IRGP4063PBF_15 [INFINEON]

INSULATED GATE BIPOLAR TRANSISTOR;
IRGP4063PBF_15
型号: IRGP4063PBF_15
厂家: Infineon    Infineon
描述:

INSULATED GATE BIPOLAR TRANSISTOR

文件: 总10页 (文件大小:264K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97404  
IRGP4063PbF  
INSULATED GATE BIPOLAR TRANSISTOR  
IRGP4063-EPbF  
Features  
C
• Low VCE (ON) Trench IGBT Technology  
VCES = 600V  
• Low switching losses  
• Maximum Junction temperature 175 °C  
• 5 μS short circuit SOA  
• SquareRBSOA  
IC = 48A, TC = 100°C  
G
tSC 5μs, TJ(max) = 175°C  
• 100% of the parts tested for ILM  

• Positive VCE (ON) Temperature co-efficient  
• Tightparameterdistribution  
• LeadFreePackage  
E
VCE(on) typ. = 1.65V  
n-channel  
Benefits  
C
C
• High Efficiency in a wide range of applications  
• Suitable for a wide range of switching frequencies due to  
Low VCE (ON) and Low Switching losses  
• RuggedtransientPerformanceforincreasedreliability  
• ExcellentCurrentsharinginparalleloperation  
• Low EMI  
E
E
C
C
G
G
TO-247AC  
IRGP4063PbF  
TO-247AD  
IRGP4063-EPbF  
G
C
E
Gate  
Collector  
Emitter  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
VCES  
Collector-to-Emitter Voltage  
600  
96  
V
IC @ TC = 25°C  
Continuous Collector Current  
IC @ TC = 100°C  
Continuous Collector Current  
48  
ICM  
ILM  
Pulse Collector Current, VGE = 15V  
Clamped Inductive Load Current, VGE = 20V  
144  
192  
A
A
V
VGE  
Continuous Gate-to-Emitter Voltage  
Transient Gate-to-Emitter Voltage  
Maximum Power Dissipation  
Maximum Power Dissipation  
Operating Junction and  
±20  
±30  
PD @ TC = 25°C  
330  
W
PD @ TC = 100°C  
170  
TJ  
-55 to +175  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 sec.  
Mounting Torque, 6-32 or M3 Screw  
°C  
300 (0.063 in. (1.6mm) from case)  
10 lbf·in (1.1 N·m)  
Thermal Resistance  
Parameter  
Min.  
–––  
–––  
–––  
Typ.  
–––  
Max.  
0.45  
–––  
40  
Units  
°C/W  
RθJC (IGBT)  
RθCS  
Thermal Resistance Junction-to-Case-(each IGBT)  
Thermal Resistance, Case-to-Sink (flat, greased surface)  
0.24  
–––  
RθJA  
Thermal Resistance, Junction-to-Ambient (typical socket mount)  
1
www.irf.com  
06/30/09  
IRGP4063PbF/IRGP4063-EPbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Ref.Fig  
CT6  
Parameter  
Collector-to-Emitter Breakdown Voltage  
Min. Typ. Max. Units  
Conditions  
GE = 0V, IC = 150μA  
V(BR)CES  
V
600  
4.0  
0.30  
1.65  
2.0  
2.05  
V
ΔV(BR)CES/ΔTJ  
VGE = 0V, IC = 1mA (25°C-175°C)  
IC = 48A, VGE = 15V, TJ = 25°C  
IC = 48A, VGE = 15V, TJ = 150°C  
IC = 48A, VGE = 15V, TJ = 175°C  
VCE = VGE, IC = 1.4mA  
CT6  
Temperature Coeff. of Breakdown Voltage  
V/°C  
5,6,7  
8,9,10  
2.14  
VCE(on)  
VGE(th)  
Collector-to-Emitter Saturation Voltage  
V
Gate Threshold Voltage  
6.5  
V
mV/°C  
S
8,9  
Δ
Δ
VGE(th)/ TJ  
V
CE = VGE, IC = 1.0mA (25°C - 175°C)  
VCE = 50V, IC = 48A, PW = 80μs  
GE = 0V, VCE = 600V  
