ICS8402015I [IDT]

FemtoClock™ Crystal-to-LVDS/LVCMOS Frequency; FemtoClock ™晶体至LVDS / LVCMOS频率
ICS8402015I
型号: ICS8402015I
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

FemtoClock™ Crystal-to-LVDS/LVCMOS Frequency
FemtoClock ™晶体至LVDS / LVCMOS频率

晶体
文件: 总19页 (文件大小:861K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS8402015I  
FemtoClock™  
Crystal-to-LVDS/LVCMOS Frequency  
DATASHEET  
General Description  
Features  
ICS8402015I is a low phase noise Clock Synthesizer  
and is a member of the HiPerClockSfamily of high  
performance clock solutions from IDT. The device  
provides three banks of outputs and a reference clock.  
Each bank can be enabled by using output enable  
Three banks of outputs:  
S
IC  
Bank A: three single-ended LVCMOS/LVTTL outputs at 25MHz  
or 50MHz  
HiPerClockS™  
Bank B: three single-ended LVCMOS/LVTTL outputs at 125MHz  
Bank C: three differential LVDS outputs at 125MHz  
Reference LVCMOS/LVTTL output at 25MHz  
pins. A 25MHz or 50MHz, 18pF parallel resonant crystal is used to  
generate 25MHz LVCMOS, 125MHz LVCMOS and 125MHz LVDS  
outputs. ICS8402015I is packaged in a small, 32-pin VFQFN  
package that is optimum for applications with space limitations.  
Crystal input frequency: 25MHz  
Maximum output frequency: 125MHz  
RMS phase jitter @ 125MHz, using a 25MHz crystal  
(637kHz - 62.5MHz): 0.373ps (typical) LVDS output  
RMS phase jitter @ 25MHz, using a 25MHz crystal  
(12kHz - 1MHz): 0.64ps (typical) LVCMOS output  
Full 3.3V supply mode  
-40°C to 85°C ambient operating temperature  
Available in lead-free (RoHS 6) package  
Pin Assignment  
32 31 30 29 28 27 26 25  
1
2
3
4
5
6
7
8
V
DDO_REF  
V
DDO_C  
24  
23  
22  
21  
20  
REF_OUT  
GND  
nQC2  
QC2  
nC1  
GND  
QA0  
QC1  
QA1  
QA2  
nQC0  
QC0  
19  
18  
17  
VDDO_A  
VDDO_C  
9
10 11 12 13 14 15 16  
ICS8402015I  
32-Lead VFQFN  
5mm x 5mm x 0.925mm package body  
K Package  
Top View  
ICS8402015AKI REVISION A JUNE 25, 2009  
1
©2009 Integrated Device Technology, Inc.  
ICS8402015I Datasheet  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Block Diagram  
OE1 = Pullup  
OE0, OE2 = Pulldown  
OE  
3
OE[2:0]  
LVCMOS - 25MHz or  
50MHz  
LOGIC  
QA0  
÷10  
÷20  
QA1  
QA2  
25MHz  
XTAL_IN  
LVCMOS - 125MHz  
QB0  
OSC  
Phase  
Detector  
VCO  
500MHz  
XTAL_OUT  
QB1  
QB2  
÷4  
÷4  
÷20  
LVDS - 125MHz  
QC0  
nQC0  
QC1  
nQC1  
QC2  
nQC2  
Pulldown  
MR  
LVCMOS - 25MHz  
REF_OUT  
ICS8402015AKI REVISION A JUNE 25, 2009  
2
©2009 Integrated Device Technology, Inc.  
ICS8402015I Datasheet  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Table 1. Pin Descriptions  
Number  
Name  
Type  
Description  
1
2
VDDO_REF  
REF_OUT  
Power  
Output  
Output supply pin for REF_OUT output.  
Reference clock output. LVCMOS/LVTTL interface levels.  
3, 4, 13, 16,  
25, 32  
GND  
Power  
Power supply ground.  
5, 6, 7  
QA0, QA1, QA2 Output  
Single-ended Bank A clock outputs.LVCMOS/LVTTL interface levels.  
8
9
VDDO_A  
VDDO_B  
Power  
Power  
Power output supply pin for Bank A LVCMOS outputs.  
Power output supply pin for Bank B LVCMOS outputs.  
10, 11, 12  
QB0, QB1, QB2 Output  
Single-ended Bank B clock outputs.LVCMOS/LVTTL interface levels.  
Master reset, resets the internal dividers. During reset, LVCMOS outputs are pulled  
14  
MR  
Input  
Pulldown LOW, and LVDS outputs are pulled LOW and HIGH (QCx pulled LOW, nQCx  
pulled HIGH). LVCMOS/LVTTL interface levels.  
15  
VDD  
Power  
Power  
Output  
Output  
Output  
Power  
Core supply pin.  
17, 24  
18, 19  
20, 21  
22, 23  
26  
VDDO_C  
Power output supply pin for Bank C LVDS outputs.  
Differential Bank C clock outputs. LVDS interface levels.  
Differential Bank C clock outputs. LVDS interface levels.  
Differential Bank C clock outputs. LVDS interface levels.  
Analog supply pin.  
QC0, nQC0  
QC1, nQC1  
QC2, nQC2  
VDDA  
Output enable and configuration pins. See Table 3.  
Pulldown  
27, 29  
28  
OE0, OE2  
OE1  
Input  
Input  
Input  
LVCMOS/LVTTL interface levels.  
