IS31FL3736-QFLS4-TR [ISSI]

LED Driver,;
IS31FL3736-QFLS4-TR
型号: IS31FL3736-QFLS4-TR
厂家: INTEGRATED SILICON SOLUTION, INC    INTEGRATED SILICON SOLUTION, INC
描述:

LED Driver,

驱动 接口集成电路
文件: 总30页 (文件大小:578K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IS31FL3736  
12×8 DOTS MATRIX LED DRIVER WITH INDIVIDUAL AUTO BREATH FUNCTION  
January 2017  
GENERAL DESCRIPTION  
FEATURES  
The IS31FL3736 is a general purpose 12×8 LEDs  
matrix driver with 1/12 cycle rate. The device can be  
programmed via an I2C compatible interface. Each  
LED can be dimmed individually with 8-bit PWM data  
which allowing 256 steps of linear dimming.  
Supply voltage range: 2.7V to 5.5V  
8 current source outputs for row control  
12 switch current inputs for column scan control  
Up to 96 LEDs (12×8) in dot matrix  
Programmable12×8 (32 RGBs) matrix size with  
de-ghost function  
1MHz I2C-compatible interface  
Selectable 3 Auto Breath Modes for each dot  
Auto breath loop features interrupt pin inform  
MCU auto breath loop completed  
Auto breath offers 128 steps gamma current,  
interrupt and statelookup registers  
IS31FL3736 features 3 Auto Breathing Modes which  
are noted as ABM-1, ABM-2 and ABM-3. For each  
Auto Breathing Mode, there are 4 timing characters  
which include current rising / holding / falling / off time  
and 3 loop characters which include Loop-Beginning /  
Loop-Ending / Loop-Times. Every LED can be  
configured to be any Auto Breathing Mode or No-  
Breathing Mode individually.  
256 steps global current setting  
Individual on/off control  
Additionally each LED open and short state can be  
detected, IS31FL3736 store the open or short  
information in LED Open/Short Registers. The LED  
Open/Short Registers allowing MCU to read out via  
I2C compatible interface. Inform MCU whether there  
are LEDs open or short and the locations of open or  
short LEDs.  
Individual 256 PWM control steps  
Individual Auto Breath Mode select  
Individual open and short error detect function  
Cascade for synchronization of chips  
QFN-40 (5mm×5mm) package  
The IS31FL3736 operates from 2.7V to 5.5V and  
features a very low shutdown and operational current.  
APPLICATIONS  
IS31FL3736 is available in QFN-40 (5mm×5mm)  
package. It operates from 2.7V to 5.5V over the  
temperature range of -40°C to +125°C.  
Mobile phones and other hand-held devices for  
LED display  
Gaming device (Keyboard, Mouse etc.)  
LED in white goods application  
Integrated Silicon Solution, Inc. – www.issi.com  
1
Rev. B, 01/12/2017  
IS31FL3736  
TYPICAL APPLICATION CIRCUIT  
Figure 1 Typical Application Circuit (12×8)  
VCC  
5V  
VIO/MCU  
31  
*Note 2  
17  
PVCC  
VIO  
22  
10V  
F
0.47 F 0.1  
0.47 F 0.1  
0.47 F 0.1  
F
F
F
0.47 F  
23  
27  
CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8  
PVCC  
DVCC  
25  
24  
L
K
J
CS8  
CS7  
SW12  
28 AVCC  
SW11  
SW10  
SW9  
SW8  
SW7  
SW6  
SW5  
SW4  
SW3  
SW2  
SW1  
VIO/MCU  
100k 1k  
1k  
16  
15  
I
CS2  
CS1  
33  
SDA  
34  
H
G
F
SCL  
37  
Micro  
Controller  
IS31FL3736  
INTB  
38  
14  
13  
SDB  
39  
SW12  
SW11  
IICRST  
100k 100k  
E
D
C
B
A
2
1
32  
30  
35  
36  
40  
SW2  
SW1  
SYNC  
RSET  
ADDR1  
ADDR2  
GND  
R
EXT  
4,11  
26  
20k  
PGND  
AGND  
1
2
3
4
5
6
7
8
Figure 2 Typical Application Circuit (RGB)  
Note 1: For the mobile applications the IC should be placed far away from the mobile antenna in order to prevent the EMI.  
Note 2: Electrolytic/Tantalum Capacitor may considerable for high current application to avoid audible noise interference.  
Integrated Silicon Solution, Inc. – www.issi.com  
2
Rev. B, 01/12/2017  
IS31FL3736  
TYPICAL APPLICATION CIRCUIT (CONTINUED)  
VBattery  
ADDR1  
ADDR2  
ADDR1  
ADDR2  
SDA  
ADDR1  
ADDR2  
SCL  
ADDR1  
ADDR2  
VIO  
100k  
SDA  
1k  
1k  
SDA  
SDA  
SCL  
SDA  
SDA  
SCL  
SDA  
SDA  
SCL  
SDA  
SCL  
INTB  
SDB  
SCL  
SCL  
SCL  
SCL  
Micro  
Controller  
INTB  
SDB  
INTB  
SDB  
INTB  
SDB  
INTB  
SDB  
SDB  
SDB  
SDB  
IICRST  
IICRST  
IICRST  
IICRST  
IICRST  
IICRST  
IICRST  
IICRST  
100k 100k  
SYNC  
SYNC  
SYNC  
SYNC  
Master  
Slave 1  
Slave 2  
Slave 3  
VBattery  
SYNC  
VBattery  
SYNC  
VBattery  
SDA  
SYNC  
VBattery  
SCL  
SYNC  
ADDR2  
ADDR1  
ADDR2  
ADDR1  
ADDR2  
ADDR1  
ADDR2  
ADDR1  
IICRST  
IICRST  
SDA  
IICRST  
SDA  
IICRST  
SDA  
IICRST  
SDA  
IICRST  
SDA  
IICRST  
SDA  
IICRST  
SDA  
SDA  
SCL  
SCL  
SCL  
SCL  
SCL  
SCL  
SCL  
SCL  
INTB  
SDB  
INTB  
SDB  
INTB  
SDB  
INTB  
SDB  
SDB  
SDB  
SDB  
SDB  
Slave 4  
Slave 5  
Slave 6  
Slave 7  
Figure 3 Typical Application Circuit (Eight Parts Synchronization-Work)  
Note 3: One part is configured as master mode, all the other 7 parts configured as slave mode. Work as master mode or slave mode specified  
by Configuration Register (Function register, address 00h).Master part output master clock, and all the other partswhich work as slave input  
this master clock.  
Integrated Silicon Solution, Inc. – www.issi.com  
3
Rev. B, 01/12/2017  
IS31FL3736  
PIN CONFIGURATION  
Package  
Pin Configuration (Top View)  
SW1  
SW2  
SW3  
PGND  
SW4  
SW5  
SW6  
SW7  
SW8  
1
2
3
4
5
6
7
8
9
30 RSET  
29 NC  
28 AVCC  
27 DVCC  
26 AGND  
25 CS8  
QFN-40  
24 CS7  
23 PVCC  
22 CS6  
SW9 10  
21 CS5  
Integrated Silicon Solution, Inc. – www.issi.com  
4
Rev. B, 01/12/2017  
IS31FL3736  
PIN DESCRIPTION  
No.  
Pin  
Description  
1~3,5~10,  
12~14  
SW1~SW12  
PGND  
Switch pin for LED matrix scanning.  
Power GND.  
4,11  
15,16,18,19,  
21,22,24,25  
CS1~CS8  
Current source.  
17,23  
20,29  
26  
PVCC  
NC  
Power for current source.  
Not connected.  
AGND  
DVCC  
AVCC  
Analog GND.  
27  
Power for digital circuits.  
Power for analog circuits.  
28  
Input terminal used to connect an external resistor.  
This regulates current source DC current value.  
30  
31  
32  
RSET  
VIO  
Input logic reference voltage.  
Synchronize pin. It is used for more than one part  
work synchronize. If it is not used please float this pin.  
