LTC2974 [LINEAR_DIMENSIONS]

Dual 8A per Channel Low VIN DC/DC μModule Regulator; 每通道低输入电压的DC / DC稳压器μModule双8A
LTC2974
型号: LTC2974
厂家: Linear Dimensions    Linear Dimensions
描述:

Dual 8A per Channel Low VIN DC/DC μModule Regulator
每通道低输入电压的DC / DC稳压器μModule双8A

稳压器
文件: 总30页 (文件大小:872K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4616  
Dual 8A per Channel Low  
V DC/DC µModule Regulator  
IN  
FEATURES  
DESCRIPTION  
The LTM®4616 is a complete dual 2-phase 8A per channel  
switch mode DC/DC power regulator system in a 15mm  
n
Complete Dual DC/DC Regulator System  
n
Input Voltage Range: 2.7V to 5.5V  
Dual 8A Outputs, or Single 16A Output with a 0.6V  
to 5V Range  
n
× 15mm surface mount LGA or BGA package. Included  
in the package are the switching controller, power FETs,  
inductor and all support components. Operating from an  
inputvoltagerangeof2.7Vto5.5V,theLTM4616supports  
two outputs within a voltage range of 0.6V to 5V, each set  
by a single external resistor. This high efficiency design  
delivers up to 8A continuous current (10A peak) for each  
output. Only bulk input and output capacitors are needed,  
depending on ripple requirement. The part can also be  
configured for a 2-phase single output at up to 16A.  
n
n
n
n
n
n
n
n
n
n
n
Output Voltage Tracking and Margining  
1.75ꢀ Total DC Output Error (55°C to 125°C)  
Current Mode Control/Fast Transient Response  
Power Good Tracking and Margining  
Overcurrent/Thermal Shutdown Protection  
Onboard Frequency Synchronization  
Spread Spectrum Frequency Modulation  
Multiphase Operation  
Selectable Burst Mode® Operation  
Thelowprofilepackageenablesutilizationofunusedspace  
on the back side of PC boards for high density point-of-  
load regulation.  
Output Overvoltage Protection  
RoHS Compliant with Pb-Free Finish,  
Gold Finish LGA (e4) or SAC 305 BGA (e1)  
Small Surface Mount Footprint, Low Profile  
(15mm × 15mm × 2.82mm) LGA and  
(15mm × 15mm × 3.42mm) BGA Packages  
n
Fault protection features include overvoltage protection,  
overcurrent protection and thermal shutdown. The power  
module is offered in space saving and thermally enhanced  
15mm × 15mm × 2.82mm LGA and 15mm × 15mm ×  
3.42mm BGA packages. The LTM4616 is RoHS compliant  
with Pb-free finish.  
APPLICATIONS  
n
Telecom, Networking and Industrial Equipment  
Different Combinations of Input and Output  
n
Storage and ATCA, PCI Express Cards  
Number of Inputs  
Number of Outputs  
I
(MAX)  
n
OUT  
Battery Operated Equipment  
2
2
1
1
2
1
2
1
8A, 8A  
L, LT, LTC, LTM, Linear Technology, the Linear logo, Burst Mode, µModule and PolyPhase  
are registered trademarks and LTpowerCAD is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners. Protected by U.S. Patents,  
including 5481178, 6580258, 6304066, 6127815, 6498466, 6611131, 6724174.  
16A  
8A, 8A  
16A  
TYPICAL APPLICATION  
Efficiency vs Load Current  
Dual Output DC/DC µModule® Regulator  
95  
90  
85  
80  
75  
5V 3.3V  
IN  
OUT  
V
5V  
IN1  
V
OUT1  
3.3V/8A  
V
V
IN1  
OUT1  
FB1  
5V 2.5V  
IN  
OUT  
100µF  
10µF  
LTM4616  
2.21k  
3.09k  
I
THM1  
V
3.3V TO 5V  
10µF  
IN2  
V
OUT2  
2.5V/8A  
V
V
IN2  
OUT2  
FB2  
100µF  
I
THM2  
GND1  
GND2  
70  
0
4616 TA01a  
2
4
6
8
LOAD CURRENT (A)  
4616 TA01b  
4616fe  
1
For more information www.linear.com/LTM4616  
LTM4616  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
V
, SV , V , SV ................................ –0.3V to 6V  
V
, V  
, SW1, SW2............................ –0.3V to V  
IN1  
IN1 IN2  
IN2  
OUT1 OUT2 IN  
Internal Operating Temperature Range (Note 2)  
CLKOUT1, CLKOUT2 .................................... –0.3V to 2V  
PGOOD1, PLLLPF1, CLKIN1, PHMODE1,  
E- and I-Grades..................................40°C to 125°C  
MP-Grade .......................................... –55°C to 125°C  
Junction Temperature ........................................... 125°C  
Storage Temperature Range .................. –55°C to 125°C  
MODE1, PGOOD2, PLLLPF2, CLKIN2,  
PHMODE2, MODE2..................................... –0.3V to V  
IN  
I
, I  
, RUN1, FB1, TRACK1, MGN1,  
TH2 THM2  
TH1 THM1  
BSEL1, I , I  
, RUN2, FB2, TRACK2,  
MGN2, BSEL2............................................. –0.3V to V  
IN  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
SGND2 CLKOUT2  
SGND2 CLKOUT2  
I
I
RUN2  
TH2  
RUN2  
TH2  
V
V
OUT2  
V
V
IN2  
IN2  
OUT2  
M
L
M
L
SV  
TRACK2  
SV  
IN2  
TRACK2  
IN2  
PLLLPF2  
I
PLLLPF2  
I
THM2  
THM2  
K
J
K
J
FB2  
FB2  
GND2  
GND2  
SW2  
SW2  
H
G
F
H
G
F
MODE2  
MODE2  
CLKIN2  
PHMODE2  
MGN2  
CLKIN2  
PHMODE2  
MGN2  
PGOOD2  
BSEL2  
BSEL2  
PGOOD2  
RUN1  
RUN1  
I
TH1  
I
SGND1  
TH1  
SV  
IN1  
SGND1  
CLKOUT1  
SV  
IN1  
CLKOUT1  
E
E
TRACK1  
OUT1  
TRACK1  
PLLLPF1  
V
I
PLLLPF1  
V
I
THM1  
THM1  
V
D
C
B
A
V
D
C
B
A
OUT1  
IN1  
IN1  
SW1  
FB1  
SW1  
FB1  
GND1  
PGOOD1  
MGN1  
GND1  
PGOOD1  
MGN1  
BSEL1  
BSEL1  
1
2
3
4
5
6
7
8
9
10  
11  
12  
1
2
3
4
5
6
7
8
9
10  
11  
12  
CLKIN1 MODE1 PHMODE1  
BGA PACKAGE  
144-LEAD (15mm × 15mm × 3.42mm)  
CLKIN1 MODE1 PHMODE1  
LGA PACKAGE  
144-LEAD (15mm × 15mm × 2.82mm)  
T
= 125°C, θ = 10.5°C/W, θ  
= 2°C/W, θ  
= 16°C/W, WEIGHT = 2.0g  
T
JMAX  
= 125°C, θ = 10.5°C/W, θ  
= 2°C/W, θ  
= 16°C/W, WEIGHT = 1.8g  
JMAX  
JA  
JCbottom  
JCtop  
JA  
JCbottom  
JCtop  
θ
DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS  
θ
JA  
DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LTM4616EV#PBF  
LTM4616IV#PBF  
LTM4616MPV#PBF  
LTM4616EY#PBF  
LTM4616IY#PBF  
LTM4616MPY#PBF  
TRAY  
PART MARKING*  
LTM4616V  
LTM4616V  
LTM4616V  
LTM4616Y  
LTM4616Y  
LTM4616Y  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE (NOTE 2)  
LTM4616EV#PBF  
LTM4616IV#PBF  
LTM4616MPV#PBF  
LTM4616EY#PBF  
LTM4616IY#PBF  
LTM4616MPY#PBF  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
144-Lead (15mm × 15mm × 2.82mm) LGA  
144-Lead (15mm × 15mm × 2.82mm) LGA  
144-Lead (15mm × 15mm × 2.82mm) LGA  
144-Lead (15mm × 15mm × 3.42mm) BGA  
144-Lead (15mm × 15mm × 3.42mm) BGA  
144-Lead (15mm × 15mm × 3.42mm) BGA  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
4616fe  
2
For more information www.linear.com/LTM4616  
LTM4616  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified internal  
operating temperature range (Note 2). TA = 25°C, VIN = 5V unless otherwise noted. Per the typical application in Figure 18. Specified  
as each channel (Note 3).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
V
Input DC Voltage  
2.7  
5.5  
V
IN1(DC), IN2(DC)  
V
, V  
Output Voltage, Total Variation  
with Line and Load  
C
V
= 10µF × 1, C  
= 100µF Ceramic,  
FB  
OUT1(DC) OUT2(DC)  
IN  
OUT  
100µF POSCAP, R = 6.65k, MODE = 0V  
1.472  
1.464  
1.49  
1.49  
1.508  
1.516  
V
V
= 2.7V to 5.5V,  
IN  
l
I
= I  
to I  
(Note 4)  
OUT  
OUT(DC)MIN  
OUT(DC)MAX  
Input Specifications  
V
V
,
Undervoltage Lockout Threshold SV Rising  
2.05  
1.85  
2.2  
2.0  
2.35  
2.15  
V
V
IN1(UVLO)  
IN2(UVLO)  
IN  
SV Falling  
IN  
I
Input Supply Bias Current  
V
IN  
V
IN  
V
IN  
= 3.3V, V  
= 3.3V, V  
= 3.3V, V  
= 1.5V, No Switching, MODE = V  
IN  
= 1.5V, No Switching, MODE = 0V  
= 1.5V, Switching Continuous  
400  
1.15  
55  
µA  
mA  
mA  
Q(VIN1, VIN2)  
OUT  
OUT  
OUT  
V
V
V
= 5V, V  
= 5V, V  
= 5V, V  
= 1.5V, No Switching, MODE = V  
IN  
= 1.5V, No Switching, MODE = 0V  
= 1.5V, Switching Continuous  
450  
1.3  
75  
µA  
mA  
mA  
IN  
IN  
IN  
OUT  
OUT  
OUT  
Shutdown, RUN = 0, V = 5V  
1
µA  
IN  
I
Input Supply Current  
V
IN  
V
IN  
= 3.3V, V  
= 1.5V, I = 8A  
OUT  
4.5  
2.93  
A
A
S(VIN1, VIN2)  
OUT  
= 5V, V  
= 1.5V, I  
= 8A  
OUT  
OUT  
Output Specifications  
I
I
Output Continuous Current Range V  
= 1.5V (Note 4)  
IN  
IN  
OUT1(DC), OUT2(DC)  
OUT  
V
= 3.3V, 5.5V  
= 2.7V  
0
0
8
5
A
A
V
l
Line Regulation Accuracy  
Load Regulation Accuracy  
V
V
= 1.5V, V from 2.7V to 5.5V, I  
= 0A  
0.1  
0.25  
%/V  
ΔV  
ΔV  
/V  
OUT  
IN  
OUT  
OUT1(LINE) OUT1  
/V  
OUT2(LINE) OUT2  
= 1.5V (Note 4)  
ΔV  
ΔV  
/V  
/V  
OUT  
V
V
OUT1(LOAD) OUT1  
OUT2(LOAD) OUT2  
l
l
= 3.3V, 5.5V, I  
= 0A to 8A  
LOAD  
0.3  
0.3  
0.5  
0.5  
%
%
IN  
IN  
= 2.7V, I  
= 0A to 5A  
LOAD  
V
, V  
Output Ripple Voltage  
I
= 0A, C  
OUT  
= 100µF X5R Ceramic, V = 5V,  
OUT IN  
OUT1(AC) OUT2(AC)  
OUT  
V
= 1.5V  
10  
mV  
P-P  
f
f
f
Switching Frequency  
SYNC Capture Range  
Turn-On Overshoot  
