IC-MQF [ICHAUS]

PROGRAMMABLE 12-BIT Sin/Cos INTERPOLATION IC WITH RS422 DRIVER; 可编程的12位正弦/余弦插值用IC RS422驱动器
IC-MQF
型号: IC-MQF
厂家: IC-HAUS GMBH    IC-HAUS GMBH
描述:

PROGRAMMABLE 12-BIT Sin/Cos INTERPOLATION IC WITH RS422 DRIVER
可编程的12位正弦/余弦插值用IC RS422驱动器

驱动器
文件: 总37页 (文件大小:754K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 1/37  
FEATURES  
APPLICATIONS  
Optical and magnetic position  
sensors  
Linear scales  
Latency-free sine-to-digital conversion to 4000 angle steps  
Input frequency: 200 kHz (x10), 20 kHz (x100), 2 kHz (x1000)  
Flexible pin assignment due to signal path multiplexers  
PGA inputs for differential and single-ended signals  
Variable input resistance for current/voltage conversion  
Signal conditioning for offset, amplitude and phase  
Controlled 50 mA current source for LED or MR sensor supply  
Fault-tolerant RS422 outputs with 50 mA sink/source drive  
current  
High-resolution angle sensing  
Preselectable minimum phase distance for spike-proof counter  
stimulus  
Zero signal conditioning and electronic index pulse generation  
Signal and operation monitoring with configurable alarm  
output, output shutdown and error storage  
I2C multimaster interface for in-circuit calibration and  
parameters (EEPROM)  
PACKAGES  
Adjustable overtemperature alarm and shutdown  
Supply from 4.3 to 5.5 V, operation from -25(-40) to +100 °C  
Reverse-polarity-proof including the sub-system  
TSSOP20  
BLOCK DIAGRAM  
VDDS  
VDD  
REVERSE POLARITY  
PROTECTION  
iC-MQF  
GNDS  
GND  
SCL  
MONITORING  
ERR  
C
SERIAL I2C  
INTERFACE  
CONFIGURATION  
REGISTER  
SINE-TO-DIGTIAL  
CONVERSION  
Tw  
LineCount  
Monitor  
Sin/Cos  
Monitor  
PWRon  
Toff  
SDA  
PHI  
PGA INPUT  
I/V  
SIGNAL PATH MUX  
CALIBRATION  
DIGITAL DRIVER  
OUTPUT  
X1  
PZ  
NZ  
PB  
NB  
PA  
NA  
x
ZIN  
CH0  
-
-
-
X2  
I/V  
I/V  
I/V  
I/V  
I/U  
x
SIGNAL LEVEL  
CONTROLLER  
X3  
x
x
CH2  
+
X4  
x
+
-
x
X5  
x
ADJ  
CH1  
x
X6  
x
ACO  
Copyright © 2009, 2013 iC-Haus  
http://www.ichaus.com  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 2/37  
DESCRIPTION  
Interpolator iC-MQF is a non-linear A/D converter tical encoders via the integrated 50 mA driver stage  
which digitizes sine/cosine sensor signals using a (output ACO). If MR sensors are connected this  
count-safe tracking conversion principle with se- driver stage can also track the power supply of the  
lectable resolution and hysteresis. The angle reso- measuring bridges. By tracking the sensor energy  
lution per sine period can be set using SELRES; up supply any temperature and aging effects are com-  
to 4000 angle steps are possible (see page 27).  
pensated for, the input signals stabilized and the ex-  
act calibration of the input signals is maintained. This  
The angle position is output incrementally by differ- enables a constant accuracy of the interpolation cir-  
ential RS422 drivers as an encoder quadrature signal cuit across the entire operating temperature range.  
with a zero pulse or, if selected, as a counter signal  
for devices compatible with 74HC191 or 74HC193.  
If control limits are reached, these can be indicated  
at the maskable error pin ERR. Faults such as over-  
The zero pulse is generated electronically when an drive, wire breakage, short circuiting, dirt or aging,  
enable has been set by the X1/X2 inputs. This pulse for example, can be logged.  
can be configured extensively: both in its relative po-  
sition to the input signal with regard to the logic gating iC-MQF includes extensive self-test and system di-  
with A and/or B and in its width from 90° to 360° (1/4 agnosis functions which check whether the sensor  
to 1 T).  
is working properly or not. For all error events the  
user can select whether the fault is indicated at the  
A preselectable minimum transition distance ensures pin ERR or whether the outputs should shutdown. At  
glitch-free output signals and prevents counting er- the same time errors can be stored in the EEPROM  
rors which in turn boosts the noise immunity of the to enable failures to be diagnosed at a later stage.  
position encoder.  
For encoder applications the line count of the code  
disc, the sensor signal regarding signal level and fre-  
Programmable instrumentation amplifiers with se- quency and the operating temperature can be moni-  
lectable gain levels allow differential or single-ended, tored, for example, the latter using an adjustable on-  
referenced input signals; a external reference can be chip sensor.  
used via input X2 as reference voltage for the offset  
correction.  
Display error pin ERR is bidirectional; a system fault  
recognized externally can be recorded and also reg-  
The modes of operation differentiate between high istered in the error memory.  
impedance (V modes) and low impedance (I modes).  
This adaptation of the iC to voltage or current signals iC-MQF is protected against reverse polarity and of-  
enables MR sensor bridges or photosensors to be di- fers its monitored supply voltage to the external cir-  
rectly connected up to the device. The optical scan- cuit, thus extending the protection to the system (for  
ning of low resolution code discs is also supported by load currents up to 20 mA). Reverse polarity protec-  
the reference function of input X2; these discs do not tion also covers the short-circuit-proof line drivers so  
evaluate tracks differentially but in comparison with a that an unintentional faulty wiring during initial opera-  
reference photodiode.  
tion is tolerated.  
The integrated signal conditioning unit allows signal On being activated the device configuration is loaded  
amplitudes and offset voltages to be calibrated ac- via the serial configuration interface from an external  
curately and any phase error between the sine and EEPROM and verified with a CRC. A microcontroller  
cosine signals to be corrected. The channel for the can also configure iC-MQF; the implemented inter-  
zero signal can be configured separately.  
face is multimaster-competent and allows direct RAM  
access.  
A control signal is generated from the conditioned  
signals which can track the transmitting LED of op-  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 3/37  
CONTENTS  
PACKAGING INFORMATION  
4
Offset Calibration CH0 . . . . . . . . . . . . . 25  
PIN CONFIGURATION TSSOP20 . . . . . .  
4
SIGNAL LEVEL CONTROL and SIGNAL  
MONITORING  
26  
27  
28  
ABSOLUTE MAXIMUM RATINGS  
THERMAL DATA  
5
5
SINE-TO-DIGITAL CONVERSION  
OUTPUT SETTINGS AND ZERO SIGNAL  
ELECTRICAL CHARACTERISTICS  
PROGRAMMING  
6
Zero Signal Generation . . . . . . . . . . . . 28  
Output Driver Configuration . . . . . . . . . . 29  
Minimum Transition Distance . . . . . . . . . 29  
Signal Filter . . . . . . . . . . . . . . . . . . . 29  
12  
13  
15  
REGISTER MAP  
SERIAL CONFIGURATION INTERFACE  
ERROR MONITORING AND ALARM OUTPUT  
30  
Example of CRC Calculation Routine . . . . . 15  
EEPROM Selection . . . . . . . . . . . . . . 15  
I2C Slave Mode (ENSL = 1) . . . . . . . . . . 16  
Alarm Output: I/O-pin ERR . . . . . . . . . . 30  
Line Count Error . . . . . . . . . . . . . . . . 30  
Excessive Temperature Warning . . . . . . . 30  
Excessive Temperature Shutdown . . . . . . 31  
Driver Shutdown . . . . . . . . . . . . . . . . 31  
Error Protocol . . . . . . . . . . . . . . . . . . 31  
BIAS CURRENT SOURCE AND  
TEMPERATURE SENSOR CALIBRATION  
17  
Bias Current . . . . . . . . . . . . . . . . . . 17  
Temperature Sensor . . . . . . . . . . . . . . 17  
REVERSE POLARITY PROTECTION  
32  
33  
OPERATING MODES  
18  
TEST MODE  
Mode ABZ . . . . . . . . . . . . . . . . . . . 18  
Mode 191/193 . . . . . . . . . . . . . . . . . 18  
Calibration 1, 2, 3, Test 5 . . . . . . . . . . . 19  
TEST 6 . . . . . . . . . . . . . . . . . . . . . 19  
System Test and Digital Calibration . . . . . . 19  
Quick programming in the  
single master system . . . . . . . . . . . 34  
Quick programming in the  
multimaster system . . . . . . . . . . . . 34  
GENERAL APPLICATION HINTS  
35  
INPUT CONFIGURATION AND SIGNAL PATH  
MULTIPLEXER  
20  
APPLICATION NOTES: SIGNAL  
CONDITIONING  
Current Signals . . . . . . . . . . . . . . . . . 20  
Voltage Signals . . . . . . . . . . . . . . . . . 20  
Signal Path Multiplexer . . . . . . . . . . . . . 21  
35  
Signal Conditioning Example 1: . . . . . . . . 35  
Photodiode array connected to current  
inputs, LED supply with constant  
SIGNAL CONDITIONING CH1, CH2  
23  
current source . . . . . . . . . . . . . . 35  
Gain Settings . . . . . . . . . . . . . . . . . . 23  
Offset Calibration CH1, CH2 . . . . . . . . . 24  
Phase Correction CH1 vs. CH2 . . . . . . . . 24  
Signal Conditioning Example 2: . . . . . . . . 36  
Encoder supplying 100 mVpp to voltage inputs 36  
APPLICATION NOTES: CIRCUIT EXAMPLES  
36  
36  
SIGNAL CONDITIONING CH0  
25  
Gain Settings CH0 . . . . . . . . . . . . . . . 25 DESIGN REVIEW: Function Notes  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 4/37  
PACKAGING INFORMATION  
PIN CONFIGURATION TSSOP20  
PIN FUNCTIONS  
No. Name Function  
1 X1  
2 X2  
3 X3  
4 X4  
Signal Input 1 (Index +)  
Signal Input 2 (Index -)  
Signal Input 3  
Signal Input 4  
5 VDDS1) Switched Supply Output and Internal  
Analog Supply Voltage  
(reverse polarity proof, load 20 mA  
max.)  
6 GNDS1) Switched Ground  
(reverse polarity proof)  
7 X5  
Signal Input 5  
8 X6  
Signal Input 6  
9 ACO  
Signal Level Controller,  
high-side current source output  
Serial Configuration Interface,  
data line  
Serial Configuration Interface,  
clock line  
10 SDA  
11 SCL  
12 NB  
13 PB  
14 NA  
15 PA  
16 GND  
17 VDD  
18 NZ  
19 PZ  
Incremental Output B-  
Incremental Output B+  
Incremental Output A-  
Incremental Output A+  
Ground  
+4.3...5.5 V Supply Voltage  
Incremental Output Z-  
Incremental Output Z+  
Error Signal (In/Out) / Test Mode Trig-  
ger Input  
20 ERR  
1) It is advisable to connect a bypass capacitor of at least 100 nF close to the chip’s analog supply terminals.  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 5/37  
ABSOLUTE MAXIMUM RATINGS  
Beyond these values damage may occur; device operation is not guaranteed.  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Max.  
G001 V()  
Voltage at VDD, PA, NA, PB, NB, PZ,  
NZ, SCL, SDA, ACO  
-6  
6
V
G002 V()  
G003 V()  
G004 V()  
Voltage at ERR  
-6  
8
6
V
V
V
Pin-Pin Voltage  
Voltage at X1...X6, SCL, SDA  
-0.3  
VDDS +  
0.3  
G005 I(VDD)  
G006 I()  
Current in VDD  
-20  
-50  
400  
50  
mA  
mA  
mA  
mA  
mA  
kV  
Current in VDDS, GNDS  
Current in X1...X6, SCL, SDA, ERR  
Current in PA, NA, PB, NB, PZ, NZ  
Current in ACO  
G007 I()  
-20  
20  
G008 I()  
-100  
-100  
100  
20  
G009 I(ACO)  
G010 Vd()  
G011 Ptot  
G012 Tj  
ESD Susceptibility at all pins  
Permissible Power Dissipation  
Junction Temperature  
HBM 100 pF discharged through 1.5 k  
