IPD2132 [INFINEON]

LED Display, 8-Character, 4.9mm;
IPD2132
型号: IPD2132
厂家: Infineon    Infineon
描述:

LED Display, 8-Character, 4.9mm

功效 驱动 静态存储器 光电
文件: 总13页 (文件大小:345K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
YELLOW IPD2131  
HIGH EFFICIENCY RED IPD2132  
HIGH EFFICIENCY GREEN IPD2133  
0.200" 8-Character 5 x 7 Dot Matrix X-Y Stackable  
Alphanumeric Programmable Display™  
Dimensions in Inches (mm)  
1.680 MAX. (42.7)  
1.663 MIN.(42.2)  
.210  
(5.3)  
.015  
TYP.  
(0.4)  
.210  
REF.  
(5.3)  
.105  
(2.7)  
.045  
(1.1)  
.300  
(7.6)  
.191  
(4.8)  
.39  
(9.9)  
.195  
(4.9)  
.111 (2.8)  
.030 (0.8)  
INTENSITY CODE  
HUE CATEGORY  
EIA DATE CODE  
.180  
(4.6)  
.070 TYP.  
(1.8)  
.250 MAX.  
(6.3)  
OSRAM  
YYWW  
V
Z
IPD213X  
SEATING  
PLANE  
SEATING  
PLANE  
FEATURES  
.500  
(12.7)  
• Eight 0.2" Dot Matrix Characters in a Ceramic  
Package  
True Hermetic Glass Flat Seal for all Colors  
• Internal ROM with 128 ASCII Characters  
• Internal RAM for up to 16 User Definable  
Characters  
.020 TYP.(0.5)  
.240  
(6.1)  
.090 TYP.  
(2.3)  
.100 TYP.  
(2.54)  
NON-CUM.  
.050 TYP.  
(1.3)  
Tolerance=.XXX±0.015 (0.30)  
DESCRIPTION  
• Programmable Control Word Allows User to  
Select from 8 Brightness Levels, Display Blink,  
Character Flash, Self Test, or Clear Functions  
• Internal or External Clock Capability  
• 8 Bit Bidirectional Data Bus Allows for  
Read/Write Capability  
• Contains all Display Drive and Multiplexing  
Circuitry  
• Reset Pin for Display Initialization, Multiple  
Display Blinking and Flashing Synchronization  
• TTL Compatible  
The IPD2131 (yellow), IPD2132 (High Efficiency Red) and IPD2133  
(High Efficiency Green) are eight-digit high reliability 5 x 7 dot matrix  
Programmable Displays that are aimed at satisfying the most demand-  
ing display requirements. They are designed for use in extremely  
harsh environments where only the most reliable parts are accept-  
able. The devices are constructed in ceramic packages with eight  
0.2 inch high 5 x 7 dot matrix digits. The devices incorporate the latest  
in CMOS technology which is the heart of the device intelligence. The  
CMOS IC is controlled by a user supplied eight-bit data word on a bidi-  
rectional BUS. The ASCII data and attribute data are word driven. This  
approach allows the displays to interface using similar techniques as a  
microprocessor peripheral.  
• Operating Temperature Range: –55° to +100°C  
Storage Temperature: –65° to +125°C  
• Categorized for Luminous Intensity and Color  
• X-Y Stackable  
Applications include: control panels, night viewing applications, cockpit  
monitors, portable and vehicle technology as well as industrial controllers.  
2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA  
www.infineon.com/opto • 1-888-Infineon (1-888-463-4636)  
OSRAM Opto Semiconductors GmbH & Co. OHG • Regensburg, Germany  
www.osram-os.com • +49-941-202-7178  
1
March 28, 2000-00  
Switching Specifications  
(over operating temperature range and V =4.5 V to 5.5 V)  
ESD Warning:  
Standard precautions for CMOS  
handling should be observed.  
CC  
Symbol Description  
Display Access Time—Write  
Min. Units  
T
210  
230  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Maximum Ratings (T =25°C)  
acc  
A
T
Display Access Time—Read  
Address Setup Time to CE  
Chip Enable Active Time—Write  
Chip Enable Active Time—Read  
Address Hold Time to CE  
DC Supply Voltage, V to GND  
(max. voltage with no LEDs on)...................–0.3 to +7.0 VDC  
Input Voltage Levels, All Inputs ................... –0.3 to (V +0.3) V  
Operating Temperature ................................... –55°C to +100°C  
Storage Temperature....................................... –65°C to +125°C  
Relative Humidity (non-condensing)....................................85%  
Operating Voltage, V to GND  
(Max. voltage with 20 dots/digits on).............................. 5.5 V  
Maximum Solder Temperature  
acc  
CC  
T
acs  
CC  
T
140  
160  
20  
ce  
T
ce  
T
CC  
ach  
T
Chip Enable Recovery Time  
60  
cer  
(0.063" below Seating Plane, t<5.0 sec.) ...................... 260°C  
ESD Protection at 1.5 k, 100 pF...............V =4.0 kV (each pin)  
T
Chip Enable Active Prior to  
Rising Edge—Write  
140  
ces  
Z
T
Chip Enable Active Prior to  
Rising Edge—Read  
160  
0
ns  
ns  
ces  
Figure 1. Enlarged Character Font  
Dimensions in inches (mm)  
T
Chip Enable Hold to Rising Edge  
of Read/Write Signal  
ceh  
0.112  
(2.85)  
T
Write Active Time  
100  
50  
ns  
ns  
w
C1 C2 C3 C4 C5  
R1  
T
Data Valid Prior to  
Rising Edge of Write Signal  
wd  
R2  
T
Data Write Time  
20  
ns  
ns  
dh  
R3  
R4  
R5  
R6  
R7  
0.030  
(0.76)  
typ.  
0.189  
