Side VIN & GND (Layer2)  
Inside GND (Layer3)  
Bottom Side (Layer4)  
32  
MB39C001  
• Connection Diagram  
IIN  
VIN  
C5  
0.01 µF  
C2  
4.7 µF  
C4  
IOUT  
10  
14  
15  
SW2  
13  
VCTL  
CNT  
1
2
OUT  
L1  
3.3 µH  
SW3  
SW4  
SW1  
12  
11  
16  
C1  
10 µF  
4
6
R6  
1 MΩ  
9
3
POWER GOOD  
SW5  
MB39C001  
R7  
100 kΩ  
VREF  
5
7
AGND  
GND  
VREFIN  
R8  
100 kΩ  
8
17  
18  
C3  
0.1 µF  
• Parts List  
Manufacturer Remarks  
Symbol  
Part name  
Inductor  
Model name  
Specification  
Package  
3.3 µH,  
RDC = 120 mΩ  
L1  
VLF4012AT-3R3M  
SMD  
TDK  
C1  
C2  
C3  
C4  
C5  
R6  
R7  
R8  
SW  
Ceramic capacitor  
Ceramic capacitor  
Ceramic capacitor  
C2012JB0J106M 10 µF (6.3 V)  
C2012JB1A475K 4.7 µF (10 V)  
C1608JB1H104K 0.1 µF (50 V)  
2012  
2012  
1608  
TDK  
TDK  
TDK  
Not mounted  
TDK  
Ceramic capacitor  
Resistor  
C1608JB1H103K 0.01 µF (50 V)  
PFR05Q-105-D-1 1 MΩ ± 0.5%  
1608  
1005  
1608  
1608  
ssm  
Resistor  
RR0816P-104-D  
RR0816P-104-D  
DMS-6H  
100 kΩ ± 0.5%  
100 kΩ ± 0.5%  
6 poles  
ssm  
Resistor  
ssm  
Switch  
MATSUKYU  
MacEight  
Terminal pins  
WT-2-1  
WT-2-1  
TDK  
ssm  
: TDK Corporation  
: SUSUMU CO., LTD.  
MATSUKYU : Matsukyu Co., Ltd.  
MacEight : MacEight Co., Ltd.  
• Ordering Information  
EV board part No.  
MB39C001EVB-01  
EV board version No.  
MB39C001EV Board Rev.2.0  
Remarks  
33  
MB39C001  
FUJITSU LIMITED  
All Rights Reserved.  
The contents of this document are subject to change without notice.  
Customers are advised to consult with FUJITSU sales  
representatives before ordering.  
The information, such as descriptions of function and application  
circuit examples, in this document are presented solely for the  
purpose of reference to show examples of operations and uses of  
Fujitsu semiconductor device; Fujitsu does not warrant proper  
operation of the device with respect to use based on such  
information. When you develop equipment incorporating the  
device based on such information, you must assume any  
responsibility arising out of such use of the information. Fujitsu  
assumes no liability for any damages whatsoever arising out of  
the use of the information.  
Any information in this document, including descriptions of  
function and schematic diagrams, shall not be construed as license  
of the use or exercise of any intellectual property right, such as  
patent right or copyright, or any other right of Fujitsu or any third  
party or does Fujitsu warrant non-infringement of any third-party’s  
intellectual property right or other right by using such information.  
Fujitsu assumes no liability for any infringement of the intellectual  
property rights or other rights of third parties which would result  
from the use of information contained herein.  
The products described in this document are designed, developed  
and manufactured as contemplated for general use, including  
without limitation, ordinary industrial use, general office use,  
personal use, and household use, but are not designed, developed  
and manufactured as contemplated (1) for use accompanying fatal  
risks or dangers that, unless extremely high safety is secured, could  
have a serious effect to the public, and could lead directly to death,  
personal injury, severe physical damage or other loss (i.e., nuclear  
reaction control in nuclear facility, aircraft flight control, air traffic  
control, mass transport control, medical life support system, missile  
launch control in weapon system), or (2) for use requiring  
extremely high reliability (i.e., submersible repeater and artificial  
satellite).  
Please note that Fujitsu will not be liable against you and/or any  
third party for any claims or damages arising in connection with  
above-mentioned uses of the products.  
Any semiconductor devices have an inherent chance of failure. You  
must protect against injury, damage or loss from such failures by  
incorporating safety design measures into your facility and  
equipment such as redundancy, fire protection, and prevention of  
over-current levels and other abnormal operating conditions.  
If any products described in this document represent goods or  
technologies subject to certain restrictions on export under the  
Foreign Exchange and Foreign Trade Law of Japan, the prior  
authorization by Japanese government will be required for export  
of those products from Japan.  
F0405  
FUJITSU LIMITED Printed in Japan  

相关型号:

MB39C006A

1 ch DC/DC Converter IC Built-in Switching FET & POWERGOOD function, PFM/PWM Synchronous Rectification, and Down Conversion Support
FUJITSU

MB39C006AEVB-06

1 ch DC/DC Converter IC Built-in Switching FET & POWERGOOD function, PFM/PWM Synchronous Rectification, and Down Conversion Support
FUJITSU

MB39C006APN

1 ch DC/DC Converter IC Built-in Switching FET & POWERGOOD function, PFM/PWM Synchronous Rectification, and Down Conversion Support
FUJITSU

MB39C006APN-XXXE1

Switching Regulator, Current-mode, 1.8A, 3840kHz Switching Freq-Max, PDSO10, 3 X 3 MM, 0.75 MM HEIGHT, 0.50 MM PITCH, ROHS COMPLIANT, PLASTIC, SON-10
FUJITSU

MB39C006APNE1

Switching Regulator, Voltage-mode, 1.8A, 3840kHz Switching Freq-Max, PDSO10, ROHS COMPLIANT, PLASTIC, SON-10
FUJITSU

MB39C006APNE1

Switching Regulator,
CYPRESS

MB39C007

2 ch DC/DC Converter IC Built-in Switching FET & voltage detection function, PFM/PWM Synchronous Rectification, and Down Conversion Support
FUJITSU

MB39C007EVB-06

2 ch DC/DC Converter IC Built-in Switching FET & voltage detection function, PFM/PWM Synchronous Rectification, and Down Conversion Support
FUJITSU

MB39C007QN

2 ch DC/DC Converter IC Built-in Switching FET & voltage detection function, PFM/PWM Synchronous Rectification, and Down Conversion Support
FUJITSU

MB39C011A

2ch DC/DC Converter IC with Synchronous Rectification Datasheet
CYPRESS

MB39C011AEVB-01

2ch DC/DC Converter IC with Synchronous Rectification Datasheet
CYPRESS

MB39C011APFT

2 ch DC/DC Converter IC with Synchronous Rectification
CYPRESS