2
300  
150  
150  
mW  
°C  
-40  
-40  
G013 Ts  
Storage Temperature  
°C  
THERMAL DATA  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
°C  
Min. Typ. Max.  
-25 100  
T01 Ta  
Operating Ambient Temperature Range  
(extended range to -40 °C on request)  
T02 Rthja  
Thermal Resistance Chip to Ambient  
80  
K/W  
All voltages are referenced to pin GNDS unless otherwise stated.  
All currents flowing into the device pins are positive; all currents flowing out of the device pins are negative.  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 6/37  
ELECTRICAL CHARACTERISTICS  
Operating Conditions: VDD = 4.3 ... 5.5 V, Tj = -40 °C ... 125 °C, IBN calibrated to 200 µA, unless otherwise stated  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
Total Device  
001  
V(VDD)  
Permissible Supply Voltage  
Supply Current  
Load current I(VDDS) to 10 mA  
Load current I(VDDS) to 20 mA  
4.3  
4.5  
5.5  
5.5  
V
V
002  
I(VDD)  
Tj = -40...125 °C, no load  
Tj = 27 °C, no load  
25  
mA  
mA  
18  
003 I(VDDS)  
004 Vcz()hi  
005 Vc()hi  
Permissible Load Current VDDS  
Clamp-Voltage hi at all pins  
-20  
0
mA  
V
11  
1.5  
Clamp-Voltage hi at Inputs SCL, Vc()hi = V() - V(VDD), I() = 1 mA  
SDA  
0.4  
0.3  
V
006 Vc()hi  
007 Vc()lo  
Clamp-Voltage hi at Inputs  
X1...X6  
Vc()hi = V() - V(VDD), I() = 4 mA  
1.2  
V
Clamp-Voltage lo at all pins  
I() = -4 mA  
-1.2  
-1  
-0.3  
1
V
008 Irev(VDD) Reverse-Polarity Current VDD vs. V(VDD) = 5.5V...4.3 V  
mA  
GND  
Signal Conditioning, Inputs X1...X6 (CH1, CH2: i = 12, CH0: I = 0)  
101  
102  
Vin()sig  
Iin()sig  
Permissible Input Voltage Range  
Permissible Input Current Range  
Ri() = 0x01  
0.75  
0
VDDS  
1.5  
VDDS  
V
V
Ri() = 0x09  
Ri(0) = 0; BIASi = 0  
Ri(0) = 0; BIASi = 1  
-300  
10  
-10  
300  
µA  
µA  
103 Iin()  
Input Current  
Ri() = 0x01  
-0.5  
95  
0.5  
µA  
%
104 Vout(X2)  
Output Voltage at X2  
MUX = 0x20...0x2F, I(X2) = 0, referenced to  
VREFin12  
100  
27  
105  
105 Vin(X2)  
106 Rin(X2)  
Permissible Input Voltage at X2 MUX = 0x30...0x3F  
0.5  
20  
VDDS  
2  
35  
V
Input Resistance at X2  
MUX = 0x30...0x3F, R0(3:0) = 0x01, R12(3:0) =  
kΩ  
0x01  
107  
Rin()  
Input Resistance vs. VREFin  
Tj = 27 °C;  
Ri(3:0) = 0x09  
Ri(3:0) = 0x00  
Ri(3:0) = 0x02  
Ri(3:0) = 0x04  
Ri(3:0) = 0x06  
16  
1.1  
1.6  
2.2  
3.2  
20  
1.6  
2.3  
3.2  
4.6  
24  
2.1  
3.0  
4.2  
6.0  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
108 TC(Rin)  
Temperature Coefficient of Rin  
0.15  
%/K  
109  
VREFin() Reference Voltages  
Ri(0) = 0, BIASi = 1  
Ri(0) = 0, BIASi = 0  
1.35  
2.25  
1.5  
2.5  
1.65  
2.75  
V
V
VREFin0, VREFin12  
110  
G0, G12  
Selectable Gain Factors  
MODE=0x05, Ri(3) = 0, GRi and GFi = 0x0  
MODE=0x05, Ri(3) = 0, GRi and GFi = max.  
6
300  
MODE=0x05, Ri(3) = 1, GRi and GFi = 0x0  
MODE=0x05, Ri(3) = 1, GRi and GFi = max.  
1.5  
75  
111  
112  
Gdiff  
Relative Gain Ratio CH1 vs. CH2  
GF2 = 0x10, GF1 = 0x0  
GF2 = 0x10, GF1 = 0x7FF  
39  
255  
%
%
G  
Step Width Of Fine Gain  
Adjustment  
for CH0  
for CH1  
for CH2  
1.06  
1.0009  
1.06  
113 INL(Gi)  
114  
Integral Linearity Error of Gain  
Adjustment  
-1.06  
1.06  
Vin()diff  
Recommended Differential Input  
Voltage  
Vin()diff = V(PCHx) - V(NCHx);  
Ri(3) = 0  
Ri(3) = 1  
20  
80  
1000  
4000  
mVpp  
mVpp  
115 Vin()os  
116  
Input Offset Voltage  
referred to side of input  
25  
µV  
VOScal  
Offset Calibration Range  
referenced to the selected source (VOS0 resp.  
VOS12), mode Calibration 2;  
ORi = 00  
ORi = 01  
ORi = 10  
ORi = 11  
±100  
±200  
±600  
±1200  
%V()  
%V()  
%V()  
%V()  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 7/37  
ELECTRICAL CHARACTERISTICS  
Operating Conditions: VDD = 4.3 ... 5.5 V, Tj = -40 °C ... 125 °C, IBN calibrated to 200 µA, unless otherwise stated  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
117 OF0  
118 OF12  
119 INL(OFi)  
CH0 Offset Calibration Step  
Width  
referenced to the selected source VOS0;  
OR0 = 0x0  
3.2  
%
%
CH1/2 Offset Calibration Step  
Width  
referenced to the selected source VOS12;  
OR12 = 0x0  
0.79  
Integral Linearity Error of Offset limited test coverage (guaranteed by design)  
Calibration  
-5  
5
LSB  
120 PHI12  
Phase Error Calibration Range  
CH1 vs. CH2  
±10.4  
0.02  
°
°
121 PHI12  
Phase Error Calibration Step  
Width  
122 INL(PHI12) Integral Linearity Error of Phase limited test coverage (guaranteed by design)  
Calibration  
-0.8  
200  
0.8  
1.8  
°
123 fin()  
Sine-To-Digital Conversion  
201 AAabs Absolute Angle Accuracy  
Permissible Maximum Input Freq. analog signal path  
kHz  
referenced to 360° input signal, ideal waveform,  
quasi static signals, adjusted signal condition-  
ing, SELHYS = 0  
0.9  
°
202  
AArel  
Relative Angle Accuracy  
referenced to output period T (see Fig. 1), ideal  
waveform, quasi static signals;  
at 4 edges per period  
10  
10  
10  
15  
30  
50  
%
%
%
%
%
%
at 200 edges per period  
at 500 edges per period  
at 1000 edges per period  
at 2000 edges per period  
1.7  
3.5  
7
14  
28  
at 4000 edges per period  
203 AAR  
Repeatability  
see 201; VDD = const., Tj = const.  
0.1  
°
204 fin()max  
Maximum Input Frequency for  
Sine-To-Digital Conversion  
MTD = 0x01, IPF < 10;  
refer to Figure 2 for dependencies  
200  
kHz  
Line Driver Outputs PA, NA, PB, NB, PZ, NZ  
501  
Vs()hi  
Saturation Voltage hi  
Vs() = VDD - V();  
SIK(1:0) = 00, I() = -1.2 mA  
SIK(1:0) = 01, I() = -4 mA  
SIK(1:0) = 10, I() = -20 mA  
SIK(1:0) = 11, I() = -50 mA  
200  
200  
400  
700  
mV  
mV  
mV  
mV  
502  
503  
Vs()lo  
Isc()hi  
Saturation Voltage lo  
SIK(1:0) = 00, I() = 1.2 mA  
SIK(1:0) = 01, I() = 4 mA  
SIK(1:0) = 10, I() = 20 mA  
SIK(1:0) = 11, I() = 50 mA  
200  
200  
400  
700  
mV  
mV  
mV  
mV  
Short-Circuit Current hi  
V() = 0 V;  
SIK(1:0) = 00  
SIK(1:0) = 01  
SIK(1:0) = 10  
SIK(1:0) = 11  
-4  
-12  
-60  
-150  
-1.2  
-4  
-20  
-50  
mA  
mA  
mA  
mA  
504  
505  
506  
Isc()lo  
tr()  
Short-Circuit Current lo  
Rise Time  
V() = VDD;  
SIK(1:0) = 00  
SIK(1:0) = 01  
SIK(1:0) = 10  
SIK(1:0) = 11  
1.2  
4
20  
50  
4
12  
60  
150  
mA  
mA  
mA  
mA  
RL = 100 to GND;  
SSR(1:0) = 00  
SSR(1:0) = 01  
SSR(1:0) = 10  
SSR(1:0) = 11  
5
5
20  
50  
20  
40  
140  
350  
ns  
ns  
ns  
ns  
tf()  
Fall Time  
RL = 100 to VDD;  
SSR(1:0) = 00  
SSR(1:0) = 01  
SSR(1:0) = 10  
SSR(1:0) = 11  
5
5
30  
50  
20  
40  
140  
350  
ns  
ns  
ns  
ns  
507 Ilk()tri  
508 IIk()rev  
509 Rin()cal  
Leakage Current  
TRIHL(1:0) = 11 (tristate)  
reversed supply voltage  
Op. modes Calibration 1, 2, 3  
20  
100  
2.5  
100  
µA  
µA  
kΩ  
Leakage Current  
Test Signal Source Impedance  
4
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 8/37  
ELECTRICAL CHARACTERISTICS  
Operating Conditions: VDD = 4.3 ... 5.5 V, Tj = -40 °C ... 125 °C, IBN calibrated to 200 µA, unless otherwise stated  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
510 I()cal  
Permissible Test Signal Load  
Op. modes Calibration 1, 2, 3  
-3  
3
µA  
511  
tclk()lo  
Clock Signal Low-Pulse Duration  
for CP, CPD, CPU  
Op. mode Mode 191/193;  
MTD = 0x03  
MTD = 0x04  
MTD = 0x05  
MTD = 0x06  
MTD = 0x07  
MTD = 0x08  
MTD = 0x09  
MTD = 0x0A  
MTD = 0x0B  
MTD = 0x0C  
MTD = 0x0D  
MTD = 0x0E  
MTD = 0x0F  
50  
62.5  
75  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
87.5  
100  
150  
200  
300  
400  
500  
600  
700  
800  
512 tw()hi  
513 tAB  
Duty Cycle  
referenced to output period T, see Figure 1  
see Figure 1  
50  
25  
%
%
Phase Shift A vs. B  
Minimum Phase Distance  
514  
tMTD  
edge to edge, see Figure 1, CFGOSZ cali-  
brated;  
MTD = 0x01  
MTD = 0x02  
MTD = 0x03  
MTD = 0x04  
MTD = 0x05  
MTD = 0x06  
MTD = 0x07  
MTD = 0x08  
MTD = 0x09  
MTD = 0x0A  
MTD = 0x0B  
MTD = 0x0C  
MTD = 0x0D  
MTD = 0x0E  
45  
65  
90  
75  
100  
135  
170  
200  
230  
260  
390  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
110  
130  
150  
175  
260  
345  
515  
685  
860  
1030  
1200  
1370  
520  
780  
1040  
1300  
1560  
1820  
2080  
MTD = 0x0F  
515  
tMTD  
Minimum Phase Distance  
Variation  
VDD = 4.3...5.5 V, Tj = 27 °C, variation vs.  
VDD = 5 V;  
-10  
10  
%
VDD = 5 V, Tj = -40...125 °C, variation vs.  
-5  
15  
%
Tj = 27 °C;  
Signal Level Controller ACO  
601  
Vs()hi  
Saturation Voltage hi  
Vs() = VDD - V();  
ACOT(1:0) = 0x2,ACOR(1:0) = 0x0,  
ACOS(4:0) = 0x1F, I() = -5 mA  
ACOT(1:0) = 0x2,ACOR(1:0) = 0x1,  
ACOS(4:0) = 0x1F, I() = -10 mA  
ACOT(1:0) = 0x2,ACOR(1:0) = 0x2,  
ACOS(4:0) = 0x1F, I() = -25 mA  
ACOT(1:0) = 0x2,ACOR(1:0) = 0x3,  
ACOS(4:0) = 0x1F, I() = -50 mA  
1
1
V
V
V
V
1
1.2  
602  
Isc()hi  
Short-Circuit Current hi  
V() = 0 ... VDD - 1 V;  
ACOT(1:0) = 0x2,ACOR(1:0) = 0x0,  
ACOS(4:0) = 0x1F  
ACOT(1:0) = 0x2,ACOR(1:0) = 0x1,  
ACOS(4:0) = 0x1F  
ACOT(1:0) = 0x2,ACOR(1:0) = 0x2,  
-10  
-20  
-50  
-5  
mA  
mA  
mA  
-10  
-25  
ACOS(4:0) = 0x1F  
V() = 0 ... VDD - 1.2 V;  
ACOT(1:0) = 0x2,ACOR(1:0) = 0x3,  
-100  
-50  
mA  
ACOS(4:0) = 0x1F  
603 It()min  
604 It()max  
Control Range Monitoring 1:  
lower limit  
referenced to range ACOR(1:0)  
referenced to range ACOR(1:0)  
3
%Isc  
%Isc  
Control Range Monitoring 2:  
upper limit  
90  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 9/37  
ELECTRICAL CHARACTERISTICS  
Operating Conditions: VDD = 4.3 ... 5.5 V, Tj = -40 °C ... 125 °C, IBN calibrated to 200 µA, unless otherwise stated  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
605 Vt()min  
Signal Level Monitoring 1:  
lower limit  
referenced to Vscq()  
referenced to Vscq()  
40  
%Vpp  
%Vpp  
606 Vt()max  
Signal Level Monitoring 2:  
upper limit  
130  
Bias Current Source and Reference Voltages  
801  
IBN  
Bias Current Source  
Calibration 1, I(NB) vs. VDDS;  
CFGIBN = 0x0  
110  
µA  
µA  
µA  
CFGIBN = 0xF  
IBN calibrated at T = 25 °C  
370  
220  
180  
1.2  
45  
200  
1.25  
50  
802 VBG  
Internal Bandgap Reference  
Reference Voltage  
1.3  
55  
V
803 VPAH  
804 V05  
%VDDS  
mV  
Reference Voltage V05  
Reference Voltage V025  
450  
500  
50  
550  
805 V025  
%V05  
Power-Down-Reset  
901 VDDon  
Turn-on Threshold VDD, Power- increasing voltage at VDD  
Up-Enable  
3.6  
3.0  
0.4  
4.0  
3.5  
4.3  
3.8  
V
V
V
902 VDDoff  
Turn-off Threshold VDD, Power- decreasing voltage at VDD  
Down-Reset  
903 VDDhys  
Hysteresis  
Error Signal Input/Output, Pin ERR  
B01 Vs()lo  
B02 Isc()lo  
Saturation Voltage lo  
versus GND, I() = 4 mA  
0.4  
8
V
Short-Circuit Current lo  
versus GND, V(ERR) VDD  
versus GND, V(ERR) > VTMon  
L state  
Z state  
4
5
mA  
B03  
Isc()  
Low-Side Current Source For  
Data Output  
2
0
mA  
mA  
B04 Vt()hi  
B05 Vt()lo  
B06 Vt()hys  
B07 Ipu()  
Input Threshold Voltage hi  
Input Threshold Voltage lo  
Input Hysteresis  
versus GND  
2
V
V
versus GND  
0.8  
300  
