LTC2974 [Linear]

Wide Range I2C Power Monitor Rail-to-Rail Input Range: 0V to 80V; 宽范围I2C电源监视器,轨到轨输入范围: 0V至80V
LTC2974
型号: LTC2974
厂家: Linear    Linear
描述:

Wide Range I2C Power Monitor Rail-to-Rail Input Range: 0V to 80V
宽范围I2C电源监视器,轨到轨输入范围: 0V至80V

监视器
文件: 总32页 (文件大小:1394K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2945  
Wide Range  
2
I C Power Monitor  
FEATURES  
DESCRIPTION  
The LTC®2945 is a rail-to-rail system monitor that mea-  
sures current, voltage, and power. It features an operating  
range of 2.7V to 80V and includes a shunt regulator for  
supplies above 80V to allow flexibility in the selection of  
input supply. The current measurement range of 0V to  
80Visindependentoftheinputsupply. Anonboard0.75%  
accurate 12-bit ADC measures load current, input voltage  
and an auxiliary external voltage. A 24-bit power value is  
generatedbydigitallymultiplyingthemeasured12-bitload  
current and input voltage data. Minimum and maximum  
values are stored and an overrange alert with program-  
mablethresholdsminimizestheneedforsoftwarepolling.  
n
Rail-to-Rail Input Range: 0V to 80V  
n
Wide Input Supply Range: 2.7V to 80V  
n
Shunt Regulator for Supplies >80V  
n
Δ∑ ADC with less than 0.7ꢀ5 ꢁotal Unadjusted Error  
n
12-Bit Resolution for Current and Voltages  
n
Internal Multiplier Calculates 24-Bit Power Value  
n
Stores Minimum and Maximum Values  
n
Additional ADC Input Monitors an External Voltage  
n
Internal Digital Multiplier Calculates Power  
Continuous Scan and Snapshot Modes  
n
n
Shutdown Mode with I < 80μA  
Split SDA for Opto-Isolation  
Available in 12-Lead 3mm × 3mm QFN and MSOP  
Q
n
2
n
Data is reported via a standard I C interface. Shutdown  
mode reduces power consumption to 20μA.  
Packages  
2
The LTC2945 I C interface includes separate data input  
APPLICATIONS  
2
and output pins for use with standard or opto-isolated I C  
connections. The LTC2945-1 has an inverted data output  
for use with inverting opto-isolator configurations.  
n
Telecom Infrastructure  
n
Industrial  
n
Automotive  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
Consumer  
TYPICAL APPLICATION  
Wide Range Power Monitor with Onboard ADC and I2C  
ADC Differential  
Nonlinearity (ADIN)  
ADC Integral Nonlinearity  
(ADIN)  
0.02Ω  
V
TO  
LOAD  
IN  
4V TO 80V  
0.3  
0.2  
0.3  
0.2  
+
SENSE SENSE  
V
0.1  
0.1  
ALERT  
SCL  
DD  
LTC2945  
INTV  
CC  
2
I C  
0.0  
0.0  
0.1μF  
INTERFACE  
ADR1  
ADR0  
SDAI  
2
NINE I C  
–0.1  
–0.2  
–0.3  
–0.1  
–0.2  
–0.3  
ADDRESSES  
SDAO  
ADIN  
MEASURED  
VOLTAGE  
GND  
2945 TA01  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
CODE  
CODE  
2945 TA01a  
2945 TA01b  
2945f  
1
LTC2945  
ABSOLUTE MAXIMUM RATINGS  
(Notes 1, 2)  
SCL, SDAI Voltages (Note 4)..................... –0.3V to 5.9V  
SCL, SDAI Clamp Current ........................................5mA  
Operating Temperature Range  
V
Voltage.............................................. –0.3V to 100V  
DD  
+
SENSE Voltage ...........................................–1V to 100V  
+
+
SENSE Voltage .....–1V or SENSE – 1V to SENSE + 1V  
LTC2945C................................................ 0°C to 70°C  
LTC2945I.............................................–40°C to 85°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10sec)  
INTV Voltage (Note 3) ........................... –0.3V to 5.9V  
CC  
ADR1, ADR0, ADIN, ALERT, SDAO, SDAO  
Voltage......................................................... –0.3V to 7V  
INTV Clamp Current ...........................................35mA  
CC  
MS Package Only..............................................300°C  
PIN CONFIGURATION  
LC294ꢀ  
TOP VIEW  
TOP VIEW  
12 11 10  
+
1
2
3
4
5
6
V
INTV  
ADR1  
ADR0  
ADIN  
GND  
12 SENSE  
11 SENSE  
10 ALERT  
DD  
CC  
INTV  
1
2
3
9
8
7
ALERT  
SDAO  
SDAI  
CC  
13  
5
ADR1  
ADR0  
9
8
7
SDAO  
SDAI  
SCL  
4
6
MS PACKAGE  
12-LEAD PLASTIC MSOP  
T
= 125°C, θ = 135°C/W  
JMAX  
JA  
UD PACKAGE  
12-LEAD (3mm s 3mm) PLASTIC QFN  
= 125°C, θ = 58.7°C/W  
T
JMAX  
JA  
EXPOSED PAD (Pin 13) PCB GND CONNECTION OPTIONAL  
LC294ꢀ-1  
TOP VIEW  
TOP VIEW  
12 11 10  
+
1
2
3
4
5
6
V
INTV  
ADR1  
ADR0  
ADIN  
GND  
12 SENSE  
11 SENSE  
10 ALERT  
DD  
CC  
INTV  
1
2
3
9
8
7
ALERT  
SDAO  
SDAI  
CC  
13  
5
ADR1  
ADR0  
9
8
7
SDAO  
SDAI  
SCL  
4
6
MS PACKAGE  
12-LEAD PLASTIC MSOP  
= 125°C, θ = 135°C/W  
T
JMAX  
JA  
UD PACKAGE  
12-LEAD (3mm s 3mm) PLASTIC QFN  
= 125°C, θ = 58.7°C/W  
T
JMAX  
JA  
EXPOSED PAD (Pin 13) PCB GND CONNECTION OPTIONAL  
2945f  
2
LTC2945  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC2945CUD#PBF  
LTC2945IUD#PBF  
LTC2945CUD-1#PBF  
LTC2945IUD-1#PBF  
LTC2945CMS#PBF  
LTC2945IMS#PBF  
LTC2945CMS-1#PBF  
LTC2945IMS-1#PBF  
ꢁAPE AND REEL  
PARꢁ MARKING  
LFWK  
PACKAGE DESCRIPꢁION  
ꢁEMPERAURE RANGE  
0°C to 70°C  
LTC2945CUD#TRPBF  
LTC2945IUD#TRPBF  
LTC2945CUD-1#TRPBF  
LTC2945IUD-1#TRPBF  
LTC2945CMS#TRPBF  
LTC2945IMS#TRPBF  
LTC2945CMS-1#TRPBF  
LTC2945IMS-1#TRPBF  
12-Lead (3mm × 3mm) Plastic QFN  
12-Lead (3mm × 3mm) Plastic QFN  
12-Lead (3mm × 3mm) Plastic QFN  
12-Lead (3mm × 3mm) Plastic QFN  
12-Lead Plastic MSOP  
LFWK  
–40°C to 85°C  
0°C to 70°C  
LFYX  
LFYX  
–40°C to 85°C  
0°C to 70°C  
2945  
2945  
12-Lead Plastic MSOP  
–40°C to 85°C  
0°C to 70°C  
29451  
29451  
12-Lead Plastic MSOP  
12-Lead Plastic MSOP  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS ꢁhe l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at ꢁA = 2ꢀ°C. VDD is from 4V to 80V unless otherwise noted. (Note 2)  
SYMBOL  
PARAMEꢁER  
CONDIꢁIONS  
MIN  
ꢁYP  
MAX  
UNIꢁS  
SUPPLIES  
l
l
V
V
V
Supply Voltage Range  
DD  
4
80  
V
V
DD  
INTV Supply Voltage Range  
2.7  
5.9  
INTVCC  
CC  
l
l
I
I
I
V
Supply Current  
V
= 48V, INTV Open  
0.8  
40  
1.2  
70  
mA  
μA  
DD  
DD  
DD  
CC  
Shutdown  
l
l
INTV Supply Current  
INTV = V = 5V  
Shutdown, INTV = V = 5V  
0.6  
20  
0.9  
80  
mA  
μA  
CC  
CC  
CC  
DD  
CC  
DD  
l
l
l
l
l
l
l
l
l
INTV Linear Regulator Output Current  
V = 7V  
DD  
–10  
5.5  
mA  
V
CCSRC  
CC  
V
INTV Linear Regulator Voltage  
7V < V < 80V, I  
= 1mA  
4.5  
5.9  
5
CC  
CC  
DD  
LOAD  
LOAD  
ΔV  
INTV Linear Regulator Load Regulation  
7V < V < 80V, I  
= 1mA to 10mA  
100  
6.3  
200  
6.7  
mV  
V
CC  
CC  
DD  
V
INTV Shunt Regulator Voltage  
V
DD  
V
DD  
= 48V, I = 1mA  
CC  
CCZ  
CC  
ΔV  
INTV Shunt Regulator Load Regulation  
= 48V, I = 1mA to 35mA  
250  
2.69  
3.5  
mV  
V
CCZ  
CC  
CC  
V
V
V
V
INTV Supply Undervoltage Lockout  
INTV Rising, V = INTV  
CC  
2.2  
2.9  
2
2.6  
3.2  
2.5  
1.8  
CC(UVL)  
DD(UVL)  
DDI2C(RST)  
CCI2C(RST)  
CC  
CC  
DD  
V
V
Supply Undervoltage Lockout  
V
DD  
V
DD  
Rising, INTV Open  
V
DD  
DD  
CC  
2
I C Logic Reset  
Falling, INTV Open  
V
CC  
2
INTV I C Logic Reset  
INTV Falling, V = INTV  
CC  
1.5  
V
CC  
CC  
DD  
SENSE INPUꢁS  
+
l
V
CM  
SENSE , SENSE Common Mode Voltage  
0
80  
V
+
+
l
l
I
I
I
I
+
48V SENSE Input Current  
SENSE , SENSE , V = 48V  
100  
150  
2
μA  
μA  
SENSE (HI)  
DD  
Shutdown  
+
l
l
48V SENSE Input Current  
SENSE , SENSE , V = 48V  
20  
1
μA  
μA  
SENSE (HI)  
DD  
Shutdown  
+
+
l
l
+
0V SENSE Source Current  
SENSE , SENSE = 0V V = 48V  
–10  
–2  
μA  
μA  
SENSE (LO)  
DD  
Shutdown  
+
l
l
0V SENSE Source Current  
SENSE , SENSE = 0V, V = 48V  
–5  
1
μA  
μA  
SENSE (LO)  
DD  
Shutdown  
2945f  
3
LTC2945  
ELECTRICAL CHARACTERISTICS ꢁhe l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at ꢁA = 2ꢀ°C. VDD is from 4V to 80V unless otherwise noted. (Note 2)  
SYMBOL  
ADC  
PARAMEꢁER  
CONDIꢁIONS  
MIN  
ꢁYP  
MAX  
UNIꢁS  
l
RES  
Resolution (No missing codes)  
Full-Scale Voltage  
(Note 5)  
12  
Bits  
V