SYNC  
33  
34  
35  
36  
SDA  
I2C compatible serial data.  
I2C compatible serial clock.  
I2C address setting.  
SCL  
ADDR1  
ADDR2  
I2C address setting.  
Interrupt output pin. Register F0h sets the function of  
the INTB pin and active low when the interrupt event  
happens. Can be NC (float) if interrupt function no  
used.  
37  
INTB  
38  
39  
40  
SDB  
Shutdown the chip when pull to low.  
Reset I2C when pull high, need to pull down when  
normal operation.  
IICRST  
GND  
Connect to GND.  
Thermal Pad Need to connect to GND pins.  
Integrated Silicon Solution, Inc. – www.issi.com  
5
Rev. B, 01/12/2017  
IS31FL3736  
ORDERING INFORMATION  
Industrial Range: -40°C to +125°C  
Order Part No.  
Package  
QFN-40, Lead-free  
QTY/Reel  
IS31FL3736-QFLS4-TR  
2500  
Copyright © 2017 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any  
time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are  
advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.  
Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the  
product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not  
authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:  
a.) the risk of injury or damage has been minimized;  
b.) the user assume all such risks; and  
c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances  
Integrated Silicon Solution, Inc. – www.issi.com  
6
Rev. B, 01/12/2017  
IS31FL3736  
ABSOLUTE MAXIMUM RATINGS  
Supply voltage, VCC  
-0.3V ~+6.0V  
-0.3V ~ VCC+0.3V  
150°C  
-65°C ~+150°C  
-40°C ~ +125°C  
24.96°C/W  
±8kV  
Voltage at any input pin  
Maximum junction temperature,TJMAX  
Storage temperature range, TSTG  
Operating temperature range, TA  
Thermal resistance, junction to ambient, θJA  
ESD (HBM)  
ESD (CDM)  
±1kV  
Note:  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only  
and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is  
not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
The following specifications apply for VCC = 3.6V, TA = 25°C, unless otherwise noted.  
Symbol  
Parameter  
Supply voltage  
Conditions  
Min.  
Typ.  
Max. Unit  
VCC  
2.7  
5.5  
2.0  
5
V
ICC/IQ Quiescent power supply current  
VSDB=VCC, all LEDs off  
1.3  
2
mA  
VSDB=0V  
ISD  
Shutdown current  
μA  
VSDB=VCC, Configuration Register  
written “0000 0000”  
2
5
Maximum constant current of  
CS1~CS8  
IOUT  
ILED  
R
SET=20kΩ  
39  
42  
45  
mA  
Average current on each LED  
RSET=20k, GCC=255,  
PWM=255  
3.06  
3.3  
170  
3.53 mA  
ILED = IOUT/12.75  
Current sink headroom voltage  
SW1~SW12  
ISINK=336mA (Note 1, 2)  
250  
mV  
250  
VHR  
Current source headroom voltage  
CS1~C8  
ISOURCE=42mA (Note 1)  
150  
128  
tSCAN Period of scanning  
Non-overlap blanking time during  
µs  
µs  
tNOL  
scan, the SWy and CSx are all off  
furring this time  
8
Logic Electrical Characteristics (SDA, SCL, ADDR1, ADDR2, SYNC, SDB)  
VIL  
VIH  
Logic “0” input voltage  
Logic “1” input voltage  
VIO=3.6V  
VIO=3.6V  
VIO=3.6V  
GND  
0.2VIO  
VIO  
V
V
0.75VIO  
VHYS Input Schmitt trigger hysteresis  
0.2  
V
VOL  
VOH  
IIL  
Logic “0” output voltage for SYNC IOL = 8mA  
Logic “1” output voltage for SYNC IOH = 8mA  
0.4  
V
0.75VIO  
V
Logic “0” input current  
Logic “1” input current  
VINPUT = 0V (Note 3)  
VINPUT = VIO (Note 3)  
5
5
nA  
nA  
IIH  
Integrated Silicon Solution, Inc. – www.issi.com  
7
Rev. B, 01/12/2017  
IS31FL3736  
DIGITAL INPUT SWITCHING CHARACTERISTICS (NOTE 3)  
Fast Mode  
Typ.  
Fast Mode Plus  
Max. Min. Typ. Max.  
Symbol  
Parameter  
Units  
Min.  
fSCL  
tBUF  
Serial-clock frequency  
-
400  
-
-
1000 kHz  
Bus free time between a STOP and a START  
condition  
1.3  
0.5  
-
μs  
tHD, STA Hold time (repeated) START condition  
tSU, STA Repeated START condition setup time  
tSU, STO STOP condition setup time  
tHD, DAT Data hold time  
0.6  
0.6  
0.6  
-
-
-
-
-
-
-
-
0.26  
0.26  
0.26  
-
-
-
-
-
-
-
-
μs  
μs  
μs  
μs  
ns  
μs  
μs  
tSU, DAT Data setup time  
100  
1.3  
0.7  
50  
tLOW SCL clock low period  
0.5  
0.26  
tHIGH SCL clock high period  
Rise time of both SDA and SCL signals,  
receiving  
tR  
-
-
300  
300  
-
-
120 ns  
120 ns  
Fall time of both SDA and SCL signals,  
receiving  
tF  
Note 1: In case of REXT = 20k, Global Current Control Register (PG3, 01h) written “1111 1111”, GCC = “1111 1111”.  
Note 2: All LEDs are on and PWM=“1111 1111”, GCC = “1111 1111”.  
Note 3: Guaranteed by design.  
Integrated Silicon Solution, Inc. – www.issi.com  
8
Rev. B, 01/12/2017  
IS31FL3736  
FUNCTIONAL BLOCK DIAGRAM  
Integrated Silicon Solution, Inc. – www.issi.com  
9
Rev. B, 01/12/2017  
IS31FL3736  
DETAILED DESCRIPTION  
The 8-bit chip address is sent next, most significant bit  
first. Each address bit must be stable while the SCL  
level is high.  
I2C INTERFACE  
The IS31FL3736 uses a serial bus, which conforms to  
the I2C protocol, to control the chip’s functions with  
two wires: SCL and SDA. The IS31FL3736 has a 7-bit  
slave address (A7:A1), followed by the R/W bit, A0.  
Set A0 to “0” for a write command and set A0 to “1” for  
a read command. The value of bits A1 and A2 are  
decided by the connection of the ADDR1 pin. The  
value of bits A3 and A4 are decided by the connection  
of the ADDR2 pin.  
After the last bit of the chip address is sent, the  
master checks for the IS31FL3736’s acknowledge.  
The master releases the SDA line high (through a  
pull-up resistor). Then the master sends an SCL pulse.  
If the IS31FL3736 has received the address correctly,  
then it holds the SDA line low during the SCL pulse. If  
the SDA line is not low, then the master should send a  
“STOP” signal (discussed later) and abort the transfer.  
The complete slave address is:  
Following acknowledge of IS31FL3736, the register  
address byte is sent, most significant bit first.  
Table 1 Slave Address:  
IS31FL3736must generate another acknowledge  
indicating that the register address has been received.  
ADDR2 ADDR1 A7:A5 A4:A3 A2:A1  
A0  
GND  
GND  
GND  
