IRF6617TR1PBF [INFINEON]

Power Field-Effect Transistor, 14A I(D), 30V, 0.0081ohm, 1-Element, N-Channel, Silicon, Metal-Oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3;
IRF6617TR1PBF
型号: IRF6617TR1PBF
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor, 14A I(D), 30V, 0.0081ohm, 1-Element, N-Channel, Silicon, Metal-Oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3

开关 脉冲 晶体管
文件: 总9页 (文件大小:215K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD -95847B  
IRF6617  
DirectFET™ Power MOSFET  
l Application Specific MOSFETs  
l Ideal for CPU Core DC-DC Converters  
l Low Conduction Losses  
VDSS  
30V  
RDS(on) max  
Qg(typ.)  
8.1m  
@VGS = 10V  
11nC  
l Low Switching Losses  
10.3m@VGS = 4.5V  
l Low Profile (<0.7 mm)  
l Dual Sided Cooling Compatible  
l Compatible with Existing Surface Mount Techniques  
DirectFET™ ISOMETRIC  
ST  
Applicable DirectFET Outline and Substrate Outline (see p.7, 8 for details)  
SQ  
SX  
ST  
MQ  
MX  
MT  
Description  
The IRF6617 combines the latest HEXFET® power MOSFET silicon technology with advanced DirectFETTM packaging to  
achieve the lowest on-state resistance in a package that has the footprint of a Micro8™ and only 0.7 mm profile. The DirectFET  
package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase,  
infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing meth-  
ods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improv-  
ing previous best thermal resistance by 80%.  
The IRF6617 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction  
and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the  
latest generation of processors operating at higher frequencies. The IRF6617 has been optimized for parameters that are  
critical in synchronous buck converters including RDS(on) and gate charge to minimize losses in the control FET socket.  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
VDS  
30  
Drain-to-Source Voltage  
V
±20  
V
Gate-to-Source Voltage  
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
55  
I
I
I
I
@ TC = 25°C  
D
D
D
14  
@ TA = 25°C  
@ TA = 70°C  
A
11  
120  
DM  
42  
P
P
P
@TC = 25°C  
@TA = 25°C  
@TA = 70°C  
Power Dissipation  
D
D
D
2.1  
1.4  
Power Dissipation  
W
Power Dissipation  
EAS  
IAR  
27  
Single Pulse Avalanche Energy  
Avalanche Current  
mJ  
A
12  
0.017  
-40 to + 150  
Linear Derating Factor  
W/°C  
°C  
T
T
Operating Junction and  
J
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Typ.  
–––  
12.5  
20  
Max.  
58  
Units  
RθJA  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Case  
RθJA  
–––  
–––  
3.0  
RθJA  
°C/W  
RθJC  
–––  
1.0  
RθJ-PCB  
Junction-to-PCB Mounted  
–––  
Notes  through ˆare on page 2  
www.irf.com  
1
11/3/05  
IRF6617  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
VGS = 0V, ID = 250µA  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
30  
–––  
–––  
–––  
1.35  
–––  
–––  
–––  
–––  
–––  
39  
–––  
–––  
V
∆ΒVDSS/TJ  
RDS(on)  
25  
––– mV/°C Reference to 25°C, ID = 1mA  
mΩ  
6.2  
7.9  
–––  
-5.4  
–––  
–––  
–––  
–––  
–––  
11  
8.1  
V
GS = 10V, ID = 15A e  
VGS = 4.5V, ID = 12A e  
DS = VGS, ID = 250µA  
10.3  
2.35  
VGS(th)  
Gate Threshold Voltage  
V
V
VGS(th)/TJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
––– mV/°C  
1.0  
150  
100  
-100  
–––  
17  
µA VDS = 24V, VGS = 0V  
V
V
V
DS = 24V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
nA  
S
GS = 20V  
GS = -20V  
gfs  
VDS = 15V, ID = 12A  
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
td(on)  
tr  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
3.1  
1.0  
4.0  
2.9  
5.0  
10  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 15V  
nC  
VGS = 4.5V  
ID = 12A  
See Fig. 16  
nC VDS = 15V, VGS = 0V  
DD = 16V, VGS = 4.5Vꢁe  
Turn-On Delay Time  
11  
V
Rise Time  
34  
ID = 12A  