FS  
ΔSENSE (Note 7)  
102.4  
102.4  
2.048  
mV  
V
V
V
IN  
ADIN  
LSB  
TUE  
LSB Step Size  
ΔSENSE  
IN  
ADIN  
25  
25  
0.5  
μV  
mV  
mV  
V
l
l
l
Total Unadjusted Error (Note 6)  
Offset Error  
ΔSENSE  
0.75  
0.75  
0.75  
%
%
%
V
IN  
ADIN  
l
l
l
V
OS  
ΔSENSE  
3.1  
1.5  
1.1  
LSB  
LSB  
LSB  
V
IN  
ADIN  
l
l
l
INL  
Integral Nonlinearity  
Transition Noise  
ΔSENSE  
IN  
ADIN  
3
2
2
LSB  
LSB  
LSB  
V
ΔSENSE  
1.2  
0.3  
10  
μV  
mV  
μV  
RMS  
RMS  
RMS  
σ
T
V
IN  
ADIN  
l
f
t
Conversion Rate (Continuous Mode)  
Conversion Time (Snapshot Mode)  
6
7.5  
9
Hz  
CONV  
l
l
ΔSENSE  
IN  
60  
30  
66  
33  
72  
36  
ms  
ms  
CONV  
V , ADIN  
l
l
R
ADIN Pin Input Resistance  
ADIN Pin Input Current  
V
= 48V, ADIN = 3V  
= 48V, ADIN = 3V  
3
10  
MΩ  
μA  
ADIN  
DD  
DD  
I
V
1
ADIN  
2
I C INꢁERFACE (V = 48V)  
DD  
l
l
l
l
l
l
l
l
l
V
V
ADR0, ADR1 Input High Threshold  
ADR0, ADR1 Input Low Threshold  
ADR0, ADR1 Input Current  
2.1  
0.3  
2.4  
0.6  
2.7  
0.9  
13  
7
V
V
ADR(H)  
ADR(L)  
I
I
ADR0, ADR1 = 0V, 3V  
μA  
μA  
V
ADR(IN)  
ADR(IN,Z)  
Allowable Leakage When Open  
SDAO, SDAO, ALERT Output Low Voltage  
SDAI, SDAO, SDAO, SCL Input Current  
SDAI, SCL Input Threshold  
V
I , I , I = 8mA  
SDAO SDAO ALERT  
0.15  
0
0.4  
1
OD(OL)  
I
SDAI, SDAO, SDAO, SCL = 5V  
μA  
V
SDA,SCL(IN)  
V
V
1.5  
5.9  
1.9  
6.4  
0
2.2  
6.9  
1
SDA,SCL(TH)  
SDA,SCL(CL)  
ALERT(IN)  
SDAI, SCL Clamp Voltage  
I
, I  
= 3mA  
V
SDAI SCL  
I
ALERT Input Current  
ALERT = 5V  
μA  
2945f  
4
LTC2945  
ELECTRICAL CHARACTERISTICS ꢁhe l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at ꢁA = 2ꢀ°C. VDD is from 4V to 80V unless otherwise noted. (Note 2)  
SYMBOL  
PARAMEꢁER  
CONDIꢁIONS  
MIN  
ꢁYP  
MAX  
UNIꢁS  
2
I C INꢁERFACE ꢁIMING (Note ꢀ)  
f
t
t
t
Maximum SCL Clock Frequency  
Minimum SCL Low Period  
Minimum SCL High Period  
400  
kHz  
μs  
SCL(MAX)  
LOW  
0.65  
50  
1.3  
600  
1.3  
ns  
HIGH  
Minimum Bus Free Time Between Stop/Start  
Condition  
0.12  
μs  
BUF(MIN)  
t
t
Minimum Hold Time After (Repeated) Start  
Condition  
140  
30  
600  
600  
ns  
ns  
HD,STA(MIN)  
SU,STA(MIN)  
Minimum Repeated Start Condition Set-Up  
Time  
t
t
t
t
t
t
Minimum Stop Condition Set-Up Time  
Minimum Data Hold Time Input  
Minimum Data Hold Time Output  
Minimum Data Set-Up Time  
30  
–100  
600  
30  
600  
0
ns  
ns  
ns  
ns  
ns  
ms  
pF  
SU,STO(MIN)  
HD,DATI(MIN)  
HD,DATO(MIN)  
SU,DAT(MIN)  
SP(MAX)  
300  
900  
100  
250  
Maximum Suppressed Spike Pulse Width  
Stuck Bus Reset Time  
50  
25  
110  
33  
SCL or SDAI Held Low  
RST  
C
SCL, SDAI Input Capacitance  
5
10  
X
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: Internal clamps limit the SCL and SDAI pins to a minimum of 5.9V.  
Driving these pins to voltages beyond the clamp may damage the part. The  
pins can be safely tied to higher voltages through resistors that limit the  
current below 5mA.  
Note 2: All currents into pins are positive. All voltages are referenced to  
Note ꢀ: Guaranteed by design and not subject to test.  
ground, unless otherwise noted.  
Note 3: An internal shunt regulator limits the INTV pin to a minimum of  
Note 6:  
ACTUAL CODEIDEAL CODE  
(
)
×100%  
TUE =  
4096  
CC  
5.9V. Driving this pin to voltages beyond 5.9V may damage the part. This  
pin can be safely tied to higher voltages through a resistor that limits the  
current below 35mA.  
where IDEAL CODE is derived from a straight line passing through Code 0  
at 0V and Theoretical Code of 4096 at V  
.
FS  
Note 7: ΔSENSE is defined as V  
+ – V  
SENSE  
SENSE  
2945f  
5
LTC2945  
VDD = 48V, A = 2ꢀ°C, unless noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD Supply Current  
VDD Supply Current in Shutdown  
INꢁVCC Supply Current  
800  
750  
700  
650  
600  
70  
60  
50  
40  
30  
20  
10  
600  
575  
550  
525  
500  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
2
3
4
5
6
V
SUPPLY VOLTAGE (V)  
V
SUPPLY VOLTAGE (V)  
V
SUPPLY VOLTAGE (V)  
CC  
DD  
DD  
2945 G01  
2945 G02  
2945 G03  
INꢁVCC Supply Current in  
Shutdown  
INꢁVCC Load Regulation  
INꢁVCC Line Regulation  
5.2  
5.1  
5.0  
4.9  
4.8  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
22.5  
20.0  
17.5  
15.0  
12.5  
10.0  
0
2
4
6
8
10  
0
20  
V
40  
60  
80  
2
3
4
5
6
LOAD CURRENT (mA)  
SUPPLY VOLYAGE (V)  
V
SUPPLY VOLTAGE (V)  
DD  
CC  
2945 G05  
2945 G06  
2945 G04  
ADC Differential Nonlinearity  
(ADIN)  
ADC ꢁotal Unadjusted Error  
(ADIN)  
ADC Integral Nonlinearity (ADIN)  
0.3  
0.2  
0.3  
0.2  
0.02  
0.01  
0
0.1  
0.1  
0.0  
0.0  
–0.1  
–0.2  
–0.3  
–0.1  
–0.2  
–0.3  
–0.01  
–0.02  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
CODE  
CODE  
CODE  
2945 G07  
2945 G08  
2945 G09  
2945f  
6
LTC2945  
VDD = 48V, A = 2ꢀ°C, unless noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
ADC Integral Nonlinearity  
(ΔSENSE)  
ADC Differential Nonlinearity  
(ΔSENSE)  
ADC ꢁotal Unadjusted Error  
(ΔSENSE)  
0.4  
0.2  
0.3  
0.2  
0.50  
0.25  
0.1  
0.0  
0.0  
0.00  
–0.1  
–0.2  
–0.3  
–0.2  
–0.4  
–0.25  
–0.50  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
CODE  
CODE  
CODE  
2945 G10  
2945 G11  
2945 G12  
SDAO, SDAO, ALERT Loaded  
Output Low Voltage  
INꢁVCC Shunt Regulator Load  
Regulation  
SCL, SDAI Loaded Clamp Voltage  
0.4  
0.3  
0.2  
0.1  
0.0  
6.6  
6.5  
6.4  
6.3  
6.2  
6.1  
6.0  
6.6  
6.4  
6.2  
6.0  
0
2
4
6
8
10  
0.01  
0.10  
1.00  
10.00  
0
10  
20  
30  
40  
I
,
(mA)  
I
(mA)  
V
CC  
SHUNT CURRENT (mA)  
SDA ALERT  
LOAD  
2945 G13  
2945 G14  
2945 G15  
ADRO, ADR1 Voltage with Current  
Sink or Source  
SENSE+ Input Current  
SENSEInput Current  
150  
110  
70  
10  
8
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
6
4
2
30  
0
–10  
–2  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
–10  
–5  
0
5
10  
V
+ (V)  
V
+ (V)  
I
(μA)  
SENSE  
SENSE  
ADR  
2945 G16  
2945 G17  
2945 G18  
2945f  
7
LTC2945  
PIN FUNCTIONS  
ADIN: ADC Input. The onboard ADC measures voltages  
between 0V and 2.048V. Tie to ground if unused.  
2
SCL: I C Bus Clock Input. Data at the SDAI pin is shifted  
in or out on rising edges of SCL. This pin is driven by an  
open-collectoroutputfromamastercontroller.Anexternal  
pull-up resistor or current source is required and can be  
placed between SCL and V or INTV . The voltage at  
SCL is internally clamped to 6.4V (5.9V minimum)  
2
ADR1,ADR0:I CDeviceAddressInputs.Connectingthese  
pins to INTV , GND or leaving the pins open configures  
CC  
DD  
CC  
oneofninepossibleaddresses.SeeTable1inApplications  
Information section for details.  
2
SDAI: I C Bus Data Input. Used for shifting in address,  
ALERT: Fault Alert Output. Open drain logic output that  
is pulled to ground after an ADC conversion resulted in  
a fault to alert the host controller. A fault alert is enabled  
by setting the corresponding bit in the ALERT register  
as shown in Table 4. This device is compatible with the  
SMBus alert protocol. See Applications Information. Tie  
to ground if unused.  
command or data bits. This pin is driven by an open-  
collector output from a master controller. An external  
pull-up resistor or current source is required and can be  
placed between SDAI and V or INTV . The voltage at  
SDAI is internally clamped to 6.4V (5.9V minimum)  
DD  
CC  
2
SDAO: I C Bus Data Output. Open-drain output used for  
sendingdatabacktothemastercontrolleroracknowledging  
a write operation. An external pull-up resistor or current  
source is required.  
EXPOSED PAD (Pin 13, DD Package Only): Exposed pad  
may be left open or connected to device ground. For best  
thermal performance, connect to a large PCB area.  