(4.81)  
T
Chip Enable Active Prior to Valid  
Data  
160  
r
T
Read Active Prior to Valid Data  
Read Data Float Delay  
Reset Active Time  
95  
ns  
ns  
ns  
rd  
T
10  
df  
0.026 (0.65) typ.  
T
300  
rc  
Oscillator, Refresh, Flash and Self Test Characteristics  
Parameters  
Min.  
28  
Typ.  
57.34  
Max.  
81.14  
640  
Units  
kHz  
kHz  
Hz  
Conditions  
Clock I/O Frequency  
External Clock Frequency  
FM, Digit Multiplex Frequency  
Blinking Rate  
V
V
V
=4.5 V to 5.5 V  
=4.5 V to 5.5 V  
=4.5 V to 5.5 V  
CC  
CC  
CC  
25  
125  
0.98  
256  
2.0  
362.5  
2.83  
2.40  
500  
Hz  
Clock I/O Bus Loading  
Clock Out Rise Time  
Clock Out Fall Time  
pF  
nsec  
nsec  
V
=4.5 V, V =2.4 V  
OH  
CC  
CC  
500  
V
=4.5 V, V =0.4 V  
OH  
2000 Inneon Technologies Corp. Optoelectronics Division San Jose, CA  
www.inneon.com/opto 1-888-Inneon (1-888-463-4636)  
OSRAM Opto Semiconductors GmbH & Co. OHG Regensburg, Germany  
www.osram-os.com +49-941-202-7178  
IPD2131/2/3  
2
March 28, 2000-00  
Figure 2. Write Cycle Timing Diagram  
T
acc  
A0-A3  
FL  
T
T
acs  
ach  
T
acs  
T
T
ce  
T
cer  
CE  
T
T
ceh  
T
ces  
T
w
WR  
wd  
dh  
D0-D7  
Input pulse levels –0.6 V to 2.4 V  
Figure 3. Read Cycle Timing Diagram  
T
acc  
A0-A3  
FL  
T
acs  
T
ach  
T
acs  
T
ce  
T
cer  
CE  
RD  
T
T
ceh  
ces  
T
r
T
rd  
T
df  
D0-D7  
Figure 4. Maximum Power Dissipation vs. Ambient  
Temperature Derating Based on T max=125°C  
J
4.0  
3.0  
2.0  
R
= 30°C/W  
θJA  
1.0  
0
25 35 45 55 65 75 85 95 105  
TA – °C  
2000 Inneon Technologies Corp. Optoelectronics Division San Jose, CA  
www.inneon.com/opto 1-888-Inneon (1-888-463-4636)  
OSRAM Opto Semiconductors GmbH & Co. OHG Regensburg, Germany  
www.osram-os.com +49-941-202-7178  
IPD2131/2/3  
3
March 28, 2000-00  
Optical Characteristics at 25°C (V =5.0 V at full brightness)  
CC  
Yellow IPD2131  
Description  
Symbol  
Min.  
125  
Typ.  
205  
583  
585  
Units  
µcd/dot  
nm  
Luminous Intensity  
Peak Wavelength  
Dominant Wavelength  
I
V
λ
λ
peak  
dom  
nm  
High Efficiency Red IPD2132  
Description  
Symbol  
Min.  
125  
Typ.  
350  
635  
626  
Units  
µcd/dot  
nm  
Luminous Intensity  
Peak Wavelength  
I
V
λ
λ
peak  
dom  
Dominant Wavelength  
nm  
High Efficiency Green IPD2133  
Description  
Symbol  
Min.  
150  
Typ.  
500  
568  
574  
Units  
µcd/dot  
nm  
Luminous Intensity  
Peak Wavelength  
I
V
λ
λ
peak  
dom  
Dominant Wavelength  
nm  
Electrical Characteristics at 25°C  
Parameters  
Limits  
Min.  
4.5  
Conditions  
Typ.  
5.0  
Max.  
Units  
V
V
5.5  
CC  
I
I
I
I
Blank  
0.5  
1.0  
mA  
mA  
mA  
µA  
V
V
V
V
=5.0 V, V =5.0 V  
IN  
CC  
CC  
CC  
CC  
CC  
(1) (2)  
(1) (2)  
12 dots/digit on  
20 dots/digit on  
(with pull-up)  
200  
300  
–11  
255  
370  
–18  
=5.0 V, V” in all 8 digits  
=5.0 V, #” in all 8 digits  
CC  
CC  
ILP  
–1.0  
=5.0 V, V =0 V to V  
N CC  
Input Leakage  
(WR, CE, FL, RST, RD, CLKSEL)  
V =5.0 V, V =0–5.0 V  
CC  
I
(no pull-up)  
–1.0  
2.0  
+1.0  
µA  
V
IL  
IN  
Input Leakage  
(CLK, A0–A4, D0–D7)  
V
V
V
=4.5 V to 5.5 V  
IH  
CC  
CC  
CC  
Input Voltage High  
+0.3  
V
GND  
–0.3  
0.8  
V
V
=4.5 V to 5.5 V  
IL  
Input Voltage Low  
V
V
V
(D0–D7), Output Voltage Low  
(CLK), Output Voltage Low  
Output Voltage High  
2.4  
15  
0.4  
0.4  
V
V
V
V
=4.5 V, I =1.6 mA  
OL  
OL  
OL  
OH  
CC  
CC  
CC  
V
=4.5 V, I =40 µA  
OL  
V
=4.5 V, I =–40 µA  
OH  
θ
Thermal Resistance,  
°C/W  
JC  
Junction to Case  
Notes:  
1)  
I
I
is an average value.  
is measured with the display at full brightness. Peak I  
CC  
CC  
2)  
28  
=
/
I
average (#displayed).  
CC  
CC  
15  
2000 Inneon Technologies Corp. Optoelectronics Division San Jose, CA  
IPD2131/2/3  
www.inneon.com/opto 1-888-Inneon (1-888-463-4636)  
OSRAM Opto Semiconductors GmbH & Co. OHG Regensburg, Germany  
www.osram-os.com +49-941-202-7178  
4
March 28, 2000-00  
Recommended Operating Conditions (T =–55°C to +100°C)  
A
Parameter  
Symbol  
Min.  
4.5  
Max. Units  
Supply Voltage  
V
V
V
V
V
5.5  
0.8  
V
V
V
V
V
CC  
IL  
Input Voltage Low  
Input Voltage High  
Output Voltage Low  
Output Voltage High  
2.0  
IH  
0.4  
OL  
OH  
2.4  
Pin Description  
Pin No.  
Function  
Description  
Explanation  
1
CLS  
Clock Select  
Selects an internal or external clock source. CLS=1 the internal clock selected (mas-  
ter clock), CLS=0 then external clock selected (slave operation).  
2
3
4
5
CLK  
WR  
CE  
Clock I/O  
Write  
Inputs or outputs the clock as determined by the CLS pin.  
Writes data into the display when WR=0 and CE=0.  
Enables the read/write access when low.  
Chip Enable  
Reset  
RST  
Initializes the display; clears the Character RAM (20 Hex), Flash RAM  