VGE = 0V, VCE = 600V, TJ = 175°C  
GE = ±20V  
10,11  
Threshold Voltage temp. coefficient  
Forward Transconductance  
-21  
32  
gfe  
ICES  
V
Collector-to-Emitter Leakage Current  
1.0  
450  
150  
1000  
±100  
μA  
IGES  
V
Gate-to-Emitter Leakage Current  
nA  
Switching Characteristics @ TJ = 25°C (unless otherwise specified)  
Ref.Fig  
18  
Parameter  
Total Gate Charge (turn-on)  
Gate-to-Emitter Charge (turn-on)  
Gate-to-Collector Charge (turn-on)  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
Min. Typ. Max. Units  
Conditions  
Qg  
IC = 48A  
95  
140  
Qge  
Qgc  
Eon  
Eoff  
Etotal  
td(on)  
tr  
VGE = 15V  
CT1  
28  
42  
nC  
μJ  
ns  
VCC = 400V  
35  
53  
IC = 48A, VCC = 400V, VGE = 15V  
CT4  
CT4  
625  
1141  
RG=10Ω, L= 200μH, LS=150nH, TJ= 25°C  
Energy losses include tail & diode reverse recovery  
IC = 48A, VCC = 400V, VGE = 15V  
1275 1481  
1900 2622  
60  
40  
78  
56  
176  
46  
Ω
RG = 10 , L = 200μH, LS = 150nH, TJ = 25°C  
td(off)  
tf  
Turn-Off delay time  
Fall time  
145  
35  
Eon  
Eoff  
Etotal  
td(on)  
tr  
IC = 48A, VCC = 400V, VGE=15V  
12, 14  
CT4  
1625  
1585  
3210  
55  
Turn-On Switching Loss  
Turn-Off Switching Loss  
Total Switching Loss  
Turn-On delay time  
Rise time  
Ω
RG=10 , L=200μH, LS=150nH, TJ = 175°C  
μJ  
ns  
pF  
Energy losses include tail & diode reverse recovery  
IC = 48A, VCC = 400V, VGE = 15V  
WF1, WF2  
13, 15  
CT4  
R
G = 10Ω, L = 200μH, LS = 150nH  
45  
td(off)  
tf  
TJ = 175°C  
WF1  
Turn-Off delay time  
Fall time  
165  
45  
WF2  
Cies  
Coes  
Cres  
VGE = 0V  
17  
Input Capacitance  
3025  
245  
90  
VCC = 30V  
Output Capacitance  
Reverse Transfer Capacitance  
f = 1.0Mhz  
TJ = 175°C, IC = 192A  
VCC = 480V, Vp =600V  
Rg = 10Ω, VGE = +15V to 0V  
VCC = 400V, Vp =600V  
Rg = 10Ω, VGE = +15V to 0V  
4
RBSOA  
SCSOA  
Reverse Bias Safe Operating Area  
Short Circuit Safe Operating Area  
FULL SQUARE  
CT2  
16, CT3  
WF3  
5
μs  
Notes:  
 VCC = 80% (VCES), VGE = 20V, L = 200μH, RG = 10Ω.  
‚ This is only applied to TO-247AC package.  
ƒ Pulse width limited by max. junction temperature.  
„ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.  
Turn-on energy is measured using the same co-pak diode as IRGP4063DPbF.  
† Calculated continuous current based on maximum allowable junction temperature.  
Bond wire current limit is 80A. Note that current limitations arising from heating of  
the device leads may occur with some lead mounting arrangements.  
2
www.irf.com  
IRGP4063PbF/IRGP4063-EPbF  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
350  
300  
250  
200  
150  
100  
50  
0
0
25 50 75 100 125 150 175 200  
(°C)  
0
25 50 75 100 125 150 175 200  
(°C)  
T
T
C
C
Fig. 1 - Maximum DC Collector Current vs.  
Fig. 2 - Power Dissipation vs. Case  
Case Temperature  
Temperature  
1000  
1000  
10μsec  
100  
100  
10  
1
100μsec  
1msec  