2
SDAO: Inverted I C Bus Data Output. Open-drain output  
GND: Device Ground.  
used for sending data back to the master controller or  
acknowledging a write operation. Data is inverted for  
convenienceofopto-isolation.Anexternalpull-upresistor  
or current source is required.  
INꢁV : Internal Low Voltage Supply Input/Output. This  
CC  
pin is used to power internal circuitry. It can be config-  
ured as a direct input for a low voltage supply, as linear  
regulator from higher voltage supply connected to V ,  
DD  
+
SENSE :SupplyVoltageandCurrentSenseInput.Usedas  
or as a shunt regulator. Connect this pin directly to a 2.7V  
a supply and current sense input for the internal current  
sense amplifier. The voltage at this pin is monitored by the  
onboard ADC with a full-scale input range of 102.4V. See  
Figure 16 for recommended Kelvin connection.  
to 5.9V supply if available. When INTV is powered from  
CC  
an external supply, short the V pin to INTV . If V  
DD  
CC  
DD  
is connected to a 4V to 80V supply, INTV becomes the  
CC  
5V output of an internal series regulator that can supply  
up to 10mA to external circuitry. For even higher supply  
SENSE : Current Sense Input. Connect an external sense  
+
voltages or if a floating topology is desired, INTV can  
resistor between SENSE and SENSE . The differential  
CC  
+
be used as a 6.3V shunt regulator. Connect the supply to  
voltage between SENSE and SENSE is monitored by the  
onboard ADC with a full-scale sense voltage of 102.4mV.  
INTV through a shunt resistor that limits the current to  
CC  
less than 35mA. An undervoltage lockout circuit disables  
the ADC when the voltage at this pin drops below 2.5V.  
Connect a bypass capacitor between 0.1μF and 1μF from  
this pin to ground.  
V :HighVoltageSupplyInput.Thispinpowersaninternal  
DD  
series regulator with input voltages ranging from 4V to  
80V and produces 5V at INTV when the input voltage  
CC  
is above 7V. Connect a bypass capacitor between 0.1μF  
and 1μF from this pin to ground if external load is pres-  
ent on the INTV pin. The onboard 12-bit ADC can be  
CC  
configured to monitor the voltage at V with a full-scale  
DD  
input range of 102.4V.  
2945f  
8
LTC2945  
BLOCK DIAGRAM  
+
ADR0  
SENSE  
SENSE  
ADR1  
V
DD  
ALERT  
DECODER  
V
STBY  
20X  
2
I C  
SDAO/SDAO  
(LTC2945 / LTC2945-1)  
5.7V  
V
= 2.048V  
REF  
V
GEN  
STBY  
INTV  
CC  
735k  
735k  
15k  
LOGIC  
SDAI  
V
STBY  
12  
6.4V  
12-BIT ADC  
MUX  
ADIN  
SCL  
REGISTERS  
15k  
6.3V  
6.4V  
GND  
2945 BD  
TIMING DIAGRAM  
SDA  
t
SP  
t
t
t
t
t
SU,STA  
SU,DAT  
BUF  
HD,DATO  
HD,DATI  
t
HD,STA  
t
SU,STO  
t
SP  
2945 TD  
SCL  
t
HD,STA  
REPEATED START  
CONDITION  
REPEATED START  
CONDITION  
STOP  
CONDITION  
START  
CONDITION  
2945f  
9
LTC2945  
OPERATION  
The LTC2945 accurately monitors current, voltage, and  
power of any supply rail from 0V to 80V. An internal linear  
regulator allows the LTC2945 to operate directly from a  
4V to 80V rail, or from an external supply voltage between  
2.7V and 5.9V. Quiescent current is less than 0.9mA in  
In snapshot mode, the LTC2945 performs a single mea-  
surement of one selected voltage or current. Snapshot  
mode is enabled by setting the snapshot mode enable bit  
2
in the CONTROL register via the I C interface. A status bit  
in the CONTROL register monitors the ADC’s conversion;  
when complete, the conversion result is stored in the cor-  
responding data registers.  
2
normal operation. Enabling shutdown mode via the I C  
interface reduces the quiescent current to below 80ꢀA.  
TheLTC2945includesashuntregulatorforoperationfrom  
supply voltages above 80V.  
Onboard logic tracks the minimum and maximum values  
for each ADC measurement, calculates power data by  
digitally multiplying the stored current and voltage data,  
andtriggersauser-configurablealertbypullingtheALERT  
pin low when the ADC measured value falls outside the  
programmed window thresholds. All logic outputs are  
stored in onboard registers. The LTC2945 includes an  
Theonboard12-bitanalog-to-digitalconverter(ADC)runs  
either continuously or on-demand using snapshot mode.  
In the default continuous scan mode, the ADC repeatedly  
+
measures the differential voltage between SENSE and  
+
SENSE (full-scale 102.4mV) the voltage at the SENSE  
2
or V pin (full-scale 102.4V), and the voltage at the ADIN  
I C interface to access the onboard data registers and to  
DD  
pin (full-scale 2.048V). The conversion results are stored  
program the alert threshold and control registers. Two  
three-state pins, ADR1 and ADR0, are decoded to allow  
nine device addresses (see Table 1). The SDA pin is split  
into SDAI (input) and SDAO (output, LTC2945) or SDAO  
(output, LTC2945-1) to facilitate opto-isolation.  
in onboard registers.  
APPLICATIONS INFORMATION  
R
SNS  
The LTC2945 offers a compact and complete solution for  
high- and low-side power monitoring. With an input com-  
mon mode range of 0V to 80V and a wide input supply  
operating voltage range from 2.7V to 80V, this device is  
idealforalargevarietyofpowermanagementapplications  
includingautomotive,industrialandtelecominfrastructure.  
The basic application circuit shown in Figure 1 provides  
monitoring of high side current with a 0.02Ω resistor  
(5.12A full-scale), input voltage (102.4V full-scale) and an  
external voltage (2.048V full-scale), all using an internal  
12-bit resolution ADC.  
0.02Ω  
V
IN  
3.3V  
V
OUT  
4V TO 80V  
+
SENSE  
DD  
SENSE  
R1  
2k  
R2  
2k  
R3  
2k  
V
DD  
SCL  
SDA  
V
SCL  
LTC2945  
μP  
INTV  
SDAI  
SDAO  
CC  
C2  
0.1μF  
ADR1  
ALERT  
INT  
ADR0  
V
ADIN  
ADIN  
GND  
GND  
2945 F01  
Figure 1. Monitoring High Side Current and Voltages  
Using the LC294ꢀ  
Data Converter  
TheLTC2945featuresanonboard,12-bitΔADCthatinher-  
ently averages input noise over the measurement window.  
+
The supply voltage at V or SENSE is directly measured  
DD  
with 25mV resolution (102.4V full-scale). The voltage at  
the uncommitted ADIN pin is measured with 0.5mV resolu-  
tion (2.048V full-scale) to allow monitoring of an arbitrary  
external voltage. A 12-bit digital word corresponding to  
each measured voltage is stored in two adjacent registers  
2945f  
TheADCcontinuouslymonitorsthreevoltagesinsequence:  
+
ΔSENSE first, V or V  
second, and V  
third. The  
DD  
SENSE  
ADIN  
+
differential voltage between SENSE and SENSE is moni-  
tored with 25ꢀV resolution (102.4mV full-scale) to allow  
accuratemeasurementacrossverylowvalueshuntresistors.  
10  
LTC2945  
APPLICATIONS INFORMATION  
out of the six total ADC data registers (ΔSENSE MSB/LSB,  
secondary supply connected to the V pin as shown in  
DD  
V MSB/LSB, and ADIN MSB/LSB), with the eight MSBs  
Figure 2b. The SENSE pins can be biased independent of  
IN  
in the first register and the four LSBs in the second (see  
Table 2). The lowest 4 bits in the LSB registers are set to 0.  
These data registers are updated immediately following the  
corresponding ADC conversion, giving an effective refresh  
rate of 7.5Hz in continuous scan mode.  
the part’s supply voltage. Alternatively, if a low voltage  
supply is present it can be connected to the INTV pin  
CC  
as shown in Figure 2c to minimize on-chip power dissipa-  
tion. When INTV is powered from a secondary supply,  
CC  
connect V to INTV .  
DD  
CC  
The data converter also features a snapshot mode which  
makes a measurement of a single selected voltage (either  
For supply voltages above 80V, the shunt regulator at  
INTV can be used in both high and low side configura-  
CC  
ΔSENSE, V or V  
+, or V ). To make a snapshot  
tions to provide power to the LTC2945 through an exter-  
DD  
SENSE  
ADIN  
measurement, set CONTROL register bit A7 and write  
the two-bit code of the desired ADC channel to A6 and  
A5 (Table 3) using a Write Byte command. When the  
Write Byte command is completed, the ADC converts the  
selected voltage and the Busy Bit (A3 in the CONTROL  
register) will be set to indicate that the conversion is in  
progress. After completing the conversion, the ADC will  
halt and the Busy Bit will reset to indicate that the data is  
ready. To make another snapshot measurement, rewrite  
the CONTROL register.  
nal shunt resistor, R  
. Figure 3a shows a high side  
SHUNT  
power monitor with an input monitoring range beyond  
80V in a high side shunt regulator configuration. The  
device ground is separated from ground through R  
SHUNT  
and clamped at 6.3V below the input supply. Note that  
2
due to the different ground levels, the I C signals from  
the part need to be level shifted for communication with  
other ground referenced components. Figure 3b shows a  
high side rail-to-rail power monitor which derives power  
from a greater than 80V secondary supply. The voltage  
at INTV is clamped at 6.3V above ground in a low side  
CC  
Flexible Power Supply to LC294ꢀ  
shuntregulatorconfigurationtopowerthepart.Inlowside  
power monitors, the device ground and the current sense  
inputs are connected to the negative terminal of the input  
supplyasshowninFigure3c. Thelowsideshuntregulator  
configuration allows operation with input supplies above  
The LTC2945 can be externally configured to flexibly derive  
power from a wide range of supplies. The LTC2945 includes  
anonboardlinearregulatortopowerthelow-voltageinternal  
circuitryconnectedtotheINTV pinfromhighV voltages.  