(00 Hex), Control Word (00 Hex) and resets the internal counters. UDC Address  
Register and UDC RAM are unaffected.  
6
RD  
Read  
Outputs data from the display when RD=0 and CE=0.  
7
No Pin  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
D0  
D1  
D2  
D3  
NC  
Data Bus  
8 bit bidirectional data bus. Character RAM and Control Word uses D7–D0, UDC  
Address Register uses D3–D0, UDC RAM uses D4–D0, and Flash RAM uses D0.  
V
Positive power supply.  
Analog ground for the LED drivers.  
Digital ground for the logic circuitry.  
CC  
GND  
GND  
D4  
Supply  
Logic  
Data Bus  
8 bit bidirectional data bus. Character RAM and Control Word uses D7-D0, UDC  
Address Register uses D3-D0, UDC RAM uses D4-D0, and Flash RAM uses D0.  
D5  
D6  
D7  
No Pin  
FL  
Flash  
Accesses the Flash RAM. Address inputs, A2–A0, select the digit address while  
data bit D0 sets (D0=1) or resets (D0=0) the Flash bit. A4 and A3 are ignored.  
28  
29  
30  
31  
32  
A0  
A1  
A2  
A3  
A4  
Address Inputs  
A4 and A3 select a section of the display’s memory. A2–A0 select specific locations  
in the different sections. If FL is low the Flash RAM is accessed regardless of the  
status of A4 and A3.  
2000 Inneon Technologies Corp. Optoelectronics Division San Jose, CA  
www.inneon.com/opto 1-888-Inneon (1-888-463-4636)  
OSRAM Opto Semiconductors GmbH & Co. OHG Regensburg, Germany  
www.osram-os.com +49-941-202-7178  
IPD2131/2/3  
5
March 28, 2000-00  
Figure 5. Character Set  
Notes:  
D0  
D1  
D2  
D3  
L
L
L
L
0
H
L
L
L
1
L
H
L
L
2
H
H
L
L
3
L
L
H
L
4
H
L
H
L
L
H
H
L
H
H
H
L
L
L
L
H
8
H
L
L
H
9
L
H
L
H
A
H
H
L
H
B
L
L
H
H
C
H
L
H
H
D
L
H
H
H
E
H
H
H
H
F
ASCII  
CODE  
1. Upon power up, the device will  
initialize in a random state.  
2. X=don’t care.  
D7 D6 D5 D4 HEX  
5
6
7
L
L
L
L
L
L
L
L
L
L
H
L
0
1
2
3
4
5
6
L
L
L
H
H
L
L
H
L
H
H
H
L
H
L
H
L
H
X
H
X
H
X
7
8
UDC UDC UDC UDC UDC UDC UDC UDC UDC UDC UDC UDC UDC UDC UDC UDC  
10 11 12 13 14 15  
H
0
1
2
3
4
5
6
7
8
9
Figure 6. Cascading Diagram  
RD  
WR  
FL  
RST  
VCC  
RST CLK I/O CLKSEL  
Display  
D0-D7 A0-A4  
RD WR  
FL  
RD WR  
FL  
RST CLK I/O CLKSEL  
Up to14 More Displays  
in between  
Display  
CE  
D0-D7 A0-A4  
CE  
Data I/O  
Address  
0
A6  
A7  
A8  
A9  
Address  
Decoder  
Address Decode Chip 1 to 14  
15  
Cascading Displays  
The display’s oscillator is designed to drive up to 16 other dis-  
play’s with input loading of 15 pF each.  
The following are the general requirements for cascading 16  
displays together:  
• Determine the correct address for each display.  
• Use CE from an address decoder to select the correct display.  
• Select one of the Displays to provide the Clock for the other  
displays. Connect CLKSEL to V for this display.  
CC  
• Tie CLKSEL to ground on other displays.  
• Use RST to synchronize the blinking between the displays.  
2000 Inneon Technologies Corp. Optoelectronics Division San Jose, CA  
www.inneon.com/opto 1-888-Inneon (1-888-463-4636)  
OSRAM Opto Semiconductors GmbH & Co. OHG Regensburg, Germany  
www.osram-os.com +49-941-202-7178  
IPD2131/2/3  
6
March 28, 2000-00  
Figure 7. Block Diagram  
OSC  
÷32  
Counter  
÷7  
Counter  
Row  
Drivers  
Column  
Drivers  
8 Digit Display  
÷128  
Counter  
Column  
Latch  
M
S
l
a
s
t
a
v
e
Cursor  
Controls  
and  
Display  
MUX  
D Latch  
Holding  
Register  
Character  
RAM  
Decode  
ROM  
64  
÷3  
Counter  
5
25  
25  
ROM  
Character  
RAM  
e
r
Word  
Decode  
5
Character  
Decode  
for Display  
16  
UDC  
RAM  
Control  
Word  
Register  
Flash  
RAM  
Self  
Test  
16  
Character  
Decode  
UDC  
Address  
Register  
4
4
Data Bus  
(Read/Write)  
Functional Description  
The display's user interface is organized into five memory  
areas. They are accessed using the Flash Input, FL, and  
address lines, A3 and A4. All the listed RAMs and Registers  
may be read or written through the data bus. See Table 1. Each  
input pin is described in Pin Definitions.  
RST can be used to initialize display operation upon power up  
or during normal operation. When activated, RST will clear the  
Flash RAM and Control Word Register (00H) and reset the  
internal counter. All eight display memory locations will be set  
to 20H to show blanks in all digits.  
FL pin enables access to the Flash RAM. The Flash RAM will  
set (D0=1) or reset (D0=0) flashing of the character addressed  
by A0–A2.  
Five Basic Memory Areas  
Character RAM  
Stores either ASCII (Katakana)  
character data or an UDC RAM  
address  
The 1 x 8 bit Control Word Register is loaded with attribute  
data if A3=0.  
The Control Word Logic decodes attribute data for proper  
Flash RAM  
1 x 8 RAM which stores Flash data  
implementation.  
User-Defined  
Character RAM  