Output enable and configuration pin. See Table 3.  
LVCMOS/LVTTL interface levels.  
Pullup  
XTAL_IN,  
XTAL_OUT  
30, 31  
Crystal oscillator interface. XTAL_OUT is the output, XTAL_IN is the input.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
CIN  
Input Capacitance  
4
pF  
Power Dissipation  
Capacitance (per output)  
CPD  
VDD, VDDO_A, VDDO_B, VDDO_C = 3.465V  
15  
pF  
RPULLUP  
Input Pullup Resistor  
51  
51  
k  
kΩ  
RPULLDOWN Input Pulldown Resistor  
QA[0:2],  
Output  
ROUT  
QB[0:2],  
20  
Impedance  
REF_OUT  
ICS8402015AKI REVISION A JUNE 25, 2009  
3
©2009 Integrated Device Technology, Inc.  
ICS8402015I Datasheet  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Function Table  
Table 3. OE Function and ConfigurationTable  
Inputs  
Output Frequency (MHz)  
Bank B  
B1  
Bank A  
Bank C  
C1  
OE2  
0
OE1  
0
OE0  
0
A0  
25  
A1  
Hi-Z  
Hi-Z  
25  
A2  
B0  
B2  
C0  
125  
125  
125  
125  
125  
125  
125  
Hi-Z  
C2  
Hi-Z  
Hi-Z  
Hi-Z  
25  
Hi-Z  
125  
Hi-Z  
125  
Hi-Z  
125  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
125  
Hi-Z  
Hi-Z  
Hi-Z  
125  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
125  
Hi-Z  
Hi-Z  
Hi-Z  
125  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
0
0
1
25  
0*  
0
1*  
1
0*  
1
25  
25  
25  
125  
1
0
0
50  
Hi-Z  
25  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
125  
Hi-Z  
125  
1
0
1
25  
1
1
0
50  
50  
Hi-Z  
Hi-Z  
125  
1
1
1
Hi-Z  
Hi-Z  
Hi-Z  
*Default  
ICS8402015AKI REVISION A JUNE 25, 2009  
4
©2009 Integrated Device Technology, Inc.  
ICS8402015I Datasheet  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VDD  
Inputs, VI  
4.6V  
-0.5V to VDD + 0.5V  
-0.5V to VDDO_LVCMOS + 0.5V  
Outputs, IO (LVCMOS)  
Outputs, IO (LVDS)  
Continuos Current  
Surge Current  
10mA  
15mA  
Operating Temperature Range, TA  
Package Thermal Impedance, θJA  
Storage Temperature, TSTG  
-40°C to +85°C  
37°C/W (0 mps)  
-65°C to 150°C  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VDD = VDDO_A = VDDO_B = VDDO_C = VDDO_REF = 3.3V 5ꢀ, TA = -40°C to 85°C  
Symbol  
VDD  
Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum  
3.465  
Units  
Core Supply Voltage  
Analog Supply Voltage  
V
V
VDDA  
VDD – 0.36  
3.3  
VDD  
VDDO_A,  
VDDO_B,  
VDDO_C,  
VDDO_REF  
Output Supply Voltage  
3.135  
3.3  
3.465  
V
IDD  
Power Supply Current  
Analog Supply Current  
30  
36  
mA  
mA  
IDDA  
IDDO_A,  
IDDO_B,  
IDDO_C,  
IDDO_REF  
Total Output Supply Current  
Outputs Unused  
26  
mA  
ICS8402015AKI REVISION A JUNE 25, 2009  
5
©2009 Integrated Device Technology, Inc.  
ICS8402015I Datasheet  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Table 4C. LVCMOS/LVTTL DC Characteristics, VDD = VDDO_A = VDDO_B = VDDO_REF = 3.3V 5ꢀ, TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
V
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
2
VDD + 0.3  
-0.3  
0.8  
5
V
OE1  
VDD = VIN = 3.465V  
µA  
µA  
µA  
µA  
Input  
High Current  
IIH  
OE0, OE2, MR  
OE1  
V
DD = VIN = 3.465V  
VDD = 3.465V  
150  
-150  
-5  
Input  
Low Current  
IIL  
OE0, OE2, MR  
VDD = 3.465V  
QA0:QA2,  
QB0:QB2,  
REF_OUT  
Output  
High Voltage  
VOH  
VDDO_REF = 3.3V 5ꢀ, IOH = -12mA  
VDDO_REF = 3.3V 5ꢀ, IOL = 12mA  
2.6  
V
V
QA0:QA2,  
QB0:QB2,  
REF_OUT  
Output  
Low Voltage  
VOL  
0.5  
Table 4D. LVDS DC Characteristics, VDD = VDDO_C = 3.3V 5ꢀ, TA = -40°C to 85°C  
Symbol  
VOD  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
575  
50  
Units  
mV  
mV  
V
Differential Output Voltage  
VOD Magnitude Change  
Offset Voltage  
300  
450  
VOD  
VOS  
1.325  
1.4  
1.575  
50  
VOS  
IOz  
VOS Magnitude Change  
High Impedance Leakage  
Power Off Leakage  
mV  
µA  
-10  
-20  
+10  
+20  
-5  
IOFF  
µA  
IOSD  
IOS  
Differential Output Short Circuit Current  
Output Short Circuit Current  
-3.5  
-3.5  
mA  
mA  
-5  
Table 5. Crystal Characteristics  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
25  
MHz  
