HGTP1N120CND [INTERSIL]

6.2A, 1200V, NPT Series N-Channel IGBT with Anti-Parallel Hyperfast Diode; 6.2A , 1200V ,不扩散核武器条约系列N沟道IGBT与反并联二极管超高速
HGTP1N120CND
型号: HGTP1N120CND
厂家: Intersil    Intersil
描述:

6.2A, 1200V, NPT Series N-Channel IGBT with Anti-Parallel Hyperfast Diode
6.2A , 1200V ,不扩散核武器条约系列N沟道IGBT与反并联二极管超高速

二极管 双极性晶体管
文件: 总7页 (文件大小:83K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HGTP1N120CND, HGT1S1N120CNDS  
Data Sheet  
January 2000  
File Number 4651.1  
6.2A, 1200V, NPT Series N-Channel IGBT  
with Anti-Parallel Hyperfast Diode  
Features  
o
• 6.2A, 1200V, T = 25 C  
C
The HGTP1N120CND and the HGT1S1N120CNDS are  
Non-Punch Through (NPT) IGBT designs. They are new  
members of the MOS gated high voltage switching IGBT  
family. IGBTs combine the best features of MOSFETs and  
bipolar transistors. This device has the high input impedance  
of a MOSFET and the low on-state conduction loss of a  
bipolar transistor.  
• 1200V Switching SOA Capability  
Typical E . . . . . . . . . . . . . . . . . . . 200µJ at T = 150 C  
o
OFF  
J
• Short Circuit Rating  
• Low Conduction Loss  
Temperature Compensating SABER™ Model  
Thermal Impedance SPICE Model www.intersil.com/  
The IGBT is development type number TA49317. The diode  
used in anti-parallel with the IGBT is the RHRD4120  
(TA49056).  
• Related Literature  
- TB334, “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
The IGBT is ideal for many high voltage switching  
applications operating at moderate frequencies where low  
conduction losses are essential, such as: AC and DC motor  
controls, power supplies and drivers for solenoids, relays  
and contactors.  
Packaging  
JEDEC TO-220AB  
E
C
G
Formerly developmental type TA49315.  
COLLECTOR  
(FLANGE)  
Ordering Information  
PART NUMBER  
PACKAGE  
TO-220AB  
TO-263AB  
BRAND  
1N120CND  
1N120CND  
HGTP1N120CND  
HGT1S1N120CNDS  
JEDEC TO-263AB  
NOTE: When ordering, use the entire part number. Add the suffix 9A  
to obtain the TO-263AB in tape and reel, e.g.  
HGT1S1N120CNDS9A.  
COLLECTOR  
(FLANGE)  
G
E
Symbol  
C
G
E
INTERSIL CORPORATION IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS  
4,364,073  
4,598,461  
4,682,195  
4,803,533  
4,888,627  
4,417,385  
4,605,948  
4,684,413  
4,809,045  
4,890,143  
4,430,792  
4,620,211  
4,694,313  
4,809,047  
4,901,127  
4,443,931  
4,631,564  
4,717,679  
4,810,665  
4,904,609  
4,466,176  
4,639,754  
4,743,952  
4,823,176  
4,933,740  
4,516,143  
4,639,762  
4,783,690  
4,837,606  
4,963,951  
4,532,534  
4,641,162  
4,794,432  
4,860,080  
4,969,027  
4,587,713  
4,644,637  
4,801,986  
4,883,767  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 2000  
SABER™ is a trademark of Analogy, Inc.  
1
HGTP1N120CND, HGT1S1N120CNDS  
o
Absolute Maximum Ratings T = 25 C, Unless Otherwise Specified  
C
HGTP1N120CND,  
HGT1S1N120CNDS  
UNITS  
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BV  
1200  
V
CES  
Collector Current Continuous  
o
At T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
6.2  
A
A
A
A
V
V
C25  
C110  
F(AV)  
o
At T = 110 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
3.2  
o
Average Rectified Forward Current at T = 148 C . . . . . . . . . . . . . . . . . . . . . . . . . . . .. I  
4
6
C
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
CM  
GES  
GEM  
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V  
±20  
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
o
±30  
Switching Safe Operating Area at T = 150 C (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . SSOA  
J
6A at 1200V  
60  
o
Power Dissipation Total at T = 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
C
W
D
o
o
Power Dissipation Derating T > 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0.476  
-55 to 150  
W/ C  
C
o
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . T , T  
J
C
STG  
Maximum Lead Temperature for Soldering  
o
Leads at 0.063in (1.6cm) from Case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
300  
260  
8
C
L
o
Package Body for 10s, see Tech Brief 334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T  