CC  
DD  
80V by clamping the voltage at INTV . R  
should  
CC SHUNT  
The regulator operates with V voltages from 4V to 80V,  
DD  
be sized according to the following equation:  
and produces a 5V output capable of supplying 10mA at the  
VS(MAX) 5.9V  
35mA  
V
S(MIN) 6.7V  
INTV pin when V is greater than 7V. The regulator is  
CC  
DD  
RSHUNT  
disabled when die temperature rises above 150°C, and the  
1mA +ILOAD(MAX)  
(1)  
outputisprotectedagainstaccidentalshorts.Bypasscapaci-  
tors between 0.1ꢀF and 1ꢀF at both the V and INTV pins  
where V  
and V  
are the operating maximum  
DD  
CC  
S(MAX)  
S(MIN)  
are recommended for optimal transient performance. Note  
and minimum of the supply. I  
is the maximum  
LOAD(MAX)  
that operation with high V voltages can cause significant  
externalcurrentloadthatisconnectedtotheshuntregula-  
tor.Theshuntresistormustalsoberatedtosafelydissipate  
the worst-case power. As an example, consider the –48V  
Telecom System where the supply operates from –36V to  
–72V and the shunt regulator is used to supply an external  
DD  
powerdissipation,andcareisrequiredtoensuretheoperating  
junctiontemperaturestaysbelow125°C.Forimprovedpower  
dissipation,usetheQFNpackageandsoldertheexposedpad  
to a large copper region for improved thermal resistance.  
load up to 4mA. R  
needs to be between 1.9k and  
SHUNT  
Figure 2a shows the LTC2945 being used to monitor an  
input supply that ranges from 4V to 80V. No secondary  
5.9k according to the above equation, and for reduced  
power dissipation, a larger resistance is advantageous.  
supply is needed since V can be connected directly to  
DD  
The worst-case power dissipated in an R  
of 5.4k is  
SHUNT  
theinputsupply.IftheLTC2945isusedtomonitoraninput  
calculated to be 0.8W. So, three 0.5W rated 1.8k resistors  
supply of 0V to 80V, it can derive power from a wide range  
in series would suffice for this example.  
2945f  
11  
LTC2945  
APPLICATIONS INFORMATION  
R
SNS  
V
>80V  
IN  
V
OUT  
R
SNS  
V
IN  
V
OUT  
+
4V TO 80V  
SENSE  
SENSE  
+
SENSE  
SENSE  
INTV  
CC  
V
DD  
LTC2945  
V
DD  
LTC2945  
GND  
C2  
INTV  
CC  
GND  
R
C2  
2945 F03a  
2945 F02a  
SHUNT  
Figure 3a. LC294ꢀ Derives Power  
ꢁhrough High-Side Shunt Regulator  
Figure 2a. LC294ꢀ Derives Power from  
the Supply Being Monitored  
R
SNS  
R
SNS  
V
V
IN  
IN  
V
V
OUT  
OUT  
0V TO 80V  
0V TO 80V  
+
+
SENSE  
SENSE  
SENSE  
SENSE  
R
SHUNT  
>80V  
INTV  
CC  
V
4V TO 80V  
DD  
V
DD  
LTC2945  
GND  
LTC2945  
GND  
C2  
INTV  
CC  
C2  
2945 F02b  
2945 F03b  
Figure 2b. LC294ꢀ Derives Power from  
a Wide Range Secondary Supply  
Figure 3b. LC294ꢀ Derives Power ꢁhrough Low-Side  
Shunt Regulator in High-Side Current Sense ꢁopology  
GND  
R
SHUNT  
R
SNS  
V
IN  
V
OUT  
0V TO 80V  
INTV  
CC  
+
SENSE  
SENSE  
V
DD  
2.7V TO 5.9V  
INTV  
CC  
C1  
LTC2945  
V
DD  
GND  
LTC2945  
GND  
C2  
+
SENSE  
SENSE  
2945 F03a  
V
NEG  
2945 F02c  
V
OUT  
>–80V  
R
SNS  
Figure 2c. LC294ꢀ Derives Power from  
a Low Voltage Secondary Supply  
Figure 3c. LC294ꢀ Derives Power ꢁhrough Low-Side  
Shunt Regulator in Low-Side Current Sense ꢁopology  
2945f  
12  
LTC2945  
APPLICATIONS INFORMATION  
GND  
opto-couplers or pull-ups, ensure bit A1 in the CONTROL  
register is masked off during software development. In  
such applications, the user is advised that accidentally  
V
DD  
INTV  
GND  
2
CC  
disabling the regulator would prevent I C communication  
C2  
from the master and cause the LTC2945 to disengage  
from the system. The LTC2945 would then have to be  
reset by cycling its power to come out of shutdown. It is  
recommended that external regulators be used in such  
applications if powering down the LTC2945 is desirable.  
Quiescent current drops below 80μA in shutdown mode  
with the internal regulator disabled.  
LTC2945  
+
SENSE  
SENSE  
2945 F03b  
V
NEG  
V
OUT  
–4V TO –80V  
R
SNS  
Figure 3d. LC294ꢀ Derives Power from the Supply  
Being Monitored in Low-Side Current Sense ꢁopology  
Power Calculation and Configuration  
TheLTC2945calculatespowerbymultiplyingthemeasured  
current with the measured voltage. In continuous mode,  
If the supply input is nominally below 80V and transient  
is limited to below 100V, the shunt resistor is not required  
+
the differential voltage between SENSE and SENSE is  
measured to obtain load current data. The supply volt-  
and V can be connected to GND of the supply as shown  
DD  
in Figure 3d.  
age data for multiplication can be selected between V ,  
DD  
+
+
SENSE , or ADIN. SENSE is selected by default as it is  
normally connected to the supply voltage. In negative  
supply voltage systems such as shown in Figure 3d, the  
deviceground(GNDpinofLTC2945)andSENSE arecon-  
nected to the supply and V measures the supply voltage  
Supply Undervoltage Lockout  
2
During power-up, the internal I C logic and the ADC are  
enabled when either V or INTV rises above its under-  
DD  
CC  
voltagelockoutthreshold. Duringpower-down, theADCis  
DD  
at GND with respect to the device ground. For negative  
supply voltages of more than 80V, use external resistors  
to divide down the voltage to suit the ADIN measurement  
range. In the CONTROL register,  
disabled when V and INTV fall below their respective  
DD  
CC  
2
undervoltage lockout thresholds. The internal I C logic is  
2
reset when V and INTV fall below their respective I C  
DD  
CC  
reset thresholds.  
+
• write bits A2=1, A0=1 to select SENSE (Default)  
Shutdown Mode  
• write bits A2=0, A0=1 to select V  
DD  
The LTC2945 includes a low quiescent current shutdown  
mode, controlled by bit A1 in the CONTROL register  
(Table 3). Setting A1 puts the part in shutdown mode,  
poweringdowntheADCandinternalreference.Theinternal  
• write bits A2=1, A0=0 to select ADIN  
More details on the CONTROL register can be found in  
Table 3.  
2
I C bus remains active, and although the ADR1 and ADR0  
Once the ADC conversions are complete, a 24-bit power  
value is generated by digitally multiplying the 12-bit load  
current data with the 12-bit supply voltage data. 1LSB of  
power is 1LSB of voltage multiplied by 1LSB of ΔSENSE  
(current). The result is held in the three adjacent POWER  
registers (Table 2). The POWER registers initialize with  
undefined data and subsequently refresh at a frequency  
of 7.5Hz in continuous scan mode. In snapshot mode, the  
POWER registers are not refreshed.  
pins are disabled, the device will retain the most recently  
2
programmed I C bus address. All on-board registers re-  
2
tain their contents and can be accessed through the I C  
interface. To re-enable ADC conversions, reset bit A1 in  
the CONTROL register. The analog circuitry will power up  
and all registers will retain their contents.  
Theonboardlinearregulatorisdisabledinshutdownmode  
to conserve power. If low I mode is not required and the  
Q
2
regulatorisusedtopowerI Cbus-relatedcircuitrysuchas  
2945f  
13  
LTC2945  
APPLICATIONS INFORMATION  
Storing Minimum and Maximum Values  
The LTC2945 is a read-write slave device and supports  
the SMBus Read Byte, Write Byte, Read Word and Write  
Word protocols. The LTC2945 also supports extended  
Read and Write commands that allow reading or writing  
more than two bytes of data. When using the Read/Write  
Word or extended Read and Write commands, the bus  
master issues an initial register address and the internal  
register address pointer automatically increments by 1  
after each byte of data is read or written. After the register  
address reaches 31h, it will roll over to 00h and continue  
incrementing.AStopconditionresetstheregisteraddress  
pointer to 00h. The data formats for the above commands  
are shown in Figures 6 to 11.  
The LTC2945 compares each measurement including the  
calculated power with the stored values in the respective  
MIN and MAX registers for each parameter (Table 2). If  
the new conversion is beyond the stored minimum or  
maximum values, the MIN or MAX registers are updated  
with the new values. The MIN and MAX of the registers are  
refreshed at the end of their respective ADC conversions  
in both continuous scan mode and snapshot mode. They  
are also refreshed if the ADC registers are written via the  
2
I C bus with values beyond the stored values. To initiate  
a new peak hold cycle, write all 1’s to the MIN registers  
2
and all 0’s to the MAX registers via the I C bus. These  
registers will be updated when the next respective ADC  
conversion is done.  
2
I C Device Addressing  
2
Nine distinct I C bus addresses are configurable using the  
The LTC2945 also includes MIN and MAX THRESHOLD  
registers (Table 2) for the measured parameters including  
the calculated power. At power-up, the maximum thresh-  
olds are set to all 1’s and minimum thresholds are set to  
all 0’s, effectively disabling them. The thresholds can be  
three-state pins ADR0 and ADR1, as shown in Table 1.  
ADR0 and ADR1 should be tied to INTV , to GND, or left  
CC  
floating (NC) to configure the lower four address bits.  
During low power shutdown, the address select state  
is latched into memory powered from standby supply.  
Address bits a6, a5 and a4 are permanently set to (110)  
and the least significant bit is the R/W bit. In addition, all  
LTC2945 devices will respond to a common Mass Write  
address (1100 110)b; this allows the bus master to write  
to several LTC2945s simultaneously, regardless of their  
individualaddresssettings.TheLTC2945willalsorespond  
to the standard ARA address (0001100)b if the Alert pin  
is asserted; see the Alert Response Protocol section for  
more details. The LTC2945 will not respond to the ARA  
address if no alerts are pending.  
2
reprogrammed to any desired value via the I C bus.  
Fault Alert and Resetting Faults  
As soon as a measured quantity falls below the minimum  
thresholdorexceedsthemaximumthreshold,theLTC2945  
sets the corresponding flag in the STATUS register and  
latchesitintotheFAULTregister(seeFigure4). TheALERT  
pinispulledlowiftheappropriatebitintheALERTregister  
is set. More details on the alert behavior can be found in  
the Alert Response Protocol section.  
An active fault indication can be reset by writing zeros  
to the corresponding FAULT register bits or by reading  
the FAULT CoR register (Table 2), which clears all FAULT  
Start and Stop Conditions  
2
When the I C bus is idle, both SCL and SDA are in the high  
register bits. All FAULT register bits are also cleared if the  
state.Abusmastersignalsthebeginningofatransmission  
with a Start condition by transitioning SDA from high to  
low while SCL stays high. When the master has finished  
communicating with the slave, it issues a Stop condition  
by transitioning SDA from low to high while SCL stays  
high. The bus is then free for another transmission.  
2
V
and INTV fall below their respective I C logic reset  
DD  
CC  
threshold. Note that faults that are still present, as indi-  
cated in the STATUS registers, will immediately reappear.  