-400  
Vt()hys = Vt()hi Vt()lo  
V() = 0...VDD 1 V, EPU = 1  
Vpu() = VDD V(), I() = -5 µA, EPU = 1  
increasing voltage at ERR  
500  
mV  
µA  
V
Input-Pull-Up-Current  
Pull-Up-Voltage  
-300  
-200  
0.4  
B08 Vpu()  
B09 VTMon  
Test Mode Turn-on Threshold  
VDD +  
2
V
B10 VTMoff  
B11 VTMhys  
Test Mode Turn-off Threshold  
decreasing voltage at ERR  
VDD +  
0.5  
V
V
Test Mode Threshold Hysteresis VTMhys = VTMon VTMoff  
Data Output Signal Frequency  
0.15  
0.3  
B12  
fclk()  
ENFAST = 0  
ENFAST = 1  
120  
480  
160  
640  
200  
800  
kHz  
kHz  
B13 tp(ERR)in Process Delay for System Error upon power up (VDD > VDDon)  
Message at ERR  
10  
ms  
Reverse Polarity Protection and Supply Switches VDDS, GNDS  
C01  
Vs()  
Saturation Voltage vs. VDD  
Vs(VDDS) = VDD V(VDDS);  
I(VDDS) = -10...0 mA  
150  
250  
mV  
mV  
I(VDDS) = -20...-10 mA  
C02  
Vs()  
Saturation Voltage vs. GND  
Vs(GNDS) = V(GNDS) GND;  
I(GNDS) = 0...10 mA  
150  
200  
mV  
mV  
I(GNDS) = 10...20 mA  
C03 C()  
Backup Capacitor Analog Supply  
VDDS vs. GNDS  
100  
nF  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 10/37  
ELECTRICAL CHARACTERISTICS  
Operating Conditions: VDD = 4.3 ... 5.5 V, Tj = -40 °C ... 125 °C, IBN calibrated to 200 µA, unless otherwise stated  
Item Symbol  
No.  
Parameter  
Conditions  
Unit  
Min.  
Typ.  
Max.  
Serial Configuration Interface SCL, SDA  
D01 Vs()lo  
D02 Isc()lo  
D03 Vt()hi  
D04 Vt()lo  
D05 Vt()hys  
D06 Ipu()  
D07 Vpu()  
Saturation Voltage lo  
Short-Circuit Current lo  
Input Threshold Voltage hi  
Input Threshold Voltage lo  
Input Hysteresis  
I = 4 mA  
400  
75  
2
mV  
mA  
V
4
0.8  
300  
-600  
V
Vt()hys = Vt()hi Vt()lo  
V() = 0...VDDS 1 V  
500  
mV  
µA  
V
Input Pull-Up Current  
Pull-Up Voltage  
-300  
-60  
0.4  
Vpu() = VDDS V(), I() = -5 µA  
D08  
fclk()  
Clock Frequency at SCL  
ENFAST = 0  
ENFAST = 1  
60  
240  
80  
320  
100  
400  
kHz  
kHz  
D09  
tbusy()cfg Duration of Startup Configuration  
IBN not calibrated, EEPROM access without  
read failure, time to outputs operational;  
ENFAST = 0  
36  
24  
48  
34  
ms  
ms  
ENFAST = 1  
D10  
D11  
tbusy()err End Of I2C Communication;  
IBN not calibrated;  
Time Until I2C Slave Is Enabled V(SDA) = 0V  
4
indef.  
45  
12  
ms  
ms  
ms  
ms  
V(SCL) = 0V or Arbitration Lost  
no EEPROM  
CRC ERROR  
135  
285  
95  
tp()  
Start Of Master Activity On I2C  
Protocol Error  
SCL without clock signal: V(SCL) = constant;  
IBN not calibrated  
IBN calibrated to 200 µA  
25  
64  
80  
80  
240  
150  
µs  
µs  
Temperature Monitoring  
E01  
VTs  
Temperature Sensor Voltage  
VTs() = VDDS V(PA),  
Calibration 3, without Load;  
Tj = -40 °C  
740  
620  
460  
770  
650  
520  
790  
670  
540  
mV  
mV  
mV  
Tj = 27 °C  
Tj = 100 °C  
E02 TCs  
E03  
Temp. Co. Temperature Sensor  
Voltage  
-1.8  
mV/K  
VTth  
Temperature Warning Activation  
Threshold  
VTth() = VDDS - V(NA), Tj = 27 °C,  
Calibration 3, without Load;  
CFGTA(3:0) = 0x0  
260  
470  
310  
550  
360  
630  
mV  
mV  
CFGTA(3:0) = 0xF  
E04 TCth  
E05  
Temp. Co. Temperature Warning  
Activation Threshold  
0.06  
%/K  
Tw  
Warning Temperature  
CFGTA(3:0) = 0x0  
CFGTA(3:0) = 0xF  
125  
140  
65  
°C  
°C  
80  
25  
25  
E06 Thys  
Warning Temperature Hysteresis 80 °C < Tj < 125 °C  
10  
5
15  
15  
°C  
°C  
E07 T  
Relative Shutdown Temperature T = Toff Tw  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 11/37  
t
t
AB  
MTD  
t
whi  
AArel  
AArel  
Figure 1: Definition of relative angle error and minimum phase distance.  
Figure 2: Maximum input frequency depending on interpolation factor.  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 12/37  
PROGRAMMING  
Register Map, Overview . . . . . . . . . . . . . . . . . . . Page 13 Signal Level Controller . . . . . . . . . . . . . . . . . . . . Page 26  
ACOT(1:0): Controller Operating Modes  
Serial Configuration Interface . . . . . . . . . . . . . Page 15  
ENFAST:  
ENSL:  
I2C Fast Mode  
ACOR(1:0): Output Current Range  
I2C Slave Mode  
ACOS(4:0): Setpoint (relates to ACOT)  
CHKSUM:  
CRC of chip configuration data  
(address range 0x00 to 0x2F)  
Chip Release  
Sine-To-Digital Conversion . . . . . . . . . . . . . . . . Page 27  
CHPREL:  
END:  
SELRES:  
SELHYS:  
Converter Resolution  
Converter Hysteresis  
Configuration Enable  
Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 17  
Quadrature Output Logic . . . . . . . . . . . . . . . . . . Page 28  
CFGABZ: Output Logic  
CFGZPOS: Zero Signal Positioning  
ENZFF: Zero Signal Synchronization  
CFGIBN:  
CFGTA:  
Bias Current  
Temperature Monitoring  
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . Page 18  
MODE: Operating Mode  
Input Configuration  
and Signal Path Multiplexer . . . . . . . . . . . . . . . Page 20  
Output Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 29  
SIK:  
Output Short-Circuit Current  
Output Slew Rate  
R12:  
I/V Mode and Input Resistance CH1,  
SSR:  
CH2  
TRIHL:  
MTD:  
Output Drive Mode  
BIAS12:  
R0:  
BIAS0:  
MUX:  
Reference Voltage CH1, CH2  
I/V Mode and Input Resistance CH0  
Reference Voltage CH0  
Input Multiplexer  
Minimum Transition Distance  
Noise Filter  
ENF:  
CFGOSZ:  
Calibration of MTD Oscillator  
Signal Conditioning CH1, CH2 (X3...X6) . . . Page 23  
Error Monitoring and Alarm Output . . . . . . . Page 30  
GR12:  
GF1:  
Gain Range CH1, CH2 (coarse)  
Gain Factor CH1 (fine)  
EMTD:  
Min. Indication Time Alarm Output ERR  
I/O Logic Alarm Output ERR  
Pull-Up Enable Alarm Output ERR  
Error Mask Alarm Output ERR  
Line Count Reference  
GF2:  
Gain Factor CH2 (fine)  
EPH:  
VOS12:  
VDC1:  
VDC2:  
OR1:  
Offset Reference Source CH1, CH2  
Intermediate Voltage CH1  
Intermediate Voltage CH2  
Offset Range CH1 (coarse)  
Offset Factor CH1 (fine)  
EPU:  
EMASKA:  
LINECNT:  
EMASKO:  
PDMODE:  
EMASKE:  
ERR1:  
OF1:  
Error Mask Driver Shutdown  
Driver Activation  
OR2:  
OF2:  
Offset Range CH2 (coarse)  
Offset Factor CH2 (fine)  
Error Mask EEPROM Savings  
Error Protocol: First Error  
Error Protocol: Last Error  
Error Protocol: History  
PH12:  
Phase Correction CH1 vs. CH2  
Signal Conditioning CH0 (X1, X2) . . . . . . . . . Page 25  
ERR2:  
GR0:  
GF0:  
VOS0:  
OR0:  
OF0:  
Gain Range CH0 (coarse)  
Gain Factor CH0 (fine)  
Offset Reference Source CH0  
Offset Range CH0 (coarse)  
Offset Factor CH0 (fine)  
ERR3:  
Test Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Page 33  
EMODE: Test Mode  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 13/37  
REGISTER MAP  
Register Map  
Addr  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Calibration  
0x00  
0
0
0
0
0
0
ENFAST  
CFGIBN(3:0)  
CFGTA(4:0)  
0x01  
Operating Mode  
0x02 END  
Input Configuration  
ENSL  
0
ENZFF  
MODE(3:0)  
0x03  
0x04  
0x05  
0x06  
ENF  
MUX(6:0)  
0
0
1
BIAS0  
BIAS12  
1
VOS0(1:0)  
VOS12(1:0)  
R0(3:0)  
R12(3:0)  
0
1
0
0
0
0
0
0
Signal Conditioning CH0  
0x07  
0x08  
0x09  
0
0
0
GR0(2:0)  
OR0(1:0)  
0
0
0
GF0(4:0)  
OF0(5:0)  
Signal Conditioning CH1, CH2  
0x0A  
GF1(3:0)  
0
GR12(2:0)  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0
0
GF1(10:4)  
0
0
0
GF2(4:0)  
VDC1(7:0)  
VDC2(3:0)  
OF1(3:0)  
0
0
VDC1(9:8)  
OR1(1:0)  
0
0
VDC2(9:4)  
OR2(1:0)  
OF1(10:4)  
OF2(7:0)  
PH12(3:0)  
0
OF2(10:8)  
0
0
0
PH12(9:4)  
Signal Level Controller  
0x15  
0x16  
ACOR(1:0)  
ACOS(4:0)  
0
0
0
0
0
0
ACOT(1:0)  
Error Monitoring and Alarm Output  
0x17  
EMASKA(7:0)  
0
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0
0
0
EMTD(2:0)  
EPU  
0
0
0
EMASKA(9:8)  
EMASKO(9:8)  
EMASKE(9:8)  
EMASKO(7:0)  
PDMODE  
EPH  
0
EMASKE(7:0)  
0
EMODE(2:0)  
Zero Signal Output  
0x1D  
0x1E  
CFGABZ(7:0)  
CFGZPOS(7:0)  
Sine-To-Digital-Conversion, Minimum Phase Distance  
0x1F  
0x20  
MTD(3:0)  
SELHYS(3:0)  
SELRES(7:0)  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 14/37  
Register Map  
Addr  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0x21  
0
SELRES(14:8)  
Output Driver Settings  
0x22  
0
0
SIK(1:0)  
SSR(1:0)  
TRIHL(1:0)  
Line Counter  
0x23  
LINECNT(7:0)  
0x24  
0
0
LINECNT(13:8)  
Sine-To-Digital-Conversion, Calibration  
0x25  
0
0
0
0
0
CFGOSZ(2:0)  
Reserved  
0x26  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x27  
0x28  
0x29  
free for OEM data  
free for OEM data  
free for OEM data  
free for OEM data  
free for OEM data  
free for OEM data  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
Check Sum  
0x2F  
CHKSUM(7:0) of EEPROM data  
[CHPREL(7:0), refer to Table 7]  
Error Register  
0x30  
0x31  
0x32  
ERR1(7:0)  
ERR2(5:0)  
ERR1(9:8)  
ERR3(3:0)  
ERR2(9:6)  
0x33  
0
0
ERR3(9:4)  
Notes  
The device RAM initially contains random data following power-on.  
Table 4: Register layout (EEPROM)  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 15/37  
SERIAL CONFIGURATION INTERFACE  
ENSL  
Code  
0
Adr 0x02, bit 6  
The serial configuration interface consists of the two  
pins SCL and SDA and enables read and write ac-  
cess to an EEPROM with an I2C interface. The readout  
clock rate can be selected using ENFAST.  
Function  
Normal operation  
I2C Slave Mode Enable (Device ID 0x55)  
1
Table 6: I2C Slave Mode  
ENFAST  
Code  
0
Adr 0x00, bit 4  
Function  
Regular clock rate, f(SCL) approx. 80 kHz  
High clock rate, f(SCL) approx. 320 kHz  
Example of CRC Calculation Routine  
1
Notes  
For in-circuit programming bus lines SCL and SDA  
require pull-up resistors.  
For line capacitances to 170 pF, adequate values  
are:  
unsigned char ucDataStream  
int iCRCPoly 0x11D ;  
unsigned char ucCRC=0;  
int 0;  
= 0;  
=
i
=
4.7 kwith clock frequency 80 kHz  
2 kwith clock frequency 320 kHz  
ucCRC = 1; / / s t a r t value ! ! !  
for ( iReg  
= 0; iReg <47; iReg ++)  
The pull-up resistors may not be less than 1.5 k.  
To separate the signals a ground line between SCL  
and SDA is recommended.  
iC-MQF requires a supply voltage during EEPROM  
programming (5 V to VDD).  
{
ucDataStream  
for ( i =0; i <=7; i ++)  
i f ( (ucCRC & 0x80 ) != ( ucDataStream & 0x80 ) )  
ucCRC = (ucCRC << 1) iCRCPoly ;  
else  
ucCRC = (ucCRC << 1 ) ;  
ucDataStream ucDataStream << 1;  
= ucGetValue ( iReg ) ;  
{
^
Table 5: I2C Fast Mode  
=
}
}
Once the supply has been switched on, the iC-MQF  
outputs are high impedance (tristate) until a valid con-  
figuration is read out from the EEPROM using device  
ID 0x50.  
EEPROM Selection  
The following minimal requirements must be fulfilled:  
Bit errors in the 0x00 to 0x2F memory section are  
pinpointed by the CRC deposited in register CHK-  
SUM(7:0) (address 0x2F in the EEPROM; the CRC  
polynomial used is "’1 0001 1101"’ with a start value  
of "1").  
• Operation from 3.3 to 5 V, I2C interface  
• At least 512 bits, 64x8  
(address range used is 0x00 to 0x3F)  
• Support of Page Write with Pages of at least 4  
bytes. Otherwise, errors can not be saved to the  