I
= 8A, V = 5V, V = 1.5V  
OUT  
1.25  
0.75  
1.5  
1.75  
2.25  
MHz  
MHz  
S1, S2  
OUT  
IN  
f
SYNC1, SYNC2  
C
= 100µF, V  
= 3.3V  
= 1.5V, I  
= 0A  
OUT  
ΔV  
ΔV  
OUT  
OUT  
OUT1(START),  
OUT2(START)  
V
10  
10  
mV  
mV  
IN  
IN  
V
= 5V  
t
t
Turn-On Time  
C
= 100µF, V  
= 1.5V, V = 5V,  
IN  
START1, START2  
OUT  
OUT  
OUT  
I
= 1A Resistive Load, Track = V  
100  
20  
µs  
IN  
Peak Deviation for Dynamic Load Load: 0% to 50% to 0% of Full Load,  
mV  
ΔV  
ΔV  
OUT1(LS),  
OUT2(LS)  
C
V
= 100µF Ceramic x2, 470µF POSCAP,  
OUT  
IN  
= 5V, V  
= 1.5V  
OUT  
t
t
Settling Time for Dynamic Load  
Step  
Load: 0% to 50% to 0% of Full Load, V = 5V,  
OUT  
10  
µs  
SETTLE1, SETTLE2  
IN  
V
= 1.5V, C  
= 100µF  
OUT  
I
I
Output Current Limit  
C
= 100µF  
OUT1(PK), OUT2(PK)  
OUT  
V
= 2.7V, V  
= 3.3V, V  
= 1.5V  
= 1.5V  
8
11  
13  
A
A
A
IN  
IN  
IN  
OUT  
OUT  
V
V
= 5V, V  
= 1.5V  
OUT  
4616fe  
3
For more information www.linear.com/LTM4616  
LTM4616  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified internal  
operating temperature range (Note 2). TA = 25°C, VIN = 5V unless otherwise noted. Per the typical application in Figure 18. Specified  
as each channel (Note 3).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Control Section  
FB1, FB2  
Voltage at FB Pin  
I
= 0A, V  
= 1.5V, V = 2.7V to 5.5V  
0.590  
0.587  
0.596  
0.596  
0.602  
0.606  
V
V
OUT  
OUT  
IN  
l
SS Delay  
Internal Soft-Start Delay  
90  
µs  
I
, I  
0.2  
µA  
FB1 FB2  
V
V
RUN Pin On/Off Threshold  
RUN Rising  
RUN Falling  
1.4  
1.3  
1.55  
1.4  
1.7  
1.5  
V
V
RUN1, RUN2  
TRACK1, TRACK2  
Tracking Threshold (Rising)  
Tracking Threshold (Falling)  
Tracking Disable Threshold  
RUN = V  
0.57  
0.18  
IN  
V
V
V
IN  
RUN = 0V  
V
– 0.5  
R
R
Resistor Between V  
and FB  
OUT  
9.95  
10  
10.05  
kΩ  
FBHI1, FBHI2  
Pins  
PGOOD Range  
10  
20  
%
ΔV  
ΔV  
PGOOD2  
PGOOD1,  
l
I
, I  
PGOOD Leakage Current  
V
= V = 2.7V to 5.5V, I  
= I  
OUT(DC)MAX  
30  
µA  
PGOOD1 PGOOD2  
PGOOD  
IN  
OUT  
(Note 4)  
V
, V  
PGOOD Voltage Low  
I
= 5mA  
0.2  
0.4  
V
PGL1 PGL2  
PGOOD  
%Margining  
Output Voltage Margining  
Percentage  
MGN = V , BSEL = 0V  
4
9
14  
–4  
–9  
–14  
5
6
%
%
%
%
%
%
IN  
MGN = V , BSEL = V  
10  
11  
IN  
IN  
MGN = V , BSEL = Float  
15  
–5  
–10  
–15  
16  
–6  
–11  
–16  
IN  
MGN = 0V, BSEL = 0V  
MGN = 0V, BSEL = V  
IN  
MGN = 0V, BSEL = Float  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: Two channels are tested separately and the same testing  
conditions are applied to each channel.  
Note 4: See Output Current Derating curves for different V , V  
and T .  
IN OUT  
A
Note 2: The LTM4616 is tested under pulsed load conditions, such that  
T ≈ T . The LTM4616E is guaranteed to meet performance specifications  
J
A
over the 0°C to 125°C internal operating temperature range. Specifications  
over the –40°C to 125°C internal operating temperature range are assured  
by design, characterization and correlation with statistical process  
controls. The LTM4616I is guaranteed to meet specifications over the  
–40°C to 125°C internal operating temperature range. The LTM4616MP  
is guaranteed and tested over the –55°C to 125°C internal operating  
temperature range. Note that the maximum ambient temperature  
consistent with these specifications is determined by specific operating  
conditions in conjunction with board layout, the rated package thermal  
resistance and other environmental factors.  
4616fe  
4
For more information www.linear.com/LTM4616  
LTM4616  
TYPICAL PERFORMANCE CHARACTERISTICS Specified as Each Channel  
Efficiency vs Load Current  
Efficiency vs Load Current  
Efficiency vs Load Current  
100  
95  
90  
85  
80  
75  
70  
100  
95  
100  
95  
CONTINUOUS MODE  
CONTINUOUS MODE  
CONTINUOUS MODE  
90  
85  
90  
85  
80  
75  
70  
80  
75  
70  
5V 1.2V  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
3.3V 1.2V  
IN  
OUT  
OUT  
OUT  
OUT  
5V 1.5V  
IN  
2.7V 1.0V  
3.3V 1.5V  
IN  
IN  
OUT  
OUT  
OUT  
5V 1.8V  
IN  
2.7V 1.5V  
IN  
3.3V 1.8V  
IN  
3.3V 2.5V  
IN  
5V 2.5V  
IN  
2.7V 1.8V  
IN  
5V 3.3V  
IN  
0
2
3
4
5
6
7
0
2
4
6
8
1
0
2
4
6
8
LOAD CURRENT (A)  
LOAD CURRENT  
LOAD CURRENT  
4616 G03  
4616 G02  
4616 G01  
Burst Mode Efficiency with  
5V Input  
V
IN to VOUT Step-Down Ratio  
VIN to VOUT Step-Down Ratio  
100  
90  
80  
70  
60  
50  
40  
4.0  
3.5  
3.0  
2.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
2.0  
1.5  
1.0  
0.5  
0
1.0  
0.5  
0
V
= 1.5V  
= 2.5V  
= 3.3V  
V
OUT  
V
OUT  
V
OUT  
= 1.8V  
= 2.5V  
= 3.3V  
I
V
V
= 8A  
OUT  
I
V
V
= 6A  
V
OUT  
V
OUT  
V
OUT  
= 1.8V  
= 2.5V  
= 3.3V  
OUT  
OUT  
V
V
= 1.2V  
= 1.5V  
OUT  
OUT  
= 1.2V  
= 1.5V  
OUT  
OUT  
OUT  
OUT  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1  
LOAD CURRENT (A)  
4
2
3
4
5
6
2
5
6
3
V
IN  
(V)  
V
IN  
(V)  
4616 G05  
4616 G06  
4616 G04  
Supply Current vs VIN  
Load Transient Response  
Load Transient Response  
1.6  
1.4  
1.2  
1
I
I
LOAD  
1A/DIV  
LOAD  
1A/DIV  
V
O
= 1.2V PULSE-SKIPPING MODE  
0A  
0A  
V
V
OUT  
OUT  
0.8  
0.6  
0.4  
0.2  
0
50mV/DIV  
50mV/DIV  
V
O
= 1.2V Burst Mode OPERATION  
4616 G08  
4616 G09  
V
V
= 5V  
20µs/DIV  
V
V
= 5V  
20µs/DIV  
IN  
OUT  
IN  
OUT  
= 3.3V  
= 2.5V  
2A/µs STEP  
= 2 × 100µF X5R, 470µF 4V POSCAP  
2A/µs STEP  
= 2 × 100µF X5R, 470µF 4V POSCAP  
C
C
OUT  
OUT  
2.5  
3
3.5  
4
4.5  
5
5.5  
INPUT VOLTAGE (V)  
4616 G07  
4616fe  
5
For more information www.linear.com/LTM4616  
LTM4616  
TYPICAL PERFORMANCE CHARACTERISTICS Specified as Each Channel  
Load Transient Response  
Load Transient Response  
Load Transient Response  
I
I
I
LOAD  
LOAD  
LOAD  
1A/DIV  
1A/DIV  
1A/DIV  
0A  
0A  
0A  
V
V
V
OUT  
OUT  
OUT  
50mV/DIV  
50mV/DIV  
50mV/DIV  
4616 G10  
4616 G11  
4616 G12  
V
V
= 5V  
20µs/DIV  
V
V
= 5V  
20µs/DIV  
V
V
= 5V  
20µs/DIV  
IN  
OUT  
IN  
OUT  
IN  
OUT  
= 1.8V  
= 1.5V  
= 1.2V  
2.5A/µs STEP  
= 2 × 100µF X5R, 470µF 4V POSCAP  
2.5A/µs STEP  
= 2 × 100µF X5R, 470µF 4V POSCAP  
2.5A/µs STEP  
= 2 × 100µF X5R, 470µF POSCAP  
C
C
C
OUT  
OUT  
OUT  
Start-Up  
VFB vs Temperature  
Load Regulation vs Current  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
602  
600  
598  
596  
594  
592  
590  
V
OUT  
0.5V/DIV  
V
V
= 5.5V  
= 3.3V  
IN  
IN  
V
IN  
2V/DIV  
V
= 2.7V  
IN  
4616 G13  
V
V
C
= 5V  
50µs/DIV  
IN  
FC MODE  
= 1.5V  
OUT  
OUT  
V
V
= 3.3V  
IN  
OUT  
= 100µF NO LOAD AND 8A LOAD  
= 1.5V  
(DEFAULT 100µs SOFT-START)  
–25  
0
50  
–50  
75 100 125  
25  
0
2
4
6
8
LOAD CURRENT (A)  
TEMPERATURE (°C)  
4616 G14  
4616 G15  
Short-Circuit Protection  
(2.5V Short, No Load)  
Short-Circuit Protection  
(2.5V Short, 4A Load)  
2.5V Output Current  
3.0  
2.5  
V
IN  
5V/DIV  
5V/DIV  
2V/DIV  
2V/DIV  
V
V
IN  
OUT  
V
OUT  
2.0  
1.5  
I
LOAD  
OUT  
5A/DIV  
5A/DIV  
I
OUT  
1.0  
0.5  
0
4616 G17  
4616 G18  
V
V
= 5V  
50µs/DIV  
V
V
= 5V  
50µs/DIV  
IN  
OUT  
IN  
OUT  
= 2.5V  
= 2.5V  
0
5
10  
15  
20  
OUTPUT CURRENT (A)  
4616 G16  
4616fe  
6
For more information www.linear.com/LTM4616  
LTM4616  
PIN FUNCTIONS  
IN1 IN2  
PLLLPF1 and PLLLPF2 (E6 and L6): Phase-Locked Loop  
Lowpass Filter for Each Channel. An internal lowpass filter  
is tied to this pin. In spread spectrum mode, placing a  
capacitor here to SGND controls the slew rate from one  
frequencytothenext. Alternatively, floatingthispinallows  
V
, V , (BANK1 and BANK2); (F1-F4, E1-E4, C1-C2,  
D1-D2) and (J1-J2, K1-K2, L1-L4, M1-M4): Power Input  
Pins. Apply input voltage between these pins and GND  
pins. Recommend placing input decoupling capacitance  
directly between V pins and GND pins.  
IN  
normalrunningfrequencyat1.5MHz,tyingthispintoSV  
IN  
V , V  
OUT1 OUT2  
(BANK3 and BANK6); (D9-D12, E9-E12,  
forces the part to run at 1.33 times its normal frequency  
(2MHz), tying it to ground forces the frequency to run at  
0.67 times its normal frequency (1MHz).  
F9-F12) and (K9-K12, L9-L12, M9-M12): Power Output  
Pins. Apply output load between these pins and GND  
pins. Recommend placing output decoupling capacitance  
directly between these pins and GND pins. See Table 1.  
PHMODE1 and PHMODE2 (A9 and G9): Phase Selector  
Input for Each Channel. This pin determines the phase  
relationship between the internal oscillator and CLKOUT.  
