IRGI4090PBF [INFINEON]

IRGI4090PbF Low VCE(on) and Energy per Pulse (EPULSE; IRGI4090PbF低VCE ( on)和能源每脉冲( EPULSE
IRGI4090PBF
型号: IRGI4090PBF
厂家: Infineon    Infineon
描述:

IRGI4090PbF Low VCE(on) and Energy per Pulse (EPULSE
IRGI4090PbF低VCE ( on)和能源每脉冲( EPULSE

脉冲
文件: 总7页 (文件大小:373K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97318A  
IRGI4090PbF  
PDP TRENCH IGBT  
Key Parameters  
Features  
VCE min  
300  
V
V
l
Advanced Trench IGBT Technology  
l
Optimized for Sustain and Energy Recovery  
circuits in PDP applications  
VCE(ON) typ. @ IC = 11A  
1.20  
140  
150  
I
RP max @ TC= 25°C  
A
TM  
l
Low VCE(on) and Energy per Pulse (EPULSE  
for improved panel efficiency  
)
TJ max  
°C  
l
l
High repetitive peak current capability  
Lead Free package  
C
E
C
G
G
TO-220AB  
Full-Pak  
E
n-channel  
G
C
E
Gate  
Collector  
Emitter  
Description  
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced  
trenchIGBTtechnologytoachievelowVCE(on) andlowEPULSETM ratingpersiliconareawhichimprovepanel  
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current  
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP  
applications.  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
VGE  
30  
Gate-to-Emitter Voltage  
V
A
IC @ TC = 25°C  
IC @ TC = 100°C  
IRP @ TC = 25°C  
PD @TC = 25°C  
PD @TC = 100°C  
Continuous Collector Current, VGE @ 15V  
Continuous Collector, VGE @ 15V  
Repetitive Peak Current c  
Power Dissipation  
21  
11  
140  
34  
W
14  
Power Dissipation  
0.27  
Linear Derating Factor  
W/°C  
°C  
TJ  
-40 to + 150  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature for 10 seconds  
Mounting Torque, 6-32 or M3 Screw  
300  
10lbxin (1.1Nxm)  
N
Thermal Resistance  
Parameter  
Junction-to-Case d  
Typ.  
–––  
Max.  
Units  
RθJC  
3.65  
°C/W  
www.irf.com  
1
06/13/08  
IRGI4090PbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGE = 0V, ICE = 500µA  
GE = 0V, ICE = 1.0A  
Reference to 25°C, ICE = 5.0µA  
Parameter  
Min. Typ. Max. Units  
BVCES  
Collector-to-Emitter Breakdown Voltage  
Emitter-to-Collector Breakdown Voltagee  
Breakdown Voltage Temp. Coefficient  
300  
30  
–––  
–––  
–––  
–––  
–––  
–––  
V
V
V
V(BR)ECS  
∆ΒVCES/TJ  
–––  
–––  
–––  
0.30  
1.20  
V/°C  
VGE = 15V, ICE = 11A e  
GE = 15V, ICE = 30A e  
V
1.67 1.94  
VGE = 15V, ICE = 60A e  
GE = 15V, ICE = 90A e  
2.43  
3.35  
4.50  
4.75  
–––  
-12  
2.0  
5.0  
100  
–––  
–––  
11  
–––  
–––  
–––  
–––  
5.0  
V
VCE(on)  
Static Collector-to-Emitter Voltage  
V
–––  
–––  
–––  
2.6  
VGE = 15V, ICE = 120A e  
VGE = 15V, ICE = 90A, TJ = 150°C e  
VCE = VGE, ICE = 250µA  
VGE(th)  
Gate Threshold Voltage  
V
VGE(th)/TJ  
ICES  
Reference to 25°C  
––– mV/°C  
Gate Threshold Voltage Coefficient  
Collector-to-Emitter Leakage Current  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
100  
VCE = 300V, VGE = 0V  
5.0  
–––  
–––  
100  
-100  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
µA  
VCE = 300V, VGE = 0V, TJ = 100°C  
VCE = 300V, VGE = 0V, TJ = 150°C  
VGE = 30V  
IGES  
Gate-to-Emitter Forward Leakage  
Gate-to-Emitter Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
Gate-to-Collector Charge  
Turn-On delay time  
Rise time  
nA  
VGE = -30V  
VCE = 25V, ICE = 11A  
gfe  
Qg  
Qgc  
td(on)  
tr  
S
VCE = 200V, IC = 11A, VGE = 15Ve  
34  
nC  
9.6  
20  
IC = 11A, VCC = 240V  
RG = 10, L=200µH, LS= 150nH  
TJ = 25°C  
14  