(UDC RAM)  
Stores dot pattern for custom  
characters  
Character ROM is designed for 128 ASCII characters. The  
ROM is Mask Programmable for custom fonts.  
The Clock Source could either be the internal oscillator  
(CLKSEL=1) of the device or an external clock (CLKSEL=0)  
could be an input from another IPD213X display for synchroniz-  
ing blinking for multiple displays.  
User-Defined Address  
Register (UDC  
Address Register)  
Provides address to UDC RAM  
when user is writing or reading  
custom character  
The Display Multiplexer controls the Row Drivers so no addi-  
tional logic is required for a display system.  
Control Word  
Register  
Enables adjustment of display  
brightness, flash individual charac-  
ters, blink, self test or clearing  
the display  
The Display has eight digits. Each digit has 35 LEDs.  
2000 Inneon Technologies Corp. Optoelectronics Division San Jose, CA  
www.inneon.com/opto 1-888-Inneon (1-888-463-4636)  
OSRAM Opto Semiconductors GmbH & Co. OHG Regensburg, Germany  
www.osram-os.com +49-941-202-7178  
IPD2131/2/3  
7
March 28, 2000-00  
Table 1. Memory Selection  
FL  
0
A4  
X
A3  
X
Section of Memory  
Flash RAM  
A2–A0  
Data Bits Used  
D0  
Character Address  
Don’t Care  
1
0
0
UDC Address Register  
UDC RAM  
D3–D0  
1
0
1
Row Address  
Character Address  
Don’t Care  
D4–D0  
1
1
1
Character RAM  
D7–D0  
1
1
0
Control Word Register  
D7–D0  
Theory of Operation  
Microprocessor Interface  
The IPD213X Display is designed to work with all major micro-  
processors. Data entry is via an eight bit parallel bus. Three bits  
of address route the data to the proper digit location in the  
RAM. Standard control signals like WR and CE allow the data  
to be written into the display.  
The interface to a microprocessor is through the 8-bit data  
bus (D0–D7), the 4-bit address bus (A0–A3) and control lines  
FL, CE and WR.  
To write data (ASCII/Control Word) into the display CE should  
be held low, address and data signals stable and WR should  
be brought low. The data is written on the low to high transi-  
tion of WR.  
D0–D7 data bits are used for both Character RAM and control  
word data input. A3 acts as the mode selector.  
If A3=1, character RAM is selected. Then input data bit D7 will  
determine whether input data bits D0–D6 is ASCII coded data  
(D7=0) or UDC data (D7=1). See section on UDC Address Reg-  
ister and RAM.  
The Control Word is decoded by the Control Word Decode  
Logic. Each code has a different function. The code for display  
brightness changes the duty cycle for the column drivers. The  
peak LED current stays the same but the average LED current  
diminishes depending on the intensity level.  
For normal operation FL pin should be held high. When FL is  
held low, Flash RAM is accessed to set character blinking.  
The character Flash Enable causes 2.0 Hz coming out of the  
counter to be ANDED with the column drive signal to make the  
column driver cycle at 2.0 Hz. Thus the character flashes at  
2.0 Hz.  
The seven bit ASCII code is decoded by the Character ROM to  
generate Column data. Twenty columns worth of data is sent  
out each display cycle, and it takes fourteen display cycles to  
write into eight digits.  
The display Blink works the same way as the Flash Enable but  
causes all twenty column drivers to cycle at 2.0 Hz thereby  
making all eight digits blink at 2.0 Hz.  
The rows are multiplexed in two sets of seven rows each.  
The internal timing and control logic synchronizes the turning  
on of rows and presentation of column data to assure proper  
display operation.  
The Self Test function of the IC consists of two internal rou-  
tines which exercise major portions of the IC and illuminates  
all the LEDs.  
Power Up Sequence  
Clear bit clears the character RAM and writes a blank into the  
display memory. It however does not clear the control word.  
Upon power up the display will come on at random. Thus the  
display should be reset on power-up. Reset will clear the  
Flash RAM, Control Word Register and reset the internal  
counter. All the digits will show blanks and display brightness  
level will be 100%.  
ASCII Data or Control Word Data can be written into the dis-  
play at this point. For multiple display operation, CLK I/O  
must be properly selected. CLK I/O will output the internal  
clock if CLKSEL=1, or will allow input from an external clock  
if CLKSEL=0.  
The display must not be accessed until three clock pulses (110  
µseconds minimum using the internal clock) after the rising  
edge of the reset line.  
2000 Inneon Technologies Corp. Optoelectronics Division San Jose, CA  
www.inneon.com/opto 1-888-Inneon (1-888-463-4636)  