Tie it high for 2-phase operation, tie it low for 3-phase  
GND1 and GND2 (BANK2 and BANK5); (A1-A5, A12, B1-  
B5, B7-B12, C3-C12, D3-D7) and (G1-G5, G12, H1-H5,  
H7-H12, J3-J12, K3-K7): Power Ground Pins for Both  
Input and Output Returns.  
operation, and float or tie it to V /2 for 4-phase operation.  
IN  
MGN1 and MGN2 (A10 and G10): Voltage Margining  
Pin for Each Channel. Increases or decreases the output  
voltage by the amount specified by the BSEL pin. To  
disable margining, tie the MGN pin to a voltage divider  
SV andSV (E5andL5):SignalInputVoltageforEach  
IN1  
IN2  
Channel. This pin is internally connected to V through  
IN  
a lowpass filter.  
with 50k resistors from V to ground (see Figure 5).  
SGND1 and SGND2 (F5 and M5): Signal Ground Pin for  
Each Channel. Return ground path for all analog and low  
power circuitry. Tie a single connection to the output  
capacitor GND in the application. See layout guidelines  
in Figure 17.  
IN  
For margining, connect a voltage divider from V to GND  
IN  
with the center point connected to the MGN pinfor the spe-  
cific channel. Each resistor should be close to 50k. Margin  
Highiswithin0.3VofV , andMarginLowiswithin0.3Vof  
IN  
GND. See the Applications Information section and Figure  
18 for margining control. The specified tri-state drivers are  
capable of the high and low requirements for margining.  
MODE1 and MODE2 (A8 and G8): Mode Select Input for  
Each Channel. Tying this pin high enables Burst Mode  
operation. Tying this pin low enables forced continuous  
operation. Floating this pin or tying it to V /2 enables  
pulse-skipping operation.  
BSEL1 and BSEL2 (A6 and G6): Margining Bit Select Pin  
for Each Channel. Tying BSEL low selects 5% margin  
value, tying it high selects 10% margin value. Floating it  
IN  
CLKIN1 and CLKIN2 (A7 and G7): External Synchroniza-  
tion Input to Phase Detector for Each Channel. This pin  
is internally terminated to SGND with a 50k resistor. The  
phase-locked loop will force the internal top power PMOS  
turn on to be synchronized with the rising edge of the  
or tying it to V /2 selects 15% margin value.  
IN  
TRACK1andTRACK2(E8andL8):OutputVoltageTracking  
PinforEachChannel. Voltagetrackingisenabledwhenthe  
TRACK voltage is below 0.57V. If tracking is not desired,  
then connect the TRACK pin to SV . If TRACK is not tied  
CLKIN signal. Connect this pin to SV to enable spread  
IN  
IN  
to SV , then the TRACK pin’s voltage needs to be below  
spectrum modulation. During external synchronization,  
IN  
0.18V before the chip shuts down even though RUN is  
make sure the PLLLPF pin is not tied to V or GND.  
IN  
4616fe  
7
For more information www.linear.com/LTM4616  
LTM4616  
PIN FUNCTIONS  
already low. Do not float this pin. A resistor and capacitor  
can be applied to the TRACK pin to increase the soft-start  
time of the regulator. TRACK1 and TRACK2 can be tied  
together for parallel operation and tracking. See the Ap-  
plications Information section.  
SGND for single phase operation on each channel. For  
PolyPhase operation, tie the master’s I to SGND while  
THM  
connecting all of the I  
pins together at the master.  
THM  
PGOOD1 and PGOOD2 (A11 and G11): Output Voltage  
Power Good Indicator for Each Channel. Open-drain logic  
output that is pulled to ground when the output voltage  
is not within 10% of the regulation point. Power good  
is disabled during margining.  
FB1 and FB2 (D8 and K8): The Negative Input of the Error  
AmplifierforEachChannel.Internally,thispinisconnected  
to V  
with a 10k precision resistor. Different output  
OUT  
voltages can be programmed with an additional resistor  
between FB and GND pins. In PolyPhase® operation, tying  
the FB pins together allows for parallel operation. See the  
Applications Information section for details.  
RUN1 and RUN2 (F6 and M6): Run Control Pin. A voltage  
above 1.7V will turn on the module.  
SW1 and SW2 (B6 and H6): Switching Node of Each  
Channel That is Used for Testing Purposes. This can be  
connected to an electronically open circuit copper pad on  
the board for improved thermal performance.  
I
and I (F8 and M8): Current Control Threshold and  
TH2  
TH1  
ErrorAmplifierCompensationPointforEachChannel. The  
current comparator threshold increases with this control  
voltage. Tie together in parallel operation.  
CLKOUT1 and CLKOUT2 (F7 and M7): Output Clock  
Signal for PolyPhase Operation. The phase of CLKOUT is  
determined by the state of the PHMODE pin.  
I
TH  
andI  
(E7andL7):NegativeInputtotheInternal  
THM1  
THM2  
I
Differential Amplifier for Each Channel. Tie this pin to  
4616fe  
8
For more information www.linear.com/LTM4616  
LTM4616  
SIMPLIFIED BLOCK DIAGRAM  
SV  
IN1  
V
INTERNAL  
FILTER  
IN1  
3V TO 5.5V  
+
TRACK1  
10µF  
10µF  
10µF  
C
IN1  
PGND1  
MGN1  
BSEL1  
M1  
M2  
SW1  
PGOOD1  
MODE1  
0.22µH  
V
1.5V  
8A  
OUT1  
POWER  
CONTROL  
RUN1  
CLKIN1  
+
CLKOUT1  
PHMODE1  
10µF  
C
OUT1  
I
PGND1  
TH1  
INTERNAL  
COMP  
50k  
10k  
PLLLPF1  
FB1  
INTERNAL  
FILTER  
R
SET1  
6.65k  
I
THM1  
PGND1  
SGND1  
SV  
IN2  
V
INTERNAL  
FILTER  
IN2  
3V TO 5.5V  
+
+
TRACK2  
10µF  
10µF  
10µF  
C
IN2  
PGND2  
MGN2  
BSEL2  
M3  
M4  
SW2  
PGOOD2  
MODE2  
0.22µH  
V
1.2V  
8A  
OUT2  
POWER  
CONTROL  
RUN2  
CLKIN2  
CLKOUT2  
PHMODE2  
10µF  
C
OUT2  
I
PGND2  
TH2  
INTERNAL  
COMP  
50k  
10k  
PLLLPF2  
FB2  
INTERNAL  
FILTER  
R
SET2  
10k  
I
THM2  
PGND2  
SGND2  
4616 BD  
Figure 1. Simplified LTM4616 Block Diagram  
4616fe  
9
For more information www.linear.com/LTM4616  
LTM4616  
SIMPLIFIED BLOCK DIAGRAM  
Table 1. Decoupling Requirements. TA = 25°C, Block Diagram Configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
C
External Input Capacitor Requirement  
IN1  
IN2  
(V = 2.7V to 5.5V, V  
= 1.5V)  
= 2.5V)  
I
I
= 8A  
= 8A  
22  
22  
µF  
µF  
IN1  
OUT1  
OUT2  
OUT1  
OUT2  
(V = 2.7V to 5.5V, V  
IN2  
C
C
External Output Capacitor Requirement  
OUT1  
OUT2  
(V = 2.7V to 5.5V, V  
= 1.5V)  
= 2.5V)  
I
I
= 8A  
= 8A  
100  
100  
µF  
µF  
IN1  
OUT1  
OUT2  
OUT1  
OUT2  
(V = 2.7V to 5.5V, V  
IN2  
OPERATION  
Pulling the RUN pins below 1.3V forces the regulators  
into a shutdown state, by turning off both MOSFETs. The  
TRACK pin is used for programming the output voltage  
ramp and voltage tracking during start-up. See the Ap-  
plications Information section.  
The LTM4616 is a dual-output standalone nonisolated  
switching mode DC/DC power supply. It can provide two  
8A outputs with few external input and output capacitors.  
This module provides precisely regulated output voltages  
programmable via external resistors from 0.6V to 5V  
DC  
DC  
over 2.7V to 5.5V input voltages. The typical application  
The LTM4616 is internally compensated to be stable over  
all operating conditions. Table 3 provides a guideline  
for input and output capacitances for several operating  
conditions. LTpowerCAD™ design tool is available for fine  
tuning transient and stability perfromance. The FB pin is  
used to program the output voltage with a single external  
resistor to ground.  
schematic is shown in Figure 18.  
The LTM4616 has integrated constant frequency current  
mode regulators and built-in power MOSFET devices with  
fast switching speed. The typical switching frequency is  
1.5MHz. For switching noise sensitive applications, it can  
be externally synchronized from 0.75MHz to 2.25MHz.  
Even spread spectrum switching can be implemented in  
the design to reduce noise.  
Multiphase operation can be easily employed with the  
synchronization and phase mode controls. The LTM4616  
hasclockinandclockoutforpolyphasingmultipledevices  
or frequency synchronization.  
With current mode control and internal feedback loop  
compensation, the LTM4616 module has sufficient stabil-  
ity margins and good transient performance with a wide  
range of output capacitors, even with all ceramic output  
capacitors.  
High efficiency at light loads can be accomplished with  
selectableBurstModeoperationusingtheMODEpin.These  
light load features will accommodate battery operation.  
Efficiency graphs are provided for light load operation in  
the Typical Performance Characteristics section.  
Currentmodecontrolprovidescycle-by-cyclefastcurrent  
limit and thermal shutdown in an overcurrent condition.  