ns  
ns  
td(off)  
tf  
td(on)  
tr  
td(off)  
tf  
Turn-Off delay time  
Fall time  
99  
68  
IC = 11A, VCC = 240V  
RG = 10, L=200µH, LS= 150nH  
TJ = 150°C  
Turn-On delay time  
Rise time  
19  
15  
Turn-Off delay time  
Fall time  
139  
129  
–––  
VCC = 240V, VGE = 15V, RG= 5.1Ω  
tst  
Shoot Through Blocking Time  
ns  
µJ  
L =220nH, C= 0.10µF, VGE = 15V  
–––  
–––  
549  
637  
–––  
–––  
V
CC = 240V, RG= 5.10Ω, TJ = 25°C  
L =220nH, C= 0.10µF, VGE = 15V  
CC = 240V, RG= 5.10Ω, TJ = 100°C  
VGE = 0V  
CE = 30V  
EPULSE  
Energy per Pulse  
V
Cies  
Coes  
Cres  
LC  
Input Capacitance  
––– 1153 –––  
V
Output Capacitance  
–––  
–––  
–––  
59  
27  
–––  
–––  
–––  
pF  
ƒ = 1.0MHz,  
See Fig.13  
Reverse Transfer Capacitance  
Internal Collector Inductance  
4.5  
Between lead,  
nH 6mm (0.25in.)  
from package  
LE  
Internal Emitter Inductance  
–––  
7.5  
–––  
and center of die contact  
Notes:  
 Half sine wave with duty cycle = 0.05, PW=2µsec.  
‚ R is measured at TJ of approximately 90°C.  
θ
ƒ Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRGI4090PbF  
280  
240  
200  
160  
120  
80  
320  
280  
240  
200  
160  
120  
80  
Top  
VGE = 18V  
Top  
VGE = 18V  
V
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
V
V
V
V
V
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
GE  
GE  
GE  
GE  
GE  
GE  
V
GE  
V
GE  
V
GE  
Bottom  
V
Bottom  
GE  
40  
40  
0
0
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
V
(V)  
V
(V)  
CE  
CE  
Fig 2. Typical Output Characteristics @ 75°C  
Fig 1. Typical Output Characteristics @ 25°C  
240  
280  
Top  
VGE = 18V  
Top  
VGE = 18V  
V
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
V
= 15V  
= 12V  
= 10V  
= 8.0V  
= 6.0V  
GE  
GE  
240  
200  
160  
120  
80  
200  
160  
120  
80  
V
V
GE  
GE  
V
V
GE  
GE  
V
V
GE  
GE  
Bottom  
V
Bottom  
V
GE  
GE  
40  
40  
0
0
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
V
(V)  
V
(V)  
CE  
CE  
Fig 3. Typical Output Characteristics @ 125°C  
Fig 4. Typical Output Characteristics @ 150°C  
20  
240  
200  
I
= 11A  
C
15  
10  
5
T
= 25°C  
J
160  
120  
80  
40  
0
T
= 150°C  
J
T
T
= 25°C  
150°C  
J
J
0
0
5
10  
15  
20  
0
5
10  
15  
20  
V
(V)  
V
(V)  
GE  
GE  
Fig 5. Typical Transfer Characteristics  
Fig 6. VCE(ON) vs. Gate Voltage  
www.irf.com  
3
IRGI4090PbF  
25  
160  
140  
120  
100  
80  
PW= 2µs  
Duty cycle <= 0.05  
Half Sine Wave  
20  
15  
10  
5
60  
40  
20  
0
0
20  
40  
60  
80 100 120 140 160  
(°C)  
25  
50  
75  
100  
125  
150  
T
Case Temperature (°C)  
C
Fig 8. Typical Repetitive Peak Current vs. Case Temperature  
8000  
Fig 7. Maximum Collector Current vs. Case Temperature  
8000  
V
= 240V  
V
= 240V  
CC  
CC  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
7000  
6000  
5000  
4000  
3000  
2000  
1000  
L = 220nH  
C = 0.40µF  
L = 220nH  
C = variable  
100°C  
100°C  
25°C  
25°C  
120 125 130 135 140 145 150 155 160 165 170  
180  
190  
200  
210  
220  
230  
240  
I , Peak Collector Current (A)  
c
V
Collector-to-Emitter Voltage (V)  
CE,  
Fig 9. Typical EPULSE vs. Collector Current  
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage  
9400  
1000  
V
= 240V  
CC  
8400  
7400  
6400  
5400  
4400  
3400  
2400  
1400  
400  
L = 220nH  
t = 1µs half sine  
C= 0.4µF  
100  
10µsec  
100µsec  
C= 0.2µF  
10  
1
1msec  
T
= 25°C  
C
T
= 150°C  
J
C= 0.1µF  