C
pkg  
Short Circuit Withstand Time (Note 2) at V  
Short Circuit Withstand Time (Note 2) at V  
= 15V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t  
µs  
µs  
GE  
SC  
SC  
= 13V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t  
11  
GE  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Single Pulse; V  
GE  
= 15V; Pulse width limited by maximum junction temperature.  
o
2. V  
= 840V, T = 125 C, R = 82.  
J G  
CE(PK)  
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
BV  
TEST CONDITIONS  
= 250µA, V = 0V  
MIN  
TYP  
MAX  
-
UNITS  
V
Collector to Emitter Breakdown Voltage  
Collector to Emitter Leakage Current  
I
1200  
-
CES  
C
GE  
CES  
o
I
V
= BV  
T
= 25 C  
-
-
-
20  
-
250  
-
µA  
µA  
mA  
V
CES  
CE  
C
C
C
C
C
o
T
T
T
T
= 125 C  
o
= 150 C  
-
1.0  
2.4  
3.2  
-
o
Collector to Emitter Saturation Voltage  
V
I
= 1.0A,  
= 15V  
= 25 C  
-
2.05  
2.75  
7.1  
-
CE(SAT)  
C
V
o
GE  
= 150 C  
-
V
Gate to Emitter Threshold Voltage  
Gate to Emitter Leakage Current  
Switching SOA  
V
I
= 50µA, V = V  
CE GE  
6.0  
-
V
GE(TH)  
C
I
V
= ±20V  
±250  
-
nA  
A
GES  
GE  
o
SSOA  
T = 150 C, R = 82, V  
= 15V,  
6
-
J
G
GE  
= 1200V  
L = 2mH, V  
CE(PK)  
Gate to Emitter Plateau Voltage  
On-State Gate Charge  
V
I
I
= 1.0A, V = 0.5 BV  
CE CES  
-
-
-
-
-
-
-
-
-
9.7  
13  
-
V
nC  
nC  
ns  
ns  
ns  
ns  
J
GEP  
C
Q
= 1.0A,  
= 0.5 BV  
V
= 15V  
19  
G(ON)  
C
GE  
V
CE  
CES  
V
= 20V  
o
16  
28  
GE  
Current Turn-On Delay Time  
Current Rise Time  
t
IGBT and Diode at T = 25 C  
15  
21  
d(ON)I  
J
I
= 1.0A, V  
= 0.8 BV  
CE  
CE  
= 15V, R = 82Ω, L = 4mH,  
CES,  
t
11  
15  
rI  
V
GE  
G
Current Turn-Off Delay Time  
Current Fall Time  
t
65  
95  
Test Circuit (Figure 20)  
d(OFF)I  
t
365  
175  
140  
450  
195  
155  
fI  
Turn-On Energy (Note 3)  
Turn-Off Energy (Note 3)  
E
ON  
E
J
OFF  
2
HGTP1N120CND, HGT1S1N120CNDS  
o
Electrical Specifications  
T
= 25 C, Unless Otherwise Specified (Continued)  
C
PARAMETER  
Current Turn-On Delay Time  
Current Rise Time  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
13  
11  
75  
465  
385  
200  
1.3  
-
MAX  
20  
UNITS  
ns  
ns  
ns  
ns  
J
o
t
IGBT and Diode at T = 150 C,  
-
-
-
-
-
-
-
-
-
-
d(ON)I  
J
I
V
= 1.0 A, V  
= 0.8 BV  
CE  
CE  
= 15V, R = 82Ω, L = 4mH,  
CES,  
t
18  
rI  
GE  
G
Current Turn-Off Delay Time  
Current Fall Time  
t
100  
625  
460  
225  
1.8  
50  
Test Circuit (Figure 20)  
d(OFF)I  
t
fI  
Turn-On Energy (Note 3)  
Turn-Off Energy (Note 3)  
Diode Forward Voltage  
Diode Reverse Recovery Time  
E
ON  
E
J
OFF  
V
I
I
= 1A  
V
EC  
EC  
t
= 1A, dI /dt = 200A/µs  
EC  
ns  
rr  
EC  
o
Thermal Resistance Junction To Case  
R
IGBT  
-
2.1  
3
C/W  
θJC  
o
Diode  
-
C/W  
NOTE:  
3. Turn-Off Energy Loss (E  
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending  
OFF  
at the point where the collector current equals zero (I = 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement  
CE  
of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss. Turn-on losses include losses due to  
diode recovery.  
Typical Performance Curves Unless Otherwise Specified  
7
7
o
V
= 15V  
GE  
T
= 150 C, R = 82, V = 15V, L = 2mH  
GE  
J
G
6
5
4
3
2
1
0
6
5
4
3
2
1
0
25  
50  
75  
100  
125  
150  
0
200  
400  
600  
800  
1000  
1200  
1400  
o
T
, CASE TEMPERATURE ( C)  
V
CE  
, COLLECTOR TO EMITTER VOLTAGE (V)  
C
FIGURE 1. DC COLLECTOR CURRENT vs CASE  
TEMPERATURE  
FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA  
300  
o
20  
18  
16  
14  
12  
10  
20  
18  
16  
14  
12  
10  
T
C
V
o
T
= 150 C, R = 82, L = 4mH, V  
= 960V  
GE  
15V  
J
G
CE  
V
= 840V, R = 82, T = 125 C  
CE  
G
J
200  
o
75 C  
o
75 C 13V  
o
15V  
13V  
110 C  
t
SC  
o
100  
110 C  
f
f
= 0.05 / (t  
d(OFF)I  
= (P - P ) / (E  
+ t  
)
)
MAX1  
MAX2  
d(ON)I  
+ E  
I
SC  
D
C
ON  
OFF  
P
= CONDUCTION DISSIPATION  
10  
5
C
(DUTY FACTOR = 50%)  
o
R
= 2.1 C/W, SEE NOTES  
1.0  
θJC  
0.5  
2.0  
3.0  
13  
14  
15  
I
, COLLECTOR TO EMITTER CURRENT (A)  
V