Internal overvoltage and undervoltage comparators pull  
the open-drain PGOOD output low if the output feedback  
voltage exits a 10% window around the regulation point.  
The power good pins are disabled during margining.  
Output voltage margining is supported, and can be pro-  
gramedfrom 5%to 15%usingtheMGNandBSELpins.  
4616fe  
10  
For more information www.linear.com/LTM4616  
LTM4616  
APPLICATIONS INFORMATION  
The typical LTM4616 application circuit is shown in  
Figure 18. External component selection is primarily  
determined by the maximum load current and output  
voltage. Refer to Table 3 for specific external capacitor  
requirements for a particular application.  
ceramic capacitors are included inside the module. Ad-  
ditional input capacitors are only needed if a large load  
step is required up to the 4A level. A 47µF to 100µF  
surface mount aluminum electrolytic bulk capacitor can  
be used for more input bulk capacitance. This bulk input  
capacitor is only needed if the input source impedance is  
compromisedbylonginductiveleads,tracesornotenough  
source capacitance. If low impedance power planes are  
used, then this 47µF capacitor is not needed.  
V to V  
Step-Down Ratios  
IN  
OUT  
There are restrictions in the maximum V to V  
step-  
IN  
OUT  
down ratio that can be achieved for a given input voltage.  
Each output of the LTM4616 is capable of 100% duty  
For a buck converter, the switching duty-cycle can be  
estimated as:  
cycle, but the V to V  
minimum drop out is still shown  
IN  
OUT  
as a function of its load current. For a 5V input voltage,  
VOUT  
both outputs can deliver 8A for any output voltage. For a  
3.3V input, all outputs can deliver 8A, except 2.5V  
D =  
V
and  
IN  
OUT  
above which is limited to 6A. All outputs derived from a  
2.7V input voltage are limited to 5A.  
Without considering the inductor current ripple, the RMS  
current of the input capacitor can be estimated as:  
Output Voltage Programming  
IOUT(MAX)  
ICIN(RMS)  
=
D 1– D  
(
)
Each PWM controller has an internal 0.596V reference  
voltage. As shown in the Block Diagram, a 10k internal  
η%  
In the above equation, η% is the estimated efficiency of  
the power module so the RMS input current at the worst  
case for 8A maximum current is about 4A. The input bulk  
capacitor can be a switcher-rated aluminum electrolytic  
capacitororpolymercapacitor.Eachinternal1Fceramic  
input capacitor is typically rated for 2 amps of RMS ripple  
current.  
feedback resistor connects V  
and FB pins together.  
OUT  
The output voltage will default to 0.596V with no feed-  
back resistor. Adding a resistor R from FB pin to GND  
FB  
programs the output voltage:  
10k + RFB  
VOUT = 0.596V •  
RFB  
Table 2. FB Resistor vs Various Output Voltages  
Output Capacitors  
V
0.596V  
Open  
1.2V  
10k  
1.5V  
1.8V  
2.5V  
3.3V  
OUT  
The LTM4616 is designed for low output voltage ripple  
R
6.65k  
4.87k  
3.09k  
2.21k  
FB  
noise. The bulk output capacitors defined as C  
are  
OUT  
chosen with low enough effective series resistance (ESR)  
For parallel operation of N number of outputs, the below  
to meet the output voltage ripple and transient require-  
equation can be used to solve for R . Tie the FB pins  
FB  
ments. C  
can be a low ESR tantalum capacitor, low  
together for each paralleled output with a single resistor  
OUT  
ESR polymer capacitor or ceramic capacitor. The typical  
outputcapacitancerangeisfrom4Fto220µF.Additional  
output filtering may be required by the system designer,  
if further reduction of output ripple or dynamic transient  
spikesisdesired.Table3showsamatrixofdifferentoutput  
voltages and output capacitors to minimize the voltage  
droop and overshoot during a 3A/µs transient. The table  
optimizes total equivalent ESR and total bulk capacitance  
tooptimizethetransientperformance.Stabilitycriteriaare  
to ground as determined by:  
10k / N  
R
=
FB  
V
OUT  
1  
0.596  
Input Capacitors  
The LTM4616 module should be connected to a low AC  
impedance DC source. For each regulator, three 10µF  
considered in the Table 3 matrix. LTpowerCAD is available  
4616fe  
11  
For more information www.linear.com/LTM4616  
LTM4616  
APPLICATIONS INFORMATION  
Table 3. Output Voltage Response Versus Component Matrix (Refer to Figure 18) 0A to 3A Load Step  
TYPICAL MEASURED VALUES  
C
VENDORS  
VALUE  
PART NUMBER  
C
VENDORS  
OUT2  
VALUE  
PART NUMBER  
4TPE470M  
OUT1  
TDK  
22µF, 6.3V  
22µF, 16V  
100µF, 6.3V  
100µF, 6.3V  
C3216X7S0J226M  
GRM31CR61C226K  
C4532X5R0J107MZ  
GRM32ER60J107M  
Sanyo POSCAP  
470µF, 4V  
Murata  
TDK  
C
(BULK) VENDORS VALUE  
PART NUMBER  
10CE100FH  
IN  
SUNCON  
100µF, 10V  
Murata  
V
C
C
C
C
V
(V)  
DROOP PEAK-TO- PEAK  
RECOVERY  
TIME (µs)  
LOAD STEP  
R
FB  
OUT  
IN  
IN  
OUT1  
OUT2  
IN  
(V)  
1.0  
1.0  
1.0  
1.0  
1.2  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
2.5  
2.5  
2.5  
2.5  
3.3  
3.3  
(CERAMIC) (BULK)* (CERAMIC)  
(BULK)  
I
C1  
C3  
(mV)  
20  
30  
30  
25  
20  
20  
30  
30  
32  
25  
22  
25  
30  
25  
42  
25  
35  
25  
35  
35  
35  
32  
50  
32  
65  
40  
DEVIATION (mV)  
(A/µs)  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
(kΩ)  
14.7  
14.7  
14.7  
14.7  
10  
TH  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF  
100µF × 2  
100µF × 2  
100µF × 2  
22µF × 1  
100µF × 2  
22µF × 1  
100µF × 2  
22µF × 1  
100µF × 2  
22µF × 1  
100µF × 1  
22µF × 1  
100µF × 2  
22µF × 1  
100µF × 1  
22µF × 1  
100µF × 2  
22µF × 1  
100µF × 2  
22µF × 1  
100µF × 1  
22µF × 1  
100µF × 1  
22µF × 1  
100µF × 1  
22µF × 1  
470µF  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
5
40  
60  
60  
50  
40  
41  
60  
60  
64  
50  
42  
50  
60  
50  
80  
50  
70  
50  
70  
20  
40  
65  
100  
65  
135  
87  
40  
25  
25  
25  
25  
25  
20  
25  
20  
25  
25  
25  
25  
25  
25  
30  
30  
30  
30  
30  
30  
40  
30  
40  
30  
40  
5
2.7  
2.7  
5
470µF  
470µF  
470µF  
470µF  
470µF  
470µF  
470µF  
470µF  
470µF  
470µF  
470µF  
470µF  
5
10  
2.7  
2.7  
5
10  
10  
6.65  
6.65  
6.65  
6.65  
6.65  
6.65  
4.87  
4.87  
4.87  
4.87  
4.87  
4.87  
3.09  
3.09  
3.09  
3.09  
2.21  
2.21  
5
3.3  
3.3  
2.7  
2.7  
5
5
3.3  
3.3  
2.7  
2.7  
5
5
3.3  
3.3  
5
5
*Bulk capacitance is optional if V has very low input impedance.  
IN  
forthosewhowishtoperformadditionalstabilityanalysis.  
Multiphase operation will reduce effective output ripple as  
a function of the number of phases. Application Note 77  
discusses this noise reduction versus output ripple cur-  
rent cancellation, but the output capacitance will be more  
afunctionofstabilityandtransientresponse.LTpowerCAD  
also calculates the output ripple reduction as the number  
of phases increases.  
Burst Mode Operation  
The LTM4616 is capable of Burst Mode operation on each  
regulator in which the power MOSFETs operate intermit-  
tentlybasedonloaddemand,thussavingquiescentcurrent.  
For applications where maximizing the efficiency at very  
light loads is a high priority, Burst Mode operation should  
be applied. To enable Burst Mode operation, simply tie the  
MODEpintoV .Duringthisoperation,thepeakcurrentof  
IN  
the inductor is set to approximately 20% of the maximum  
4616fe  
12  
For more information www.linear.com/LTM4616  
LTM4616  
APPLICATIONS INFORMATION  
peak current value in normal operation even though the  
voltage is in control of the current comparator threshold  
throughout,andthetopMOSFETalwaysturnsonwitheach  
oscillatorpulse.Duringstart-up,forcedcontinuousmodeis  
disabled and inductor current is prevented from reversing  
until the LTM4616’s output voltage is in regulation. Each  
regulator can be configured for forced continuous mode.  
voltage at the I pin indicates a lower value. The voltage  
TH  
at the I pin drops when the inductor’s average current  
TH  
is greater than the load requirement. As the I voltage  
TH  
drops below 0.2V, the BURST comparator trips, causing  
the internal sleep line to go high and turn off both power  
MOSFETs.  
Multiphase Operation  
In Burst Mode operation, the internal circuitry is partially  
turned off, reducing the quiescent current to about 450µA  
for each output. The load current is now being supplied  
fromtheoutputcapacitors.Whentheoutputvoltagedrops,  
For output loads that demand more than 8A of current,  