OSRAM Opto Semiconductors GmbH & Co. OHG Regensburg, Germany  
www.osram-os.com +49-941-202-7178  
IPD2131/2/3  
8
March 28, 2000-00  
Character RAM  
UDC Address Register  
The Character RAM is selected when FL, A4 and A3 are set to  
1,1,1 during a read or write cycle. The Character RAM is a 8 by  
8 bit RAM with each of the eight locations corresponding to a  
digit on the display. Digit 0 is on the left side of the display and  
digit 7 is on the right side of the display. Address lines, A2–A0  
select the digit address with A2 being the most significant bit  
and A0 being the least significant bit. The two types of data  
stored in the Character RAM are the ASCII coded data and the  
UDC Address Data. The type of data stored in the Character  
RAM is determined by data bit, D7. If D7 is low, then ASCII  
coded data is stored in data bits D6–D0. If D7 is high, then UDC  
Address Data is stored in data bit D3–D0.  
The UDC Address Register is selected by setting FL=1, A4=0,  
A3=0. It is a 4 bit register and uses data bits, D3–D0 to store  
the 4 bit address code (D7–D4 are ignored). The address code  
selects one of 16 UDC RAM locations for custom character  
generation.  
UDC RAM  
The UDC RAM is selected by setting FL=1, A4=0, A3=1. The  
RAM is comprised of a 7 x 5 bit RAM. As shown in Figure 10,  
address lines, A2-A0 select one of the 7 rows of the custom  
character. Data bits, D4-D0 determine the 5 bits of column data  
in each row. Each data bit corresponds to a LED. If the data bit  
is high, then the LED is on. If the data bit is low, the LED is off.  
To create a character, each of the 7 rows of column data need  
to be defined. See Figures 9 and 10 for logic.  
The ASCII coded data is a 7 bit code used to select one of 128  
ASCII characters permanently stored in the ASCII ROM.  
The UDC Address data is a 4 bit code used to select one of the  
UDC characters in the UDC RAM. There are up to 16 charac-  
ters available. See Figure 8.  
Flash RAM  
The Flash RAM allows the display to flash one or more of the  
characters being displayed. The Flash Ram is accessed by set-  
ting FL low. A4 and A3 are ignored. The Flash RAM is a 8 x 1 bit  
RAM with each bit corresponding to a digit address. Digit 0 is  
on the left side of the display and digit 7 is on the right side of  
the display. Address lines, A2–A0 select the digit address with  
A2 being the most significant digit and A0 being the least sig-  
nificant digit. Data bit, D0, sets and resets the flash bit for each  
digit. When D0 is high, the flash bit is set; and when D0 is low,  
it is reset. See Figure 11.  
UDC Address Register and UDC RAM  
The UDC Address Register and UDC RAM allows the user to  
generate and store up to 16 custom characters. Each custom  
character is defined in 5 x 7 dot matrix pattern. It takes 8 write  
cycles to define a custom character, one cycle to load the UDC  
Address Register and 7 cycles to define the character. The con-  
tents of the UDC Address Register will store the 4 bit address  
for one of the 16 UDC RAM locations. The UDC RAM is used  
to store the custom character.  
Figure 8. Character RAM Access Logic  
RST  
CE  
WR  
RD  
FL  
A4  
A3  
A2  
A1  
A0  
D7 D6 D5 D4 D3 D2 D1 D0  
1
0
0
1
1
1
1
Character Address for  
Digits 0–7  
0
7 bit ASCII code for a Write Cycle  
1
1
1
0
0
0
1
0
1
0
1
0
1
1
1
1
0
0
1
0
0
Character Address for  
Digits 0–7  
0
7 bit ASCII code read during a Read Cycle  
Character Address for  
Digits 0–7  
1
1
D3–D0=UDC address for a Write Cycle  
D3–D0=UDC address for Read Data  
Character Address for  
Digits 0–7  
Figure 9. UDC Address Register and UDC Character RAM  
RST  
CE  
WR  
RD  
FL  
A4  
A3  
A2  
A1  
A0  
D7 D6 D5 D4 D3 D2 D1 D0  
1
0
0
1
1
0
0
Not used for UDC  
Address Register  
D3–D0=UDC RAM Address Code for  
Write Cycle  
UDC  
Address  
Register  
1
1
1
0
0
0
1
0
1
0
1
0
1
1
1
0
0
0
0
1
1
Not used for UDC  
Address Register  
D3–D0=UDC RAM Address Code for  
Read Cycle  
A2–A0=Character  
Row Address  
D4–D0=Character Column Data for  
Write Cycle  
UDC  
RAM  
A2–A0=Character  
Row Address  
D4–D0=Character Column Data read  
during a Read Cycle  
2000 Inneon Technologies Corp. Optoelectronics Division San Jose, CA  
www.inneon.com/opto 1-888-Inneon (1-888-463-4636)  
OSRAM Opto Semiconductors GmbH & Co. OHG Regensburg, Germany  
www.osram-os.com +49-941-202-7178  
IPD2131/2/3  
9
March 28, 2000-00  
Control Word  
Flash Function  
The Control Word is used to set up the attributes required by  
the user. It is addressed by setting FL=1, A4=1, A3=0. The  
Control Word is an 8 bit register and is accessed using data  
bits, D7–D0. See Figures 12 and 13 for the logic and attrib-  
uted control. The Control Word has 5 functions. They are  