, GATE TO EMITTER VOLTAGE (V)  
CE  
GE  
FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 4. SHORT CIRCUIT WITHSTAND TIME  
3
HGTP1N120CND, HGT1S1N120CNDS  
Typical Performance Curves Unless Otherwise Specified (Continued)  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
o
T
= 25 C  
C
o
T
= 25 C  
C
o
T
= -55 C  
C
o
T
= -55 C  
o
C
T
C
= 150 C  
o
T
= 150 C  
C
DUTY CYCLE < 0.5%, V = 15V  
PULSE DURATION = 250µs  
GE  
DUTY CYCLE < 0.5%, V = 13V  
PULSE DURATION = 250µs  
GE  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
500  
1200  
R
= 82, L = 4mH, V  
= 960V  
CE  
R
= 82, L = 4mH, V  
= 960V  
CE  
G
G
1000  
800  
600  
400  
400  
300  
200  
100  
0
o
T
= 150 C, V  
= 13V OR 15V  
o
J
GE  
T
T
= 150 C, V  
= 13V  
J
J
GE  
o
= 150 C, V  
= 15V  
GE  
o
= 25 C, V  
T
= 13V OR 15V  
GE  
J
200  
0
o
T
T
= 25 C, V  
= 13V  
= 15V  
J
GE  
o
= 25 C, V  
J
GE  
0.5  
1
1.5  
2
2.5  
3
0.5  
1
1.5  
2
2.5  
3
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTOR TO  
EMITTER CURRENT  
24  
28  
R
= 82, L = 4mH, V  
= 960V  
CE  
G
R
= 82, L = 4mH, V  
= 960V  
CE  
G
o
T
= 25 C, V  
= 13V  
24  
20  
16  
12  
8
J
GE  
o
o
20  
16  
12  
8
T
= 25 C, T = 150 C, V  
= 13V  
GE  
J
J
o
T
= 150 C, V  
= 13V  
J
GE  
o
T
= 25 C, V  
= 15V  
o
o
J
GE  
T
= 25 C, T = 150 C, V  
= 15V  
J
J
GE  
o
T
= 150 C, V = 15V  
GE  
J
4
0.5  
0.5  
1
1.5  
2
2.5  
3
1
1.5  
2
2.5  
3
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
CE  
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
FIGURE 9. TURN-ON DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 10. TURN-ON RISE TIME vs COLLECTOR TO  
EMITTER CURRENT  
4
HGTP1N120CND, HGT1S1N120CNDS  
Typical Performance Curves Unless Otherwise Specified (Continued)  
84  
80  
76  
72  
68  
64  
60  
56  
560  
520  
480  
440  
400  
360  
320  
280  
240  
R
= 82, L = 4mH, V  
= 960V  
CE  
G
R
= 82, L = 4mH, V  
= 960V  
G
CE  
o
o
T
= 150 C, V  
= 15V  
T
= 150 C, V  
GE  
= 13V OR 15V  
J
GE  
J
o
T
T
= 150 C, V  
= 13V  
J
J
GE  
= 15V  
o
= 25 C, V  
GE  
o
T
= 25 C, V  
= 13V  
GE  
J
o
T
= 25 C, V  
= 13V OR 15V  
2
J
GE  
0.5  
1
1.5  
2
2.5  
3
0.5  
1
1.5  
2.5  
3
I
, COLLECTOR TO EMITTER CURRENT (A)  
I
, COLLECTOR TO EMITTER CURRENT (A)  
CE  
CE  
FIGURE 11. TURN-OFF DELAY TIME vs COLLECTOR TO  
EMITTER CURRENT  
FIGURE 12. TURN-OFF FALL TIME vs COLLECTOR TO  
EMITTER CURRENT  
15  
16  
DUTY CYCLE < 0.5%, V  
= 10V  
CE  
V
= 800V  
CE  
14 PULSE DURATION = 250µs  
12  
9
12  
10  
8
o
V
= 1200V  
CE  
T
= -55 C  
V
= 400V  
CE  
C
6
o
6
T
= 25 C  
C
4
3
o
= 150 C  
T
C
2
0
o
= 1mA, R = 600, T = 25 C  
I
G(REF)  
8
L
C
0
0
4
12  
16  
20  
6
9
12  
15  
V
, GATE TO EMITTER VOLTAGE (V)  
Q , GATE CHARGE (nC)  
G
GE  
FIGURE 13. TRANSFER CHARACTERISTIC  
FIGURE 14. GATE CHARGE WAVEFORMS  
350  
300  
250  
200  
150  
100  
50  
12  
10  
8
FREQUENCY = 1MHz  
PULSE DURATION = 250µs  
o
DUTY CYCLE < 0.5%, T = 110 C  
V
= 15V  
C
GE  
C
IES  
6
V
= 14V  
GE  
4
V
= 13V  
GE  
C
OES  
2
C
RES  
V
0
0
0
2
4
6
8
10  
0
5
10  
15  
20  
25  
, COLLECTOR TO EMITTER VOLTAGE (V)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
CE  
FIGURE 15. CAPACITANCE vs COLLECTOR TO EMITTER  
VOLTAGE  
FIGURE 16. COLLECTOR TO EMITTER ON-STATE VOLTAGE  
5
HGTP1N120CND, HGT1S1N120CNDS  
Typical Performance Curves Unless Otherwise Specified (Continued)  
2.0  
1.0  
0.5  
0.2  
0.1  
0.1  
0.05  
0.02  
0.01  
t
1
P
SINGLE PULSE  
D
DUTY FACTOR, D = t / t  
0.01  
1
2
t
2
PEAK T = (P X Z  
X R ) + T  
J
D
θJC  
θJC C  
0.005  
-5  
-4  
10  
-3  
-2  
10  
-1  
10  
0
10  
10  
t , RECTANGULAR PULSE DURATION (s)  
10  
1
FIGURE 17. NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE  
70  
5
o
= 25 C, dI /dt = 200A/µs  
T
C
EC  
60  
50  
40  
30  
20  
10  
0
2
1
o
o
T
= 150 C  
T
T
= -55 C  
C
C
C
t
t
rr  
0.5  
t
a
o
= 25 C  
0.2  
0.1  
b
0.5  
1
2
3
4
5
0
0.4  
0.8  
1.2  
1.6  
2.0  
V
, FORWARD VOLTAGE (V)  
I
, FORWARD CURRENT (A)  
EC  
EC  
FIGURE 18. DIODE FORWARD CURRENT vs FORWARD  
VOLTAGE DROP  
FIGURE 19. RECOVERY TIMES vs FORWARD CURRENT  
Test Circuit and Waveforms  