two outputs in LTM4616 or even multiple LTM4616s can  
be cascaded to run out-of-phase to provide more output  
currentwithoutincreasinginputandoutputvoltageripple.  
The CLKIN pin allows the LTC®4616 to synchronize to an  
external clock (between 0.75MHz and 2.25MHz) and the  
internal phase-locked loop allows the LTM4616 to lock  
onto CLKIN’s phase as well. The CLKOUT signal can be  
connected to the CLKIN pin of the following LTM4616  
stage to line up both the frequency and the phase of the  
causingI toriseabove0.25V,theinternalsleeplinegoes  
TH  
low,andtheLTM4616resumesnormaloperation.Thenext  
oscillator cycle will turn on the top power MOSFET and the  
switching cycle repeats. Each regulator can be configured  
for Burst Mode operation.  
Pulse-Skipping Mode Operation  
entire system. Tying the PHMODE pin to SV , SGND or  
IN  
Inapplicationswherelowoutputrippleandhighefficiency  
atintermediatecurrentsaredesired, pulse-skippingmode  
should be used. Pulse-skipping operation allows the  
LTM4616toskipcyclesatlowoutputloads,thusincreasing  
efficiency by reducing switching loss. Floating the MODE  
SV /2 (floating) generates a phase difference (between  
IN  
CLKIN and CLKOUT) of 180°, 120° or 90° respectively,  
which corresponds to a 2-phase, 3-phase or 4-phase  
operation. For a 6-phase example in Figure 2, the 2nd  
stage that is 120° out-of-phase from the 1st stage can  
generate a 240° (PHMODE = 0) CLKOUT signal for the 3rd  
stage, which then can generate a CLKOUT signal that’s  
pin or tying it to V /2 enables pulse-skipping operation.  
IN  
Thisallowsdiscontinuousconductionmode(DCM)opera-  
tion down to near the limit defined by the chip’s minimum  
on-time (about 100ns). Below this output current level,  
the converter will begin to skip cycles in order to main-  
tain output regulation. Increasing the output load current  
slightly, above the minimum required for discontinuous  
conduction mode, allows constant frequency PWM. Each  
regulator can be configured for pulse-skipping mode.  
420°, or 60° (PHMODE = SV ) for the 4th stage. With  
IN  
the 60° CLKIN input, the next two stages can shift 120°  
(PHMODE = 0) for each to generate a 300° signal for the  
6th stage. Finally, the signal with a 60° phase shift on the  
6thstage(PHMODEisfloating)goesbacktothe1ststage.  
Figure 3 shows the configuration for 12-phase operation.  
A multiphase power supply significantly reduces the  
amount of ripple current in both the input and output  
capacitors. The RMS input ripple current is reduced by,  
and the effective ripple frequency is multiplied by, the  
number of phases used (assuming that the input voltage  
isgreaterthanthenumberofphasesusedtimestheoutput  
voltage). The output ripple amplitude is also reduced by  
the number of phases used.  
Forced Continuous Operation  
In applications where fixed frequency operation is more  
critical than low current efficiency, and where the lowest  
outputrippleisdesired,forcedcontinuousoperationshould  
be used. Forced continuous operation can be enabled by  
tying the MODE pin to GND. In this mode, inductor cur-  
rent is allowed to reverse during low output loads, the I  
TH  
4616fe  
13  
For more information www.linear.com/LTM4616  
LTM4616  
APPLICATIONS INFORMATION  
(420)  
60  
0
120  
240  
180  
300  
+120  
+120  
+180  
+120  
+120  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
PHMODE  
PHASE 1  
PHMODE  
PHASE 3  
S
VIN  
PHMODE  
PHASE 5  
PHMODE  
PHASE 2  
PHMODE  
PHASE 4  
PHMODE  
PHASE 6  
4616 F02  
Figure 2. 6-Phase Operation  
(420)  
60  
0
120  
240  
180  
300  
+120  
+120  
+180  
+120  
+120  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
PHMODE  
PHASE 1  
PHMODE  
PHASE 5  
S
VIN  
PHMODE  
PHASE 9  
PHMODE  
PHASE 3  
PHMODE  
PHASE 7  
PHMODE  
PHASE 11  
V
OUT1  
LTC6908-2  
OUT2  
IN  
(510)  
150  
(390)  
30  
90  
210  
330  
270  
+120  
+120  
+180  
+120  
+120  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
CLKIN CLKOUT  
PHMODE  
PHASE 4  
PHMODE  
PHASE 8  
S
VIN  
PHMODE  
PHASE 12  
PHMODE  
PHASE 6  
PHMODE  
PHASE 10  
PHMODE  
PHASE 2  
4616 F03  
Figure 3. 12-Phase Operation  
The LTM4616 device is an inherently current mode con-  
trolleddevice, soparallelmoduleswillhaveverygoodcur-  
rent sharing. This will balance the thermals on the design.  
in Figure 17. Figure 19 shows a schematic of the parallel  
design.TheFBpinsoftheparallelmodulearetiedtogether.  
Input RMS Ripple Current Cancellation  
Tie the I pins of each LTM4616 together to share the  
TH  
current. Current sharing is inherently guaranteed by the  
current mode operation of the LTM4616’s DC/DC regula-  
tors. Moreover, the accuracy of current sharing between  
the two outputs is approximately 15%. To reduce ground  
Application Note 77 provides a detailed explanation of  
multiphase operation. The input RMS ripple current can-  
cellation mathematical derivations are presented, and a  
graph is displayed representing the RMS ripple current  
reductionasafunctionofthenumberofinterleavedphases.  
Figure 4 shows this graph.  
potential noise, tie the I  
pins of all LTM4616s together  
THM  
and then connect to the SGND of the master at the point it  
connectstotheoutputcapacitorGND.Seelayoutguideline  
4616fe  
14  
For more information www.linear.com/LTM4616  
LTM4616  
APPLICATIONS INFORMATION  
0.60  
1-PHASE  
2-PHASE  
3-PHASE  
4-PHASE  
6-PHASE  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9  
DUTY FACTOR (V /V  
)
O
IN  
4616 F04  
Figure 4. Normalized Input RMS Ripple Current vs Duty Factor for One to Six Channels (Phases)  
Spread Spectrum Operation  
tied to ground or if it’s driven by an external frequency  
synchronization signal. A capacitor value of 0.01µF to  
0.1µFbeplacedfromthePLLLPFpintogroundtocontrol  
the slew rate of the spread spectrum frequency change.  
To ensure proper start-up, add a control ramp on the  
Switching regulators can be particularly troublesome  
where electromagnetic interference (EMI) is concerned.  
Switching regulators operate on a cycle-by-cycle basis to  
transfer power to an output. In most cases, the frequency  
ofoperationisfixedbasedontheoutputload.Thismethod  
of conversion creates large components of noise at the  
frequency of operation (fundamental) and multiples of the  
operating frequency (harmonics).  
TRACK pin with a resistor, R , from TRACK to SV and  
SR  
IN  
a capacitor, C , from TRACK to ground:  
SR  
1
RSR  
0.592  
– In 1–  
500 C  
SR   
V
IN  
To reduce this noise, the LTM4616 can run in spread  
spectrum operation by tying the CLKIN pin to SV .  
IN  
In spread spectrum operation, the LTM4616’s internal  
oscillator is designed to produce a clock pulse whose  
period is random on a cycle-by-cycle basis but fixed  
between 70% and 130% of the nominal frequency. This  
has the benefit of spreading the switching noise over a  
rangeoffrequencies,thussignificantlyreducingthepeak  
noise. Spread spectrum operation is disabled if CLKIN is  
Output Voltage Tracking  
Output voltage tracking can be programmed externally  
using the TRACK pin. The output can be tracked up and  
downwithanotherregulator.Themasterregulator’soutput  
is divided down with an external resistor divider that is the  
sameastheslaveregulator’sfeedbackdividertoimplement  
4616fe  
15  
For more information www.linear.com/LTM4616  
LTM4616  
APPLICATIONS INFORMATION  
coincident tracking. The LTM4616 uses an accurate 10k  
resistor internally for the top feedback resistor. Figure 5  
shows an example of coincident tracking:  
Ratiometric tracking can be achieved by a few simple  
calculations and the slew rate value applied to the mas-  
ter’s track pin. As mentioned above, the TRACK pin has  
a control range from 0V to 0.596V. The master’s TRACK  
pin slew rate is directly equal to the master’s output slew  
rate in Volts/Time:  
10k  
RTA  
Slave = 1+  
VTRACK  
MR  
V
TRACK  
V
TRACK  
is the track ramp applied to the slave’s track pin.  
has a control range of 0V to 0.596V, or the internal  
10k = RTB  
SR  
reference voltage. When the master’s output is divided  
down with the same resistor values used to set the slave’s  
output, then the slave will coincident track with the master  
untilitreachesitsfinalvalue.Themasterwillcontinuetoits  
final value from the slave’s regulation point. Voltage track-  
where MR is the master’s output slew rate and SR is the  