GND  
SCL  
SCL  
SCL  
SCL  
SDA  
SDA  
SDA  
SDA  
VCC  
VCC  
VCC  
VCC  
GND  
SCL  
SDA  
VCC  
GND  
SCL  
SDA  
VCC  
GND  
SCL  
SDA  
VCC  
GND  
SCL  
SDA  
VCC  
00  
00  
00  
00  
01  
01  
01  
01  
10  
10  
10  
10  
11  
11  
11  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
Then 8-bit of data byte are sent next, most significant  
bit first. Each data bit should be valid while the SCL  
level is stable high. After the data byte is sent, the  
IS31FL3736 must generate another acknowledge to  
indicate that the data was received.  
The “STOP” signal ends the transfer. To signal  
“STOP”, the SDA signal goes high while the SCL  
signal is high.  
101  
0/1  
ADDRESS AUTO INCREMENT  
To write multiple bytes of data into IS31FL3736, load  
the address of the data register that the first data byte  
is intended for. During the IS31FL3736 acknowledge  
of receiving the data byte, the internal address pointer  
will increment by one. The next data byte sent to  
IS31FL3736 will be placed in the new address, and so  
on. The auto increment of the address will continue as  
long as data continues to be written to IS31FL3736  
(Figure 7).  
ADDR1/2 connected to GND, (A2:A1)/(A4:A3)=00;  
ADDR1/2 connected to VCC, (A2:A1)/(A4:A3)=11;  
ADDR1/2 connected to SCL, (A2:A1)/(A4:A3)=01;  
ADDR1/2 connected to SDA, (A2:A1)/(A4:A3)=10;  
READING OPERATION  
Register FEh, F1h, 18h~47h of Page 0 and 11h of  
Page 3 can be read.  
To read the FEh and F1h, after IIC start condition, the  
The SCL line is uni-directional. The SDA line is bi-  
directional (open-collector) with a pull-up resistor  
(typically 1k). The maximum clock frequency  
specified by the I2C standard is 1MHz. In this  
discussion, the master is the microcontroller and the  
slave is the IS31FL3736.  
bus master must send the IS31FL3736 device  
____  
address with the R/W bit set to “0”, followed by the  
register address (FEh or F1h) which determines which  
register is accessed. Then restart I2C, the bus master  
should send the IS31FL3736 device address with the  
____  
R/W bit set to “1”. Data from the register defined by  
the command byte is then sent from the IS31FL3736  
to the master (Figure 8).  
The timing diagram for the I2C is shown in Figure 4.  
The SDA is latched in on the stable high level of the  
SCL. When there is no interface activity, the SDA line  
should be held high.  
To read the 18h~47h of Page 0 and 11h of Page 3,  
the FDh should write with 00h before follow the Figure  
8 sequence to read the data, that means, when you  
want to read 18h~47h of Page 0 and 11h of Page 3,  
the FDh should point to Page 0 or Page 3 first and  
then you can read the data.  
The “START” signal is generated by lowering the  
SDAsignal while the SCL signal is high. The start  
signal will alert all devices attached to the I2C bus to  
check the incoming address against their own chip  
address.  
Integrated Silicon Solution, Inc. – www.issi.com  
10  
Rev. B, 01/12/2017  
IS31FL3736  
Figure 4 Interface timing  
Figure 5 Bit transfer  
Figure 6 Writing to IS31FL3736 (Typical)  
Figure 7 Writing to IS31FL3736 (Automatic address increment)  
Figure 8 Reading from IS31FL3736  
Integrated Silicon Solution, Inc. – www.issi.com  
11  
Rev. B, 01/12/2017  
IS31FL3736  
REGISTER DEFINITION-1  
Address  
Name  
Command Register  
Function  
Table R/W  
Default  
FDh  
FEh  
F0h  
F1h  
Available Page 0 to Page 3 Registers  
2
3
4
5
W
R/W  
W
0000 0000  
Command Register Write lock To lock/unlock Command Register  
Interrupt Mask Register  
Interrupt Status Register  
Configure the interrupt function  
Show the interrupt status  
0000 0000  
R
REGISTER CONTROL  
Table 2 FDh Command Register (Write Only)  
Data  
Function  
0000 0000  
0000 0001  
0000 0010  
0000 0011  
Others  
Point to Page 0 (PG0, LED Control Register is available)  
Point to Page 1 (PG1, PWM Register is available)  
Point to Page 2 (PG2, Auto Breath Mode Register is available)  
Point to Page 3 (PG3, Function Register is available)  
Reserved  
Note: FDh is locked when power up, need to unlock this register before write command to it. See Table 3 for detail.  
TheCommand Register should be configured first after writing in the slave address to choose the available register. Then write data in the  
choosing register. Power up default state is “0000 0000”.  
For example, when write “0000 0001” in the Command Register (FDh), the data which writing after will be stored in the Auto breath mode  
Register. Write new data can configure other registers.  
Integrated Silicon Solution, Inc. – www.issi.com  
12  
Rev. B, 01/12/2017  
IS31FL3736  
Table 3 FEh Command Register Write Lock  
(Read/Write)  
Table 5 F1h Interrupt Status Register  
Bit  
D7:D5  
-
D4  
D3  
D2  
D1 D0  
Bit  
D7:D0  
Name  
ABM3 ABM2 ABM1 SB OB  
Name  
CRWL  
Default 000  
0
0
0
0
0
Default  
0000 0000 (FDh write disable)  
Show the interrupt status for IC.  
To select the PG0~PG3, need to unlock this register  
first, with the purpose to avoid misoperation of this  
register.When FEh is written with 0xC5, FDh is  
allowed to modify once, after the FDh is modified the  
FEh will reset to be 0x00 at once.  
ABM3 Auto Breath Mode 3 Finish Bit  
0
1
ABM3 not finish  
ABM3 finish  
ABM2 Auto Breath Mode 2 Finish Bit  
CRWL Command Register Write Lock  
0x00 FDh write disable  
0xC5 FDh write enable once  
0
1
ABM2 not finish  
ABM2 finish  
ABM1 Auto Breath Mode 1 Finish Bit  
Table 4 F0h Interrupt Mask Register  
0
1
ABM1 not finish  
ABM1 finish  
Bit  
D7:D4  
D3  
D2  
D1  
D0  
Name  
-
IAC  
0
IAB  
0
IS  
0
IO  
0
SB  
0
Short Bit  
No short  
Default  
0000  
1
Short happens  
Configure the interrupt function for IC.  
OB  
0
1
Open Bit  
No open  
Open happens  
IAC  
0
1
Auto Clear Interrupt Bit  
Interrupt could not auto clear  
Interrupt auto clear when INTB stay low  
exceeds 8ms  
IAB  
0
1
Auto Breath Interrupt Bit  
Disable auto breath loop finish interrupt  
Enable auto breath loop finish interrupt  
IS  
0
1