EEPROM (EMASKE = 0x0).  
If the configuration data is not confirmed by the CRC,  
the readin process is repeated. If no valid configura-  
tion data is available after a fourth readin, iC-MQF ter-  
minates EEPROM access and switches to I2C slave  
mode. This switch takes place after 150 ms at the lat-  
est (see Electrical Characteristics, D11), for example if  
no EEPROM is connected.  
• Device ID 0x50 "1010 000", no occupation of  
0x55 (A2...A0 = 0). Otherwise, iC-MQF can not  
be accessed via 0x55 in I2C slave mode.  
Bit ENSL decides (for devices loading a valid config- Recommended devices:  
uration from the EEPROM register) whether the I2C M24C01W, ST M24C02 (2K), ROHM BR24L01A-W,  
slave function is enabled or not. BR24L02-W  
Atmel AT24C01C, ST  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 16/37  
I2C Slave Mode (ENSL = 1)  
Register  
Read access via I2C slave mode (ENSL = 1)  
In this mode iC-MQF behaves like an I2C slave with the  
device ID 0x55 and the configuration interface permits  
write and read accesses to iC-MQF’s internal registers.  
RAM Addr Content  
0x00-0x21 Configuration data  
(see EEPROM addresses 0x00-0x21)  
0x22-0x2A Not available  
0x2B-0x2E Configuration data  
For chip release verification purposes an identification  
value is stored under ROM address 0x2F; a write ac-  
cess to this address is not permitted.  
(see EEPROM addresses 0x2B-0x2E)  
Chip release CHPREL(7:0)  
0x30-0x33 Configuration data  
(see EEPROM addresses 0x30-0x33)  
0x2F  
CHPREL  
Code  
Adr 0x2F, bit 7:0 (ROM)  
Chip Release  
iC-MQ F2  
0x34-0x3A Not available  
0x3B-0x3E Configuration data  
0x22  
(see EEPROM addresses 0x2B-0x2E)  
0x23  
iC-MQ F3  
0x3F  
Chip release CHPREL(7:0)  
0x40-0x43 Current error memory* (only active when enabled  
by EMASKE; messages will be transferred to  
EEPROM Addresses 0x30-0x33)  
Table 7: Chip Release  
0x44-0x7F Not available  
END  
Code  
0
Adr 0x02, bit 7  
Function  
Notes  
*) Upon changing enable register EMASKE, a  
double restart of Sin/D conversion (2x END: 01)  
is essential for the correction of RAM contents.  
Sin/D converter and line driver disabled  
(RAM configuration data invalid)  
1
Restart of Sin/D conversion, line driver active  
(RAM configuration data valid)  
Table 9: RAM Read Access  
Register  
Write access via I2C slave mode (ENSL = 1)  
Table 8: Configuration Enable  
RAM Addr Access and conditions  
0x00  
0x01  
Changes possible, no restrictions  
For programming iC-MQF via I2C addresses 0x00 to  
0x2E need to be written. In doing so, bit 7 of address  
0x02 must be set zero initially (END = 0), until all reg-  
isters have been configured. Finally, a restart requires  
END = 1 to be written without changing other bits of  
address 0x02.  
Changes possible  
(wrong entries for CFGIBN can limit functions)  
0x02  
Changes to bits 6:0 are permitted only when Sin/D  
conversion is halted (END = 0, ie. bit 7);  
Restarting Sin/D conversion by changing END (bit  
7) is permitted only with no changes of operating  
mode (bits 6:0 remain as set)  
0x03-0x16 Changes possible, no restrictions  
Addr 0x02  
END = 0  
0x17  
Changes to bits 7:4 and 2:0 are permitted  
(ENSL, bit 3 must be kept 1)  
bit 7 = 0  
0x18  
Changes possible, no restrictions  
Write registers  
Configuration  
0x00 ... 0x2E  
0x19-0x21 Changes possible when Sin/D conversion is halted  
(END = 0)  
0x2B-0x2E Changes possible, no restrictions  
0x2F-0x3F No write access permitted  
0x40-0x43 No write access permitted  
0x44-0x7F Not available  
Addr 0x02  
END = 1  
bit 7 = 1  
Figure 3: Programming via I2C. END is altered by  
changing only bit 7 of address 0x02 and  
leaving bits 6:0 unchanged.  
Table 10: RAM Write Access  
Notice: The converter function should be halted by  
END = 0 for the deletion of errors saved in the EEP-  
ROM (Dev-ID 0x50, Addresses 0x30-0x33). Other-  
wise active errors could be transferred to the EEP-  
ROM again (from addresses 0x40-0x43 if enabled by  
EMASKE).  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 17/37  
BIAS CURRENT SOURCE AND TEMPERATURE SENSOR CALIBRATION  
Bias Current  
state (from low to high) should be generated with the  
The calibration of the bias current source in operation help of an external pull-up resistor at pin ERR.  
mode Calibration 1 (see Table 13) is prerequisite for  
adherence to the given electrical characteristics and  
also instrumental in the determination of the chip tim-  
ing (e.g. clock frequency at SCL). The IBN bias current  
is measured by connecting pin VDDS and pin NB with  
a 10 kresistor. The setpoint is 200 µA which is equiv-  
alent to a voltage drop of 2 V.  
Example: VTs(T1) is ca. 650 mV, measured from  
VDDS versus PA, with T1 = 25 °C; -  
The necessary reference voltage VTth(T1) is then cal-  
culated. The required warning temperature T2, tem-  
perature coefficients TCs and TCth (see Electrical  
Characteristics, Section E) and measurement value  
VTs(T1) are entered into this calculation:  
Notice: The measurement delivers a false reading  
when outputs are tristate (due to a configuration er-  
ror after cycling power, for instance).  
VTs(T1) + TCs · (T2 T1)  
VTth(T1) =  
1 + TCth · (T2 T1)  
CFGIBN  
Code k  
0x0  
Adr 0x00, bit 3:0  
31  
31  
39k  
IBN ∼  
79 %  
81 %  
84 %  
86 %  
88 %  
91 %  
94 %  
97 %  
Code k  
0x8  
IBN ∼  
100 %  
103 %  
107 %  
111 %  
115 %  
119 %  
124 %  
129 %  
39k  
Example: For T2 = T1 + 100 K VTth(T1) must be pro-  
grammed to 443 mV.  
0x1  
0x9  
0x2  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
0x3  
Reference voltage VTth(T1) is provided for a high  
impedance measurement (10 M) at output pin NA  
(measurement against VDDS) and must be set to the  
calculated value by programming CFGTA(3:0).  
0x4  
0x5  
0x6  
0x7  
Example: Altering VTth(T1) from 310 mV (measured  
with CFGTA(3:0)= 0x0) to 443 mV is equivalent to  
143 %, the closest value for CFGTA is 0x9;  
Table 11: Bias Current  
Temperature Sensor  
The temperature monitoring is calibrated in operating  
mode Calibration 3.  
CFGTA  
Code k  
0x0  
Adr 0x01, bit 4:0  
65+3k  
VTth ∼  
65  
65+3k  
65  
Code k  
0x8  
VTth ∼  
137 %  
142 %  
146 %  
151 %  
155 %  
160 %  
165 %  
169 %  
100 %  
105 %  
109 %  
114 %  
118 %  
123 %  
128 %  
132 %  
0x1  
0x9  
The voltage VTs, at which the warning message is  
generated, is determined first. A voltage ramp from  
VDDS towards GNDS is applied to pin PA until pin ERR  
displays the warning message. The following settings  
are required for this measurement: EMASKA = 0x20,  
EMTD = 0x00 and EPH = 0x00.  
0x2  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
0x3  
0x4  
0x5  
0x6  
0x7  
0x10-0x1F reserved  
The signal at pin ERR switches from tristate to low (on  
reaching the warning threshold VTs) and then from  
low to tristate (on overshooting the threshold of the  
overtemperature self protection which is not relevant  
to calibration). To avoid confusion a clear change of  
Notes  
With CFGTA = 0xF Toff is 80 °C typ.,  
with CFGTA = 0x0 Toff is 155 °C typ.  
Table 12: Temperature Monitoring  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 18/37  
OPERATING MODES  
iC-MQF has various modes of operation, for which the coder quadrature signal with a zero pulse. Only in  
functions of outputs PA, NA, PB, NB, PZ, NZ and ERR these modes are the line drivers and the reverse po-  
are altered.  
larity protection feature active.  
Two operating modes can be selected for the out- In order to condition the input signals and to cali-  
put of the angle position in normal operation. Mode brate and test iC-MQF Calibration and Test modes  
191/193 provides control signals for devices compati- are available. Digital and analog test signals are pro-  
ble with 74HC191 or 74HC193, whereas in Mode ABZ vided; the latter must always be measured at high load  
the angle position is output incrementally as an en- impedance.  
MODE(3:0)  
Code  
0x00  
0x0F  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
Addr. 0x02; bit 3:0  
Operating Mode  
Mode ABZ  
Mode 191/193  
Calibration 1  
Calibration 2  
res. *  
Pin PA  
A
Pin NA  
not(A)  
CPU  
res.  
Pin PB  
B
Pin NB  
not(B)  
nU/D  
IBN  
Pin PZ  
Z
Pin NZ  
not(Z)  
nPL  
Pin ERR  
ERR  
ERR  
res.  
CPD  
res.  
PCH1  
res.  
res.  
PSIN  
X4  
CP  
MR  
res.  
PCH0  
VDC1  
res.  
NCH0  
VDC2  
res.  
NCH1  
res.  
PCH2  
res.  
NCH2  
res.  
res.  
res.  
res. *  
res.  
res.  
res.  
res.  
res.  
res.  
Test 5  
NSIN  
X6  
PCOS  
X3  
NCOS  
X5  
res.  
res.  
res.  
Test 6 (MUX=0x40)  
Calibration 3  
res. *  
X1  
X2  
res.  
VTs  
res.  
res.  
res.  
A4  
VTth  
res.  
res.  
VTTFE  
VTTSE  
ERR  
res. *  
res. *  
res.  
A8  
res.  
B4  
res.  
B8  
res.  
ZIn  
res.  
TP1  
res.  
res.  
res.  
ERR  
res.  
res.  
System Test  
res. *  
res.  
res.  
res.  
res.  
res.  
res.  
res.  
res.  
res.  
res.  
res.  
res. *  
res. *  
Hints  
*) Test function for iC-Haus device test only.  
Table 13: Operating Modes  
Mode 191/193  
Mode ABZ  
Pin  
PA  
Signal  
CPD  
CPU  
CP  
Description  
In Mode ABZ A/B signals are generated and output via  
PA, NA, PB and NB. A configurable zero signal is pro-  
vided at pins PZ and NZ. The differential RS422 line  
drivers are active; a Nx pin supplies a complementary  
signal which is the inversion of pin Px.  
Clock Down Pulse  
Clock Up Pulse  
Clock Pulse  
NA  
PB  
NB  
PZ  
nU/D  
MR  
Count Direction (0: up, 1: down)  
Asynch. Master Reset (active high)  
Signal is ’1’ if index position is reached,  
otherwise ’0’.  
Mode 191/193  
In Mode 191/193 the output pins provide control sig-  
nals for counter devices compatible with 74HC191 or  
74HC193 according to the following table. The driving  
capability (SIK) and the slew rate (SSR) of the output  
drivers must be selected so that the clock pulses can  
be output with a short low pulse according to the cho-  
sen minimum phase distance (see Electrical Charac-  
teristics, 511).  
NZ  
nPL  
Asynch. Parallel Load Input (active low) /  
Reset (active low)  
Signal is ’0’ if index position is reached,  
otherwise ’1’.  
Table 14: Operating mode for counter devices compat-  
ible with 74HC191 or 74HC193.  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 19/37  
Calibration 1, 2, 3, Test 5  
System Test and Digital Calibration  
These modes are used to condition the input signals This mode enables the signal conditioning to be ad-  
and calibrate iC-MQF. In mode Calibration 1 the user justed using comparated sine and cosine signals. At a  
can measure the IBN bias current and the zero chan- resolution of 8 the interpolator generates a switchpoint  
nel analog signals are available (PCH0 and NCH0) (for every 45 degrees. The objective of the calibration pro-  
zero channel calibration see page 25).  
cedure is a pulse duty cycle of exactly 50% respec-  