brightness control, flashing character enable, blinking charac-  
ter enable, self test, and clear (Flash and Character RAMS  
only).  
Control Word bit, D3, enables or disables the Flash Function.  
When D3 is 1, the Flash Function is enabled and any digit with  
its corresponding bit set in the Flash RAM will flash at approxi-  
mately 2.0 hertz. When using an external clock, the flash rate  
can be determined by dividing the clock rate by 28,672. When  
D3 is 0, the Flash Function is disabled and the contents of the  
Flash RAM is ignored. For synchronized flashing on multiple  
displays, see the Reset Section.  
Brightness Control  
Blink Function  
Control Word bits, D2–D0, control the brightness of the display  
with a binary code of 000 being 100% brightness and 111  
being display blank. See Figure 13 for brightness level versus  
Control Word bit, D4, enables or disables the Blink Function.  
When D4 is 1, the Blink Function is enabled and all characters  
on the display will blink at approximately 2.0 hertz. The Blink  
Function will override the Flash Function if both functions are  
enabled. When D4 is 0, the Blink Function is disabled. When  
using an external clock, the blink rate can be determined by  
dividing the clock rate by 28,672. For synchronized blinking on  
multiple displays, see the Reset Section.  
binary code. The average I can be calculated by multiplying  
CC  
the 100% brightness level I value by the display’s brightness  
CC  
level. For example, a display set to 80% brightness with a  
100% average I value of 200 mA will have an average I  
CC  
CC  
value of 200 mA x 80%=160 mA.  
Self Test  
Figure 10. UDC Character Map  
Control Word bits, D6 and D5, are used for the Self Test Func-  
tion. When D6 is 1, the Self Test is initiated. Results of the Self  
Test are stored in bit D5. Control Word bit, D5, is a read only  
bit. When D5 is 1, Self Test has passed. When D5 is 0, Self  
Test failed is indicated. The Self Test function of the IC consists  
of two internal routines which exercise major portions of the IC  
and illuminates all of the LEDs. The first routine cycles the  
ASCII decoder ROM through all states and performs a check  
sum on the out-put. If the check sum is correct, D5 is set to a 1  
(Pass).  
Row Data  
Column Data  
C1 C2 C3 C4 C5  
D4 D3 D2 D1 D0  
A2  
0
A1  
0
A0 Row #  
0
1
0
1
0
1
0
1
2
3
4
5
6
7
0
0
5 x 7  
Dot Matrix  
Pattern  
0
1
0
1
1
0
1
0
1
1
Figure 11. Flash RAM Access Logic  
RST  
CE  
WR  
RD FL  
A4  
A3  
A2  
A1  
A0  
D7 D6 D5 D4 D3 D2 D1 D0  
1
0
0
1
0
X
X
Flash RAM Address for Digits 0–7  
D0=Flash Data, 0=Flash Off and 1=Flash On  
(Write Cycle)  
1
0
1
0
0
X
X
Flash RAM Address for Digits 0–7  
D0=Flash Data, 0=Flash Off and 1=Flash On  
(Read Cycle)  
Figure 12. Control Word Access Logic  
RST  
CE  
WR  
RD FL  
A4  
A3  
A2  
A1  
A0  
D7 D6 D5 D4 D3 D2 D1 D0  
1
0
0
1
1
1
0
Not used for Control Word  
Control Word data for a Write Cycle,  
see Figure 13  
1
0
1
0
1
1
0
Not used for Control Word  
Control Word data for a Read during a  
Read Cycle  
2000 Inneon Technologies Corp. Optoelectronics Division San Jose, CA  
www.inneon.com/opto 1-888-Inneon (1-888-463-4636)  
OSRAM Opto Semiconductors GmbH & Co. OHG Regensburg, Germany  
www.osram-os.com +49-941-202-7178  
IPD2131/2/3  
10  
March 28, 2000-00  
The second routine provides a visual test of the LEDs. This is  
accomplished by writing checkered and inversed checkered  
patterns to the display. Each pattern is displayed for approxi-  
mately 2.0 seconds. During the self test function the display  
must not be accessed. The time needed to execute the self  
test function is calculated by multiplying the clock time by  
262,144 (typical time4.6 sec.). At the end of the self test, the  
Character RAM is loaded with blanks; the Control Word Regis-  
ter is set to zeroes except D5; the Flash RAM is cleared and  
the UDC Address Register is set to all 1.0s.  
Reset Function  
The display should be reset on power up of the display  
(RST=LOW). When the display is reset, the Character RAM,  
Flash RAM, and Control Word Register are cleared.  
The display's internal counters are reset. Reset cycle takes  
three clock cycles (110 µseconds minimum using the internal  
clock). The display must not be accessed during this time.  
To synchronize the flashing and blinking of multiple displays, it  
is necessary for the display to use a common clock source and  
reset all the displays at the same time to start the internal  
counters at the same place.  
Clear Function (see Figures 13 and 14)  
Control Word bit, D7 clears the character RAM to 20 hex and  
the flash RAM to all zeroes. The RAMs are cleared within three  