slave’s output slew rate in Volts/Time. When coincident  
tracking is desired, then MR and SR are equal, thus R  
TB  
is equal to 10k. R is derived from equation:  
TA  
0.596V  
ing is disabled when V  
is more than 0.596V. R in  
TRACK  
TA  
RTA  
=
VTRACK  
V
V
Figure 5 will be equal to R for coincident tracking.  
FB  
FB  
FB  
+
10k RFB  
RTB  
Thetrackpinofthemastercanbecontrolledbyanexternal  
ramp or by R and C in Figure 5 referenced to V .  
SR  
SR  
IN  
where V is the feedback voltage reference of the regula-  
FB  
The RC ramp time can be programmed using equation:  
tor and V  
is 0.596V. Since R is equal to the 10k  
TRACK  
TB  
top feedback resistor of the slave regulator in coincident  
0.596V  
t = – ln 1–  
RSR CSR  
tracking, then R is equal to R  
with V = V  
.
TA  
FB2  
FB  
TRACK  
V
IN  
CLKIN1  
V
4V TO 5.5V  
SW1  
CLKIN1 CLKOUT1 CLKIN2 CLKOUT2  
IN  
MASTER  
3.3V/7A  
V
IN1  
V
OUT1  
SV  
FB1  
IN1  
R
V
IN  
RUN  
10µF  
FB1  
RUN1  
I
TH1  
2.21k  
100µF  
PLLLPF1  
MODE1  
I
THM1  
50k  
50k  
R
SR  
PGOOD1  
BSEL1  
MGN1  
PHMODE1  
TRACK1  
LTM4616  
SLAVE  
1.5V/8A  
V
V
IN2  
OUT2  
FB2  
C
SR  
SV  
IN2  
R
RUN  
10µF  
FB2  
RUN2  
I
TH2  
6.65k  
100µF  
100µF  
PLLLPF2  
MODE2  
PHMODE2  
TRACK2  
I
MASTER  
3.3V  
THM2  
PGOOD2  
PGOOD  
BSEL  
R
BSEL2  
MGN2  
TB  
10k  
R
TA  
SW2  
SGND1  
GND1  
SGND2  
GND2  
6.65k  
4616 F05  
FOR TRACK1:  
1. TIE TO VIN TO DISABLE TRACK WITH DEFAULT 100µs SOFT START  
2. APPLY A CONTROL RAMP WITH R AND C TIED TO V WITH t = –(ln(1–0.596/V ) • R • C ))  
SR  
SR  
IN  
IN  
SR  
SR  
3. APPLY AN EXTERNAL TRACKING RAMP DIRECTLY  
Figure 5. Dual Outputs (3.3V and 1.5V) with Tracking  
4616fe  
16  
For more information www.linear.com/LTM4616  
LTM4616  
APPLICATIONS INFORMATION  
Therefore R = 10k and R = 6.65k in Figure 5. Figure 6  
becomes high, and 3.3V output starts its shutdown after  
the PGOOD signal of 1.5V output becomes low. This can  
be applied to systems that require voltage sequencing  
between the core and sub-power supplies. The PGOOD  
pull-up resistor value can be determined as follows:  
TB  
TA  
shows the output voltage for coincident tracking.  
Inratiometrictracking, adifferentslewratemaybedesired  
for the slave regulator. R can be solved for when SR  
TB  
is slower than MR. Make sure that the slave supply slew  
rate is chosen to be fast enough so that the slave output  
voltage will reach it final value before the master output.  
SV – VRUN  
IN  
RPGOOD(MAX)  
=
IPGOOD(MAX)  
For example: MR = 3.3V/ms and SR = 1.5V/ms. Then  
Forexample:V =SV =5V,V  
PGOOD(MAX)  
value of 100k provides some margin.  
=1.7VandI  
PGOOD(MAX)  
IN  
IN  
RUN  
R
= 22.1k. Solve for R to equal to 4.87k.  
TB  
TA  
= 30µA. Solve for R  
to equal 110k. Selecting a  
Forapplicationsthatdonotrequiretrackingorsequencing,  
simply tie the TRACK pin to SV to let RUN control the  
IN  
turn on/off. Connecting TRACK to SV also enables the  
IN  
Stability Compensation  
~100µs of internal soft-start during start-up.  
The module has already been internally compensated  
for all output voltages. Table 2 is provided for most ap-  
plication requirements. LTpowerCAD is available for fine  
adjustments to the control loop.  
MASTER OUTPUT  
SLAVE OUTPUT  
Output Margining  
For a convenient system stress test on the LTM4616’s  
output, the user can program each output to 5%, 10%  
or 15% of its normal operational voltage. Margining  
can be disabled by connecting the MGN pin to a voltage  
divider as shown in Figure 5. When the MGN pin is <0.3V,  
it forces negative margining, in which the output voltage  
TIME  
4616 F06  
Figure 6. Output Voltage Coincident Tracking  
is below the regulation point. When MGN is >V – 0.3V,  
IN  
the output voltage is forced above the regulation point.  
The MGN pin with a voltage divider is driven with a small  
tri-stategateasshowninFigure18forthreemarginstates,  
(High, Low, andNoMargin). Theamountofoutputvoltage  
margining is determined by the BSEL pin. When BSEL is  
low, it’s 5%. When BSEL is high, it’s 10%. When BSEL is  
floating, it’s 15%. When margining is active, the internal  
output overvoltage and undervoltage comparators are  
disabled and PGOOD remains high.  
Power Good  
The PGOOD pin is an open-drain pin that can be used to  
monitor valid output voltage regulation. This pin monitors  
a 10% window around the regulation point. As shown  
in Figure 20, the sequencing function can be realized in a  
dualoutputapplicationbycontrollingtheRUNpinsandthe  
PGOOD signals from each other. The 1.5V output begins  
its soft starting after the PGOOD signal of 3.3V output  
4616fe  
17  
For more information www.linear.com/LTM4616  
LTM4616  
APPLICATIONS INFORMATION  
Thermal Considerations and Output Current Derating  
moduletemperaturerisecanbeallowed.Asanexample,in  
Figure 10 the load current is derated to 10A at ~ 80°C and  
the power loss for the 5V to 1.2V at 10A output is ~3.2W.  
If the 80°C ambient temperature is subtracted from the  
115°C maximum junction temperature, then difference of  
35°Cdividedby3.2Wequalsa10.9°C/W. Table4specifies  
a 10.5°C/W value which is very close. Table 4 and Table 5  
provide equivalent thermal resistances for 1.2V and 3.3V  
outputs, with and without airflow and heat sinking. The  
printed circuit board is a 1.6mm thick four layer board  
with two ounce copper for the two outer layers and one  
ouncecopperforthetwoinnerlayers.ThePCBdimensions  
are 95mm × 76mm. The BGA heat sinks are listed below  
Table 5. At load currents on each channel from 3A to 8A  
(6A to16A in parallel on the derating curves), the thermal  
resistance values in Tables 4 and 5 are fairly accurate. As  
the load currents go below the 3A level on each channel  
thethermalresistancestartstoincreaseduetothereduced  
power loss on the board. The approximate thermal resis-  
tance values for these lower currents is 15°C/W.  
The power loss curves in Figures 7 and 8 can be used  
in coordination with the load current derating curves in  
Figures 9 to16 for calculating an approximate θ thermal  
JA  
resistance for the LTM4616 with various heat sinking and  
airflow conditions. Both LTM4616 outputs are placed in  
parallel for a total output current of 16A, and the power  
loss curves are plotted for specific output voltages up to  
16A. The derating curves are plotted with each output at  
8A combined for a total of 16A. The output voltages are  
1.2V, 2.5Vand3.3V. Thesearechosentoincludethelower  
and higher output voltage ranges for correlating the ther-  
mal resistance. Thermal models are derived from several  
temperature measurements in a controlled temperature  
chamber along with thermal modeling analysis. The junc-  
tiontemperaturesaremonitoredwhileambienttemperature  
increases with and without airflow. The junctions are  
maintained at ~115°C while lowering output current or  
power with increasing ambient temperature. The 115°C  
value is chosen to allow for 10°C of margin relative to the  
maximumtemperatureof125°C.Thedecreasedoutputcur-  
rentwilldecreasetheinternalmodulelossasambienttem-  
perature is increased. The power loss curves in Figures 7  
and 8 show this amount of power loss as a function of  
load current that is specified with both channels in paral-  
lel. The monitored junction temperature of 115°C minus  
the ambient operating temperature specifies how much  
Safety Considerations  
The LTM4616 modules do not provide isolation from V  
IN  
to V . There is no internal fuse. If required, a slow blow  
OUT  
fuse with a rating twice the maximum input current needs  
to be provided to protect each unit from catastrophic  
failure. The device does support thermal shutdown and  
overcurrent protection.  
8
7
6
5
4
3
2
8
7
6
5
4
3
2
1
1
5V 1.2V  
3.3V 1.2V  
IN  
OUT  
OUT  
IN  
OUT  
OUT  
5V 3.3V  
IN  
3.3V 2.5V  
IN  
0
0
8
0
4
12  
16  
8
0
4
12  
16  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4616 F08  
4616 F07  
Figure 7. 1.2V, 2.5V Power Loss  
Figure 8. 1.2V, 3.3V Power Loss  
4616fe  
18  
For more information www.linear.com/LTM4616  
LTM4616  
APPLICATIONS INFORMATION  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
16  
14  
12  
10  
8
400 LFM  
400 LFM  
400 LFM  
0 LFM  
200 LFM  
0 LFM  
0 LFM  
200 LFM  
6
6
200 LFM  
6
4
4
4
2
2
2
0
0
0
55  
70  
85  
55  
70  
85  
25  