Dot Short Interrupt Bit  
Disable dot short interrupt  
Enable dot short interrupt  
IO  
0
1
Dot Open Interrupt Bit  
Disable dot open interrupt  
Enable dot open interrupt  
Integrated Silicon Solution, Inc. – www.issi.com  
13  
Rev. B, 01/12/2017  
IS31FL3736  
REGISTER DEFINITION-2  
Address  
Name  
Function  
Table R/W  
Default  
PG0 (0x00): LED Control Register  
00h ~ 17h LED On/Off Register  
18h ~ 2Fh LED Open Register  
30h ~ 47h LED Short Register  
Set on or off state for each LED  
Store open state for each LED  
Store short state for each LED  
7
8
9
W
R
0000 0000  
R
PG1 (0x01): PWM Register  
00h~BEh PWM Register  
Set PWM duty for LED  
10  
11  
W
W
0000 0000  
xxxx xx00  
PG2 (0x02): Auto Breath Mode Register  
00h~BEh Auto Breath ModeRegister Set operating mode of each dot  
PG3 (0x03): Function Register  
00h  
01h  
Configuration Register  
Configure the operation mode  
Set the global current  
13  
14  
W
W
Global Current Control  
Register  
Auto Breath Control  
Register 1 of ABM-1  
Set fade in and hold time for breath  
function of ABM-1  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
15  
16  
17  
18  
15  
16  
17  
18  
15  
16  
17  
W
W
W
W
W
W
W
W
W
W
W
Auto Breath Control  
Register 2 of ABM-1  
Set the fade out and off time for breath  
function of ABM-1  
Auto Breath Control  
Register 3 of ABM-1  
Set loop characters of ABM-1  
Set loop characters of ABM-1  
Auto Breath Control  
Register 4 of ABM-1  
Auto Breath Control  
Register 1 of ABM-2  
Set fade in and hold time for breath  
function of ABM-2  
Auto Breath Control  
Register 2 of ABM-2  
Set the fade out and off time for breath  
function of ABM-2  
Auto Breath Control  
Register 3 of ABM-2  
Set loop characters of ABM-2  
Set loop characters of ABM-2  
0000 0000  
Auto Breath Control  
Register 4 of ABM-2  
Auto Breath Control  
Register 1 of ABM-3  
Set fade in and hold time for breath  
function of ABM-3  
Auto Breath Control  
Register 2 of ABM-3  
Set the fade out and off time for breath  
function of ABM-3  
Auto Breath Control  
Register 3 of ABM-3  
Set loop characters of ABM-3  
Auto Breath Control  
Register 4 of ABM-3  
0Dh  
0Eh  
0Fh  
Set loop characters of ABM-3  
18  
-
W
W
W
Time Update Register  
Update the setting of 02h ~ 0Dh registers  
Set the pull-up resistor for SWy  
SWy Pull-Up Resistor  
Selection Register  
19  
CSx Pull-Down Resistor  
Selection Register  
10h  
11h  
Set the pull-down resistor for CSx  
Reset all register to POR state  
20  
-
W
R
Reset Register  
Integrated Silicon Solution, Inc. – www.issi.com  
14  
Rev. B, 01/12/2017  
IS31FL3736  
Table 6 Page 0 (PG0, 0x00): LED Control Register  
LED Location  
LED On/Off Register  
LED Open Register LED Short Register  
SW1(CS1~ CS4)  
SW1(CS5~ CS8)  
SW2(CS5~ CS8)  
SW3(CS5~ CS8)  
SW4(CS5~ CS8)  
SW5(CS5~ CS8)  
SW6(CS5~ CS8)  
SW7(CS5~ CS8)  
SW8(CS5~ CS8)  
SW9(CS5~ CS8)  
00h  
02h  
04h  
06h  
08h  
0Ah  
0Ch  
0Eh  
10h  
12h  
14h  
16h  
01h  
03h  
05h  
07h  
09h  
0Bh  
0Dh  
0Fh  
11h  
13h  
15h  
17h  
18h  
1Ah  
1Ch  
1Eh  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
2Eh  
19h  
1Bh  
1Dh  
1Fh  
21h  
23h  
25h  
27h  
29h  
2Bh  
2Dh  
2Fh  
30h  
32h  
34h  
36h  
38h  
3Ah  
3Ch  
3Eh  
40h  
42h  
44h  
46h  
31h  
33h  
35h  
37h  
39h  
3Bh  
3Dh  
3Fh  
41h  
43h  
45h  
47h  
SW2(CS1~ CS4)  
SW3(CS1~ CS4)  
SW4(CS1~ CS4)  
SW5(CS1~ CS4)  
SW6(CS1~ CS4)  
SW7(CS1~ CS4)  
SW8(CS1~ CS4)  
SW9(CS1~ CS4)  
SW10(CS1~ CS4) SW10(CS5~ CS8)  
SW11(CS1~ CS4) SW11(CS5~ CS8)  
SW12(CS1~ CS4) SW12(CS5~ CS8)  
Table 7-1 00h, 02h, ... 16h LED On/Off Register  
(CS1~CS4)  
The LED Open Registers store the open or normal  
state of each LED in the Matrix. For example, 18h  
store SW1-CS1's open or normal state, 19h store  
SW1-CS5's open or normal state.  
Bit  
D7 D6 D5 D4 D3 D2 D1 D0  
Name  
-
CCS4  
0
-
CCS3  
0
-
CCS2  
0
-
CCS1  
0
OPx  
0
1
LED Open Bit  
LED normal  
LED open  
Default  
0
0
0
0
Table 7-2 01h, 03h, ... 17h LED On/Off Register  
(CS5~CS8)  
Table 9-1 30h, 32h, ... 46h LED Short Register  
(CS1~CS4)  
Bit  
D7 D6 D5 D4 D3 D2 D1 D0  
Name  
-
CCS8  
0
-
CCS7  
0
-
CCS6  
0
-
CCS5  
0
Bit  
D7 D6 D5 D4 D3 D2 D1 D0  
Default  
0
0
0
0
Name  
-
ST4  
0
-
ST3  
0
-
ST2  
0
-
ST1  
0
The LED On/Off Registers store the on or off state of  
each LED in the Matrix. For example, if 00h=0x01,  
SW1-CS1 will open, if 01h=0x01, SW1-CS5 will  
open.  
Default  
0
0
0
0
Table 9-2 31h, 33h, ... 47h LED Short Register  
(CS5~CS8)  
Bit  
D7 D6 D5 D4 D3 D2 D1 D0  
CX-Y  
0
1
LED State Bit  
LED off  
LED on  
Name  
-
ST8  
0
-
ST7  
0
-
ST6  
0
-
ST5  
0
Default  
0
0
0
0
The LED Short Registers store the short or normal  
state of each LED in the Matrix. For example, 30h  
store SW1-CS1's short or normal state, 31h store  
SW1-CS5's short or normal state.  
Table 8-1 18h, 1Ah, ... 2Eh LED Open Register  
(CS1~CS4)  
Bit  
D7 D6 D5 D4 D3 D2 D1 D0  
Name  
-
OP4  
0
-
OP3  
0
-
OP2  
0
-
OP1  
0
STx  
0
1
LED Short Bit  
LED normal  
LED short  
Default  
0
0
0
0
Table 8-2 19h, 1Bh, ... 2Fh LED Open Register  
(CS5~CS8)  
Bit  
D7 D6 D5 D4 D3 D2 D1 D0  
Name  
-
OP8  
0
-
OP7  
0
-
OP6  
0
-
OP5  
0
Default  
0
0
0
0
Integrated Silicon Solution, Inc. – www.issi.com  
15  
Rev. B, 01/12/2017  
IS31FL3736  
Page 1 (PG1, 0x01): PWM Register  
Figure 9 PWM Register  
Table 10 00h ~ BEh PWM Register  
Where Duty is the duty cycle of SWy,  
128s  
1
1
Bit  
D7:D0  
Duty  
(2)  
128s8s 12 12.75  
IOUT is the output current of CSx (x=1~8),  
Name  
PWM  
Default  
0000 0000  
840 GCC  
Each dot has a byte to modulate the PWM duty in  
256 steps.  
IOUT  
(3)  
REXT 256  
The value of the PWM Registers decides the  
GCC is the Global Current Control register (PG3,  
01h) value and REXT is the external resistor of RSET  
pin. D[n] stands for the individual bit value, 1 or 0, in  
location n.  
average current of each LED noted ILED  
.
ILED computed by Formula (1):  
PWM  
ILED  
IOUT Duty  
(1)  
For example: if D7:D0=10110101 (0xB5, 181),  