Equivalent Series Resistance  
Shunt Capacitance  
50  
7
pF  
ICS8402015AKI REVISION A JUNE 25, 2009  
6
©2009 Integrated Device Technology, Inc.  
ICS8402015I Datasheet  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Table 6. AC Characteristics, VDD = VDDO_A = VDDO_B = VDDO_C = VDDO_REF = 3.3V 5ꢀ, TA = -40°C to 85°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
25  
Maximum  
Units  
MHz  
MHz  
MHz  
QA[0:2]  
QA[0:1]  
QB[0:2]  
50  
125  
fout  
Output Frequency  
QC[0:2]/  
nQC[0:2]  
125  
25  
MHz  
MHz  
ps  
REF_OUT  
QA0:QA2,  
REF_OUT  
25MHz, Integration Range:  
12kHz - 1MHz  
0.642  
RMS Phase Noise  
Jitter; NOTE 1  
125MHz, Integration Range:  
637kHz - 62.5MHz  
tjit(Ø)  
QB0:QB2  
QC0:QC2  
0.389  
0.373  
ps  
ps  
125MHz, Integration Range:  
637kHz - 62.5MHz  
QA[0:2], QB[0:2]  
QC[0:2]/nQC[0:2]  
45  
35  
ps  
ps  
Bank Skew;  
NOTE 2, 3  
tsk(b)  
QA[0:2], QB[0:2],  
REF_OUT  
20ꢀ to 80ꢀ  
20ꢀ to 80ꢀ  
0.425  
145  
48  
1.15  
415  
52  
ns  
ps  
Output  
Rise/Fall Time  
tR / tF  
QC[0:2]/  
nQC[0:2]  
QA[0:2], QB[0:2],  
REF_OUT  
Output  
Duty Cycle  
odc  
QC[0:2]/  
nQC[0:2]  
48  
52  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device  
is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal  
equilibrium has been reached under these conditions.  
NOTE 1: Please refer to Phase Noise Plots.  
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 3: Defined as skew within a bank of outputs at the same supply voltage and with equal load conditions.  
ICS8402015AKI REVISION A JUNE 25, 2009  
7
©2009 Integrated Device Technology, Inc.  
ICS8402015I Datasheet  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Parameter Measurement Information  
1.65V 5ꢀ  
1.65V 5ꢀ  
SCOPE  
Qx  
V
SCOPE  
DD,  
V
DD,  
3.3V 5ꢀ  
POWER SUPPLY  
V
DDO_C  
V
DDO_A,  
+
Float GND –  
LVDVS  
V
DDA  
V
DDOL_VB CMODSDA  
Qx  
nQx  
GND  
-1.65V 5ꢀ  
3.3V LVDS Output Load AC Test Circuit  
3.3V LVCMOS Output Load AC Test Circuit  
Phase Noise Plot  
nQC[0:2]  
Qx[0:2]  
Phase Noise Mask  
nQC[0:2]  
Qx[0:2]  
tsk(b)  
Offset Frequency  
f1  
f2  
Where X = Bank A, Bank B or Bank C outputs  
RMS Jitter = Area Under the Masked Phase Noise Plot  
RMS Phase Jitter  
Bank Skew  
VDDO_CMOS  
2
nQC{0:2]  
QC{0:2]  
QA[0:2],  
QB[0:2]  
tPW  
tPW  
tPERIOD  
tPERIOD  
tPW  
tPW  
odc =  
x 100ꢀ  
x 100ꢀ  
odc =  
tPERIOD  
tPERIOD  
Single-Ended Output Duty Cycle/Pulse Width/Period  
Differential Output Duty Cycle/Pulse Width/Period  
ICS8402015AKI REVISION A JUNE 25, 2009  
8
©2009 Integrated Device Technology, Inc.  
ICS8402015I Datasheet  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Parameter Measurement Information, continued  
nQC{0:2]  
80ꢀ  
tF  
80ꢀ  
80ꢀ  
80ꢀ  
tR  
VOD  
20ꢀ  
20ꢀ  
20ꢀ  
20ꢀ  
QA[0:2], QB[0:2]  
QC{0:2]  
tF  
tR  
LVCMOS Output Rise/Fall Time  
LVDS Output Rise/Fall Time  
out  
VDD  
IOZ  
out  
out  
3.3V 5ꢀ POWER SUPPLY  
Float GND  
DC Inpu  
t
LVDS  
_
+
IOSD  
DC Input  
LVDS  
out  
IOZ  
High Impedance Leakage Current Setup  
Differential Output Short Circuit Setup  
VDD  
VDD  
out  
out  
out  
DC Input  
LVDS  
LVDS  
DC Input  
100  
V
OD/VOD  
out  
VOS/VOS  
Differential Output Voltage Setup  
Offset Voltage Setup  
ICS8402015AKI REVISION A JUNE 25, 2009  
9
©2009 Integrated Device Technology, Inc.  
ICS8402015I Datasheet  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Parameter Measurement Information, continued  
VDD  
out  
IOS  
LVDS  
DC Input  
LVDS  
VDD  
IOSB  
IOFF  
out  
Power Off Leakage Setup  
Output Short Circuit Current Setup  
Application Information  
Power Supply Filtering Technique  
As in any high speed analog circuitry, the power supply pins are  
vulnerable to random noise. To achieve optimum jitter performance,  
power supply isolation is required. The ICS8402015I provides  
separate power supplies to isolate any high switching noise from the  
outputs to the internal PLL. VDD, VDDA, VDDO_A, VDDO_B, VDDO_C, and  
VDDO_REF should be individually connected to the power supply  