2
I C Interface  
2
The LTC2945 includes an I C/SMBus-compatible inter-  
face to provide access to the onboard registers. Figure 5  
2
shows a general data transfer format using the I C bus.  
2945f  
14  
LTC2945  
APPLICATIONS INFORMATION  
STATUS  
LATCH  
FAULT  
MEASURED  
DATA  
DIGITAL  
COMPARATOR  
ENA_ALERT_RESPONSE  
LOGIC  
ALERT  
THRESHOLD  
DATA  
RESET  
2945 F04  
Figure 4. LC294ꢀ Fault Alert Generation Blocks  
SDA  
SCL  
a6 - a0  
1 - 7  
b7 - b0  
b7 - b0  
8
9
1 - 7  
8
9
1 - 7  
8
9
S
P
START  
CONDITION  
STOP  
CONDITION  
ADDRESS  
R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
2945 F05  
Figure ꢀ. General Data ransfer over I2C  
S
ADDRESS W A  
COMMAND  
A
DAꢁA  
A
P
S
ADDRESS W A  
1 1 0 a3:a0  
COMMAND  
A
DAꢁA  
A
DAꢁA  
A
P
0
0
X X b5:b0  
0
b7:b0  
0
b7:b0  
0
1 1 0 a3:a0  
0
0
X X b5:b0  
0
b7:b0  
0
2945 F06  
2945 F07  
FROM MASTER TO SLAVE  
FROM SLAVE TO MASTER  
A: ACKNOWLEDGE (LOW)  
A: NOT ACKNOWLEDGE (HIGH) S: START CONDITION  
R: READ BIT (HIGH) P: STOP CONDITION  
W: WRITE BIT (LOW)  
Figure 6. LC294ꢀ Serial Bus SDA Write Byte Protocol  
Figure 7. LC294ꢀ Serial Bus SDA Write Word Protocol  
S
ADDRESS W A  
1 1 0 a3:a0  
COMMAND  
A
DAꢁA  
A
DAꢁA  
A
...  
DAꢁA  
A
P
S
ADDRESS W A  
1 1 0 a3:a0  
COMMAND  
A
S
ADDRESS  
R
A
DAꢁA  
A
P
0
0
X X b5:b0  
0
b7:b0  
0
b7:b0  
0
...  
b7:b0  
0
0
0
X X b5:b0  
0
1 1 0 a3:a0  
1
0
b7:b0  
1
2945 F08  
2945 F09  
Figure 8. LC294ꢀ Serial Bus SDA Write Page Protocol  
Figure 9. LC294ꢀ Serial Bus SDA Read Byte Protocol  
S
ADDRESS W A  
1 1 0 a3:a0  
COMMAND  
A
S
ADDRESS  
R
A
DAꢁA  
A
DAꢁA  
A
P
0
0
X X b5:b0  
0
1 1 0 a3:a0  
1
0
b7:b0  
0
b7:b0  
1
2945 F10  
Figure 10. LC294ꢀ Serial Bus SDA Read Word Protocol  
S
ADDRESS W A  
1 1 0 a3:a0  
COMMAND  
A
S
ADDRESS  
R
A
DAꢁA  
A
DAꢁA  
...  
DAꢁA  
A
P
0
0
X X b5:b0  
0
1 1 0 a3:a0  
1
0
b7:b0  
0
b7:b0  
...  
b7:b0  
1
2945 F11  
Figure 11. LC294ꢀ Serial Bus SDA Read Page Protocol  
2945f  
15  
LTC2945  
APPLICATIONS INFORMATION  
Stuck-Bus Reset  
terminates and the register address pointer resets to 00h  
when the master sends a Stop condition.  
2
The LTC2945 I C interface features a stuck bus reset timer  
to prevent it from holding the bus lines low indefinitely if  
the SCL signal is interrupted during a transfer. The timer  
starts when either SCL or SDAI is low, and resets when  
both SCL and SDAI are pulled high. If either SCL or SDAI  
are low for over 33ms, the stuck-bus timer will expire and  
Read Protocol  
The master begins a read operation with a Start condition  
followed by the 7-bit slave address and the R/W bit set  
to zero. After the addressed LTC2945 acknowledges the  
address byte, the master then sends a command byte  
that indicates which internal register the master wishes to  
read. TheLTC2945acknowledgesthisandthenlatchesthe  
lowersixbitsofthecommandbyteintoitsinternalregister  
address pointer. The master then sends a repeated Start  
conditionfollowedbythesame7-bitaddresswiththeR/W  
bit now set to 1. The LTC2945 acknowledges and sends  
the contents of the requested register. The transmission  
terminates when the master sends a Stop condition. If the  
master acknowledges the transmitted data byte, as in a  
ReadWordcommand, theLTC2945will sendthecontents  
of the next register. If the master keeps acknowledging,  
the LTC2945 will keep incrementing the register address  
pointer and sending out data bytes. The read operation  
terminates and the register address pointer resets to 00h  
when the master sends a Stop condition.  
2
the internal I C interface and the SDAO pin pulldown logic  
will be reset to release the bus. Normal communication  
will resume at the next Start command.  
Acknowledge  
The acknowledge signal is used for handshaking between  
the transmitter and the receiver to indicate that the last  
byte of data was received. The transmitter always releases  
the SDA line during the acknowledge clock pulse. The  
LTC2945 will pull the SDA line low on the 9th clock cycle  
to acknowledge receipt of the data. If the slave fails to  
acknowledge by leaving SDA high, then the master can  
abort the transmission by generating a Stop condition.  
When the master is receiving data from the slave, the  
master must acknowledge the slave by pulling down the  
SDA line during the 9th clock pulse to indicate receipt of  
a data byte. After the last byte has been received by the  
master, it will leave the SDA line high (not acknowledge)  
and issue a Stop condition to terminate the transmission.  
Alert Response Protocol  
When any of the fault bits in the FAULT register are set, a  
bus alert is generated if the appropriate bit in the ALERT  
register has been set. This allows the bus master to select  
which faults will generate alerts. At power-up, the ALERT  
register is cleared (no alerts enabled) and the ALERT pin is  
high. If an alert is enabled, the corresponding fault causes  
the ALERT pin to pull low. The bus master responds to the  
alertinaccordancewiththeSMBusalertresponseprotocol  
by broadcasting the Alert Response Address (0001100)b,  
and the LTC2945 replies with its own address and releases  
itsALERTpinasshowninFigure12. TheALERTlineisalso  
released if the FAULT or FAULT CoR registers are read (see  
Table 2) since the faulting event can be identified by the  
content in these registers. The ALERT signal is not pulled  
low again until the Fault register indicates a different fault  
has occurred or the original fault is cleared and it occurs  
again. Note that this means repeated or continuing faults  
will not generate additional alerts until the associated  
Write Protocol  
The master begins a write operation with a Start condition  
followed by the seven-bit slave address and the R/W bit  
set to zero. After the addressed LTC2945 acknowledges  
the address byte, the master then sends a command byte  
that indicates which internal register the master wishes to  
write.TheLTC2945acknowledgesthisandthenlatchesthe  
lowersixbitsofthecommandbyteintoitsinternalregister  
addresspointer.Themasterthendeliversthedatabyteand  
the LTC2945 acknowledges once more and writes the data  
into the internal register pointed to by the register address  
pointer. If the master continues sending additional data  
bytes with a Write Word or extended Write command, the  
additionaldatabyteswillbeacknowledgedbytheLTC2945,  
theregisteraddresspointerwillautomaticallyincrementby  
one, and data will be written as above. The write operation  
FAULT register bits have been cleared.  
2945f  
16  
LTC2945  
APPLICATIONS INFORMATION  
If two or more LTC2945s on the same bus are generating  
alerts when the ARA is broadcasted, the bus master will  
repeat the alert response protocol until the ALERT line  
is released. The device with the highest priority (lowest  
address) will reply first and the device with the lowest  
priority (highest address) will reply last.  
R
can then be calculated using Equation 1. Note that  
SHUNT  
both LTC2945 and LTC2945-1 can be used in the shunt  
regulator applications mentioned.  
Figure 16 shows an alternate connection for use with low-  
speed opto-couplers and the LTC2945-1. This circuit uses  
a limited-current pullup on the internally clamped SDAI  
pin and clamps the SDAO pin with the input diode of the  
ALERT  
RESPONSE  
ADDRESS  
DEVICE  
S
R
1
P
A
0
A
outgoing opto-isolator, removing the need to use INTV  
ADDRESS  
CC  
for biasing in the absence of an auxiliary low voltage sup-  
0 0 0 1 1 0 0  
a7:a0  
1
2945 F12  
ply. For proper clamping:  
Figure 12. LC294ꢀ Serial Bus SDA Alert Response Protocol  
VS(MAX) 5.9V  
5mA  
VS(MIN) 6.9V  
R4≤  
(3)  
0.5mA  
2
Opto-Isolating the I C Bus  
As an example, a supply that operates from 36V to 72V  
would require the value of R4 to be between 13k and 58k.  
The LTC2945-1 must be used in this application to ensure  
that the SDAO signal polarity is correct.  
2
Opto-isolating a standard I C device is complicated  
by the bidirectional SDA pin. The LTC2945/LTC2945-1  
2
minimize this problem by splitting the standard I C SDA  
line into SDAI (input) and SDAO (output, LTC2945) or  
SDAO (inverted output, LTC2945-1). The SCL is an input  
only pin and does not require special circuitry to isolate.  
The LTC2945-1 can also be used with high-speed opto-  
couplers with push-pull outputs and inverted logic as  
shown in Figure 17. The incoming opto-isolator draws  
2
For conventional non-isolated I C applications, use the  
power from the INTV , and the data output is connected  
CC  
LTC2945 and tie the SDAI and SDAO pins together to form  
directly to the SDAI pin with no pullup required. Ensure  
2
a standard I C SDA pin.  
the current drawn does not exceed the 10mA maximum  
Low speed isolated interfaces that use standard open-  
drain opto-isolators typically use the LTC2945 with the  
SDAI and SDAO pins separated as shown in Figure 13.  
Connect SDAI to the output of the incoming opto-isolator  
capability of the INTV pin. The SDAO pin is connected  
CC  
to the cathode of the outgoing optocoupler with a current  
limiting resistor connected back to INTV . An additional  
CC  
discrete N-channel MOSFET is required at the output of  
with a pullup resistor to INTV or a local 5V supply; con-  
the outgoing optocoupler to provide the open-drain pull-  
CC  
2
nect SDAO to the cathode of the outgoing opto-isolator  
with a current-limiting resistor in series with the anode.  
The input and output must be connected together on the  
isolated side of the bus to allow the LTC2945 to participate  
down that the I C bus requires. Finally, the input of the  
incoming opto-isolator is connected back to the output  
as in the low-speed case.  
2
2
Layout Considerations  
in I C arbitration. Note that maximum I C bus speed will  
generally be limited by the speed of the opto-couplers  
used in this application.  