GCC=255. REXT=20k(IOUT=42mA),  
256  
7
PWM   
D[n] 2n  
20 22 24 25 27  
1
I LED  
IOUT  
2.34mA  
n0  
256  
12.75  
Integrated Silicon Solution, Inc. – www.issi.com  
16  
Rev. B, 01/12/2017  
IS31FL3736  
Page 2 (PG2, 0x02): Auto Breath Mode Register  
Figure 10 Auto Breath Mode Selection Register  
Table 11 00h ~ BEh Auto Breath Mode Register  
Bit  
D7:D2  
D1:D0  
Name  
-
-
ABMS  
00  
Default  
The Auto Breath Mode Register sets operating mode  
of each dot.  
ABMS Auto Breath Mode Selection Bit  
00  
01  
10  
11  
PWM control mode  
Select Auto Breath Mode 1 (ABM-1)  
Select Auto Breath Mode 2 (ABM-2)  
Select Auto Breath Mode 3 (ABM-3)  
Integrated Silicon Solution, Inc. – www.issi.com  
17  
Rev. B, 01/12/2017  
IS31FL3736  
Table 12 Page 3 (PG3, 0x03): Function Register  
Register  
00h  
Name  
Function  
R/W  
W
Default  
Configuration Register  
Configure the operation mode  
Global Current Control  
Register  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
Set the global current  
W
W
W
W
W
W
W
W
W
W
W
W
Auto Breath Control  
Register 1 of ABM-1  
Set fade in and hold time for breath function of  
ABM-1  
Auto Breath Control  
Register 2 of ABM-1  
Set the fade out and off time for breath function  
of ABM-1  
Auto Breath Control  
Register 3 of ABM-1  
Set loop characters of ABM-1  
Set loop characters of ABM-1  
Auto Breath Control  
Register 4 of ABM-1  
Auto Breath Control  
Register 1 of ABM-2  
Set fade in and hold time for breath function of  
ABM-2  
Auto Breath Control  
Register 2 of ABM-2  
Set the fade out and off time for breath function  
of ABM-2  
Auto Breath Control  
Register 3 of ABM-2  
Set loop characters of ABM-2  
Set loop characters of ABM-2  
0000  
0000  
Auto Breath Control  
Register 4 of ABM-2  
Auto Breath Control  
Register 1 of ABM-3  
Set fade in and hold time for breath function of  
ABM-3  
Auto Breath Control  
Register 2 of ABM-3  
Set the fade out and off time for breath function  
of ABM-3  
Auto Breath Control  
Register 3 of ABM-3  
Set loop characters of ABM-3  
Auto Breath Control  
Register 4 of ABM-3  
0Dh  
0Eh  
0Fh  
Set loop characters of ABM-3  
W
W
W
Time Update Register  
Update the setting of 02h ~ 0Dh registers  
Set the pull-up resistor for SWy  
SWy Pull-Up Resistor  
Selection Register  
CSx Pull-Down Resistor  
Selection Register  
10h  
11h  
Set the pull-down resistor for CSx  
Reset all register to POR state  
W
R
Reset Register  
Table 13 00h Configuration Register  
Bit D7:D6 D5:D3 D2 D1  
Name SYNC OSD B_EN  
Default 00  
When OSD set high, open/short detection will be  
trigger once, the user could trigger OS detection  
again by set OSD from 0 to 1.  
D0  
When B_EN enable, those dots select working in  
ABM-x mode will start to run the pre-established  
timing. If it is disabled, all dots work in PWM mode  
following Figure 16 to enable the Auto Breath Mode.  
-
SSD  
0
000  
0
0
The Configuration Register sets operating mode of  
IS31FL3736.  
When SSD is “0”, IS31FL3736 works in software  
shutdown mode and to normal operate the SSD bit  
should set to “1”.  
When SYNC bits are set to “01”, the IS31FL3736 is  
configured as the master clock source and the  
SYNC pin will generate a clock signal distributed to  
the clock slave devices.To be configured as a clock  
slave deviceand accept an external clock input the  
slave device’s SYNC bits must be set to “10”.  
Integrated Silicon Solution, Inc. – www.issi.com  
18  
Rev. B, 01/12/2017  
IS31FL3736  
SYNC Synchronize Configuration  
00/11 High Impedance  
T1  
T1 Setting  
0.21s  
0.42s  
0.84s  
1.68s  
3.36s  
6.72s  
13.44s  
26.88s  
000  
001  
010  
011  
100  
101  
110  
111  
01  
10  
Master  
Slave  
OSD Open/Short Detection Enable Bit  
0
1
Disable open/short detection  
Enable open/short detection  
B_EN Auto Breath Enable  
0
1
PWM Mode Enable  
Auto Breath Mode Enable  
T2  
0000 0s  
T2 Setting  
0001 0.21s  
0010 0.42s  
0011 0.84s  
0100 1.68s  
0101 3.36s  
0110 6.72s  
SSD  
0
1
Software Shutdown Control  
Software shutdown  
Normal operation  
Table 14 01h Global Current Control Register  
0111  
1000  
Others Unavailable  
13.44s  
26.88s  
Bit  
D7:D0  
Name  
GCCx  
Default  
0000 0000  
Table 16 03h, 07h, 0Bh Auto Breath Control  
Register 2 of ABM-x  
The Global Current Control Register modulates all  
CSx (x=1~8) DC current which is noted as IOUT in  
256 steps.  
Bit  
D7:D5  
D4:D1  
D0  
IOUT is computed by the Formula (3):  
Name  
T3  
T4  
-
840 GCC  
Default  
000  
0000  
0
IOUT  
(3)  
REXT 256  
Auto Breath Control Register 2 set the T3&T4 time in  
Auto Breath Mode.  
7
GCC   
D[n]2n  
n0  
T3  
T3 Setting  
0.21s  
0.42s  
0.84s  
1.68s  
3.36s  
6.72s  
13.44s  
26.88s  
000  
001  
010  
011  
100  
101  
110  
111  
Where D[n] stands for the individual bit value, 1 or 0,  
in location n, REXT is the external resistor of RSET pin.  
For example: if D7:D0=10110101,  
20 22 24 25 27 840  
IOUT  
256  
REXT  
Table 15 02h, 06h, 0Ah Auto Breath Control  
Register 1 of ABM-x  
T4  
T4 Setting  
Bit  
D7:D5  
D4:D1  
D0  
0000 0s  
0001 0.21s  
0010 0.42s  
0011 0.84s  
0100 1.68s  
0101 3.36s  
0110 6.72s  
Name  
T1  
T2  
-
Default  
000  
0000  
0
Auto Breath Control Register 1 set the T1&T2 time in  
Auto Breath Mode.  
0111  
13.44s  
1000 26.88s  
1001 53.76s  
1010 107.52s  
Others Unavailable  
Integrated Silicon Solution, Inc. – www.issi.com  
19  
Rev. B, 01/12/2017  
IS31FL3736  
Table 17 04h, 08h, 0Ch Auto Breath Control  
Register 3 of ABM-x  
Table 18 05h, 09h, 0Dh Auto Breath Control  
Register 4 of ABM-x  
Bit  
D7:D6  
D5:D4  
D3:D0  
Bit  
D7:D0  
Name  
LE  
00  
LB  
00  
LTA  
Name  
LTB  
Default  
0000  
Default  
0000 0000  
Total loop times= LTA×256 + LTB.  
Total loop times= LTA×256+LTB.  
For example, if LTA=2, LTB=100, the total loop times  
For example, if LTA=2, LTB=100, the total loop times  
is 256×2+100=612 times.  
is 256×2+100=612 times.  
For the counting of breathing times, do follow Figure  