plane through vias, and 0.01µF bypass capacitors should be used for  
each pin. Figure 1 illustrates this for a generic VDD pin and also  
shows that VDDA requires that an additional 10resistor along with  
a 10µF bypass capacitor be connected to the VDDA pin.  
3.3V  
VDD  
.01µF  
10Ω  
VDDA  
.01µF  
10µF  
Figure 1. Power Supply Filtering  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
LVCMOS Control Pins  
LVDS Outputs  
All control pins have internal pullups or pulldowns; additional  
resistance is not required but can be added for additional protection.  
A 1kresistor can be used.  
All unused LVDS outputs should be terminated with 100resistor  
between the differential pair.  
LVCMOS Outputs  
All unused LVCMOS output can be left floating. There should be no  
trace attached.  
ICS8402015AKI REVISION A JUNE 25, 2009  
10  
©2009 Integrated Device Technology, Inc.  
ICS8402015I Datasheet  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Crystal Input Interface  
The ICS8402015I has been characterized with 18pF parallel  
resonant crystals. The capacitor values shown in Figure 2 below  
were determined using a 25MHz, 18pF parallel resonant crystal and  
were chosen to minimize the ppm error.  
XTAL_IN  
C1  
27p  
X1  
18pF Parallel Crystal  
XTAL_OUT  
C2  
27p  
Figure 2. Crystal Input Interface  
LVCMOS to XTAL Interface  
The XTAL_IN input can accept a single-ended LVCMOS signal  
through an AC coupling capacitor. A general interface diagram is  
shown in Figure 3. The XTAL_OUT pin can be left floating. The input  
edge rate can be as slow as 10ns. For LVCMOS signals, it is  
recommended that the amplitude be reduced from full swing to half  
swing in order to prevent signal interference with the power rail and  
to reduce noise. This configuration requires that the output  
impedance of the driver (Ro) plus the series resistance (Rs) equals  
the transmission line impedance. In addition, matched termination at  
the crystal input will attenuate the signal in half. This can be done in  
one of two ways. First, R1 and R2 in parallel should equal the  
transmission line impedance. For most 50applications, R1 and R2  
can be 100. This can also be accomplished by removing R1 and  
making R2 50.  
VDD  
VDD  
R1  
0.1µf  
50Ω  
Ro  
Rs  
XTAL_IN  
R2  
Zo = Ro + Rs  
XTAL_OUT  
Figure 3. General Diagram for LVCMOS Driver to XTAL Input Interface  
ICS8402015AKI REVISION A JUNE 25, 2009  
11  
©2009 Integrated Device Technology, Inc.  
ICS8402015I Datasheet  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
3.3V LVDS Driver Termination  
A general LVDS interface is shown in Figure 4. In a 100differential  
transmission line environment, LVDS drivers require a matched load  
termination of 100across near the receiver input. For a multiple  
LVDS outputs buffer, if only partial outputs are used, it is  
recommended to terminate the unused outputs.  
3.3V  
50Ω  
3.3V  
LVDS Driver  
+
R1  
100Ω  
50Ω  
100Differential Transmission Line  
Figure 4. Typical LVDS Driver Termination  
ICS8402015AKI REVISION A JUNE 25, 2009  
12  
©2009 Integrated Device Technology, Inc.  
ICS8402015I Datasheet  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
VFQFN EPAD Thermal Release Path  
In order to maximize both the removal of heat from the package and  
the electrical performance, a land pattern must be incorporated on  
the Printed Circuit Board (PCB) within the footprint of the package  
corresponding to the exposed metal pad or exposed heat slug on the  
package, as shown in Figure 5. The solderable area on the PCB, as  
defined by the solder mask, should be at least the same size/shape  
as the exposed pad/slug area on the package to maximize the  
thermal/electrical performance. Sufficient clearance should be  
designed on the PCB between the outer edges of the land pattern  
and the inner edges of pad pattern for the leads to avoid any shorts.  
and dependent upon the package power dissipation as well as  