40  
100  
115  
25  
115  
60  
70  
80  
40  
100  
40  
50  
90 100 110  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4616 F09  
4616 F11  
4616 F10  
Figure 9. 5VIN to 3.3VOUT  
with No Heat Sink  
Figure 10. 5VIN to 1.2VOUT  
with No Heat Sink  
Figure 11. 5VIN to 3.3VOUT  
with BGA Heat Sink  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
16  
14  
12  
10  
8
400 LFM  
400 LFM  
0 LFM  
400 LFM  
0 LFM  
0 LFM  
200 LFM  
200 LFM  
6
6
6
200 LFM  
4
4
4
2
2
2
0
0
0
60  
80  
40  
100  
120  
50  
70  
90  
30  
110  
60  
70  
80  
40  
50  
90 100 110  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4616 F13  
4616 F14  
4616 F12  
Figure 12. 5VIN to 1.2VOUT  
with BGA Heat Sink  
Figure 13. 3.3VIN to 1.2VOUT  
with No Heat Sink  
Figure 14. 3.3VIN to 2.5VOUT  
with No Heat Sink  
16  
14  
12  
10  
16  
14  
12  
10  
8
400 LFM  
400 LFM  
0 LFM  
0 LFM  
8
6
4
2
0
200 LFM  
6
200 LFM  
4
2
0
50 60 70 80 90 100 110  
AMBIENT TEMPERATURE (°C)  
40  
120  
50  
70  
90  
30  
110  
AMBIENT TEMPERATURE (°C)  
4616 F15  
4616 F16  
Figure 15. 3.3VIN 1.2VOUT  
with BGA Heat Sink  
Figure 16. 3.3VIN 2.5VOUT  
with BGA Heat Sink  
4616fe  
19  
For more information www.linear.com/LTM4616  
LTM4616  
APPLICATIONS INFORMATION  
Table 4. 1.2V Output  
DERATING CURVE  
Figures 10, 13  
Figures 10, 13  
Figures 10, 13  
Figures 12, 15  
Figures 12, 15  
Figures 12, 15  
V
(V)  
POWER LOSS CURVE  
Figures 7, 8  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
IN  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
3.3, 5  
0
10.5  
8.0  
7.0  
9.5  
6.3  
5.2  
Figures 7, 8  
200  
400  
0
None  
Figures 7, 8  
None  
Figures 7, 8  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figures 7, 8  
200  
400  
Figures 7, 8  
Table 5. 3.3V Output  
DERATING CURVE  
Figure 9  
V
(V)  
POWER LOSS CURVE  
Figure 8  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
IN  
5
0
10.5  
8.0  
7.0  
9.8  
7.0  
5.5  
Figure 9  
5
5
5
5
5
Figure 8  
200  
400  
0
None  
Figure 9  
Figure 8  
None  
Figure 11  
Figure 8  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figure 11  
Figure 8  
200  
400  
Figure 11  
Figure 8  
HEAT SINK MANUFACTURER  
AAVID Thermalloy  
PART NUMBER  
WEBSITE  
375424B00034G  
www.aavidthermalloy.com  
www.coolinnovations.com  
Cool Innovations  
4-050503P to 4-050508P  
4616fe  
20  
For more information www.linear.com/LTM4616  
LTM4616  
APPLICATIONS INFORMATION  
Layout Checklist/Example  
•ꢀ To minimizetheviaconductionlossandreducemodule  
thermal stress, use multiple vias for interconnection  
between top layer and other power layers.  
The high integration of LTM4616 makes the PCB board  
layout very simple and easy. However, to optimize its  
electrical and thermal performance, some layout con-  
siderations are still necessary.  
•ꢀ Do not put vias directly on the pads, unless they are  
capped or plated over.  
•ꢀ Use large PCB copper areas for high current paths,  
•ꢀ Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to GND underneath the unit.  
including V , V , GND1 and GND2, V and  
IN1  
IN2  
OUT1  
V
. It helps to minimize the PCB conduction loss  
and thermal stress.  
OUT2  
•ꢀ For parallel modules, tie the I , FB and I  
pins to-  
THM  
TH  
•ꢀ Place high frequency ceramic input and output capaci-  
gether. Use an internal layer to closely connect these  
tors next to the V , GND and V  
pins to minimize  
pins together. All of the I pins connect to the SGND  
ofthemasterregulator,thenthemasterSGNDconnects  
IN  
OUT  
THM  
high frequency noise.  
to GND.  
•ꢀ Place a dedicated power ground layer underneath the  
unit.  
Figure17givesagoodexampleoftherecommendedlayout.  
V
IN1  
V
OUT1  
VIA TO GND  
EACH CHANNEL  
CONTROL1  
M
L
C
OUT2  
V
OUT1  
C
IN1  
V
IN1  
K
J
H
G
F
GND1  
GND1  
CONTROL1 & 2  
C
OUT2  
E
V
OUT2  
V
IN2  
C
IN2  
D
C
B
A
GND2  
GND2  
1
2
3
4
5
6
7
8
9
10  
11  
12  
4616 F17  
GND2  
CONTROL2  
LTM4616 TOP VIEW  
GND2  
Figure 17. Recommended PCB Layout  
(LGA and BGA PCB Layouts Are Identical with the Exception of Circle Pads for BGA. See Package Description.)  
4616fe  
21  
For more information www.linear.com/LTM4616  
LTM4616  
APPLICATIONS INFORMATION  
CLKIN1  
V
3V TO 5.5V  
SW1  
CLKIN1 CLKOUT1 CLKIN2 CLKOUT2  
IN1  
V
OUT1  
V
V
IN1  
OUT1  
1.8V/8A  
100µF  
SV  
FB1  
IN1  
10µF  
4.87k  
RUN1  
I
TH1  
PLLLPF1  
MODE1  
I
THM1  
V
IN  
PGOOD1  
BSEL1  
MGN1  
A2  
PGOOD  
BSEL  
+
R4  
V
PHMODE1  
TRACK1  
+
50k  
OUT  
I
I
OE  
IN  
LTM4616  
V
3V TO 5.5V  
IN2  
V
OUT2  
V
IN2  
V
OUT2  
FB2  
1.5V/8A  
GND  
R3  
50k  
SV  
IN2  
10µF  
5 PIN SC70 PACKAGE  
6.65k  
100µF  
×2  
RUN2  
I
TH2  
PLLLPF2  
MODE2  
PHMODE2  
TRACK2  
I
THM2  
V
IN  
PGOOD2  
BSEL2  
MGN2  
A1  
PGOOD  
BSEL  
+
V
R2  
50k  
+
OUT  
I
I
OE  
IN  
SW2  
SGND1  
GND1  
SGND2  
GND2  
R1  
50k  
4616 F18  
GND  
5 PIN SC70 PACKAGE  
BSEL: HIGH = 10%  
FLOAT = 15%  
LOW = 5%  
A1, A2 PERICOM PI74ST1G126CEX  
TOSHIBA TC7SZ126AFE  
OE  
IN  
OUT  
MGN MARGIN VALUE  
H
H
L
H
L
X
H
L
Z
H
L
+ Value of BSEL Selection  
– Value of BSEL Selection  
VIN/2 No Margin  
Figure 18. Typical 3V to 5.5VIN, to 1.8V, 1.5V Outputs  
4616fe  
22  
For more information www.linear.com/LTM4616  
LTM4616  
APPLICATIONS INFORMATION  
V
3V TO 5.5V  
SW1  
CLKIN1 CLKOUT1 CLKIN2 CLKOUT2  
IN  
V
OUT  
V
V
IN1  
OUT1  
1.5V/16A  
10µF  
SV  
FB1  
IN1  
100µF  
RUN  
ENABLE  
RUN1  
I
3.32k  
TH1  
PLLLPF1  
MODE1  
I
THM1  
PGOOD1  
BSEL1  
MGN1  
PHMODE1  
TRACK1  
LTM4616  
V
V
IN2  
OUT2  
FB2  
10µF  
SV  
IN2  
100µF  
100µF  
RUN2  
I
TH2  
PLLLPF2  
MODE2  
PHMODE2  
TRACK2  
I
THM2  
V
IN  
PGOOD2  
BSEL2  
MGN2  
50k  
50k  
SW2  
SGND1  
GND1  
SGND2  
GND2  
4616 F19  
Figure 19. LTM4616 Two Outputs Parallel, 1.5V at 16A Design  
CLKIN  
V
5V  
SW1  
CLKIN1 CLKOUT1 CLKIN2 CLKOUT2  
IN  
V
OUT1  
V
IN1  
V
OUT1  
3.3V/7A  
22µF  
SHDNB  
SV  
FB1  
IN1  
V
IN  
2.21k  
RUN1  
I
TH1  
100µF  
PLLLPF1  
MODE1  
I
THM1  
50k  
50k  
100k  
PGOOD1  
BSEL1  
MGN1  
100k  
SV  
PHMODE1  
TRACK1  
PGOOD2  
IN1  
LTM4616  
V
OUT2  
V
V
IN2  
OUT2  
FB2  
1.5V/8A  
SV  
IN2  
100µF  
RUN2  
I
TH2  
6.65k  
100µF  
PLLLPF2  
MODE2  
PHMODE2  
TRACK2  
I
THM2  
100k  
PGOOD2  
BSEL2  
MGN2  
SHDNB  
3.3V  
1.5V  
100k  
PGOOD1  
SV  
IN2  
SW2  
SGND1  
GND1  
SGND2  
GND2  
4616 F20  
Figure 20. LTM4616 Output Sequencing Application  
4616fe  
23  
For more information www.linear.com/LTM4616  
LTM4616  
APPLICATIONS INFORMATION  
SW1  
CLKIN1 CLKOUT1 CLKIN2 CLKOUT2  
V
V
IN  
OUT  
V
V
IN1  
OUT1  
3V TO 5.5V  
1.2V AT 32A  
+
C1  
470µF  
6.3V  
10µF  
6.3V  
SV  
FB1  
IN1  
2.47k  
RUN1  
I
TH1  
PLLLPF1  
MODE1  
I
THM1  
PGOOD1  
BSEL1  
MGN1  
SANYO POSCAP  
10mΩ  
PHMODE1  
TRACK1  
TRACK INPUT  
OR V  
IN  
LTM4616  
V
V
IN2  
OUT2  
FB2  
+
C2  
470µF  
6.3V  
10µF  
6.3V  
SV  
IN2  
RUN2  
I
TH2  
PLLLPF2  
MODE2  
PHMODE2  
TRACK2  
I
THM2  
PGOOD2  
BSEL2  
MGN2  
SW2  
SGND1  
GND1  
SGND2  
GND2  
SW1  
CLKIN1 CLKOUT1 CLKIN2 CLKOUT2  
V
IN1  
V
OUT1  
+
C3  
470µF  
6.3V  
10µF  
6.3V  
SV  
FB1  
IN1  
RUN1  
I
TH1  
PLLLPF1  
MODE1  
I
THM1  
PGOOD1  
BSEL1  
MGN1  
PHMODE1  
TRACK1  
LTM4616  
V
V
IN2  
OUT2  
FB2  
+
+
C5  
22µF  
6.3V  
C4  
22µF  
6.3V  
10µF  
6.3V  
SV  
IN2  
RUN2  
I
TH2  
PLLLPF2  
MODE2  
PHMODE2  
TRACK2  
I
THM2  
PGOOD2  
BSEL2  
MGN2  
V
IN  
3V TO 5.5V  
A1  
+
R1  
SW2  
SGND1  
GND1  
SGND2  
GND2  
V
+
50k  
4616 F21  
I
I
OE  
IN  
OUT  
R2  
50k  
GND  
BSEL: HIGH = 10%  
A1, A2 PERICOM PI74ST1G126CEX  
TOSHIBA TC7SZ126AFE  
6 PIN SC70 PACKAGE  
FLOAT = 15%  
LOW = 5%  
OPTIONAL MARGINING CIRCUIT,  
IF NOT USED TIE THE MGN PINS  
TO A VOLTAGE EQUAL TO HALF  
OE  
IN  
OUT  
MGN MARGIN VALUE  
OF THE RESPECTIVE V  
IN  
H
H
L
H
L
X
H
L
Z
H
L
+ Value of BSEL Selection  
– Value of BSEL Selection  
VIN/2 No Margin  
Figure 21. Four Phase in Parallel, 1.2V at 32A  
4616fe  
24  
For more information www.linear.com/LTM4616  
LTM4616  
APPLICATIONS INFORMATION  
SW1  
CLKIN1 CLKOUT1 CLKIN2 CLKOUT2  
V
V
OUT1  
IN  
V
V
IN1  
OUT1  
3.3V/7A  
100µF  
4V TO 5.5V  
10µF  
RUN  
ENABLE  
SV  
FB1  
IN1  
RUN1  
I
2.21k  
TH1  
PLLLPF1  
MODE1  
I
THM1  
V
IN  
PGOOD1  
BSEL1  
MGN1  
PHMODE1  
TRACK1  
50k  
50k  
LTM4616  
V
OUT2  
V
V
IN2  
OUT2  
2.5V/8A  
100µF  
SV  
IN2  
FB2  
10µF  
RUN2  
I
3.16k  
TH2  
PLLLPF2  
MODE2  
PHMODE2  
TRACK2  
I
THM2  
3.3V  
10k  
PGOOD2  