16 to enable the Auto Breath Mode.  
LTB  
0-7 Bits Of Loop Times  
If the loop start from T4,  
0000 0000  
0000 0001  
0000 0010  
Endless loop  
1
2
255  
T4->T1->T2->T3(1)->T4->T1->T2->T3(2)->T4->T1-  
>...and so on.  
If the loop not start from T4,  
1111 1111  
Tx->T3(1) ->T4->T1->T2->T3(2)->T4-> T1->...and  
so on.  
If the loop ends at off state(End of T3), the LED will  
be off state at last. If the loop ends at on state(End  
of T1), the LED will run an extra T4&T1, which are  
not included in loop.  
0Eh Time Update Register (02h~0Dh)  
The data sent to the time registers (02h~0Dh) will be  
stored in temporary registers. A write operation of  
“0000 0000” data to the Time Update Register is  
required to update the registers (02h~0Dh). Please  
follow Figure 16 to enable the Auto Breath mode and  
update the time parameters.  
LB  
00  
01  
10  
11  
Loop Beginning Time  
Loop begin from T1  
Loop begin from T2  
Loop begin from T3  
Loop begin from T4  
Table 19 0Fh SWy Pull-Up Resistor Selection  
Register  
Bit  
D7:D3  
D2:D0  
LE  
00  
01  
Loop End Time  
Loop end at off state (End of T3)  
Loop end at on state (End of T1)  
Name  
-
PUR  
000  
Default  
00000  
Set pull-up resistor for SWy.  
LTA  
8-11 Bits Of Loop Times  
0000 Endless loop  
PUR SWy Pull-up Resistor Selection Bit  
0001  
0010  
1
2
000  
001  
010  
011  
100  
101  
110  
111  
No pull-up resistor  
0.5kꢀ  
1.0kꢀ  
2.0kꢀ  
4.0kꢀ  
8.0kꢀ  
16kꢀ  
32kꢀ  
1111 15  
Figure 11 Auto Breathing Function  
Integrated Silicon Solution, Inc. – www.issi.com  
20  
Rev. B, 01/12/2017  
IS31FL3736  
Table 20 10h CSx Pull-Down Resistor Selection  
Register  
11h Reset Register  
Once user read the Reset Register, IS31FL3736 will  
reset all the IS31FL3736 registers to their default  
value. On initial power-up, the IS31FL3736 registers  
are reset to their default values for a blank display.  
Bit  
D7:D3  
D2:D0  
Name  
-
PDR  
000  
Default  
00000  
Set the pull-down resistor for CSx.  
PDR CSx Pull-down Resistor Selection Bit  
000  
001  
010  
011  
100  
101  
110  
111  
No pull-down resistor  
0.5kꢀ  
1.0kꢀ  
2.0kꢀ  
4.0kꢀ  
8.0kꢀ  
16kꢀ  
32kꢀ  
Integrated Silicon Solution, Inc. – www.issi.com  
21  
Rev. B, 01/12/2017  
IS31FL3736  
APPLICATION INFORMATION  
SW1  
SW2  
SW3  
SW4  
SW5  
SW6  
SW7  
SW8  
SW9  
SW10  
SW11  
SW12  
CS1  
00h  
10h  
20h  
30h  
40h  
50h  
60h  
70h  
80h  
90h  
A0h  
AEh  
B0h  
00h  
CS8  
0Eh  
1Eh  
2Eh  
3Eh  
4Eh  
5Eh  
6Eh  
7Eh  
8Eh  
9Eh  
BEh  
0Eh  
tSCAN=128µs  
t
NOL=8µs  
Scanning cycle T=1.632ms((128+8)×12)  
De-Ghost time  
I
OUT=840/REXT×GCC/256  
PWM Duty is variable from 0/256~255/256  
Figure 12 Scanning Timing  
(GCC=0~255)  
SCANING TIMING  
PWM CONTROL  
As shown in Figure 12, the SW1~SW12 is turned on  
by serial, LED is driven 8 by 8 within the SWy (y=1~12)  
on time (SWy, y=1~12) is sink and pull low when LED  
on) , including the non-overlap blanking time during  
scan, the duty cycle of SWy (active low, y=1~12) is:  
After setting the IOUT and GCC, the brightness of each  
LEDs (LED average current (ILED)) can be modulated  
with 256 steps by PWM Register, as described in  
Formula (1).  
PWM  
ILED  
IOUT Duty  
(1)  
128s  
1
1
256  
Duty  
(2)  
128s8s 12 12.75  
Where PWM is PWM Registers (PG1, 00h~BFh) data  
showing in Table 10.  
Where 128μs is tSCAN, the period of scanning and 8μs  
is tNOL, the non-overlap time.  
For example, in Figure 1, REXT = 20k,if PWM=255,  
and GCC=255, then  
EXTERNAL RESISTOR (REXT  
)
255  
840  
255  
1
The output current for each CSx can be can be set by  
a single external resistor, REXT, as described in  
Formula (3).  
ILED  
3.29mA  
256 20k256 12.75  
Writing new data continuously to the registers can  
modulate the brightness of the LEDs to achieve a  
breathing effect.  
840 GCC  
IOUT  
(3)  
REXT 256  
GCC is Global Current Control Register (PG3, 01h)  
data showing in Table 14.  
Integrated Silicon Solution, Inc. – www.issi.com  
22  
Rev. B, 01/12/2017  
IS31FL3736  
LED AVERAGE CURRENT (ILED  
)
Choosing more gamma steps provides for a more  
continuous looking breathing effect. This is useful for  
very long breathing cycles. The recommended  
configuration is defined by the breath cycle T. When  
T=1s, choose 32 gamma steps, when T=2s, choose  
64 gamma steps. The user must decide the final  
number of gamma steps not only by the LED itself,  
but also based on the visual performance of the  
finished product.  
As described in Formula (1), the LED average current  
(ILED) is effected by 3 factors:  
1. REXT, resistor which is connected RSET pin and  
GND. REXT sets the current of all CSx (x=1~8) based  
on Formula (3).  
2. Global Current Control Register (PG3, 01h). This  
register adjusts all CSx (x=1~8) output currents by 256  
steps as shown in Formula (3).  
Table 22 64 Gamma Steps with 256 PWM Steps  
C(0)  
0
C(1)  
1
C(2)  
2
C(3)  
3
C(4)  
4
C(5)  
5
C(6)  
6
C(7)  
7
3. PWM Registers (PG1, 00h~BFh), every LED has an  
own PWM register. PWM Registers adjust individual  
LED average current by 256 steps as shown in  
Formula (1).  
C(8)  
8
C(9)  
10  
C(10) C(11) C(12) C(13) C(14) C(15)  
12 14 16 18 20 22  
GAMMA CORRECTION  
C(16) C(17) C(18) C(19) C(20) C(21) C(22) C(23)  
24 26 29 32 35 38 41 44  
C(24) C(25) C(26) C(27) C(28) C(29) C(30) C(31)  
47 50 53 57 61 65 69 73  
C(32) C(33) C(34) C(35) C(36) C(37) C(38) C(39)  
77 81 85 89 94 99 104 109  
C(40) C(41) C(42) C(43) C(44) C(45) C(46) C(47)  
114 119 124 129 134 140 146 152  
C(48) C(49) C(50) C(51) C(52) C(53) C(54) C(55)  
158 164 170 176 182 188 195 202  
C(56) C(57) C(58) C(59) C(60) C(61) C(62) C(63)  
In order to perform a better visual LED breathing effect  
we recommend using a gamma corrected PWM value  
to set the LED intensity. This results in a reduced  
number of steps for the LED intensity setting, but  
causes the change in intensity to appear more linear to  
the human eye.  
Gamma correction, also known as gamma  
compression or encoding, is used to encode linear  