10  
DC  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
0.1  
1
10  
100  
1000  
10  
100  
(V)  
1000  
V
(V)  
V
CE  
CE  
Fig. 3 - Forward SOA  
TC = 25°C, TJ 175°C; VGE =15V  
Fig. 4 - Reverse Bias SOA  
TJ = 175°C; VGE =15V  
200  
180  
160  
140  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
V
= 18V  
GE  
V
= 18V  
GE  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
60  
60  
40  
40  
20  
20  
0
0
0
2
4
6
8
10  
0
2
4
6
8
10  
V
(V)  
V
(V)  
CE  
CE  
Fig. 5 - Typ. IGBT Output Characteristics  
TJ = -40°C; tp = 80μs  
Fig. 6 - Typ. IGBT Output Characteristics  
TJ = 25°C; tp = 80μs  
www.irf.com  
3
IRGP4063PbF/IRGP4063-EPbF  
200  
20  
18  
16  
14  
12  
10  
8
V
= 18V  
180  
160  
140  
120  
100  
80  
GE  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 8.0V  
I
I
I
= 24A  
= 48A  
= 96A  
CE  
CE  
CE  
60  
6
40  
4
20  
2
0
0
0
2
4
6
8
10  
5
10  
15  
20  
V
(V)  
GE  
V
(V)  
CE  
Fig. 8 - Typical VCE vs. VGE  
Fig. 7 - Typ. IGBT Output Characteristics  
TJ = 175°C; tp = 80μs  
TJ = -40°C  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
I
I
I
= 24A  
I
I
I
= 24A  
= 48A  
= 96A  
CE  
CE  
CE  
CE  
CE  
CE  
= 48A  
= 96A  
10  
8
6
6
4
4
2
2
0
0
5
10  
15  
20  
5
10  
15  
20  
V
(V)  
V
(V)  
GE  
GE  
Fig. 9 - Typical VCE vs. VGE  
Fig. 10 - Typical VCE vs. VGE  
TJ = 25°C  
TJ = 175°C  
6000  
5000  
4000  
3000  
2000  
1000  
0
200  
180  
160  
140  
120  
100  
80  
T
= 25°C  
J
T
= 175°C  
J
E
OFF  
E
ON  
60  
40  
20  
0
0
50  
100  
150  
0
5
10  
15  
V
(V)  
GE  
I
(A)  
C
Fig. 11 - Typ. Transfer Characteristics  
VCE = 50V; tp = 10μs  
Fig. 12 - Typ. Energy Loss vs. IC  
TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V  
4
www.irf.com  
IRGP4063PbF/IRGP4063-EPbF  
5000  
1000  
100  
10  
4500  
E
OFF  
4000  
E
ON  
td  
3500  
3000  
2500  
2000  
1500  
1000  
OFF  
td  
ON  
t
F
t
R
0
25  
50  
75  
100  
125  
0
20  
40  
60  
80  
100  
I
(A)  
C
Rg (Ω)  
Fig. 14 - Typ. Energy Loss vs. RG  
TJ = 175°C; L = 200μH; VCE = 400V, ICE = 48A; VGE = 15V  
Fig. 13 - Typ. Switching Time vs. IC  
TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V  
400  
350  
300  
250  
200  
150  
100  
50  
18  
16  
14  
12  
10  
8
1000  
td  
OFF  
t
R
td  
ON  
100  
t
F
6
4
10  
8
10  
12  
14  
(V)  
16  
18  
0
25  
50  
75  
100  
125  
V
Ω
( )  
R
GE  
G
Fig. 15 - Typ. Switching Time vs. RG  
TJ = 175°C; L = 200μH; VCE = 400V, ICE = 48A; VGE = 15V  
Fig. 16 - VGE vs. Short Circuit Time  
VCC = 400V; TC = 25°C  
10000  
16  
14  
12  
10  
8
V
V
= 300V  
= 400V  
Cies  
CES  
CES  
1000  
Coes  
6
100  
4
Cres  
2
10  
0
0
20  
40  
60  
(V)  
80  
100  
0
25  
50  
75  
100  
V
Q
, Total Gate Charge (nC)  
CE  
G
Fig. 17 - Typ. Capacitance vs. VCE  
Fig. 18 - Typical Gate Charge vs. VGE  
ICE = 48A; L = 600μH  
VGE= 0V; f = 1MHz  
www.irf.com  
5
IRGP4063PbF/IRGP4063-EPbF  
1