electrical conductivity requirements. Thus, thermal and electrical  
analysis and/or testing are recommended to determine the minimum  
number needed. Maximum thermal and electrical performance is  
achieved when an array of vias is incorporated in the land pattern. It  
is recommended to use as many vias connected to ground as  
possible. It is also recommended that the via diameter should be 12  
to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is  
desirable to avoid any solder wicking inside the via during the  
soldering process which may result in voids in solder between the  
exposed pad/slug and the thermal land. Precautions should be taken  
to eliminate any solder voids between the exposed heat slug and the  
land pattern. Note: These recommendations are to be used as a  
guideline only. For further information, please refer to the Application  
Note on the Surface Mount Assembly of Amkor’s  
While the land pattern on the PCB provides a means of heat transfer  
and electrical grounding from the package to the board through a  
solder joint, thermal vias are necessary to effectively conduct from  
the surface of the PCB to the ground plane(s). The land pattern must  
be connected to ground through these vias. The vias act as “heat  
pipes”. The number of vias (i.e. “heat pipes”) are application specific  
Thermally/Electrically Enhance Leadframe Base Package, Amkor  
Technology.  
SOLDER  
SOLDER  
PIN  
PIN  
EXPOSED HEAT SLUG  
PIN PAD  
GROUND PLANE  
LAND PATTERN  
(GROUND PAD)  
PIN PAD  
THERMAL VIA  
Figure 5. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)  
ICS8402015AKI REVISION A JUNE 25, 2009  
13  
©2009 Integrated Device Technology, Inc.  
ICS8402015I Datasheet  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Schematic Example  
Figure 6 shows an example of ICS8402015I application schematic. In  
frequency accuracy. For different board layouts, the C1 and C2 may  
be slightly adjusted for optimizing frequency accuracy. Two example  
of LVDS for receiver without built-in termination and one example of  
LVCMOS are shown in this schematic.  
this example, the device is operated at VDD = VDDO_REF = VDDO_A  
=
VDDO_B = VDDO_C = 3.3V. The 18pF parallel resonant 25MHz crystal  
is used. The C1 = 27pF and C2 = 27pF are recommended for  
Logic Input Pin Examples  
QC2  
Set Logic  
Input to  
'1'  
Set Logic  
Input to  
'0'  
VDD  
VDD  
RU1  
1K  
RU2  
Not Install  
nQC2  
Zo = 50 Ohm  
Zo = 50 Ohm  
QC2  
+
-
To Logic  
Input  
To Logic  
R1  
Input  
pins  
100  
pins  
nQC2  
VDDO  
RD1  
RD2  
1K  
Not Install  
VDD=3.3V  
QC0  
U1  
VDDO=3.3V  
VDD  
R2  
10  
nQC0  
VDD  
VDDA  
C3  
0.01uF  
C6  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
GND  
GND  
VDD  
10uF  
VDD  
MR  
Zo = 50 Ohm  
VDDA  
OE0  
OE0  
OE1  
OE2  
QC0  
MR  
OE1  
GND  
QB2  
QB2  
OE2  
QB2  
XTAL_I N  
R3  
50  
XTAL_IN  
XTAL_OUT  
GND  
QB1  
18pF  
QB0  
+
-
C1  
C4  
VDDO_B  
27pF  
X1  
0.1uF  
25MHz  
C5  
0.1uF  
R4  
50  
XTAL_OU T  
Zo = 50 Ohm  
nQC0  
C2  
27pF  
Alternate  
LVDS  
Termination  
VDDO  
(U1:1) VDDO (U1:8) (U1:9)  
R5  
30  
Zo = 50 Ohm  
(U1:17)  
(U1:24)  
C7  
C8  
C9  
C10  
0.1uF  
C11  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
LVCMOS  
R6  
30  
Zo = 50 Ohm  
REF_OUT  
LVCMOS  
Figure 6.ICS8402015I Schematic Example  
ICS8402015AKI REVISION A JUNE 25, 2009  
14  
©2009 Integrated Device Technology, Inc.  
ICS8402015I Datasheet  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS8402015I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8402015I is the sum of the core power plus the analog power plus the power dissipated in the load(s).  
The following is the power dissipation for VDD = 3.3V + 5ꢀ = 3.465V, which gives worst case results.  
Core and LVDS Output Power Dissipation  
Power (core, LVDS) = VDD_MAX * (IDD + IDDO_X + IDDA) = 3.465V * (30mA + 26mA + 36mA) = 318.78mW  
LVCMOS Output Power Dissipation  
Output Impedance ROUT Power Dissipation due to Loading 50to VDDO/2  