clock cycles (110 µs minimum, using the internal clock) when  
D7 is set to 1. During the clear time the display must not be  
accessed. When the clear function is finished, bit 7 of the Con-  
trol Word RAM will be reset to a “0”.  
While RST is low, the display must not be accessed by RD  
nor WR.  
Figure 13. Control Word Data Definition  
Key  
D7 D6 D5 D4 D3 D2 D1 D0  
C
Clear Function  
C
ST ST BL FL Br Br Br  
ST Self test  
BL Blink function  
FL Flash function  
Br Brightness control  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
100% Brightness  
80% Brightness  
53% Brightness  
40% Brightness  
27% Brightness  
20% Brightness  
13% Brightness  
Blank Display  
0
1
Flash Function Disabled  
Flash Function Enabled  
0
1
Blink Function Disabled  
Blink Function Enabled (overrides Flash Function)  
0
1
X
R
Normal Operation X=bit ignored  
Run Self Test, R=Test Result, R=1/pass, 0=fail  
0
1
Normal Operation  
Clear Flash RAM & Character RAM (Character RAM=20 Hex)  
Figure 14. Clear Function  
CE  
WR FL  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Operation  
0
0
0
0
1
1
0
0
X
X
X
X
X
X
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Clear disabled  
Clear user RAM, flash RAM  
and display  
X=don’t care  
2000 Inneon Technologies Corp. Optoelectronics Division San Jose, CA  
www.inneon.com/opto 1-888-Inneon (1-888-463-4636)  
OSRAM Opto Semiconductors GmbH & Co. OHG Regensburg, Germany  
www.osram-os.com +49-941-202-7178  
IPD2131/2/3  
11  
March 28, 2000-00  
Figure 15. Display Cycle Using Built-in ROM Example  
Display message “Showtime.” Digit 0 is leftmost—closest to pin 1.  
Logic levels: 0=Low, 1=High, X=Don’t care.  
RST CE WR RD FL A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 Operation  
Display  
0
X
1
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
Reset. No Read/Write  
Within 3 Clock Cycles  
All Blank  
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
X
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
X
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
0
1
1
1
1
0
1
1
0
0
0
0
1
1
0
1
1
0
1
1
1
53% Brightness Selected  
Write “S” to Digit 0  
Write “H” to Digit 1  
Write “O” to Digit 2  
Write “W” to Digit 3  
Write “T” to Digit 4  
Write “I” to Digit 5  
Write “M” to Digit 6  
Write “E” to Digit 7  
All Blank  
S
SH  
SHO  
SHOW  
SHOWT  
SHOWTI  
SHOWTIM  
SHOWTIME  
Figure 16. Displaying User Defined Character Example  
Load character “A” into UDC-5 and then display it in digit 2.  
Logic levels: 0=Low, 1=High, X=Don‘t care  
RST CE WR RD FL A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 Operation  
Display  
0
X
1
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
Reset. No Read/Write  
Within 3 Clock Cycles  
All Blank  
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
0
1
1
1
1
1
1
1
1
X
0
0
0
0
1
1
1
0
X
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
0
X
X
X
X
X
X
X
X
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
1
1
1
1
1
1
X
0
1
0
0
1
0
0
0
0
1
1
0
0
1
0
0
0
1
0
1
0
0
1
0
0
0
0
1
0
1
1
1
1
1
1
1
Select UDC-5  
All Blank  
Write into Row 1 of UDC-5 All Blank  
Write into Row 2 of UDC-5 All Blank  
Write into Row 3 of UDC-5 All Blank  
Write into Row 4 of UDC-5 All Blank  
Write into Row 5 of UDC-5 All Blank  
Write into Row 6 of UDC-5 All Blank  
Write into Row 7 of UDC-5 All Blank  
Write UDC-5 into Digit 2  
(Digit 2) A  
2000 Inneon Technologies Corp. Optoelectronics Division San Jose, CA  
www.inneon.com/opto 1-888-Inneon (1-888-463-4636)  
OSRAM Opto Semiconductors GmbH & Co. OHG Regensburg, Germany  
www.osram-os.com +49-941-202-7178  
IPD2131/2/3  
12  
March 28, 2000-00  
Electrical and Mechanical Considerations  
Voltage Transient Suppression  
Optical Considerations  
The .200" high character of the IPD213X gives readability up  
to eight feet. Proper filter selection enhances readability over  
this distance.  
For best results power the display and the components that  
interface with the display to avoid logic inputs higher than V  
.
CC  
Additionally, the LEDs may cause transients in the power sup-  
ply line while they change display states. The common practice  
is to place a parallel combination of a .01 µF and a 22 µF capac-  
Using filters emphasizes the contrast ratio between a lit LED  
and the character background. This will increase the discrimina-  
tion of different characters. The only limitation is cost. Take into  
consideration the ambient lighting environment for the best  
cost/benefit ratio for filters.  
itor between V and GND for all display packages.  
CC  
ESD Protection  
The input protection structure of the IPD2131X provides signifi-  
cant protection against ESD damage. It is capable of withstand-  
ing discharges greater than 4.0 kV. Take all the standard  