D = 0.50  
0.1  
0.01  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
0.02  
0.01  
Ri (°C/W) τi (sec)  
0.0872 0.000114  
τ
J τJ  
τ
τ
Cτ  
τ
1τ1  
τ
2 τ2  
3τ3  
0.1599 0.001520  
0.2020 0.020330  
SINGLE PULSE  
( THERMAL RESPONSE )  
Ci= τi/Ri  
0.001  
0.0001  
/
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)  
6
www.irf.com  
IRGP4063PbF/IRGP4063-EPbF  
L
L
80 V  
+
-
DUT  
VCC  
0
DUT  
VCC  
1K  
Rg  
Fig.C.T.1 - Gate Charge Circuit (turn-off)  
Fig.C.T.2 - RBSOA Circuit  
diode clamp /  
DUT  
L
4X  
-5V  
Rg  
DC  
DUT  
VCC  
DUT /  
DRIVER  
VCC  
SCSOA  
Fig.C.T.3 - S.C. SOA Circuit  
Fig.C.T.4 - Switching Loss Circuit  
C force  
R = VCC  
ICM  
100K  
D1 22K  
C sense  
VCC  
DUT  
DUT  
G force  
Rg  
0.0075μF  
E sense  
E force  
Fig.C.T.6 - BVCES Filter Circuit  
Fig.C.T.5 - Resistive Load Circuit  
www.irf.com  
7
IRGP4063PbF/IRGP4063-EPbF  
600  
500  
400  
300  
200  
100  
0
120  
100  
80  
60  
40  
20  
0
700  
600  
500  
400  
300  
200  
100  
0
140  
120  
100  
80  
tr  
TEST  
tf  
90% test  
60  
90% ICE  
5% VCE  
40  
10% test  
5% VCE  
20  
5% ICE  
EOFF Loss  
0.60  
0
EON  
-100  
-20  
-100  
-20  
-0.40  
0.10  
1.10  
6.20  
6.40  
6.60  
6.80  
7.00  
Time(µs)  
Time (µs)  
Fig. WF1 - Typ. Turn-off Loss Waveform  
Fig. WF2 - Typ. Turn-on Loss Waveform  
@ TJ = 175°C using Fig. CT.4  
@ TJ = 175°C using Fig. CT.4  
600  
500  
600  
500  
400  
300  
200  
100  
0
ICE  
VCE  
400  
300  
200  
100  
0
-100  
-100  
-5.00  
0.00  
5.00  
10.00  
time (µS)  
Fig. WF3 - Typ. S.C. Waveform  
@ TJ = 25°C using Fig. CT.3  
8
www.irf.com  
IRGP4063PbF/IRGP4063-EPbF  
TO-247AC Package Outline  
Dimensions are shown in millimeters (inches)  
TO-247AC Part Marking Information  
TO-247AC package is not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com  
9
IRGP4063PbF/IRGP4063-EPbF  
TO-247AD Package Outline  
Dimensions are shown in millimeters (inches)  
TO-247AD Part Marking Information  
TO-247AD package is not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 06/09  
10  
www.irf.com  

相关型号:

IRGP4065DPBF

PDP TRENCH IGBT
INFINEON

IRGP4065PBF

PDP TRENCH IGBT
INFINEON

IRGP4066-EPBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGP4066D-EPBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGP4066DPBF

Insulated Gate Bipolar Transistor, 140A I(C), 600V V(BR)CES, N-Channel, TO-247AC, LEAD FREE, PLASTIC PACKAGE-3
INFINEON

IRGP4066PBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGP4066PBF_15

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON

IRGP4068D-EPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS
INFINEON

IRGP4068DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS
INFINEON

IRGP4069D-EPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGP4069DPBF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

IRGP4069PBF

INSULATED GATE BIPOLAR TRANSISTOR
INFINEON