Output Current IOUT = VDDO_MAX / [2 * (50+ ROUT)] = 3.465V / [2 * (50+ 20)] = 24.7mA  
Power Dissipation on the ROUT per LVCMOS output  
Power (ROUT) = ROUT * (IOUT)2 = 20* (24.7mA)2 = 12.25mW per output  
Total Power Dissipation on the ROUT  
Total Power (ROUT) = 12.25mW * 6 = 73.5mW  
Total Power Dissipation  
Total Power  
= Power (core, LVDS) + Total Power (ROUT  
= 318.78mW + 73.5mW  
= 392.28mW  
)
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The  
maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 37°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.392W * 37°C/W = 99.5°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 7. Thermal Resistance θJA for 32 Lead VFQFN, Forced Convection  
θJA Vs. Air Flow  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
37.0°C/W  
32.4°C/W  
29.0°C/W  
ICS8402015AKI REVISION A JUNE 25, 2009  
15  
©2009 Integrated Device Technology, Inc.  
ICS8402015I Datasheet  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Reliability Information  
Table 8. θJA vs. Air Flow Table for a 32 Lead VFQFN  
θJA vs. Air Flow  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
37.0°C/W  
32.4°C/W  
29.0°C/W  
Transistor Count  
The transistor count for ICS8402015I is: 2311  
Package Outline and Package Dimensions  
Package Outline - K Suffix for 32 Lead VFQFN  
(Ref.)  
N & N  
Even  
Seating Plane  
(N -1)x e  
(Ref.)  
A1  
IndexArea  
L
A3  
E2  
e
2
N
N
(Ty p.)  
If N & N  
are Even  
Anvil  
Singulation  
1
2
(N -1)x e  
OR  
(Ref.)  
E2  
2
TopView  
D
b
(Ref.)e  
N &N  
Odd  
Thermal  
Base  
A
D2  
2
0. 08  
C
Chamfer 4x  
0.6 x 0.6 max  
OPTIONAL  
D2  
C
NOTE: The following package mechanical drawing is a generic  
drawing that applies to any pin count VFQFN package. This drawing  
is not intended to convey the actual pin count or pin layout of this  
device. The pin count and pinout are shown on the front page. The  
package dimensions are in Table 9.  
Table 9. Package Dimensions  
JEDEC Variation: VHHD-2/-4  
All Dimensions in Millimeters  
Symbol  
Minimum  
Nominal  
Maximum  
N
32  
A
0.80  
0
1.00  
0.05  
A1  
A3  
0.25 Ref.  
0.25  
b
ND & NE  
D & E  
D2 & E2  
e
0.18  
0.30  
8
5.00 Basic  
3.0  
3.3  
0.50 Basic  
0.40  
L
0.30  
0.50  
Reference Document: JEDEC Publication 95, MO-220  
ICS8402015AKI REVISION A JUNE 25, 2009  
16  
©2009 Integrated Device Technology, Inc.  
ICS8402015I Datasheet  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Ordering Information  
Table 10. Ordering Information  
Part/Order Number  
8402015AKILF  
8402015AKILFT  
Marking  
ICS02015AIL  
ICS02015AIL  
Package  
“Lead-Free” 32 Lead VFQFN  
“Lead-Free” 32 Lead VFQFN  
Shipping Packaging  
Tray  
2500 Tape & Reel  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without  
additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support  
devices or critical medical instruments.  
ICS8402015AKI REVISION A JUNE 25, 2009  
17  
©2009 Integrated Device Technology, Inc.  
ICS8402015I Datasheet  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
Revision History Sheet  
Rev  
Table  
Page  
Description of Change  
Date  
A
T10  
17  
Ordering Information Table - added “I” in part/order number.  
6/25/09  
ICS8402015AKI REVISION A JUNE 25, 2009  
18  
©2009 Integrated Device Technology, Inc.  
ICS8402015I Datasheet  
FEMTOCLOCK™ CRYSTAL-TO-LVDS/LVCMOS FREQUENCY SYNTHESIZER  
6024 Silver Creek Valley Road Sales  
Technical Support  
800-345-7015 (inside USA)  
netcom@idt.com  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
San Jose, California 95138  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document,  
including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not  
guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the  
suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any  
license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT  
product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third  
party owners.  
Copyright 2009. All rights reserved.  