A Kelvin connection between the sense resistor R  
and  
SNS  
the LTC2945 is recommended to achieve accurate current  
sensing (Figure 18). The recommended minimum trace  
width for 1oz copper foil is 0.02” per amp to ensure the  
trace stays at a reasonable temperature. Using 0.03” per  
amp or wider is preferred. Note that 1oz copper exhibits  
a sheet resistance of about 530ꢀΩ per square.  
Both low and high side shunt regulators can supply up to  
34mA of current to drive opto-isolator and pullup resis-  
tors as shown in Figure 14 and 15. For identical SDAI/SCL  
pullup resistors the maximum load is:  
6.7V  
2 R1+R3  
ILOAD(MAX)  
=
(2)  
2945f  
17  
LTC2945  
APPLICATIONS INFORMATION  
V
IN  
48V  
INTV  
CC  
V
DD  
1/2 ACPL-064L*  
C
1μF  
C2  
1μF  
3.3V  
1
R5  
2k  
V
CC  
LTC2945-1  
M1  
BS170  
GND  
R6  
2k  
R7  
2k  
SDAO  
V
DD  
V
CC  
μP  
ISO_SDA  
SDAI  
SDA  
GND  
GND  
GND  
2945 F13  
1/2 ACPL-064L*  
* CMOS OUTPUT  
Figure 13. Opto-Isolation of a 10kHz I2C Interface Between LC294ꢀ and Microcontroller (SCL Omitted for Clarity)  
GND  
R
3.3V  
SHUNT  
SDAI  
R3 R1  
R2  
0.51k  
R4  
10k  
1k  
10k  
INTV  
CC  
V
DD  
V
DD  
LTC2945  
V
μP  
EE  
C1  
1/2 MOCD207M  
1μF  
SDA  
GND  
GND  
SDAO  
SENSE  
+
SENSE  
2945 F14  
1/2 MOCD207M  
V
V
OUT  
EE  
R
SNS  
0.02Ω  
Figure 14. Low Speed 10kHz Opto-Isolators Powered from Low-Side Shunt Regulator  
R
SNS  
3.3V  
0.02Ω  
V
V
OUT  
OUT  
R3  
1k  
R1  
10k  
+
R2  
1k  
R4  
10k  
SENSE  
INTV  
SENSE  
SDAI  
CC  
V
DD  
V
DD  
LTC2945-1  
μP  
C1  
1μF  
1/2 MOCD207M  
1/2 MOCD207M  
SDA  
SDAO  
GND  
GND  
2945 F15  
R
SHUNT  
Figure 1ꢀ. Low Speed 10kHz Opto-Isolators Powered from High-Side Shunt Regulator  
2945f  
18  
LTC2945  
APPLICATIONS INFORMATION  
3.3V  
48V  
R4  
20k  
R5  
7.5k  
R6  
0.51k  
R7  
10k  
SDAI  
V
DD  
LTC2945-1  
μP  
1/2 MOCD207M  
SDAO  
SDA  
GND  
GND  
2945 F16  
1/2 MOCD207M  
Figure 16. Opto-Isolation of a 1.ꢀkHz I2C Interface Between LC294ꢀ-1 and Microcontroller (SCL Omitted for Clarity)  
3.3V  
5V  
R4  
R5  
R6  
R7  
10k  
0.82k  
0.51k  
10k  
SDAI  
V
DD  
LTC2945  
GND  
μP  
1/2 MOCD207M  
SDA  
GND  
SDAO  
2945 F17  
1/2 MOCD207M  
Figure 17. Opto-Isolation of I2C Interface with Low Power, High Speed Opto-couplers (SCL Omitted for Clarity)  
R
SNS  
TO  
LOAD  
V
IN  
1
2
3
4
5
12  
11  
10  
9
8
6
7
2945 F18  
Figure 18. Recommended Layout for Kelvin Connection  
2945f  
19  
LTC2945  
APPLICATIONS INFORMATION  
ꢁable 1. LC294ꢀ Device Addressing  
HEX  
LC294ꢀ  
ADDRESS  
PINS  
DEVICE  
DESCRIPꢁION  
ADDRESS  
BINARY DEVICE ADDRESS  
h
a6  
1
0
1
1
1
1
1
1
1
1
1
aꢀ  
1
0
1
1
1
1
1
1
1
1
1
a4  
0
0
0
0
0
0
0
0
0
0
0
a3  
0
1
0
1
1
1
1
1
1
1
1
a2  
1
1
1
0
0
0
0
1
1
1
1
a1  
1
0
1
0
0
1
1
0
0
1
1
a0  
0
0
1
0
1
0
1
0
1
0
1
R/W  
0
ADR1  
ADR0  
X
Mass Write  
CC  
X
X
Alert Response  
19  
1
X
0
1
2
3
4
5
6
7
8
CE  
X
H
L
D0  
X
NC  
H
H
D2  
X
H
D4  
X
NC  
NC  
L
NC  
L
D6  
X
D8  
X
H
DA  
DC  
DE  
X
H
NC  
NC  
L
X
L
X
L
ꢁable 2. LC294ꢀ Register Addresses and Contents  
REGISꢁER  
ADDRESS  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
REGISꢁER NAME  
READ/WRIꢁE  
R/W  
DESCRIPꢁION  
DEFAULꢁ  
05h  
00h  
00h  
00h  
00h  
XXh  
XXh  
XXh  
00h  
00h  
00h  
FFh  
CONTROL (A)  
Controls ADC Operation Mode and Test Mode  
Selects Which Faults Generate Alerts  
System Status Information  
ALERT (B)  
R/W  
STATUS (C)  
R
FAULT (D)  
R/W  
Fault Log  
FAULT CoR (E)  
CoR  
Same Data as Register D, D Content Cleared on Read  
Power MSB2 Data  
POWER MSB2  
R/W**  
R/W**  
R/W**  
R/W**  
R/W**  
R/W**  
R/W**  
R/W**  
R/W**  
R/W  
POWER MSB1  
Power MSB1 Data  
POWER LSB  
Power LSB Data  
MAX POWER MSB2  
MAX POWER MSB1  
MAX POWER LSB  
Maximum Power MSB2 Data  
Maximum Power MSB1 Data  
Maximum Power LSB Data  
MIN POWER MSB2  
MIN POWER MSB1  
MIN POWER LSB  
Minimum Power MSB2 Data  
Minimum Power MSB1 Data  
FFh  
Minimum Power LSB Data  
FFh  
MAX POWER THRESHOLD MSB2  
MAX POWER THRESHOLD MSB1  
MAX POWER THRESHOLD LSB  
MIN POWER THRESHOLD MSB2  
MIN POWER THRESHOLD MSB1  
MIN POWER THRESHOLD LSB  
ΔSENSE MSB  
Maximum Power Threshold MSB2 to Generate Alert  
Maximum Power Threshold MSB1 to Generate Alert  
Maximum Power Threshold LSB to Generate Alert  
Minimum Power Threshold MSB2 to Generate Alert  
Minimum Power Threshold MSB1 to Generate Alert  
Minimum Power Threshold LSB to Generate Alert  
ΔSENSE MSB Data  
FFh  
R/W  
FFh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
R/W  
FFh  
R/W  
00h  
00h  
00h  
XXh  
X0h  
00h  
R/W  
R/W  
R/W**  
R/W**  
R/W**  
ΔSENSE LSB  
ΔSENSE LSB Data  
MAX ΔSENSE MSB  
Maximum ΔSENSE MSB Data  
2945f  
20  
LTC2945  
APPLICATIONS INFORMATION  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
MAX ΔSENSE LSB  
R/W**  
R/W**  
R/W**  
R/W  
Maximum ΔSENSE LSB Data  
00h  
FFh  
FOh  
FFh  
FOh  
00h  
00h  
XXh  
X0h  
00h  
00h  
FFh  
FOh  
FFh  
FOh  
00h  
00h  
XXh  
X0h  
00h  
00h  
FFh  
FOh  
FFh  
FOh  
00h  
00h  
MIN ΔSENSE MSB  
Minimum ΔSENSE MSB Data  
MIN ΔSENSE LSB  
Minimum ΔSENSE LSB Data  
MAX ΔSENSE THRESHOLD MSB  
MAX ΔSENSE THRESHOLD LSB  
MIN ΔSENSE THRESHOLD MSB  
MIN ΔSENSE THRESHOLD LSB  
Maximum ΔSENSE Threshold MSB to Generate Alert  
Maximum ΔSENSE Threshold LSB to Generate Alert  
Minimum ΔSENSE Threshold MSB to Generate Alert  
Minimum ΔSENSE Threshold LSB to Generate Alert  
R/W  
R/W  
R/W  
V
MSB  
LSB  
R/W**  
R/W**  
R/W**  
R/W**  
R/W**  
R/W**  
R/W  
ADC V MSB Data  
IN  
IN  
V
ADC V LSB Data  
IN  
IN  
MAX V MSB  
Maximum V MSB Data  
IN  
IN  
MAX V LSB  
Maximum V LSB Data  
IN  
IN  
MIN V MSB  
Minimum V MSB Data  
IN  
IN  
MIN V LSB  
Minimum V LSB Data  
IN  
IN  
MAX V THRESHOLD MSB  
Maximum V Threshold MSB to Generate Alert  
IN  
IN  
MAX V THRESHOLD LSB  
R/W  
Maximum V Threshold LSB to Generate Alert  
IN  
IN  
MIN V THRESHOLD MSB  
R/W  
Minimum V Threshold MSB to Generate Alert  
IN  
IN  
MIN V THRESHOLD LSB  
R/W  
Minimum V Threshold LSB to Generate Alert  
IN  
IN  
ADIN MSB  
ADIN LSB  
R/W**  
R/W**  
R/W**  
R/W**  
R/W**  
R/W**  
R/W  
ADIN MSB Data  
ADIN LSB Data  
MAX ADIN MSB  
Maximum ADIN MSB Data  
MAX ADIN LSB  
Maximum ADIN LSB Data  
MIN ADIN MSB  
Minimum ADIN MSB Data  
MIN ADIN LSB  
Minimum ADIN LSB Data  
MAX ADIN THRESHOLD MSB  
MAX ADIN THRESHOLD LSB  
MIN ADIN THRESHOLD MSB  
MIN ADIN THRESHOLD LSB  
Maximum ADIN Threshold MSB to Generate Alert  
Maximum ADIN Threshold LSB to Generate Alert  
Minimum ADIN Threshold MSB to Generate Alert  
Minimum ADIN Threshold LSB to Generate Alert  
R/W  
R/W  
R/W  
*Register address MSBs b7-b6 are ignored. ** Writable if bit A4 is set  
2945f  
21  
LTC2945  
APPLICATIONS INFORMATION  
ꢁable 3. CONꢁROL Register A (00h) - Read/Write  
BIꢁ  
NAME  
OPERAION  
A7  
ADC Snapshot Mode Enable  
Enables ADC Snapshot Mode; 1 = Snapshot Mode Enabled. Only channel selected by A6 and A5 is  
measured by the ADC. After the conversion, the BUSY bit is reset and the ADC is halted.  