luminance to match the non-linear characteristics of  
display. Since the IS31FL3736 can modulate the  
brightness of the LEDs with 256 steps, a gamma  
correction function can be applied when computing  
each subsequent LED intensity setting such that the  
changes in brightness matches the human eye's  
brightness curve.  
209  
216  
223  
230  
237  
244  
251  
255  
256  
224  
192  
160  
128  
96  
Table 21 32 Gamma Steps with 256 PWM Steps  
C(0)  
0
C(1)  
1
C(2)  
2
C(3)  
4
C(4)  
6
C(5)  
10  
C(6)  
13  
C(7)  
18  
C(8)  
22  
C(9)  
28  
C(10) C(11) C(12) C(13) C(14) C(15)  
33 39 46 53 61 69  
64  
C(16) C(17) C(18) C(19) C(20) C(21) C(22) C(23)  
78 86 96 106 116 126 138 149  
C(24) C(25) C(26) C(27) C(28) C(29) C(30) C(31)  
32  
0
0
8
16  
24  
32  
40  
48  
56  
64  
161  
173  
186  
199  
212  
226  
240  
255  
Intensity Steps  
Figure 14 Gamma Correction (64 Steps)  
256  
224  
192  
160  
128  
96  
Note: The data of 32 gamma steps is the standard value and the  
data of 64 gamma steps is the recommended value.  
OPERATING MODE  
Each dot of IS31FL3736 has twoselectable operating  
modes, PWM Mode and Auto Breath Mode.  
PWM Mode  
64  
32  
By setting the Auto Breath Mode Register bits of the  
Page 2 (PG2, 00h~BFh) to “00”, or disable the B_EN  
bit of Configure Register (PG3, 00h), the IS31FL3736  
operates in PWM Mode.The brightness of each LED  
can be modulated with 256 steps by PWM registers.  
0
0
4
8
12  
16  
20  
24  
28  
32  
Intensity Steps  
Figure 13 Gamma Correction (32 Steps)  
Integrated Silicon Solution, Inc. – www.issi.com  
23  
Rev. B, 01/12/2017  
IS31FL3736  
For example, if the data in PWM Register is “0000  
0100”, then the PWM is the fourth step.  
OPEN/SHORT DETECT FUNCTION  
IS31FL3736 has open and short detect bit for each  
LED.  
Writing new data continuously to the registers can  
modulate the brightness of the LEDs to achieve a  
breathing effect.  
By setting the OSD bit of the Configuration Register  
(PG3,00h) from "0" to “1”, the LED Open Register and  
LED Short Register will start to store the open/short  
information and after at least 2 scanning cycle  
(3.264ms) the MCU can get the open/short  
information by reading the 18h~2fh/30h~47h, for  
those dots are turned off via LED On/Off Registers  
(PG0, 00h~17h), the open/short data will not get  
refreshed when setting the OSD bit of the  
Auto Breath Mode  
By setting the B_EN bit of the Configuration Register  
(PG3, 00h) to “1”, breath function enables. When set  
the B_EN bit to “0”, breath function disables.  
By setting the Auto Breath Mode Register bits of the  
Page 2 (PG2, 00h~BFh) to “01” (ABM-1), “10” (ABM-2)  
or“11” (ABM-3), the IS31FL3736 operates in Auto  
Breath Mode.  
Configuration Register (PG3, 00h) from "0" to “1”.  
The Global Current Control Register (PG3, 01h) need  
to set to 0x01 in order to get the right open/short data.  
IS31FL3736 has three auto breath modes, Auto Breath  
Mode 1, Auto Breath Mode 2 and Auto Breath Mode 3.  
Each ABM has T1, T2, T3 and T4, as shown below:  
The detect action is one-off event and each time  
before reading out the open/short information, the  
OSD bit of the Configuration Register (PG3, 00h)  
need to be set from "0" to “1” (clear before set  
operation).  
INTERRUPT CONTROL  
IS31FL3736has an INTB pin, by setting the Interrupt  
Mask Register (F0h), it can be the flag of LED open,  
LED short or the finish flag of ABM-1, ABM-2, and  
ABM-3.  
Figure 15 Auto Breathing Function  
T1/T3 is variable from 0.21s to 26.88s, T2/T4 is  
variable from 0s to 26.88s, for each loop, the start  
point can be T1~T4 and the stop point can be on state  
(T2) and off state (T4), also the loop time can be set to  
1~212 times or endless. Each LED can select ABM-  
1~ABM-3 to work.  
For example, if the IO bit of the Interrupt Mask  
Register (F0h) set to “1”, when LED open happens,  
the INTB will pull be pulled low and the OB bit of  
Interrupt Status Register (F1h) will store open status  
at the same time.  
The setting of ABM-1~ABM-3 (PG2, 02h~0Dh) need to  
write the 0Eh in PG3 to update before effective.  
The INTB pin will be pulled high after reading the  
Interrupt Status Register (F1h) operation or it will be  
pulled high automatically after it stays low for 8ms  
(Typ.) if the IAC bit of Interrupt Mask Register (F0h) is  
set to “1”. The bits ofInterrupt Status Register (F1h)  
will be reset to “0” after INTB pin pulled high.  
SYNCHRONIZE FUNCTION  
SYNC bits of the Configuration Register (PG3, 00h)  
sets SYNC pin input or output synchronize clock  
signal. It is used for more than one part working  
synchronize. When SYNC bitsare set to “01”, SYNC  
pin output synchronize clock to synchronize other  
parts as master. When SYNC bitsare set to “10”,  
SYNC pin input synchronize clock and work  
synchronization with this input signal as slave. When  
SYNC bits are set to “00/11”, SYNC pin is high  
impedance, and synchronize function is disabled.  
SYNC bit default state is “00” and SYNC pin is high  
impedance when power up.  
Figure 16 Enable Auto Breath mode  
If not follow this flow, first loop’s start point may be  
wrong.  
Integrated Silicon Solution, Inc. – www.issi.com  
24  
Rev. B, 01/12/2017  
IS31FL3736  
DE-GHOST FUNCTION  
P3736=IPVCC×PVCC+ IQ×DVCC(AVCC)-IPVCC×VF(AVR) (4)  
The “ghost” term is used to describe the behavior of an  
LED that should be OFF but instead glows dimly when  
another LED is turned ON. A ghosting effect typically  
can occur when multiplexing LEDs. In matrix  
architecture any parasitic capacitance found in the  
constant-current outputs or the PCB traces to the  
LEDs may provide sufficient current to dimly light an  
LED to create a ghosting effect.  
IPVCC×PVCC - IPVCC×VF(AVR)  
IPVCC×(PVCC - VF(AVR)  
)
Where IPVCC is the current of PVCC and VF(AVR) is the  
average forward of all the LED.  
For example, if REXT=20k, GCC=255, PWM=255,  
PVCC=5V, VF(AVR)=3.5V@42mA, then the  
IPVCC=42mA×8×12/12.75=316.25mA.  