tively for A4, B4 und A8, B8.  
In mode Test 5 the conditioned sine and cosine signals  
are output (PSIN, NSIN, PCOS and NCOS). In mode  
Calibration 2 the conditioned sine and cosine signals  
are output with a gain which is reduced by factor 6  
(PCH1, NCH1, PCH2 and NCH2). The intermediate  
potentials VDC1 and VDC2 are provided on Pin PZ  
and Pin NZ if VOS12 is set to 0x3. (For a description  
of the calibration process, see page 23).  
System Test  
Pin  
PA  
Signal  
A4  
Description  
Offset CH1  
NA  
A8  
Phase deviation from 90° between  
CH1 and CH2  
PB  
NB  
B4  
B8  
Offset CH2  
Amplitude deviation between  
CH1 and CH2  
PZ  
NZ  
ZIn  
Digital zero signal, unmasked  
In mode Calibration 3 the internal temperature moni-  
toring signals are provided. Calibration of the bias cur-  
rent source and temperature monitoring is described  
on page 17.  
TP1  
Verification of line count (pulses) between  
two zero pulses  
Low signal: verification running (state after  
power on reset)  
High signal: verification finished  
An error messaging at ERR is valid after the  
second zero signal (enable required).  
TEST 6  
The following settings are required for mode System Test:  
MODE = 0x0B, SELRES = 0x0002, SELHYS = 0xF,  
CFGABZ(7:4) = ’0000’  
The input voltages at the pins X3 to X6 can be checked  
in mode Test 6. The following settings are required  
here:  
Table 15: Digital Calibration Signals  
• MUX = 0x40  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 20/37  
INPUT CONFIGURATION AND SIGNAL PATH MULTIPLEXER  
All input stages are configured as instrumentation am- Voltage Signals  
plifiers and thus directly suitable for differential input In V mode an optional voltage divider can be selected  
signals. Referenced input signals can be processed; which reduces unacceptably large input amplitudes to  
input X2 can be configured as a reference input. Both ca. 25 %. The circuitry is equivalent to the resistor  
current and voltage signals can be processed, se- chain in I mode; the pad wiring resistor is considerably  
lected using R12 and R0.  
larger here, however.  
R12  
Addr 0x05, bit 3:0  
R0  
Addr 0x04, bit 3:0  
Code  
–000  
–010  
–100  
–110  
1—1  
0—1  
Nominal Rin() Internal Rui()  
I/V Mode  
1.7 kΩ  
2.5 kΩ  
3.5 kΩ  
4.9 kΩ  
20 kΩ  
1.6 kΩ  
2.3 kΩ  
3.2 kΩ  
4.6 kΩ  
5 kΩ  
current input  
current input  
current input  
current input  
voltage input 4:1*  
voltage input 1:1  
high  
1 MΩ  
impedance  
Notes  
When using X2 as reference input for single-ended  
signals use R12 = R0.  
Figure 4: Signal conditioning input circuit.  
*) VREFin is the voltage divider’s footpoint. Input  
currents may be positive or negative (Vin > VREFin,  
or Vin < VREFin)  
Current Signals  
In I Mode an input resistor Rin() becomes active at  
each input pin, converting the current signal into a volt-  
age signal. Input resistance Rin() consists of a pad  
wiring resistor and resistor Rui() which is linked to the  
adjustable bias voltage source VREFin().  
Table 16: I/V Mode and Input Resistance  
BIAS12  
BIAS0  
Code  
0
Addr 0x05, bit 6  
Addr 0x04, bit 6  
Function  
The table besides shows the possible selections, with  
Rin() giving the typical resulting input resistance (see  
Electrical Characteristics for tolerances). The input re-  
sistor should be set in such a way that intermediate  
potentials VDC1 and VDC2 lie between 125 mV and  
250 mV (verifiable in mode Calibration 2).  
VREFin = 2.5 V  
for low-side current sinks (e.g. photodiodes with  
common anode at GNDS)  
1
VREFin = 1.5 V  
for high-side currrent-sources (e.g. photodiodes  
with common cathode at VDDS)  
for voltage sources versus ground  
(e.g. iC-SM2, Wheatstone sensor bridges)  
for voltage sources with low-side reference  
(e.g. iC-LSHB, when using BIASEX = 11)  
NB. The input circuit is not suitable for back-to-back  
photodiodes.  
Notes  
When using X2 as reference input for single-ended  
signals use BIAS12 = BIAS0.  
Table 17: Reference Voltage  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 21/37  
Signal Path Multiplexer  
for index channel CH0 are always connected to the  
The Pins X2 to X6 are assigned to the internal chan- pins X1 and X2.  
nels CH1 and CH2 according to Table 18, the signals  
MUX(6:0)  
Adr 0x03, bit 6:0  
Code  
Function  
PCH0i  
X1  
NCH0i  
X2  
PCH1i  
X4  
NCH1i  
PCH2i  
NCH2i  
MUX(2:0)  
Adr 0x03, bit 2:0  
any  
Fixed assignment  
0
Differential input configuration  
Single crossing  
X6  
X5  
X3  
X2  
X2  
X3  
X3  
X5  
X3  
X5  
X5  
X6  
X6  
X2  
X2  
2
3
Double crossing  
4
Single-ended input configuration  
Single crossing  
7
MUX(3)  
Adr 0x03, bit 3  
0
Default assignment  
Index signal inversion  
Adr 0x03, bit 5:4  
PCH0o  
NCH0o  
NCH0o  
PCH0o  
1
MUX(5:4)  
0
2
Default assignment  
X2  
X2 Output function:  
internal VREFin is output to X2  
VREFin X2  
3
X2 Reference function:  
external VREFex supplies X2 and  
replaces internal VREFin  
X2VREFex  
MUX(6:0)  
Adr 0x03, bit 6:0  
Function  
Code  
Pin PZ  
X1  
Pin NZ  
X2  
Pin PA  
PCH1o  
X4  
Pin NA  
NCH1o  
X6  
Pin PB  
PCH2o  
X3  
Pin NB  
NCH2o  
X5  
Default assignment  
0x40  
TEST 6 (MODE = 0x6)  
OpAmp bypass function  
Notes re. MUX(6:0)  
Settings which are not explicitly specified may lead to an undesired chip function.  
Table 18: Input Multiplexer Function, Input Signal Mode, and Reference Selection  
5V  
VDDS= 4.25 V  
VDDS= 4.25 V  
4V  
3V  
2V  
1V  
VCM 3.75 V  
2.75 V  
+IN  
VCM 2.625 V  
VCM  
+IN  
-IN  
-IN  
VIN 1 V max.  
VIN 250 mV max.  
VCM 1.125 V  
1 V  
VCM 0.75 V  
GNDS 0.25 V  
V-Mode 1:1  
V-Mode 4:1  
VREFin 1.5 V  
VREFin 1.5 V or 2.5 V  
NB: VREFin is referenced to GNDS.  
Figure 5: Permissible common mode range and maximum input signal for lowest gain (GR12 = 0x0,  
GF1, GF2 = 0x00); left side: voltage input 1:1, right side: voltage input 4:1.  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 22/37  
5V  
VDDS= 4.25 V  
VDDS= 4.25 V  
4V  
VCM 3.75 V  
VCM 3.75 V  
VCM 3.75 V  
VIN 1 V max.  
3V  
2V  
1V  
2.75 V  
+IN  
VCM  
VCM 2.25 V  
VCM 2.25 V  
-IN  
VCM 1.75 V  
1.75 V  
VCM 0.75 V  
VCM 0.75 V  
1 V  
GNDS 0.25 V  
V-Mode 4:1  
VREFex 0.5 V  
(BIASEX = 11)  
V-Mode 4:1  
VREFex 0.75 V  
(BIASEX = 11)  
V-Mode 4:1  
V-Mode 4:1  
VREFex 1.5 V  
(BIASEX = 11)  
- or -  
VREFex 2.5 V  
(BIASEX = 11)  
- or -  
VREFin 1.5 V  
VREFin 2.5 V  
NB: VREFex and VREFin are referenced to GNDS.  
Figure 6: Permissible common mode range for voltage input 4:1 in dependancy to the reference voltage.  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 23/37  
SIGNAL CONDITIONING CH1, CH2  
GR12  
Code  
0x0  
Adr 0x0a, bit 2:0  
It is recommended to use operating mode Test 5 for  
the calibration of the sine signals. The sine signals are  
also available in operating mode Calibration 2 for rea-  
sons of compatibility to iC-MQ, but the amplitudes are  
smaller (approx. 50% with respect to operating mode  
Test 5).  
Range R12=0x9  
Range R12=0x9  
3.0  
12.0  
24.6  
31.8  
40.2  
52.2  
63.0  
79.2  
96.0  
0x1  
6.0  
0x2  
7.8  
0x3  
10.2  
13.2  
15.6  
19.8  
24.0  
0x4  
0x5  
Alternatively, characteristic digital test signals are  
available for offset, amplitude and phase conditioning  
in operating mode System Test.  
0x6  
0x7  
Notes  
Valid for all operation modes except for  
Calibration 2 (reduces gain to 1/6).  
Gain Settings  
The gain is set in four steps:  
Table 19: Gain Range CH1, CH2 (coarse)  
1. The sensor supply controller is shut down and the  
constant current source for the ACO output is set to  
a suitable output current (register ACOT = 0x2, ACOR  
and ACOS values close to the later operating point).  
GF2  
Code  
0x00  
0x01  
...  
Adr 0x0c, bit 4:0  
Factor  
1.00  
1.06  
6.25GF2  
31  
2. The coarse gain GR12 is selected so that differential  
signal amplitudes of ca. 6 Vpp are produced in opera-  
tion mode Test 5 (signal PSIN versus NSIN and PCOS  
versus NCOS).  
0x1F  
6.25  
Table 20: Fine Gain Factor CH2  
3. Using fine gain factor GF2 the cosine signal ampli-  
tude is then adjusted to exactly 6 Vpp.  
GF1  
Adr 0x0b, bit 6:0, Adr 0x0a, bit 7:4  
Code  
0x000  
0x001  
...  
Factor  
1.0  
4. The sine signal amplitude can then be adjusted to  
the cosine signal amplitude via fine gain factor GF1.  
1.0009  
GF1  
1984  
6.25  
0x7FF  
6.6245  
This results in a total gain of GR12 * GFi for differential  
input signals.  
Table 21: Fine Gain Factor CH1  
1.5  
1.5  
6
iC-MQF  
Test 5  
Px  
Nx  
VPNx  
R0  
VPx  
VNx  
GND  
Figure 7: Definition of 6 Vpp signal. Termination R0  
must be high-ohmic during all Test and  
Calibration modes.  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 24/37  
Offset Calibration CH1, CH2  
The offset calibration range for CH1 and CH2 is set  
In order to calibrate the offset the reference source using OR1 and OR2. Both sine and cosine signals are  
must first be selected using VOS12. Two fixed voltages then calibrated using factors OF1 and OF2. The cal-  
and two dependent sources are available for this pur- ibration target is reached when the DC fraction of the  
pose. The fixed voltage sources should be selected for differential signals PCHi versus NCHi is zero.  
external sensors which provide stable, self-regulating  
signals.  
OR1  
OR2  
Code  
0x0  
Addr 0x10, bit 1:0  
Addr 0x10, bit 3:2  
So that photosensors can be operated in optical en-  
coders iC-MQF tracks changes in offset voltages via  
the signal-dependent source VDC when used in con-  
junction with the controlled sensor current source for  
LED supply (pin ACO). The VDC potential automati-  
cally tracks higher DC photocurrents. To this end inter-  
mediate potentials VDC1 and VDC2 must be adjusted  
to a minimal AC ripple using the selectable k factor (this  
calibration must be repeated when the gain setting is  
altered).  
Range  
x1  
0x1  
x2  
0x2  
x6  
0x3  
x12  
Table 24: Offset Range CH1, CH2  
OF1  
OF2  
Code  
0x000  
0x001  
...  
Addr 0x11, bit 6:0; Addr 0x10, bit 7:4  
Addr 0x13, bit 2:0; Addr 0x12, bit 7:0  
Factor  
Code  
0x400  
0x401  
...  
Factor  
0
The feedback of pin voltage V(ACO) fulfills the same  
task as source VDC when MR bridge sensors are sup-  
plied by the controlled sensor current source or by sup-  
ply VDDS.  
0
0.00098  
+ Code / 1023  
0.00098  
(Code - 1024)  
/ 1023  
0x3FF  
1
0x7FF  
1  
VOS12  
Code  
0x0  
Addr 0x05, bit 5:4  
Type of source  
Table 25: Offset Factors CH1, CH2  
Feedback of ACO pin voltage: V(ACO)/20  
for supply-dependent differential voltage signals  
for Wheatstone sensor bridges  
Phase Correction CH1 vs. CH2  
The phase shift between CH1 and CH2 can be ad-  
justed using parameter PH12. Following phase cal-  
ibration other calibration parameters may have to be  
readjusted (those as amplitude compensation, inter-  
mediate potentials and offset voltages).  