td(off)  
tf  
Turn-Off Delay Time  
12  
ns Clamped Inductive Load  
Fall Time  
3.7  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 1300 –––  
VGS = 0V  
Output Capacitance  
–––  
–––  
430  
160  
–––  
–––  
pF  
VDS = 15V  
Reverse Transfer Capacitance  
ƒ = 1.0MHz  
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
D
S
Continuous Source Current  
–––  
–––  
53  
MOSFET symbol  
(Body Diode)  
A
showing the  
G
ISM  
Pulsed Source Current  
–––  
–––  
120  
integral reverse  
(Body Diode)ꢁc  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
–––  
–––  
–––  
0.81  
16  
1.0  
24  
11  
V
TJ = 25°C, IS = 12A, VGS = 0V e  
Reverse Recovery Time  
Reverse Recovery Charge  
ns TJ = 25°C, IF = 12A  
di/dt = 100A/µs e  
nC  
Qrr  
7.2  
Notes:  
Used double sided cooling, mounting pad.  
† Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
 Repetitive rating; pulse width limited by  
max. junction temperature.  
‚ Starting TJ = 25°C, L = 0.40mH,  
RG = 25, IAS = 12A.  
‡ TC measured with thermal couple mounted to top (Drain) of part.  
ƒ Pulse width 400µs; duty cycle 2%.  
„ Surface mounted on 1 in. square Cu board.  
ˆ R is measured at TJ of approximately 90°C.  
θ
2
www.irf.com  
IRF6617  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.8V  
2.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.8V  
2.5V  
BOTTOM  
BOTTOM  
1
2.5V  
1
60µs PULSE WIDTH  
Tj = 150°C  
60µs PULSE WIDTH  
Tj = 25°C  
2.5V  
1
1
0.1  
0.1  
10  
100  
0.1  
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
2.0  
1.5  
1.0  
0.5  
1000.0  
I
= 15A  
D
V
= 10V  
GS  
100.0  
10.0  
1.0  
T
= 150°C  
J
T
= 25°C  
J
V
= 15V  
DS  
60µs PULSE WIDTH  
0.1  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160  
V
, Gate-to-Source Voltage (V)  
GS  
, Junction Temperature (°C)  
J
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance vs. Temperature  
10000  
12  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I
= 12A  
D
V
= 24V  
C
C
C
+ C , C  
SHORTED  
DS  
VDS= 15V  
iss  
gs  
gd  
ds  
= C  
10  
8
rss  
oss  
gd  
= C + C  
ds  
gd  
Ciss  
6
1000  
Coss  
4
2
Crss  
0
100  
0
5
10  
15  
20  
25  
30  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q
Total Gate Charge (nC)  
G
V
DS  
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage  
www.irf.com  
3
IRF6617  
1000  
100  
10  
1000.0  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100.0  
T
J
= 150°C  
10.0  
1.0  
100µsec  
1msec  
1
T
= 25°C  
V
J
10msec  
Tc = 25°C  
Tj = 150°C  
Single Pulse  
= 0V  
GS  
0.1  
0.1  
0
1
10  
100  
1000  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
V
, Drain-toSource Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 7. Typical Source-Drain Diode Forward Voltage  
Fig 8. Maximum Safe Operating Area  
60  
2.5  
2.0  
1.5  
1.0  
50  
40  
30  
20  
10  
0
I
= 250µA  
D
25  
50  
75  
100  
125  
150  
-75 -50 -25  
0
25  
50  
75 100 125 150  
T
J
, Junction Temperature (°C)  
T
, Temperature ( °C )  
J
Fig 10. Threshold Voltage vs. Temperature  
Fig 9. Maximum Drain Current vs. Case Temperature  
100  
D = 0.50  
0.20  
10  
1
0.10  
0.05  
0.02  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
R5  
R5  
Ri (°C/W) τi (sec)  
0.01  
τ
τ
τA  
τ
J τJ  
τ
0.6676  
1.0462  
1.5611  
29.282  
25.455  
0.000066  
0.000896  
0.004386  
0.68618  
32  
τ
1τ1  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
5τ5  
0.1  
Ci= τi/Ri  
Ci= τi/Ri  
0.01  
0.001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
4
www.irf.com  
IRF6617  
120  
100  
80  
60  
40  
20  
0
24  
20  
16  
12  
8
I
D
I
= 15A  
D
TOP  
5.2A  
7.9A  
12A  
BOTTOM  
T
= 125°C  
J
T
= 25°C  
J
4
2.0  
4.0  
6.0  
8.0  
10.0  
25  
50  
75  
100  
125  
150  
V
, Gate-to-Source Voltage (V)  
Starting T , Junction Temperature (°C)  
J
GS  
Fig 12. On-Resistance Vs. Gate Voltage  