0 = Snapshot Mode Disabled (Continuous Scan Mode. Default)  
A6  
A5  
ADC Channel Label for Snapshot Mode ADC Channel Label for Snapshot Mode  
A6  
0
Aꢀ  
0
ADC Channel  
ΔSENSE (Default)  
0
1
V
IN  
1
0
ADIN  
A4  
Test Mode Enable  
Test Mode Halts ADC Operation and Enables Writes to Internal ADC/LOGIC Registers;  
1 = Enable Test Mode, 0 = Disable Test Mode (Default)  
A3  
A2  
ADC Busy in Snapshot Mode  
ADC Current Status; 1 = ADC Converting, 0 = ADC Conversion Completed (Default), Not Writable  
+
+
V
Monitor  
Enables V or SENSE Voltage Monitoring; 1 = Monitor SENSE Voltage (Default),  
DD  
IN  
0 = Monitor V Voltage  
DD  
A1  
A0  
Shutdown Enable  
Multiplier Select  
Enables Low-I / Shutdown Mode; 1 = Enable Shutdown, 0 = Normal Operation (Default)  
Q
+
Selects ADIN or SENSE /V (depends on A2) data for digital multiplication with SENSE data;  
DD  
+
1 = Select SENSE /V (Default), 0 = Select ADIN  
DD  
ꢁable 4. ALERꢁ Register B (01h) - Read/Write  
BIꢁ  
NAME  
OPERAION  
B7  
Maximum POWER Alert  
Enables Alert When POWER Calculation Data is > Maximum Power Threshold;  
1 = Enable Alert,  
0 = Disable Alert (Default)  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Minimum POWER Alert  
Maximum ΔSENSE Alert  
Minimum ΔSENSE Alert  
Enables Alert When POWER Calculation Data is < Minimum Power Threshold;  
1 = Enable Alert,  
0 = Disable Alert (Default)  
Enables Alert When ADC ΔSENSE Measurement Data is > Maximum ΔSENSE Threshold;  
1 = Enable Alert,  
0 = Disable Alert (Default)  
Enables Alert When ADC ΔSENSE Measurement Data is < Minimum ΔSENSE Threshold;  
1 = Enable Alert,  
0 = Disable Alert (Default)  
Maximum V Alert  
Enables Alert When ADC V Measurement Data is > Maximum V Threshold;  
IN  
IN IN  
1 = Enable Alert,  
0 = Disable Alert (Default)  
Minimum V Alert  
Enables Alert When ADC V Measurement Data is < Minimum V Threshold;  
IN  
IN IN  
1 = Enable Alert,  
0 = Disable Alert (Default)  
Enables Alert When ADC ADIN Measurement Data is > Maximum ADIN Threshold;  
1 = Enable Alert,  
0 = Disable Alert (Default)  
Enables Alert When ADC ADIN Measurement Data is < Minimum ADIN Threshold;  
1 = Enable Alert,  
Maximum ADIN Alert  
Minimum ADIN Alert  
0 = Disable Alert (Default)  
2945f  
22  
LTC2945  
APPLICATIONS INFORMATION  
ꢁable ꢀ. SꢁAUS Register C (02h) - Read  
BIꢁ  
NAME  
OPERAION  
C7  
POWER Overvalue Present  
Indicates POWER Overvalue When POWER is > Maximum Power Threshold;  
1 = POWER Overvalue,  
0 = POWER Not Overvalue  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
POWER Undervalue Present Indicates POWER Undervalue When POWER is < Minimum Power Threshold;  
1 = POWER Undervalue,  
0 = POWER Not Undervalue  
ΔSENSE Overvalue Present  
Indicates ΔSENSE Overvalue When ΔSENSE is > Maximum ΔSENSE Threshold;  
1 = ΔSENSE Overvalue,  
0 = ΔSENSE Not Overvalue  
ΔSENSE Undervalue Present Indicates ΔSENSE Undervalue When ΔSENSE is < Minimum ΔSENSE Threshold;  
1 = ΔSENSE Undervalue,  
0 = ΔSENSE Not Undervalue  
V
V
Overvalue Present  
Undervalue Present  
Indicates V Overvalue When V is > Maximum V Threshold;  
IN IN IN  
IN  
IN  
1 = V Overvalue,  
IN  
0 = V Not Overvalue  
IN  
Indicates V Undervalue When V is < Minimum V Threshold;  
IN  
IN  
IN  
1 = V Undervalue,  
IN  
0 = V Not Undervalue  
IN  
ADIN Overvalue Present  
ADIN Undervalue Present  
Indicates ADIN Overvalue When ADIN is > Maximum ADIN Threshold;  
1 = ADIN Overvalue,  
0 = ADIN Not Overvalue  
Indicates ADIN Undervalue When ADIN is < Minimum ADIN Threshold;  
1 = ADIN Undervalue,  
0 = ADIN Not Undervalue  
ꢁable 6. FAULRegister D (03h) - Read/Write  
BIꢁ  
NAME  
OPERAION  
D7  
POWER Overvalue Fault  
Occurred  
Indicates POWER Overvalue Fault When POWER was > Maximum Power Threshold;  
1 = POWER Overvalue Fault Occurred,  
0 = No POWER Overvalue Faults  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
POWER Undervalue Fault  
Occurred  
Indicates POWER Undervalue Fault When POWER was < Minimum Power Threshold;  
1 = POWER Undervalue Fault Occurred,  
0 = No POWER Undervalue Faults  
Indicates ΔSENSE Overvalue Fault When ΔSENSE was > Maximum ΔSENSE Threshold;  
1 = ΔSENSE Overvalue Fault Occurred,  
0 = No ΔSENSE Overvalue Faults  
Indicates ΔSENSE Undervalue Fault When ΔSENSE was < Minimum ΔSENSE Threshold;  
1 = ΔSENSE Undervalue Fault Occurred,  
0 = No ΔSENSE Undervalue Faults  
ΔSENSE Overvalue Fault  
Occurred  
ΔSENSE Undervalue Fault  
Occurred  
V
Overvalue Fault  
Indicates V Overvalue Fault When V was > Maximum V Threshold;  
IN  
IN IN IN  
Occurred  
1 = V Overvalue Fault Occurred,  
IN  
0 = No V Overvalue Faults  
IN  
V
IN  
Undervalue Fault  
Indicates V Undervalue Fault When V was < Minimum V Threshold;  
IN IN IN  
Occurred  
1 = V Undervalue Fault Occurred,  
IN  
0 = No V Undervalue Faults  
IN  
ADIN Overvalue Fault  
Occurred  
Indicates ADIN Overvalue Fault When ADIN was > Maximum ADIN Threshold;  
1 = ADIN Overvalue Fault Occurred,  
0 = No ADIN Overvalue Faults  
Indicates ADIN Undervalue Fault When ADIN was < Minimum ADIN Threshold;  
1 = ADIN Undervalue Fault Occurred,  
ADIN Undervalue Fault  
Occurred  
0 = No ADIN Undervalue Faults  
2945f  
23  
LTC2945  
APPLICATIONS INFORMATION  
ꢁable 7. ADC, ADC MIN/MAX, MIN/MAX ADC ꢁHRESHOLD Register Data Format: MSB Bytes-Read/Write*  
BIꢁ (7)  
BIꢁ (6)  
BIꢁ (ꢀ)  
BIꢁ (4)  
BIꢁ (3)  
BIꢁ (2)  
BIꢁ (1)  
BIꢁ (0)  
Data (11)  
Data (10)  
Data (9)  
Data (8)  
Data (7)  
Data (6)  
Data (5)  
Data (4)  
*Set Bit A4 before writing to ADC and MIN/MAX ADC Registers  
ꢁable 8. ADC, ADC MIN/MAX, MIN/MAX ꢁHRESHOLD Register Data Format: LSB Bytes-Read/Write*  
BIꢁ (7)  
BIꢁ (6)  
BIꢁ (ꢀ)  
BIꢁ (4)  
BIꢁ (3)  
BIꢁ (2)  
BIꢁ (1)  
BIꢁ (0)  
Data (3)  
Data (2)  
Data (1)  
Data (0)  
Reserved**  
Reserved**  
Reserved**  
Reserved**  
* Set Bit A4 before writing to ADC and MIN/MAX ADC Registers  
** Read as ‘0’  
ꢁable 9. POWER, MIN/MAX POWER, MIN/MAX POWER ꢁHRESHOLD Register Data Format: MSB2 Bytes- Read/Write*  
BIꢁ (7)  
BIꢁ (6)  
BIꢁ (ꢀ)  
BIꢁ (4)  
BIꢁ (3)  
BIꢁ (2)  
BIꢁ (1)  
BIꢁ (0)  
Data (23)  
Data (22)  
Data (21)  
Data (20)  
Data (19)  
Data (18)  
Data (17)  
Data (16)  
* Set Bit A4 before writing to POWER and MIN/MAX POWER Registers  
ꢁable 10. POWER, MIN/MAX POWER, MIN/MAX POWER ꢁHRESHOLD Register Data Format: MSB1 Bytes- Read/Write*  
BIꢁ (7)  
BIꢁ (6)  
BIꢁ (ꢀ)  
BIꢁ (4)  
BIꢁ (3)  
BIꢁ (2)  
BIꢁ (1)  
BIꢁ (0)  
Data (15)  
Data (14)  
Data (13)  
Data (12)  
Data (11)  
Data (10)  
Data (9)  
Data (8)  
* Set Bit A4 before writing to POWER and MIN/MAX POWER Registers  
ꢁable 11. POWER, MIN/MAX POWER, MIN/MAX POWER ꢁHRESHOLD Register Data Format: LSB Bytes- Read/Write*  
BIꢁ (7)  
BIꢁ (6)  
BIꢁ (ꢀ)  
BIꢁ (4)  
BIꢁ (3)  
BIꢁ (2)  
BIꢁ (1)  
BIꢁ (0)  
Data (7)  
Data (6)  
Data (5)  
Data (4)  
Data (3)  
Data (2)  
Data (1)  
Data (0)  
* Set Bit A4 before writing to POWER and MIN/MAX POWER Registers  
2945f  
24  
LTC2945  
TYPICAL APPLICATIONS  