V
GE  
90%  
L = 4mH  
10%  
RHRD4120  
E
ON  
E
OFF  
R
= 82Ω  
G
I
I
CE  
CE  
90%  
+
V
= 960V  
DD  
V
CE  
10%  
-
t
d(ON)I  
t
fI  
t
rI  
t
d(OFF)I  
FIGURE 20. INDUCTIVE SWITCHING TEST CIRCUIT  
FIGURE 21. SWITCHING TEST WAVEFORMS  
6
HGTP1N120CND, HGT1S1N120CNDS  
Handling Precautions for IGBTs  
Operating Frequency Information  
Insulated Gate Bipolar Transistors are susceptible to  
gate-insulation damage by the electrostatic discharge of  
energy through the devices. When handling these devices,  
care should be exercised to assure that the static charge  
built in the handler’s body capacitance is not discharged  
through the device. With proper handling and application  
procedures, however, IGBTs are currently being extensively  
used in production by numerous equipment manufacturers in  
military, industrial and consumer applications, with virtually  
no damage problems due to electrostatic discharge. IGBTs  
can be handled safely if the following basic precautions are  
taken:  
Operating frequency information for a typical device  
(Figure 3) is presented as a guide for estimating device  
performance for a specific application. Other typical  
frequency vs collector current (I ) plots are possible using  
CE  
the information shown for a typical unit in Figures 6, 7, 8, 9  
and 11. The operating frequency plot (Figure 3) of a typical  
device shows f  
or f  
; whichever is smaller at each  
MAX1  
MAX2  
point. The information is based on measurements of a  
typical device and is bounded by the maximum rated  
junction temperature.  
f
is defined by f  
MAX1  
= 0.05/(t ).  
+ t  
MAX1  
d(OFF)I d(ON)I  
Deadtime (the denominator) has been arbitrarily held to 10%  
of the on-state time for a 50% duty factor. Other definitions  
1. Prior to assembly into a circuit, all leads should be kept  
shorted together either by the use of metal shorting  
springs or by the insertion into conductive material such  
as “ECCOSORBD™ LD26” or equivalent.  
are possible. t  
and t  
are defined in Figure 21.  
d(OFF)I  
d(ON)I  
Device turn-off delay can establish an additional frequency  
limiting condition for an application other than T . t  
JM d(OFF)I  
2. When devices are removed by hand from their carriers,  
the hand being used should be grounded by any suitable  
means - for example, with a metallic wristband.  
is important when controlling output ripple under a lightly  
loaded condition.  
f
is defined by f  
MAX2  
= (P - P )/(E  
OFF  
+ E ). The  
ON  
MAX2  
D
C
3. Tips of soldering irons should be grounded.  
allowable dissipation (P ) is defined by P = (T - T )/R  
.
D
D
JM θJC  
C
4. Devices should never be inserted into or removed from  
circuits with power on.  
The sum of device switching and conduction losses must not  
exceed P . A 50% duty factor was used (Figure 3) and the  
D
5. Gate Voltage Rating - Never exceed the gate-voltage  
conduction losses (P ) are approximated by  
C
rating of V  
. Exceeding the rated V can result in  
GEM  
GE  
P = (V x I )/2.  
C
CE CE  
permanent damage to the oxide layer in the gate region.  
E
and E are defined in the switching waveforms  
6. Gate Termination - The gates of these devices are  
essentially capacitors. Circuits that leave the gate  
open-circuited or floating should be avoided. These  
conditions can result in turn-on of the device due to  
voltage buildup on the input capacitor due to leakage  
currents or pickup.  
ON  
OFF  
shown in Figure 21. E  
power loss (I  
is the integral of the instantaneous  
ON  
x V ) during turn-on and E  
is the  
CE  
CE  
OFF  
x V ) during  
integral of the instantaneous power loss (I  
CE  
turn-off. All tail losses are included in the calculation for  
; i.e., the collector current equals zero (I = 0).  
CE  
E
OFF  
CE  
7. Gate Protection - These devices do not have an internal  
monolithic Zener diode from gate to emitter. If gate  
protection is required an external Zener is recommended.  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
ECCOSORBD™ is a trademark of Emerson and Cumming, Inc.  
7