相关型号:

ICS84021

260MHZ, CRYSTAL-TO-LVCMOS / LVTTL FREQUENCY SYNTHESIZER
ICSI

ICS84021AY

260MHZ, CRYSTAL-TO-LVCMOS / LVTTL FREQUENCY SYNTHESIZER
ICSI

ICS84021AYLF

Clock Generator, 260MHz, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBA, LQFP-32
IDT

ICS84021AYT

260MHZ, CRYSTAL-TO-LVCMOS / LVTTL FREQUENCY SYNTHESIZER
ICSI

ICS840245AGILF

Clock Generator, 75MHz, PDSO16, 4.40 X 5 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-16
IDT

ICS840245AGILFT

Clock Generator, 75MHz, PDSO16, 4.40 X 5 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-16
IDT

ICS840245AGIT

Clock Generator, 75MHz, PDSO16, 4.40 X 5 MM, 0.92 MM HEIGHT, MO-153, TSSOP-16
IDT

ICS840245IAGILF

Clock Generator
IDT

ICS840245IAGILFT

Clock Generator
IDT

ICS84025

CRYSTAL-TO-LVCMOS / LVTTL FREQUENCY SYNTHESIZER WITH FANOUT BUFFER
ICSI

ICS84025DM

Clock Generator
IDT

ICS84025DMT

Clock Generator
IDT