Fig 13. Maximum Avalanche Energy Vs. Drain Current  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01Ω  
t
p
I
AS  
Fig 14b. Unclamped Inductive Waveforms  
Fig 14a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 15b. Switching Time Waveforms  
Fig 15a. Switching Time Test Circuit  
Current Regulator  
Same Type as D.U.T.  
Id  
Vds  
50KΩ  
Vgs  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
V
GS  
Vgs(th)  
3mA  
I
I
D
G
Current Sampling Resistors  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 16a. Gate Charge Test Circuit  
Fig 16b. Gate Charge Waveform  
www.irf.com  
5
IRF6617  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
di/dt controlled by RG  
RG  
+
-
Body Diode  
Inductor Current  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
DirectFET™ Substrate and PCB Layout, ST Outline  
(Small Size Can, T-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
G = GATE  
D = DRAIN  
S = SOURCE  
D
D
D
D
S
S
G
6
www.irf.com  
IRF6617  
DirectFET™ Outline Dimension, ST Outline  
(Small Size Can, T-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
DIMENSIONS  
IMPERIAL  
METRIC  
MAX  
CODE  
MIN  
MIN  
4.75  
3.70  
2.75  
0.35  
0.58  
0.58  
0.75  
0.53  
0.26  
0.88  
2.18  
0.59  
0.03  
0.08  
MAX  
0.191  
0.156  
0.112  
0.018  
0.024  
0.024  
0.031  
0.022  
0.012  
0.039  
0.090  
0.028  
0.003  
0.007  
4.85  
3.95  
2.85  
0.45  
0.62  
0.62  
0.79  
0.57  
0.30  
0.98  
2.28  
0.70  
0.08  
0.17  
0.187  
0.146  
0.108  
0.014  
0.023  
0.023  
0.030  
0.021  
0.010  
0.035  
0.086  
0.023  
0.001  
0.003  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
DirectFET™ Part Marking  
www.irf.com  
7
IRF6617  
DirectFET™ Tape & Reel Dimension (Showing component orientation).  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4800 parts. (ordered as IRF6617). For 1000 parts on 7" reel,  
order IRF6617TR1  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4800)  
TR1 OPTION (QTY 1000)  
METRIC  
MAX  
IMPERIAL  
METRIC  
MIN  
MAX  
IMPERIAL  
CODE  
MIN  
MAX  
N.C  
MIN  
6.9  
MAX  
N.C  
N.C  
0.50  
N.C  
N.C  
0.53  
N.C  
N.C  
MIN  
A
B
C
D
E
F
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
330.0  
20.2  
12.8  
1.5  
N.C  
N.C  
13.2  
N.C  
N.C  
18.4  
14.4  
15.4  
177.77 N.C  
0.75  
0.53  
0.059  
2.31  
N.C  
N.C  
19.06  
13.5  
1.5  
N.C  
0.520  
N.C  
12.8  
N.C  
100.0  
N.C  
58.72  
N.C  
N.C  
N.C  
0.724  
0.567  
0.606  
13.50  
12.01  
12.01  
G
H
0.488  
0.469  
0.47  
0.47  
12.4  
11.9  
11.9  
11.9  
Loaded Tape Feed Direction  
NOTE: CONTROLLING  
DIMENSIONS IN MM  
DIMENSIONS  
METRIC  
IMPERIAL  
CODE  
MIN  
7.90  
3.90  
11.90  
5.45  
4.00  
5.00  
1.50  
1.50  
MIN  
0.311  
MAX  
0.319  
0.161  
0.484  
0.219  
0.165  
0.205  
N.C  
MAX  
A
B
C
D
E
F
8.10  
4.10  
12.30  
5.55  
4.20  
5.20  
N.C  
0.154  
0.469  
0.215  
0.157  
0.197  
0.059  
0.059  
G
H
1.60  
0.063  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.11/05  
8
www.irf.com  
Note: For the most current drawings please refer to the IR website at:  
http://www.irf.com/package/  

相关型号:

IRF6617TRPBF

Power Field-Effect Transistor, 14A I(D), 30V, 0.0081ohm, 1-Element, N-Channel, Silicon, Metal-Oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON

IRF6618

HEXFET Power MOSFET
INFINEON

IRF6618PBF

DirectFET?Power MOSFET ?
INFINEON

IRF6618TR1

Power MOSFET
INFINEON

IRF6618TR1PBF

Lead-Free (Qualified up to 260°C Reflow)
INFINEON

IRF6618TRPBF

DirectFET?Power MOSFET ?
INFINEON

IRF6619

DirectFET Power MOSFET
INFINEON

IRF6619PBF

DirectFET Power MOSFET
INFINEON

IRF6619TRPBF

DirectFET Power MOSFET
INFINEON

IRF661TRPBF

RoHs Compliant
INFINEON

IRF6620

HEXFETPower MOSFET
INFINEON

IRF6620PBF

Power Field-Effect Transistor, 27A I(D), 20V, 0.0027ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-3
INFINEON