相关型号:

HGTP20N35G3VL

20A, 350V N-Channel, Logic Level, Voltage Clamping IGBTs
FAIRCHILD

HGTP20N35G3VL

20A, 350V N-Channel, Logic Level, Voltage Clamping IGBTs
INTERSIL

HGTP20N36G3VL

20A, 360V N-Channel, Logic Level, Voltage Clamping IGBTs
FAIRCHILD

HGTP20N60A4

600V, SMPS Series N-Channel IGBTs
FAIRCHILD

HGTP20N60A4

600V, SMPS Series N-Channel IGBTs
INTERSIL

HGTP20N60A4

600V,SMPS IGBT
ONSEMI

HGTP20N60A4_NL

Insulated Gate Bipolar Transistor, 70A I(C), 600V V(BR)CES, N-Channel, TO-220AB ALTERNATE VERSION, 3 PIN
FAIRCHILD

HGTP20N60B3

40A, 600V, UFS Series N-Channel IGBTs
FAIRCHILD

HGTP20N60B3

40A, 600V, UFS Series N-Channel IGBTs
INTERSIL

HGTP20N60C3

45A, 600V, UFS Series N-Channel IGBT
FAIRCHILD

HGTP20N60C3

45A, 600V, UFS Series N-Channel IGBT
INTERSIL

HGTP20N60C3R

40A, 600V, Rugged UFS Series N-Channel IGBTs
FAIRCHILD