125  
Single Pulse  
25  
50  
75  
100  
150  
1
10  
100  
1000  
T , Temperature (ºC)  
V
(V)  
J
CE  
Fig 11. EPULSE vs. Temperature  
Fig 12. Forrward Bias Safe Operating Area  
4
www.irf.com  
IRGI4090PbF  
10000  
1000  
100  
16  
14  
12  
10  
8
V
C
= 0V,  
f = 1 MHZ  
GS  
I
= 11A  
V
C
= C + C , C SHORTED  
ies  
ge gd ce  
C
= C  
res  
gc  
= 240V  
= 150V  
= 60V  
C
= C + C  
ce gc  
CES  
oes  
V
V
CES  
CES  
Cies  
6
4
Coes  
Cres  
2
10  
0
0
50  
100  
150  
200  
0
10  
20  
30  
40  
V
, Collector-toEmitter-Voltage(V)  
Q
G
, Total Gate Charge (nC)  
CE  
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage  
10  
D = 0.50  
1
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.1  
0.01  
0.24132 0.000104  
τ
0.02  
0.01  
τ
J τJ  
τ
Cτ  
0.68173 0.001551  
1.10405 0.071769  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2τ2  
3τ3  
4τ4  
SINGLE PULSE  
( THERMAL RESPONSE )  
1.62289  
1.9251  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRGI4090PbF  
A
RG  
C
PULSEA  
PULSEB  
DRIVER  
L
VCC  
B
Ipulse  
DUT  
RG  
tST  
Fig 16a. tst and EPULSE Test Circuit  
Fig 16b. tst Test Waveforms  
VCE  
Energy  
IC Current  
L
VCC  
DUT  
0
1K  
Fig 16c. EPULSE Test Waveforms  
Fig. 17 - Gate Charge Circuit (turn-off)  
6
www.irf.com  
IRGI4090PbF  
TO-220 Full-Pak Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220 Full-Pak Part Marking Information  
TO-220AB Full-Pak package is not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
The specifications set forth in this data sheet are the sole and  
exclusive specifications applicable to the identified product,  
and no specifications or features are implied whether by  
industry custom, sampling or otherwise. We qualify our  
products in accordance with our internal practices and  
procedures, which by their nature do not include qualification to  
all possible or even all widely used applications. Without  
limitation, we have not qualified our product for medical use or  
applications involving hi-reliability applications. Customers are  
encouraged to and responsible for qualifying product to their  
own use and their own application environments, especially  
where particular features are critical to operational performance  
or safety. Please contact your IR representative if you have  
specific design or use requirements or for further information.  
Data and specifications subject to change without notice.  
This product has been designed for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.06/08  
www.irf.com  
7

相关型号:

IRGIB10B60KD1

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGIB10B60KD1P

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGIB10B60KD1PBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGIB15B60KD1

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGIB15B60KD1P

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGIB15B60KD1PPBF

Insulated Gate Bipolar Transistor, 19A I(C), 600V V(BR)CES, N-Channel, TO-220AB, TO-220, FULL PACK-3
INFINEON

IRGIB6B60KD

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGIB6B60KDPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGIB7B60KD

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGIB7B60KDPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGIH50F

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGIH50FD

TRANSISTOR | IGBT | N-CHAN | 1.2KV V(BR)CES | 45A I(C) | TO-259VAR
ETC