precautions normal for CMOS components. These include  
properly grounding personnel, tools, tables, and transport carri-  
ers that come in contact with unshielded parts. If these condi-  
tions are not, or cannot be met, keep the leads of the device  
shorted together or the parts in anti-static packaging.  
Incandescent (with almost no green) or fluorescent (with  
almost no red) lights do not have the flat spectral response of  
sunlight. Plastic band-pass filters are an inexpensive and effec-  
tive way to strengthen contrast ratios. The high efficiency red  
displays should be matched with a long wavelength pass filter  
in the 570 nm to 590 nm range. The IPD2133 should be  
matched with a yellow-green band-pass filter that peaks at 565  
nm. For displays of multiple colors, neutral density grey filters  
offer the best compromise.  
Soldering Considerations  
Additional contrast enhancement is gained by shading the dis-  
plays. Plastic band-pass filters with built-in louvers offer the  
next step up in contrast improvement. Plastic filters can be  
improved further with anti-reflective coatings to reduce glare.  
The trade-off is fuzzy characters. Mounting the filters close to  
the display reduces this effect. Take care not to overheat the  
plastic filter by allowing for proper air flow.  
The IPD213X can be hand soldered with SN63 solder using a  
grounded iron set to 260°C.  
Wave soldering is also possible. Use water soluble organic acid  
flux or resin based RMA flux.  
A wave temperature of 245°C ±5°C with a dwell between 1.5  
seconds to 3.0 seconds can be used. Exposure to the wave  
should not exceed temperatures above 260°C for five seconds  
at 0.063" below the seating plane. The packages should not be  
immersed in the wave.  
Optimal filter enhancements are gained by using circular polar-  
ized, anti-reflective, band-pass filters. The circular polarizing fur-  
ther enhances contrast by reducing the light that travels through  
the filter and reflects back off the display to less than 1%.  
Post Solder Cleaning Procedures  
Several filter manufacturers supply quality filter materials.  
Some of them are: Panelgraphic Corporation, W. Caldwell, NJ;  
SGL Homalite, Wilmington, DE; 3M Company, Visual Products  
Division, St. Paul, MN; Polaroid Corporation, Polarizer Division,  
Cambridge, MA; Marks Polarized Corporation, Deer Park, NY,  
Hoya Optics, Inc., Fremont, CA.  
The least offensive cleaning solution is hot D.I. water (60°C) for  
less than 15 minutes. Addition of mild saponifiers is accept-  
able. Do not use commercial dishwasher detergents.  
For faster cleaning, solvents may be used. Suggested solvents  
include Freon TE, Freon TF, Genesolv DE-15, Genesolv DI-15,  
and Genesolv DES.  
One last note on mounting filters: recessing displays and bezel  
assemblies is an inexpensive way to provide a shading effect in  
overhead lighting situations. Several bezel manufacturers are:  
R.M.F. Products, Batavia, IL; Nobex Components, Griffith Plas-  
tic Corp., Burlingame, CA; Photo Chemical Products of Califor-  
nia, Santa Monica, CA; I.E.E.-Atlas, Van Nuys, CA.  
An alternative to soldering and cleaning the display modules is  
to use sockets. Multiple display assemblies are best handled  
by longer SIP sockets or DIP sockets when available for uni-  
form package alignment. Socket manufacturers are Aries Elec-  
tronics, Inc., Frenchtown, NJ; Garry Manufacturing, New  
Brunswick, NJ; Robinson-Nugent, New Albany, IN; and Samtec  
Electronic Hardward, New Albany, IN.  
For further information refer to Appnote 22 at www.infin-  
eon.com/opto.  
2000 Inneon Technologies Corp. Optoelectronics Division San Jose, CA  
www.inneon.com/opto 1-888-Inneon (1-888-463-4636)  
OSRAM Opto Semiconductors GmbH & Co. OHG Regensburg, Germany  
www.osram-os.com +49-941-202-7178  
IPD2131/2/3  
13  
March 28, 2000-00  

相关型号:

IPD220N06L3G

OptiMOS(TM)3 Power-Transistor
INFINEON

IPD22N08S2L-50

OptiMOS Power-Transistor
INFINEON

IPD230N06LG

OptiMOS㈢ Power-Transistor
INFINEON

IPD230N06LGBTMA1

Power Field-Effect Transistor, 30A I(D), 60V, 0.023ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252, GREEN, PLASTIC, 3 PIN
INFINEON

IPD230N06NG

OptiMOS㈢ Power-Transistor
INFINEON

IPD230N06NGBTMA1

Power Field-Effect Transistor, 30A I(D), 60V, 0.023ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, GREEN, PLASTIC, TO-252, 3 PIN
INFINEON

IPD230N06NG_08

OptiMOS® Power-Transistor Features For dc/dc converters and sync. rectification
INFINEON

IPD250N06N3G

OptiMOS(TM)3 Power-Transistor
INFINEON

IPD2545

Optoelectronic
ETC

IPD2547

Optoelectronic
ETC

IPD2547A

LED Display, 4-Character, 6.4mm
INFINEON

IPD2548

Optoelectronic
ETC