to measure VDDS  
0x1, 0x2  
Fixed reference: V05 of 500 mV, V025 of 250 mV  
for single-ended current or voltage signals  
for single-ended or differential stabilized signals  
(regulated sensor or waveform generator)  
0x3  
Self-tracking sources VDC1, VDC2 (125...250 mV)  
for differential current signals  
PH12  
Code  
0x000  
0x001  
...  
Addr 0x14, bit 5:0; Addr 0x13, bit 7:4  
for differential voltage signals*  
Correction angle  
0 °  
Code  
0x200  
0x201  
...  
Correction angle  
0 °  
Notes  
*) Requires MUX(5:4) = 3 and the sensor’s  
reference connected to input X2; refer to Elec.  
Char. No. 105 for acceptable input voltage).  
+ 0.0204 °  
0.0204 °  
10.42 ° ·  
+ 10.42 ° ·  
Table 22: Offset Reference Source CH1, CH2  
PH12 /511  
(PH12 - 512) /511  
0x1FF  
+ 10.42 °  
0x3FF  
10.42 °  
VDC1  
Addr 0x0E, bit 1:0; Addr 0x0D, bit 7:0  
Addr 0x0F, bit 5:0; Addr 0x0E, bit 7:4  
VDCi = (1 k) · VPi + k · VNi  
k = 1/3  
VDC2  
Code  
0x000  
0x001  
...  
Table 26: Phase Correction CH1 vs. CH2  
k = 0.3386  
k = 1/3 + 1/3 · Code/1023  
k = 0.5000 (center setting)  
...  
0x200  
...  
0x3FF  
Notes  
k = 2/3  
Adjustment is required only if VOS12 = 0x3  
Table 23: Intermediate Voltages CH1, CH2  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 25/37  
SIGNAL CONDITIONING CH0  
The voltage signals needed to calibrate the zero chan- Offset Calibration CH0  
nel are available in mode Calibration 1. The relative The offset reference source is selected with VOS0.  
phase position of the ungated zero signal Zin com- The offset compensation is set with OR0 and OF0 (see  
pared to A and B can be determined in mode System Offset Calibration CH1 and CH2 for further informa-  
Test.  
tion).  
Gain Settings CH0  
The CH0 gain is set in the following steps:  
VOS0  
Code  
0x0  
Addr 0x04, bit 5:4  
Source  
0.05 · V(ACO)  
0.5 V  
1. The sensor supply controller is shut down and the  
constant current source for the ACO output is set to  
the same values as during the calibration of CH1 and  
CH2 (registers ACOT, ACOR and ACOS).  
0x1  
0x2  
0.25 V  
0x3  
VDC1  
Table 29: Offset Reference Source CH0  
2. The coarse gain is selected so that a differential sig-  
nal amplitude of ca. 1 Vpp is produced internally (sig-  
nal PCH0 versus NCH0).  
OR0  
Code  
0x0  
Addr 0x07, bit 1:0  
Range  
x1  
3. GF0 then permits fine gain adjustment to 1 Vpp. The  
total gain is accrued from GR0 x GF0.  
0x1  
x2  
0x2  
x6  
0x3  
x12  
GR0  
Code  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
Addr 0x07, bit 6:4  
Range R0 = 0x9  
Range R0 = 0x9  
Table 30: Offset Range CH0 (coarse)  
0.5  
1.0  
1.3  
1.7  
2.2  
2.6  
3.3  
4.0  
2.0  
4.1  
OF0  
Code  
0x00  
0x01  
...  
Addr 0x09, bit 5:0  
5.3  
Factor  
Code  
0x20  
0x21  
...  
Factor  
6.7  
0
0
8.7  
0.0322  
+ Code /31  
1
0.0322  
(Code - 32 ) /31  
1  
10.5  
13.2  
16.0  
0x1F  
0x3F  
Table 31: Offset Factor CH0 (fine)  
Table 27: Gain Range CH0  
GF0  
Code  
0x00  
0x01  
...  
Addr 0x08, bit 4:0  
Factor  
1.00  
1.06  
6.25GF0  
31  
0x1F  
6.25  
Table 28: Fine Gain Factor CH0  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 26/37  
SIGNAL LEVEL CONTROL and SIGNAL MONITORING  
iC-MQF’s signal level controller can keep the input sig- set and phase correction values without interference  
nals for the sine-to-digital converter constant, regard- by signal level controlling.  
less of temperature and aging effects, when using con-  
trol output ACO for tracking the sensor supply.  
Addr 0x15, bit 5:1  
ACOS (4:0)  
ACOR(1:0) presets the output current range of pin  
ACO, the control’s highside current source output, and  
ACOT(1:0) defines its control mode.  
Code  
0x00  
0x01  
...  
Square control ACOT = 00  
Vpp() 1800 mV (60 %)  
Vpp() 1830 mV (61 %)  
...  
77  
1800 mV 77(1.25Code)  
The resulting internal signal amplitude and the con-  
trol’s operating range are both monitored and thus can  
be used for error messaging.  
0x19  
...  
Vpp() 3000 mV (98 %)  
...  
0x1F  
Vpp() 3600 mV (120 %)  
Addr 0x15, bit 7:6  
Table 34: Square Control Setpoint (internal sin/cos  
signal amplitude)  
ACOR (1:0)  
Code  
00  
Function  
5 mA - Range  
10 mA - Range  
25 mA - Range  
50 mA - Range  
01  
10  
11  
Table 32: ACO Output Current Range (applies for con-  
trol modes and constant current source)  
Addr 0x16, bit 1:0  
ACOT (1:0)  
Code  
00  
Function  
Sine/cosine square control  
Sum control  
01  
10  
Constant current source  
Not permitted (device test only)  
11  
Figure 8: Signal monitoring and test signals in  
Test 5 mode (example for ACOS(4:0) =  
0x19).  
Table 33: ACO Output Control Mode  
Notice: Excessive input signals or internal signal clipping  
can interfere control operation, so that the preset operating  
point may not be reached (upon power up) or maintained  
(upon disturbances). Use Control Error 2 and Signal Error 1  
for monitoring and configure EMASKA accordingly.  
Signal monitoring and limits  
ADJ (4:0)  
0x00  
0x01  
...  
Vt()min ... max  
0.72 V...2.34 V  
0.732 V...2.38 V  
...  
ADJ (4:0)  
0x19  
...  
Vt()min ... max  
1.2 V ...3.9 V  
...  
The standard control mode is square control which  
uses (sine² + cosine²) to adjust the ACO output current.  
ACOS(4:0) determines the internal signal amplitudes  
within the closed-loop control and, simultaneously, the  
amplitude monitoring thresholds. The ideal setpoint  
here is 3 Vpp referred to the sin/cos test signals avail-  
able in operating mode Test 5.  
0x1F  
1.44 V...4.68 V  
Notes  
All values nominal, see also Elec. Char. Nos. 605,  
606  
Table 35: Signal Monitoring  
The signal monitoring thresholds are tracked accord-  
ing to ACOS (4:0) and fit for square control mode.  
When using sum control mode a different operating  
point can be required for which the monitoring thresh-  
olds may not be suitable. In this case signal monitoring  
With sum control mode selected, the DC references  
(VDC1 + VDC2) are used to adjust the output current  
of pin ACO.  
The constant current source is intended for signal con- should be disabled via the error mask (see EMASKA  
ditioning purposes, i.e. for the adjustment of gain, off- etc.).  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 27/37  
Addr 0x15, bit 5:1  
Addr 0x15, bit 5:1  
ACOS (4:0)  
Code  
0x00  
ACOS (4:0)  
Code  
0x00  
Sum control ACOT = 01  
VDC1 + VDC2 245 mV  
VDC1 + VDC2 249 mV  
...  
Constant current source ACOT = 10  
I(ACO) 3.125% Isc(ACO)  
I(ACO) 6.25% Isc(ACO)  
0x01  
0x01  
77  
...  
245mV 77(1.25Code)  
...  
...  
3.125% (Code + 1) Isc(ACO)  
0x1F  
I(ACO) 100% Isc(ACO)  
See Elec. Char. No. 602 for Isc(ACO)  
0x1F  
VDC1 + VDC2 490 mV  
Notes  
Table 36: Sum Control Setpoint (DC average)  
Table 37: Current Source Setpoint (ACO output cur-  
rent)  
SINE-TO-DIGITAL CONVERSION  
SELRES  
Addr 0x21, bit 6:0; Addr 0x20, bit 7:0  
iC-MQF’s converter resolution is selected with SEL-  
RES. For a resolution of 4, four angle steps per in-  
put signal period are generated so that the switching  
frequency at the A and B output matches the sine fre-  
quency at the input.  
Value  
STEP  
IPF  
fin()max  
Angle Steps  
Per Period  
Interpolation  
Factor  
Permissible Input  
Frequency  
(@ MTD)  
0x0001  
0x0002  
0x0004  
0x0005  
0x0008  
0x000A  
0x0014  
0x0019  
0x0028  
0x0032  
0x0064  
0x007D  
0x00C8  
0x00FA  
0x01F4  
0x03E8  
Notes  
4
1
200 kHz (0x1)  
200 kHz (0x1)  
200 kHz (0x1)  
200 kHz (0x1)  
200 kHz (0x1)  
200 kHz (0x1)  
166 kHz (0x1)  
133 kHz (0x1)  
83 kHz (0x1)  
66 kHz (0x1)  
20 kHz (0x4*)  
16 kHz (0x4*)  
7.1 kHz (0x6*)  
5.7 kHz (0x6*)  
2.5 kHz (0x7*)  
0.8 kHz (0x8*)  
8
2
The programmable converter hysteresis is determined  
by SELHYS. It is set in multiples of the increment size  
and may have a maximum of 45° of the input signal  
period.  
16  
4
20  
5
32  
8
40  
10  
20  
25  
40  
50  
100  
125  
200  
250  
500  
1000  
80  
SELHYS  
Code  
0x0  
Addr 0x1F, bit 3:0  
100  
160  
200  
400  
500  
800  
1000  
2000  
4000  
Function  
nearly none  
0.09°  
Code  
Function  
2.0°  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
0x1  
4.0°  
0x2  
0.18°  
6.0°  
0x3  
0.36°  
8.0°  
0x4  
0.45°  
10.0°  
11.25°  
22.5°  
45°  
0x5  
0.72°  
0x6  
1.0°  
0x7  
1.5°  
Other settings are not allowed.  
*) Recommended MTD setting, refer to Design  
Review page 36.  
Table 39: Converter Hysteresis  
Table 38: Converter Resolution  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 28/37  
OUTPUT SETTINGS AND ZERO SIGNAL  
The interpolation factor IPF determines the number of Zero Signal Generation  
A/B signal cycles per input signal period. These A/B The generation of the zero signal is dependant on the  
signal cycles are counted in the internal register POS, internal signal ZIn which is produced by comparing the  
which can be used to blank the zero pulse.  
calibrated CH0 input signals. The offset calibration of  
CH0 influences the width of the ZIn signal. The correct  
POS is set to 0 if the input sine/cosine phase angle is position of ZIn should be checked before configuring  
zero degrees, its maximum value is POSmax = IPF-1. the zero signal blanking logic. This is possible by com-  
The internal A/B signal cycle adheres to the following paring the ZIn signal with the PA/PB signals in Mode  
pattern:  
ABZ: ZIn is displayed on pin ERR if EMASKA = 0x010  
and EMTD = 0x0 is programmed.  
A 1 1 0 0  
B 1 0 0 1  
Table 40: Internal A/B Signal Cycle  
Inversions and reversals can be selected for the output  
of the A/B/Z signals and the zero signal can be blanked  
with any combination of the internal A and B signal by  
programming parameter CFGABZ.  
Figure 10: Signal path from ZIn to PZ/NZ  
CFGABZ  
Addr 0x1D, bit 7:0  
Bit  
7
Function and Description  
The blanking of the ZIn signal by CFGZPOS is relative  
to the internal A/B cycle count POS. Multiple settings  
of CFGZPOS are possible at high resolutions, choose  
a setting which centers the output signal PZ in relation  
to ZIn. Attention: Programming CFGZPOS to a cycle  
count larger than POSmax leads to undetermined zero  
signal prevention.  
Output inversion for channel A: PA<>NA  
PA = P1i xor CFGABZ(7)  
6
5
4
Output inversion for channel B: PB<>NB  
PB = P2i xor CFGABZ(6)  
Output inversion for index channel: PZ<>NZ  
PZ = P0i xor CFGABZ(5)  
Exchange of the A/B signals  
0: P1i = A, P2i = B  
1: P1i = B, P2i = A  
CFGZPOS Addr 0x1E, bit 7:0  
Zero Signal Blanking CFGABZ(3:0)  
Enable for A = 1, B = 1  
Bit  
7
Description  
3
2
1
0
0: Mask not used  
Enable for A = 1, B = 0  
1: Mask Enable  
(zero signal blanking with POS enabled)  
Enable for A = 0, B = 0  
Enable for A = 0, B = 1  
(6:0)  
For IPF < 200:  
blanking of ZIn if POS = CFGZPOS(6:0)  
For IPF200:  
Table 41: Output Logic  
blanking of ZIn if POS = 8 * CFGZPOS(6:0)  
Table 42: Zero Signal Positioning  