BSEL2  
MGN2  
SW2  
SGND1  
GND1  
SGND2  
GND2  
3.16k  
SW1  
CLKIN1 CLKOUT1 CLKIN2 CLKOUT2  
V
OUT3  
V
V
IN1  
OUT1  
1.8V/8A  
100µF  
SV  
FB1  
IN1  
10µF  
RUN1  
I
4.99k  
100µF  
TH1  
PLLLPF1  
MODE1  
I
THM1  
3.3V  
PGOOD1  
BSEL1  
MGN1  
10k  
PHMODE1  
TRACK1  
LTM4616  
V
OUT4  
4.99k  
V
V
IN2  
OUT2  
FB2  
1.5V/8A  
100µF  
SV  
IN2  
10µF  
6.65k  
RUN2  
I
TH2  
100µF  
PLLLPF2  
MODE2  
PHMODE2  
TRACK2  
I
THM2  
3.3V  
PGOOD2  
BSEL2  
MGN2  
10k  
SW2  
SGND1  
GND1  
SGND2  
GND2  
6.65k  
4616 F22  
Figure 22. 4-Phase, Four Outputs (3.3V, 2.5V, 1.8V and 1.5V) with Tracking  
4616fe  
25  
For more information www.linear.com/LTM4616  
LTM4616  
PACKAGE DESCRIPTION  
Pin Assignment Table  
(Arranged by Pin Number)  
PIN NAME  
A1 GND1  
A2 GND1  
A3 GND1  
A4 GND1  
A5 GND1  
A6 BSEL1  
A7 CLKIN1  
A8 MODE1  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
B1 GND1  
B2 GND1  
B3 GND1  
B4 GND1  
B5 GND1  
B6 SW1  
B7 GND1  
B8 GND1  
C1  
C2  
V
D1  
D2  
V
V
E1  
E2  
E3  
E4  
V
V
V
V
F1  
F2  
F3  
F4  
V
V
V
V
IN1  
IN1  
IN1  
IN1  
IN1  
IN1  
IN1  
IN1  
IN1  
IN1  
IN1  
IN1  
V
C3 GND1  
C4 GND1  
C5 GND1  
C6 GND1  
C7 GND1  
C8 GND1  
C9 GND1  
C10 GND1  
C11 GND1  
C12 GND1  
D3 GND1  
D4 GND1  
D5 GND1  
D6 GND1  
D7 GND1  
D8 FB1  
E5 SV  
F5 SGND1  
E6 PLLLPF1 F6 RUN1  
E7 F7 CLKOUT1  
F8  
IN1  
I
THM1  
E8 TRACK1  
E9 VOUT1  
E10 VOUT1  
E11 VOUT1  
E12 VOUT1  
I
TH1  
A9 PHMODE1 B9 GND1  
D9 VOUT1  
D10 VOUT1  
D11 VOUT1  
D12 VOUT1  
F9 VOUT1  
F10 VOUT1  
F11 VOUT1  
F12 VOUT1  
A10 MGN1  
A11 PGOOD1  
A12 GND1  
B10 GND1  
B11 GND1  
B12 GND1  
PIN NAME  
G1 GND2  
G2 GND2  
G3 GND2  
G4 GND2  
G5 GND2  
G6 BSEL2  
G7 CLKIN2  
G8 MODE2  
PIN NAME  
H1 GND2  
H2 GND2  
H3 GND2  
H4 GND2  
H5 GND2  
H6 SW2  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
J1  
J2  
V
IN2  
V
IN2  
K1  
K2  
V
V
L1  
L2  
L3  
L4  
V
V
V
V
M1  
M2  
M3  
M4  
V
V
V
V
IN2  
IN2  
IN2  
IN2  
IN2  
IN2  
IN2  
IN2  
IN2  
IN2  
J3 GND2  
J4 GND2  
J5 GND2  
J6 GND2  
J7 GND2  
J8 GND2  
J9 GND2  
J10 GND2  
J11 GND2  
J12 GND2  
K3 GND2  
K4 GND2  
K5 GND2  
K6 GND2  
K7 GND2  
K8 FB2  
L5 SV  
M5 SGND2  
L6 PLLLPF2 M6 RUN2  
L7 M7 CLKOUT2  
M8  
IN2  
H7 GND2  
H8 GND2  
I
THM2  
L8 TRACK2  
L9 VOUT2  
L10 VOUT2  
L11 VOUT2  
L12 VOUT2  
I
TH2  
G9 PHMODE2 H9 GND2  
K9 VOUT2  
K10 VOUT2  
K11 VOUT2  
K12 VOUT2  
M9 VOUT2  
M10 VOUT2  
M11 VOUT2  
M12 VOUT2  
G10 MGN2  
G11 PGOOD2  
G12 GND2  
H10 GND2  
H11 GND2  
H12 GND2  
4616fe  
26  
For more information www.linear.com/LTM4616  
LTM4616  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
Z
b b b  
Z
6 . 9 8 5 0  
5 . 7 1 5 0  
4 . 4 4 5 0  
3 . 1 7 5 0  
1 . 9 0 5 0  
0 . 6 3 5 0  
0 . 0 0 0 0  
0 . 6 3 5 0  
1 . 9 0 5 0  
3 . 1 7 5 0  
4 . 4 4 5 0  
5 . 7 1 5 0  
6 . 9 8 5 0  
a a a  
Z
4616fe  
27  
For more information www.linear.com/LTM4616  
LTM4616  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
/ / b b b  
Z
6 . 9 8 5 0  
5 . 7 1 5 0  
4 . 4 4 5 0  
3 . 1 7 5 0  
1 . 9 0 5 0  
0 . 6 3 5 0  
0 . 0 0 0 0  
0 . 6 3 5 0  
1 . 9 0 5 0  
3 . 1 7 5 0  
4 . 4 4 5 0  
5 . 7 1 5 0  
6 . 9 8 5 0  
a a a  
Z
4616fe  
28  
For more information www.linear.com/LTM4616  
LTM4616  
REVISION HISTORY (Revision history begins at Rev C)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
C
2/11  
Updated Features  
1
Updated Pin Configuration  
2
Updated Electrical Characteristics  
Replaced graphs G05 and G06  
2, 3, 4  
5
Updated graph G18  
6
Updated Pin Functions  
7
Updated Simplified Block Diagram  
Updated Operation section  
8
9
Text updated in Applications Information section  
Updated figures 3, 5, 17, 18, 19, 20, 21, 22  
Updated Package Description table  
Added Package Photo and updated Related Parts  
Added BGA package option and MP temperature grade  
Added BGA package option, MP temperature grade, thermal resistance, and device weight  
Updated Note 2  
10 through 20  
13 through 24  
25  
28  
1
D
3/12  
4/13  
2
4
Clarified Load Transient Response conditions  
Updated recommended heat sinks Table  
Corrected MGN Pin usage  
5
20  
24  
30  
4
Added package photo  
E
Added PGOOD leakage current and voltage low limits to Electrical Characteristics table  
Added Design Resources  
30  
4616fe  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
29  
LTM4616  
PACKAGE PHOTO  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
0.6V ≤ V ≤ 5V, 4.5V ≤ V ≤ 26.5V, Remote Sense Amplifier, Internal  
OUT IN  
LTM4628  
LTM4620A  
LTM8001  
LTM4627  
LTM8045  
LTM8061  
LTM8048  
LTC2974  
LTC3880  
Dual 8A, 26V, Step-Down µModule Regulator  
Temperature Sensing Output, 15mm × 15mm × 4.3mm LGA  
4.5V ≤ V ≤ 16V, 0.6V ≤ V ≤ 5.3V, PLL input, Remote Sense Amplifier, V  
OUT  
Dual 16V, 13A or Single 26A Step-Down µModule  
Regulator  
36V, 5A Step-Down µModule Regulator with  
Configurable Array of five 1A LDOs  
IN  
OUT  
tracking, 15mm × 15mm × 4.41mm LGA  
6V ≤ V ≤ 36V, 0V ≤ V ≤ 24V, Five Parallelable 1.1A 90µV Output Noise  
RMS  
IN  
OUT  
LDOs, 15mm × 15mm × 4.92mm BGA  
4.5V ≤ V ≤ 20V, 0.6V ≤ V ≤ 5V, PLL input, Remote Sense Amplifier, V  
OUT  
20V, 15A Step-Down µModule Regulator  
IN  
OUT  
Tracking, 15mm × 15mm × 4.3mm LGA and 15mm × 15mm × 4.9mm BGA  
2.8V ≤ V ≤ 18V, 2.5V ≤ V 15V, Synchronizable, No Derating or Logic  
Level Shift for Control Inputs When Inverting, 6.25mm × 11.25mm × 4.92mm BGA  
Inverting or SEPIC µModule Converter with Up to  
700mA Output Current  
32V, 2A Step-Down µModule Battery Charger with Suitable for CC-CV Charging Single and Dual Cell Li-Ion or Li-Poly Batteries, 4.95V  
Programmable Input Current Limit  
1.5W, 725VDC Galvanically Isolated µModule  
Converter with LDO Post Regulator  
Quad Digital Power Supply Manager with EEPROM I C/PMBus Interface, Configuration EEPROM, Fault Logging, Per Channel Voltage,  
OUT  
IN  
≤ V ≤ 32V, C/10 or Adjustable Timer Charge Termination,  
IN  
3.1V ≤ V ≤ 32V, 2.5V ≤ V  
≤ 12V, 1mV Output Ripple, Internal Isolated  
IN  
OUT P-P  
Transformer, 9mm × 11.25mm × 4.92mm BGA  
2
Current and Temperature Measurements  
2
Dual Output PolyPhase Step-Down DC/DC  
Controller with Digital Power System Management Voltage Accuracy, MOSFET Gate Drivers  
I C/PMBus Interface, Configuration EEPROM, Fault Logging, 0.5% Output  
DESIGN RESOURCES  
SUBJECT  
DESCRIPTION  
µModule Design and Manufacturing Resources  
Design:  
Manufacturing:  
Selector Guides  
Quick Start Guide  
Demo Boards and Gerber Files  
Free Simulation Tools  
PCB Design, Assembly and Manufacturing Guidelines  
Package and Board Level Reliability  
µModule Regulator Products Search  
1. Sort table of products by parameters and download the result as a spread sheet.  
2. Search using the Quick Power Search parametric table.  
TechClip Videos  
Quick videos detailing how to bench test electrical and thermal performance of µModule products.  
Digital Power System Management  
Linear Technology’s family of digital power supply management ICs are highly integrated solutions that  
offer essential functions, including power supply monitoring, supervision, margining and sequencing,  
and feature EEPROM for storing user configurations and fault logging.  
4616fe  
LT 0413 REV E • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
30  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTM4616  
LINEAR TECHNOLOGY CORPORATION 2008  

相关型号:

LTC2974CUP-PBF

4-Channel PMBus Power System Manager
Linear

LTC2974CUPPBF

4-Channel PMBus Power System Manager
Linear

LTC2974IUPPBF

4-Channel PMBus Power System Manager
Linear

LTC2977

8-Channel PMBus Power System Manager Featuring Accurate Output Voltage Measurement
Linear

LTC2977CUPPBF

8-Channel PMBus Power System Manager Featuring Accurate Output Voltage Measurement
Linear

LTC2977IUPPBF

8-Channel PMBus Power System Manager Featuring Accurate Output Voltage Measurement
Linear

LTC2978

Octal PMBus Power Supply Monitor and Controller with EEPROM
Linear

LTC2978

Octal Digital Power Supply Manager with EEPROM
Linear System

LTC2978A

8-Channel PMBus Power System Manager Featuring Accurate Output Voltage Measurement
Linear

LTC2978ACUPPBF

8-Channel PMBus Power System Manager Featuring Accurate Output Voltage Measurement
Linear

LTC2978AIUPPBF

8-Channel PMBus Power System Manager Featuring Accurate Output Voltage Measurement
Linear

LTC2978CUPPBF

Octal PMBus Power Supply Monitor and Controller with EEPROM
Linear