To prevent this LED ghost effect, the IS31FL3736 has  
integrated pull-up resistors for each SWy (y=1~12) and  
pull-down resistors for each CSx (x=1~8). Select the  
right SWy pull-up resistor (PG3, 0Fh) and CSx pull-  
down resistor (PG3, 10h) which eliminates the ghost  
LED for a particular matrix layout configuration.  
P
3736=316.25mA×(5V-3.5V)=0.474W  
When operating the chip at high ambient  
temperatures, or when driving maximum load current,  
care must be taken to avoid exceeding the package  
power dissipation limits. The maximum power  
dissipation can be calculated using the following  
Equation (5):  
Typically, selecting the 32kwill be sufficient to  
eliminate the LED ghost phenomenon.  
125C 25C  
The SWy pull-up resistors and CSx pull-down resistors  
are active only when the CSx/SWy outputs are in the  
OFF state and therefore no power is lost through these  
resistors.  
(5)  
PD(MAX )  
RJA  
125C 25C  
24.96C /W  
So,  
PD(MAX )  
4W  
IIC RESET  
Figure 17, shows the power derating of the  
IS31FL3736 on a JEDEC boards (in accordance with  
JESD 51-5 and JESD 51-7) standing in still air.  
The IIC will be reset if the IICRST pin is pull-high,  
when normal operating the IIC bus, the IICRST pin  
need to keep low.  
5
SHUTDOWN MODE  
QFN-40  
Shutdown mode can be used as a means of reducing  
power consumption. During shutdown mode all  
registers retain their data.  
4
3
2
Software Shutdown  
By setting SSD bit of the Configuration Register (PG3,  
00h) to “0”, the IS31FL3736 will operate in software  
shutdown mode. When the IS31FL3736 is in software  
shutdown, all current sources are switched off, so that  
the matrix is blanked. All registers can be operated.  
Typical current consume is 3μA.  
1
0
Hardware Shutdown  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
The chip enters hardware shutdownwhen the SDB pin  
is pulled low. All analog circuits are disabled during  
hardware shutdown, typical the current consume is  
3μA.  
Temperature (°C)  
Figure 17 Dissipation Curve  
LAYOUT  
The chip releases hardware shutdown when the SDB  
pin is pulled high. During hardware shutdown state  
Function Register can be operated.  
As described in external resistor (REXT), the chip  
consumes lots of power. Please consider below  
factors when layout the PCB.  
If VCC has risk drop below 1.75V but above 0.1V during  
SDB pulled low, please re-initialize all Function  
Registers before SDB pulled high.  
1. The VCC (PVCC, DVCC, AVCC, VIO) capacitors  
need to close to the chip and the ground side should  
well connected to the GND of the chip.  
POWER DISSIPATION  
2. REXT should be close to the chip and the ground  
side should well connect to the GND of the chip.  
The power dissipation of the IS31FL3736 can  
calculate as below:  
3. The thermal pad should connect to ground pins and  
the PCB should have the thermal pad too, usually this  
Integrated Silicon Solution, Inc. – www.issi.com  
25  
Rev. B, 01/12/2017  
IS31FL3736  
pad should have 16 or 25 via thru the PCB to other  
side’s ground area to help radiate the heat. About the  
thermal pad size, please refer to the land pattern of  
each package.  
4. The CSx pins maximum current is 42mA  
(REXT=20k), and the SWy pins maximum current is  
336mA (REXT=20k), the width of the trace, SWy  
should have wider trace then CSx.  
5. In the middle of SDA and SCL trace, a ground line is  
recommended to avoid the effect between these two  
lines.  
Integrated Silicon Solution, Inc. – www.issi.com  
26  
Rev. B, 01/12/2017  
IS31FL3736  
CLASSIFICATION REFLOW PROFILES  
Profile Feature  
Pb-Free Assembly  
Preheat & Soak  
150°C  
200°C  
60-120 seconds  
Temperature min (Tsmin)  
Temperature max (Tsmax)  
Time (Tsmin to Tsmax) (ts)  
Average ramp-up rate (Tsmax to Tp)  
3°C/second max.  
Liquidous temperature (TL)  
Time at liquidous (tL)  
217°C  
60-150 seconds  
Peak package body temperature (Tp)*  
Max 260°C  
Time (tp)** within 5°C of the specified  
classification temperature (Tc)  
Max 30 seconds  
Average ramp-down rate (Tp to Tsmax)  
Time 25°C to peak temperature  
6°C/second max.  
8 minutes max.  
Figure 18 Classification Profile  
Integrated Silicon Solution, Inc. – www.issi.com  
27  
Rev. B, 01/12/2017  
IS31FL3736  
PACKAGE INFORMATION  
QFN-40  
Integrated Silicon Solution, Inc. – www.issi.com  
28  
Rev. B, 01/12/2017  
IS31FL3736  
RECOMMENDED LAND PATTERN  
QFN-40  
0.4  
0.2  
0.8  
5.0  
3.8  
Note:  
1. Land pattern complies to IPC-7351.  
2. All dimensions in MM.  
3. This document (including dimensions, notes & specs) is a recommendation based on typical circuit board manufacturing parameters. Since  
land pattern design depends on many factors unknown (eg. user’s board manufacturing specs), user must determine suitability for use.  
Integrated Silicon Solution, Inc. – www.issi.com  
29  
Rev. B, 01/12/2017  
IS31FL3736  
REVISION HISTORY  
Revision  
Detail Information  
Date  
0A  
Initial release  
1 Correct a spell mistake in page 1  
2016.05.09  
0B  
2 Update figure 1 and figure 2  
2016.07.20  
3 Update I2C READING OPERATION section and figure 8  
A
B
Update EC table, add IOUT and VHR and limit, release to product  
2016.08.01  
2017.01.12  
1. Update READING OPERATION  
2. Correct error of REGISTER DEFINITION-2 and Table 12  
Integrated Silicon Solution, Inc. – www.issi.com  
30  
Rev. B, 01/12/2017  

相关型号:

ISSI

IS31FL3741-QFLS4-TR

Display Driver,
ISSI

IS31IO7325

MULTI-FUNCTION I/O DRIVER
ISSI

IS31IO7325-GRLS4

Buffer/Inverter Based Peripheral Driver,
ISSI

IS31IO7325-GRLS4-TR

Buffer/Inverter Based Peripheral Driver, PDSO24, LEAD FREE, SOP-24
ISSI

IS31IO7326

DEBOUNCED 8×8 KEY-SCAN CONTROLLER
ISSI

IS31IO7326-QFLS4-TR

Microprocessor Circuit, CMOS, 4 X 4 MM, LEAD FREE, QFN-24
ISSI

IS31IO7328

MULTI-FUNCTION I/O DRIVER
ISSI

IS31IO7328-QFLS4-TR

Buffer/Inverter Based Peripheral Driver, LEAD FREE, QFN-16
ISSI
ISSI

IS31LT3135

MAIN/SUB DUAL-CHANNEL LED DRIVER
ISSI

IS31LT3135V1

Power supply under‐voltage detection
ISSI