ENZFF  
Addr 0x02, bit 4  
Code  
Description  
0
1
Zero signal output with state change of P0i  
Zero signal output synchronized with A/B signal  
Table 43: Zero Signal Synchronization  
Figure 9: Signal Path from A and B to PA/NA and  
PB/NB  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 29/37  
CFGOSZ  
Code k  
0x0  
Addr 0x25, bit 2:0  
Output Driver Configuration  
Code k  
0x4  
The output drivers can be used as push-pull, lowside  
or highside drivers; the mode of operation is deter-  
mined by TRIHL(1:0).  
140 %  
130 %  
120 %  
110 %  
105 %  
100 %  
92 %  
n/a  
0x1  
0x5  
0x2  
0x6  
0x3  
0x7  
The slew rate can be set using SSR to suit the length  
of the cable. Lower slew rates are used to avoid steep  
edges when transmitting via short wires, but can re-  
sult in a limiting of the maximum permissible output  
frequency. (For example, this frequency is 300 kHz at  
a slew rate of 300 ns if the RS422 specification is to be  
adhered to. (the tolerances in Electrical Characteris-  
tics, numbers 506/507, must be observed)).  
Table 47: Calibration of MTD Oscillator  
The calibration must be executed in Mode 191/193  
with register MTD(3:0) = 0x0F. Apply a sine signal at  
the inputs X3 to X6 and observe the length of the low  
pulses at pin PB. The setting of CFGOSZ is correct if  
the observed tclk()lo is close to the nominal value of  
Elec. Char. no. 511.  
The short-circuit current can be set by SIK and can be  
minimized when connecting to on board logic or to an  
external 24 V line driver. If the outputs are used as  
RS422-compatible 5 V drivers, it is recommended that  
SIK = 11 to keep the power dissipation of iC-MQF low.  
MTD  
Code  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
Note  
Addr 0x1F, bit 7:4  
Mode ABZ: tMTD  
not available  
50 ns  
Mode 191/193: tclk()lo  
not available  
not available  
not available  
50 ns  
75 ns  
TRIHL  
Code  
00  
Addr 0x22, bit 1:0  
100 ns  
Function  
125 ns  
62.5 ns  
150 ns  
75 ns  
Push-pull operation  
175 ns  
87.5 ns  
01  
Highside driver mode (P channel open drain)  
Lowside driver mode (N channel open drain)  
Not permitted  
200 ns  
100 ns  
10  
11  
300 ns  
150 ns  
400 ns  
200 ns  
Table 44: Output Drive Mode  
600 ns  
300 ns  
800 ns  
400 ns  
1.0 µs  
500 ns  
SSR  
Code  
00  
Addr 0x22, bit 3:2  
Function  
1.2 µs  
600 ns  
1.4 µs  
700 ns  
Nominal value 12 ns  
Nominal value 25 ns  
Nominal value 80 ns  
Nominal value 220 ns  
See Elec. Char. 505/ 506  
1.6 µs  
800 ns  
01  
All timing specifications are nominal values, see  
Elec. Char. 514 for tolerances.  
10  
11  
Note  
Table 48: Minimum Transition Distance  
Table 45: Output Slew Rate  
If CFGOSZ(2:0) is set correctly, the minimum tran-  
sition distance of the output signals can be preset  
by MTD(3:0). This setting limits the maximum possi-  
ble output frequency to ensure a safe transmission to  
counters, which permit only a low input frequency and  
thus cannot debounce spikes. The configuration of the  
RS422 output drivers (with regard to the driver current  
and slew rate) and the cable length must be taken into  
account when choosing the minimum edge distance.  
SIK  
Code  
00  
Addr 0x22, bit 5:4  
Function  
typ. 2 mA, linking logic or driver ICs  
typ. 8 mA  
01  
10  
typ. 40 mA  
11  
typ. 100 mA, recommended for RS422  
See Elec. Char. 503/ 504  
Note  
Table 46: Output Short-Circuit Current  
Signal Filter  
Minimum Transition Distance  
Register CFGOSZ(2:0) calibrates the timing of tMTD  
the minimum transition distance in Mode ABZ, and  
tclk()lo, the low pulse duration of the clock signals in  
Mode 191/193 (see Elec.Char., no. 511 and no. 514).  
ENF  
Code  
0
Addr 0x03, bit 7  
,
Function  
Disabled  
1
Noise limiting signal filter enabled (default)  
Table 49: Noise Filter  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 30/37  
ERROR MONITORING AND ALARM OUTPUT  
EMASKA  
Addr 0x18, bit 1:0; Addr 0x17, bit 7:0  
Error event  
iC-MQF monitors the input signals, the internal inter-  
polator and the sensor supply controller via which the  
input signal levels are stabilized. If the sensor supply  
tracking unit reaches its control limits this can be inter-  
preted as an end-of-life message, for example.  
Bit  
9
Line count error (wrong count of sine periods  
between two zero pulses)  
8
Temporal tracking error (out-of-sync: position output  
differs from actual angle, e.g. after cycling power)  
7
Loss of tracking (excessive input frequency)  
6 *  
Configuration error  
(SDA or SCL pin error, no acknowledge signal from  
EEPROM or invalid check sum)  
Three separate error masks stipulate whether error  
events are signaled as an alarm via I/O pin ERR (mask  
EMASKA), whether they cause the RS422 line drivers  
to shutdown or not (mask EMASKO) or whether they  
are stored in the EEPROM (mask EMASKE).  
5
4
Excessive temperature warning  
Ungated index enable signal ZIn  
(comparated X1/X2 inputs for CFGABZ and  
CFGZPOS adjustment, at EMTD = 0x0)  
3
2
1
0
Control error 2: range at max. limit  
Control error 1: range at min. limit  
Signal error 2: clipping  
Alarm Output: I/O-pin ERR  
Signal error 1: loss of signal (poor differential  
amplitude**, wrong s/c phase)  
Pin ERR is operated by a current-limited open-drain  
output driver and has an internal pull-up which can be  
disabled. The ERR pin also acts as an input for exter-  
nal system error messaging and for switching iC-MQF  
to test mode for which a voltage of larger than VTMon  
must be applied (see page 33). Interpretation of an  
external system error message and the phase of the  
message output is configured by EPH, the minimum  
indication time by EMTD.  
Code  
1
Function  
Enable: event changes state of pin ERR  
(if EMASKO does not disable the output function).  
0
Disable: event does not affect pin ERR.  
Notes  
*) Pin ERR can not pull low on configuration error,  
use high-active error logic instead (EPH = 1);  
**) Also due to excessive input signals or internal  
signal clipping.  
Table 53: Error Mask Alarm Output ERR  
EPH  
Code  
0
Addr 0x1A, bit 4  
State on error  
active low  
State w/o error  
Line Count Error  
high impedance,  
with input function for a  
low-active system error;  
Line count monitoring is particularly interesting for en-  
coder systems. iC-MQF counts the number of sine cy-  
cles between two adjacent zero pulses and compares  
it to the reference value LINECNT. In case of a devi-  
ation the line count error is set. The check is paused  
if the direction of rotation changes, and is restarted on  
the next zero pulse. During mode System Test signal  
TP1 indicates when a first line count check has fin-  
ished.  
1
high impedance  
active low  
Table 50: I/O Logic, Alarm Output ERR  
EMTD  
Code  
0x0  
Addr 0x18, bit 6:4  
Indication Time  
0 ms  
Code  
0x4  
0x5  
0x6  
0x7  
Indication Time  
50 ms  
LINECNT  
Code  
Addr 0x24, bit 5:0; Addr 0x23, bit 7:0  
0x1  
12.5 ms  
25 ms  
62.5 ms  
75 ms  
Function Value  
Line Count (CPR)  
0x2  
0x0000  
...  
0
1
0x3  
37.5 ms  
87.5 ms  
...  
Code + 1  
16384  
0x3FFF  
Example  
16383  
Table 51: Min. Indication Time, Alarm Output ERR  
Code disc of 256 CPR LINECNT = 255  
Table 54: Line Count Reference  
EPU  
Code  
0
Addr 0x1A, bit 5  
Function  
Excessive Temperature Warning  
No internal pull-up  
If the temperature warning threshold is exceeded, an  
excessive temperature message is generated which is  
processed in the temperature monitor block (Tw corre-  
sponds to T2).  
1
Internal 300 µA pull-up current source active  
Table 52: Pull-Up Enable, Alarm Output ERR  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 31/37  
Exceeding the temperature warning threshold can be Error Protocol  
signaled at pin ERR or used to shut down the line Out of the errors enabled by EMASKE both the first  
drivers (via mask EMASKO). The temperature warn- (under ERR1) and last error (under ERR2) which occur  
ing is deleted when the temperature drops below Tw  
-Thys  
after the iC-MQF is turned on are stored in the EEP-  
ROM.  
.
Excessive Temperature Shutdown  
If the temperature shutdown threshold Toff = Tw + T  
The EEPROM also has a memory area in which all oc-  
curring errors can be stored (ERR3). Only the fact that  
is exceeded the line drivers are shut down independent an error has occurred can be recorded, with no infor-  
of EMASKO.  
mation as to the time and count of appearance of that  
error given. Error recording can be used to statistically  
evaluate the causes of system failure, for example.  
Driver Shutdown  
EMASKE  
Addr 0x1C, bit 1:0; Addr 0x1B, bit 7:0  
Error event  
PDMODE  
Addr 0x1A, bit 6  
Bit  
Code  
Function  
9
Line count error  
0
1
Driver shutdown terminates with the error event  
Permanent driver shutdown until cycling power  
8
7
Loss of tracking  
6
Table 55: Driver Activation  
5
Excessive temperature warning  
System error  
4
EMASKO  
Addr 0x1A, bit 1:0; Addr 0x19, bit 7:0  
Error event  
3
Control error 2  
Bit  
9
2
Control error 1  
Line count error (wrong count of sine periods  
between two zero pulses)  
1
Signal error 2  
0
Signal error 1  
8
Temporal tracking error (out-of-sync: position output  
differs from actual angle, e.g. after cycling power)  
Code  
Function  
1
0
Enable: event will be latched  
Disable: event will not be latched  
7
Loss of tracking (excessive input frequency)  
6 *  
Configuration error (ROM bit fix on 1)  
SDA or SCL pin error, no acknowledge signal from  
EEPROM or invalid check sum  
Table 57: Error Mask EEPROM Savings  
5
4
Excessive temperature warning  
System error: I/O pin ERR pulled to low by an  
external error signal (only permitted with EPH = 0)  
ERR1  
ERR2  
ERR3  
Bit  
Addr 0x31, bit 1:0; Addr 0x30, bit 7:0  
Addr 0x32, bit 3:0; Addr 0x31, bit 7:2  
Addr 0x33, bit 5:0; Addr 0x32, bit 7:4  
Error Event  
3
2
1
0
Control error 2: range at max. limit  
Control error 1: range at min. limit  
Signal error 2: clipping  
6:0  
Assignation according to EMASKE  
Signal error 1: loss of signal (poor differential  
amplitude**, wrong s/c phase)  
Code  
Function  
Code  
1
Function  
0
1
No event  
Enable: event resets pin ACO to the 5 mA range,  
tristates the line driver outputs and pin ERR (i.e.  
low-active error messages can not be displayed)  
Registered error event  
Table 58: Error Protocol  
0
Disable: output functions remain active  
Notes  
*) The configuration error is always enabled.  
**) Also due to excessive input signals or internal  
signal clipping.  
Table 56: Error Mask Driver Shutdown  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 32/37  
REVERSE POLARITY PROTECTION  
iC-MQF is protected against a reversal of the supply The following pins are also reverse polarity protected:  
voltage and has short-circuit-proof, error-tolerant line PA, NA, PB, NB, PZ, NZ, ERR, VDD, GND and ACO.  
drivers. A defective device cable or one wrongly con-  
nected is tolerated by iC-MQF. All circuitry components Conditions: This is based on the condition that GNDS  
which draw the monitored supply voltage from VDDS only receives load currents from VDDS. The maxi-  
and GNDS are also protected.  
mum voltage difference between GNDS and another  
pin should not exceed 6 V, the exception here being  
pin ERR (see Test Mode page 33).  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 33/37  
TEST MODE  
EMODE  
Addr 0x1C, bit 6:4  
iC-MQF switches to test mode if a voltage larger  
than VTMon is applied to pin ERR (precondition:  
EMODE(0) = 1). In response iC-MQF transmits its  
configuration settings as current-modulated data us-  
ing I/O pin ERR either directly from the RAM (for  
EMODE(2) = 1) or after re-reading the EEPROM (for  
EMODE(2) = 0). If the voltage at pin ERR falls below  
VTMoff, test mode is terminated and data transmission  
aborted.  
Code 2:0  
Function during test  
mode  
Function following test  
mode  
000  
010  
Normal operation  
Normal operation  
Normal operation  
Repeated read out of  
EEPROM  
001  
Transmission of error  
and EEPROM OEM  
data (address range  
0x24 to 0x7F)  
Repeated read out of  
EEPROM  
011  
101  
Transmission of  
EEPROM contents  
(0x0-0x7F)  
Repeated read out of  
EEPROM  
The clock rate for the data output is determined by  
ENFAST. Two clock rates can be selected: 780 ns for  
ENFAST = 1 or 3.125 µs for ENFAST = 0 (see Electri-  
cal Characteristics, B12, for clock frequency and toler-  
ances).  
Transmission of error  
and RAM OEM data  
(ENSL = 1, address  
range 0x3B to 0x43)  
Repeated read out of  
EEPROM  
111  
Transmission of RAM  
contents (0x0-0x7F)  
(ENSL = 1)  
Repeated read out of  
EEPROM  
Data is output in Manchester code via two clock pulses  
per bit. To this end the lowside current source switches  
between a Z state (OFF = 0 mA) and an L state (ON =  
2 mA).  
100  
110  
Not allowed  
Not allowed  
Table 59: Test Mode  
The bit information lies in the direction of the current  
source switch:  
VP  
U23-B  
VP LM393  
VP  
Zero bit: change of state Z L (OFF to ON)  
7
8
6
VP  
VP  
C21  
100nF  
C22  
100nF  
-
U22-S  
AD8029  
VN  
U23-S  
LM393  
GND  
7
One bit: Change of state L Z (ON to OFF)  
5
+
4
4
JP4  
R24  
470  
ERR  
Transmission consists of a start bit (a one bit), 8 data  
bits and a pause interval in Z state (the timing is iden-  
tical with an EEPROM access via the I2C interface).  
max. 5V  
VDD  
M22  
IRLML6401  
C24  
VP  
R26  
100pF  
100k  
R23  
2K  
C26  
100nF  
R28  
51k  
U22-A  
U23-A  
LM393  
R25  
2k  
2
D21  
LL4148  
-
M21  
6
2
DATA_ON  
AD8029  
NDIS  
-
2N7002  
3
1
DATA_OUT  
+
3
Example: byte value = 1000 1010  
Transmission including the start bit: 1 1000 1010  
In Manchester code: LZ LZZL ZLZL LZZL LZZL  
8
+
R21  
475k  
8
4
R27  
100k  
U21  
LM285  
VP  
5
C25  
100nF  
R22  
365k  
VDD  
C23  
100nF  
dra_mq1d_error_schem  
Decoding of the data stream:  
Figure 11: Example circuit for the decoding and  
conversion of the current-modulated sig-  
nals to logic levels.  
ZZZZZZ LZ LZ ZL ZL ZL LZ ZL LZ ZL ZZZZZZ  
Pause 1 1 0 0 0 1 0 1 0 Pause  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 34/37  
Quick programming in the  
single master system  
Quick programming in the  
multimaster system  
For the purpose of signal conditioning it is possible to Fast programming of iC-MQF, byte for byte, is possible  
reprogram iC-MQF quickly. If test mode is quit and with a multimaster-competent programming device. To  
EMODE(1:0) = 00, iC-MQF reads the configuration this end the integrated I2C slave mode must be en-  
data in again.  
abled by ENSL; iC-MQF then reacts to the device ID  
0x55.  
In operating modes Mode ABZ, System Test and Mode  
191/193 the content of the EEPROM is read in its en-  
tirety. For other modes the address area is limited to  
0x0-0x31 so that the configuration time for either cali-  
bration or IC testing is shortened.  
If no EEPROM is connected, iC-MQF automatically  
sets the I2C slave mode enable (after a maximum of  
150 ms, see Electrical Characteristics, D11) and deac-  
tivates the digital section (ENSL = 1 and END = 0 are  
set). Any number of bytes can be written at any one  
time; the received data is accepted directly into the  
If the setup is switched to test mode during the readin RAM register. After programming END = 1 must be  
procedure, readin is aborted and only repeated once set to restart sine-to-digital conversion in the selected  
test mode has been terminated.  
mode of operation.  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 35/37  
GENERAL APPLICATION HINTS  
Refer to the datasheet of iC-MQ.  
APPLICATION NOTES: SIGNAL CONDITIONING  
Regarding a description of the principle signal conditioning procedure refer to the datasheet of iC-MQ.  
Signal Conditioning Example 1:  
Photodiode array connected to current inputs, LED supply with constant current source  
Step  
1.  
Operating Mode  
Calibration and Signal  
Presets  
VOS12= 0x3, GF1= 0x400, VDC1= 0x200, OF1= 0x0, GF2= 0x10, VDC2= 0x200, OF2= 0x0  
Example: LED current approx. 6.25 mA  
ACOT(1:0)= 0x2 (constant current source), ACOR(1:0)= 0x3 (range 50 mA), ACOS(4:0)= 0x04  
(value 12.5)  
2.  
Calibration of Channel 1:  
Test 5  
Parameter GR12: Adjust the diff. signal at PA vs. NA to approx. 6 Vpp amplitude  
Parameter GF1: Adjust the diff. signal at PA vs. NA to exactly 6 Vpp amplitude  
Parameter VDC1: Minimize the AC fraction of VDC1 at PZ (ripple < 10 mVpeak)  
Parameter OR1, OF1: Minimize the DC fraction of the diff. signal PA vs. NA (< 5 mVdc)  
Calibration of Channel 2:  
Test 5  
Calibration 2  
Test 5  
3.  
4.  
Test 5  
Test 5  
Parameter GF2: Adjust the diff. signal at PB vs. NB to exactly 6 Vpp amplitude  
Parameter VDC2: Minimize the AC fraction of VDC2 at NZ (ripple < 10 mVpeak)  
Parameter OR2, OF2: Minimize the DC fraction of the diff. signal PB vs. NB (< 5 mVdc)  
Calibration 2  
Test 5  
System Test  
1. Iteration, Calibration of Channel 1 vs. Channel 2:  
Parameter OF1: Adjust duty ratio of A4 at PA to 50 %  
Parameter OF2: Adjust duty ratio of B4 at PB to 50 %  
Parameter PH12: Adjust duty ratio of A8 at NA to 50 %  
Parameter GF1: Adjust duty ratio of B8 at NB to 50 %  
5.  
6.  
Calibration 2  
System Test  
Repeated Adjustment of Intermediate Voltages, VDC1 and VDC2:  
Parameter VDC1: Minimize the AC fraction of VDC1 at PZ  
Parameter VDC2: Minimize the AC fraction of VDC2 at NZ  
2. Iteration, Calibration of Channel 1 vs. Channel 2:  
Parameter OF1: Adjust duty ratio of A4 at PA to 50 %  
Parameter OF2: Adjust duty ratio of B4 at PB to 50 %  
Parameter PH12: Adjust duty ratio of A8 at NA to 50 %  
Parameter GF1: Adjust duty ratio of B8 at NB to 50 %  
Table 60: Conditioning example 1  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 36/37  
Signal Conditioning Example 2:  
Encoder supplying 100 mVpp to voltage inputs  
Step  
1.  
Operating Mode  
Calibration and Signal  
Presets  
VOS12= 0x1, GF1= 0x400, OF1= 0x0, GF2= 0x10, OF2= 0x0  
2.  
Calibration of Channel 1:  
Test 5  
Parameter GR12: Adjust the diff. signal at PA vs. NA to approx. 6 Vpp amplitude  
Parameter GF1: Adjust the diff. signal at PA vs. NA to exactly 6 Vpp amplitude  
Parameter OR1, OF1: Minimize the DC fraction of the diff. signal PA vs. NA (< 5 mVdc)  
Calibration of Channel 2:  
Test 5  
Test 5  
3.  
4.  
Test 5  
Test 5  
Parameter GF2: Adjust the diff. signal at PB vs. NB to exactly 6 Vpp amplitude  
Parameter OR2, OF2: Minimize the DC fraction of the diff. signal PB vs. NB (< 5 mVdc)  
Test 5  
System Test  
Calibration of Channel 1 vs. Channel 2:  
Parameter OF1: Adjust duty ratio of A4 at PA to 50 %  
Parameter OF2: Adjust duty ratio of B4 at PB to 50 %  
Parameter PH12: Adjust duty ratio of A8 at NA to 50 %  
Parameter GF1: Adjust duty ratio of B8 at NB to 50 %  
Table 61: Conditioning example 2  
APPLICATION NOTES: CIRCUIT EXAMPLES  
Refer to the datasheet of iC-MQ.  
DESIGN REVIEW: Function Notes  
iC-MQF 3  
No.  
1
Function, Parameter/Code  
SELRES, MTD  
Description and Application Notes  
Recommended settings for resolution and minimum transition distance:  
STEP 400: tMTD 125 ns (MTD 0x4)  
STEP 800, 1000: tMTD 175 ns (MTD 0x6)  
STEP 2000: tMTD 200 ns (MTD 0x7)  
STEP 4000: tMTD 300 ns (MTD 0x8)  
2
EMASKA, EMASKO, EMASKE  
Error monitoring is not operational for:  
temporal tracking error, and loss of tracking  
Table 62: Notes on chip functions regarding iC-MQF chip release 3.  
iC-Haus expressly reserves the right to change its products and/or specifications. An info letter gives details as to any amendments and additions made to the  
relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by  
email.  
Copying – even as an excerpt – is only permitted with iC-Haus’ approval in writing and precise reference to source.  
iC-Haus does not warrant the accuracy, completeness or timeliness of the specification and does not assume liability for any errors or omissions in these  
materials.  
The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, tness  
for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no  
guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of  
the product.  
iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade  
mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.  
iC-MQF PROGRAMMABLE 12-BIT  
Sin/Cos INTERPOLATION IC WITH RS422 DRIVER  
Rev A1, Page 37/37  
ORDERING INFORMATION  
Type  
Package  
Options  
Order Designation  
iC-MQF  
TSSOP20  
TSSOP20  
iC-MQF TSSOP20  
iC-MQF TSSOP20 ET -40/100  
temperature range -40 °C to +100 °C  
Evaluation Board  
iC-MQF EVAL MQ1D  
For technical support, information about prices and terms of delivery please contact:  
iC-Haus GmbH  
Tel.: +49 (0) 61 35 - 92 92 - 0  
Fax: +49 (0) 61 35 - 92 92 - 192  
Web: http://www.ichaus.com  
E-Mail: sales@ichaus.com  
Am Kuemmerling 18  
D-55294 Bodenheim  
GERMANY  
Appointed local distributors: http://www.ichaus.com/sales_partners  

相关型号:

IC-MQTSSOP20

PROGRAMMABLE 9-BIT Sin/Cos INTERPOLATION IC WITH RS422 DRIVER
ICHAUS

IC-MR

13-BIT S&H SIN/COS INTERPOLATOR WITH CONTROLLER INTERFACES
ICHAUS

IC-MSA

SIN/COS SIGNAL CONDITIONER with AGC and 1Vpp DRIVER
ICHAUS

IC-MSB

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MSB2

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MSB2EVALMSB1D

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MSB2TSSOP20

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MSBEVALMSB1D

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MSBTSSOP20

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MSBTSSOP20-TP

SIN/COS SIGNAL CONDITIONER WITH 1Vpp DRIVER
ICHAUS

IC-MU

Magnetic off-axis absolute position encoder
ICHAUS

IC-MU_13

OFF-AXIS NONIUS ENCODER WITH INTEGRATED HALL SENSORS
ICHAUS