A Wide Range Supply Monitor  
Wide Range Supply Monitor with Wide Range VDD Input  
R
R
SNS  
0.02Ω  
SNS  
0.02Ω  
V
V
IN  
4V TO 80V  
IN  
3.3V  
3.3V  
V
OUT  
V
OUT  
0V TO 80V  
+
+
SENSE  
SENSE  
SENSE  
SENSE  
R1  
2k  
R2  
2k  
R3  
2k  
R1  
2k  
R2  
2k  
R3  
2k  
V
DD  
V
DD  
SCL  
SDA  
SCL  
SDA  
2.7V TO 5.9V  
V
V
DD  
SCL  
SCL  
DD  
LTC2945  
μP  
LTC2945  
μP  
SDAI  
SDAI  
INTV  
INTV  
CC  
CC  
C2  
0.1μF  
C2  
0.1μF  
ADR1  
SDAO  
ADR1  
SDAO  
ALERT  
INT  
ALERT  
INT  
ADR0  
ADR0  
V
ADIN  
V
ADIN  
ADIN  
ADIN  
GND  
GND  
GND  
GND  
2945 TA02  
2945 TA03  
Dual Supply Monitor with Common Opto-coupler for Galvanic Isolation  
3.3V  
R8  
R9  
R10 R11 R12  
0.51k 0.51k 10k 10k 10k  
R
SNS1  
0.02Ω  
V
24V  
IN1  
V
OUT1  
HCPL063L  
R4  
10k 10k  
R5  
V
+
CC  
SENSE  
SENSE  
SCL  
V
DD  
C1  
1μF  
V
DD  
LTC2945  
GND  
SCL  
SDAI  
INTV  
CC  
C2  
0.1μF  
ADR1  
ADR0  
SDAO  
ALERT  
ADIN  
GND  
μP  
V
ADIN1  
R6  
1k  
R7  
1k  
3.3V  
R
V
CC  
SNS2  
0.02Ω  
V
48V  
IN2  
SDA  
V
OUT2  
GND  
+
SENSE  
SENSE  
INT  
V
DD  
SCL  
C3  
1μF  
GND  
LTC2945  
HCPL063L  
INTV  
SDAI  
SDAO  
ALERT  
CC  
C4  
0.1μF  
ADR1  
ADR0  
V
ADIN2  
ADIN  
GND  
2945 TA04  
2945f  
25  
LTC2945  
TYPICAL APPLICATIONS  
Power Monitoring in –48V System Using Low Side Sensing (1.ꢀkHz I2C Interface)  
–48V  
RTN  
R1  
R2  
20k 20k  
3.3V  
V
INTV  
ADR1  
CC  
DD  
C2  
C1  
R7  
R8  
R9  
R10 R11  
R4 R3  
1k 1k  
0.1μF  
1μF  
0.51k 0.51k 10k 10k 10k  
V
DD  
SCL  
LTC2945  
SCL  
SDAI  
μP  
V
EE  
MOCD207M  
GND  
SDA  
ADIN  
SDAO  
ADR0  
INT  
GND  
ALERT  
+
SENSE  
SENSE  
MOCD207M  
CONTROL REGISTER A2 = 0  
V
EE  
V
OUT  
–48V INPUT  
R
SNS  
0.02Ω  
2945 TA05  
Power Monitoring in –48V Harsh Environment Using INꢁVCC Shunt Regulator to ꢁolerate 200V ransients  
–48V  
RTN  
R
SHUNT  
R12  
100  
3 × 1.8k IN SERIES  
Q1  
PZTA42  
D1  
1N4148WS  
3.3V  
C2  
V
DD  
1μF  
R7  
0.51k  
R8  
0.51k  
R9  
1k  
R10 R11  
1k 10k  
R4 R3  
1k 0.51k  
R1  
1k  
R2  
1k  
INTV  
CC  
V
EE  
ADR1  
V
DD  
V
CC  
R5  
735k  
SCL  
LTC2945  
SCL  
SDA  
C1  
1μF  
ADIN  
SDAI  
μP  
GND  
R6  
15k  
HCPL-063L  
V
EE  
3.3V  
V
CC  
GND  
ADR0  
SDAO  
INT  
GND  
ALERT  
2945 TA06  
GND  
+
SENSE  
SENSE  
HCPL-063L  
CONTROL REGISTER A0 = 0  
V
EE  
V
OUT  
–48V INPUT  
R
SNS  
0.02Ω  
2945f  
26  
LTC2945  
TYPICAL APPLICATIONS  
Power Monitoring in –48V System Using External Linear Regulator to Supply Opto-couplers and SCL/SDA Resistive Pull-Ups  
LT3010-5  
OUT  
–48V  
RTN  
IN  
C3  
0.1μF  
C2  
1μF  
SHDN SENSE  
GND  
5V  
DD  
V
EE  
R7  
0.5k  
R8  
R9  
R10 R11  
1k 10k  
V
DD  
0.51k 1k  
R4 R3  
1k 0.51k 1k  
R1  
R2  
10k  
ADR1  
V
V
CC  
INTV  
CC  
SCL  
LTC2945  
C1  
1μF  
SCL  
SDA  
SDAI  
GND  
μP  
PS9817-2  
5V  
V
EE  
GND  
V
CC  
ADIN  
SDAO  
ADR0  
INT  
GND  
ALERT  
2945 TA07  
GND  
+
SENSE  
SENSE  
PS9817-2  
CONTROL REGISTER A2 = 0  
V
EE  
V
OUT  
–48V INPUT  
R
SNS  
0.02Ω  
Wide Range Dual Supply Monitor with Single LC294ꢀ  
D1  
BAT54  
R
SNS1  
0.02Ω  
SUPPLY B  
4.5V TO 80V  
R
TO  
LOAD  
SNS  
R
1k  
R
1k  
IN1  
IN2  
0.02Ω  
SUPPLY A  
4.5V TO 80V  
+
D2  
BAT54  
SENSE  
DD  
SENSE  
V
–INF –INS  
+IN  
C3  
0.1μF  
R
SHUNT*  
+
LTC2945  
V
V
C1  
0.1μF  
LTC6102  
SCL  
INTV  
CC  
2
I C  
C2  
0.1μF  
ADR1  
SDAI  
REG  
INTERFACE  
OUT  
ADIN  
SDAO  
ADR0  
ALERT  
R
20k  
ADIN  
V
GND  
2945 TA08  
CONꢁROL REG  
A2  
VOLAGE  
DAꢁA  
CURRENꢁ POWER  
DAꢁA DAꢁA  
+
SUPPLY A  
SUPPLY B  
1
0
SENSE  
ΔSENSE INTERNALLY GENERATED  
V
DD  
**  
ADIN  
USE EXTERNAL μP TO MULTIPLY VOLTAGE (V  
AND CURRENT (ADIN) DATA  
)
DD  
* SELECT RSHUNT ACCORDING TO THE EQUATION IN THE “FLEXIBLE POWER SUPPLY TO LTC2945” SECTION.  
** VOLTAGE DATA HAS AN OFFSET VALUE DUE TO D1’S DROP, IF DESIRABLE THIS CAN BE COMPENSATED THROUGH SOFTWARE.  
2945f  
27  
LTC2945  
TYPICAL APPLICATIONS  
Ruggedized 4V to 80V High Side Power Monitor with Surge Protection Up to 200V  
R
SNS  
0.02Ω  
V
V
OUT  
IN  
R12  
100Ω  
+
SENSE  
DD  
SENSE  
INTV  
Q1  
PZTA42  
V
CC  
3.3V  
C2  
1μF  
R7  
0.51k  
R8  
0.51k  
R9  
1k  
R10 R11  
1k 10k  
R4 R3  
1k 0.51k  
R1  
1k  
R2  
1k  
V
EE  
LTC2945  
V
DD  
V
T1  
SMAJ78A  
CC  
SCL  
SCL  
SDA  
C1  
0.1μF  
SDAI  
μP  
GND  
HCPL-063L  
FGND  
3.3V  
V
CC  
ADR1  
ADR0  
ADIN  
SDAO  
INT  
GND  
ALERT  
2945 TA09  
GND  
GND  
M1  
HCPL-063L  
FGND  
BSP149  
R5  
1Ω  
2945f  
28  
LTC2945  
TYPICAL APPLICATIONS  
Wide Range –4V to –ꢀ00V Negative Power Monitor (10kHz I2C Interface)  
RTN  
M1  
R5  
BSP135  
750k  
R13  
10k  
3.3V  
R4 R3  
1k 1k  
R1  
2k  
R2  
2k  
C1  
0.1μF  
R7  
R8  
R9  
R10 R11  
10k  
V
DD  
V
R6  
750k  
EE  
0.51k 0.51k 10k 10k  
V
DD  
SCL  
Z1  
4.7V  
LTC2945  
SCL  
SDAI  
V
EE  
ADIN  
μP  
MOCD207M  
GND  
SDA  
R12  
5k  
ADR1  
ADR0  
SDAO  
INT  
GND  
2945 TA10  
INTV  
ALERT  
CC  
C2  
0.1μF  
+
SENSE  
SENSE  
MOCD207M  
CONTROL REGISTER A2 = 0  
V
EE  
V
OUT  
R
SNS  
0.02Ω  
2945f  
29  
LTC2945  
PACKAGE DESCRIPTION  
MS Package  
12-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1668 Rev Ø)  
0.889 p 0.127  
(.035 p .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
4.039 p 0.102  
(.159 p .004)  
(NOTE 3)  
0.65  
(.0256)  
BSC  
0.42 p 0.038  
(.0165 p .0015)  
TYP  
0.406 p 0.076  
(.016 p .003)  
REF  
12 11 10 9 8 7  
RECOMMENDED SOLDER PAD LAYOUT  
DETAIL “A”  
0o – 6o TYP  
3.00 p 0.102  
(.118 p .004)  
(NOTE 4)  
4.90 p 0.152  
(.193 p .006)  
0.254  
(.010)  
GAUGE PLANE  
0.53 p 0.152  
(.021 p .006)  
1
2 3 4 5 6  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.1016 p 0.0508  
(.004 p .002)  
MSOP (MS12) 1107 REV Ø  
0.650  
(.0256)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
2945f  
30  
LTC2945  
PACKAGE DESCRIPTION  
UD Package  
12-Lead Plastic QFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1855 Rev Ø)  
0.70 p0.05  
3.50 p 0.05  
2.10 p 0.05  
1.65 p 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 p0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.25 s 45o CHAMFER  
R = 0.115  
TYP  
0.75 p 0.05  
3.00 p 0.10  
(4 SIDES)  
11 12  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 p 0.10  
1
2
1.65 p 0.10  
(4-SIDES)  
(UD12) QFN 0709 REV Ø  
0.200 REF  
0.25 p 0.05  
0.00 – 0.05  
0.50 BSC  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
2945f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
31  
LTC2945  
TYPICAL APPLICATION  
3.3V Input Supply Monitor with 12V VDD Input  
Rail-to-Rail Bidirectional Current and Power Monitor  
R
SNS  
+
LT6105  
0.02Ω  
V
V
V
3.3V  
IN  
V
OUT  
V
3.3V  
OUT  
+
+
R1 R2 R3  
2k 2k 2k  
IN  
IN1  
IN  
SENSE  
SENSE  
V
DD  
R
R
IN2  
1k  
R
1k  
V
SCL  
SCL  
SDA  
12V  
SNS  
DD  
LTC2945  
0.02Ω  
V
TO  
LOAD  
IN  
μP  
INTV  
SDAI  
SDAO  
ALERT  
CC  
0V TO 44V  
ADR1  
ADR0  
+
SENSE  
SENSE  
C2  
0.1μF  
INT  
V
ADIN  
ADIN  
GND  
GND  
V
SCL  
DD  
LTC2945  
GND  
2945 TA12  
2
2.7V TO 5.9V  
INTV  
SDAI  
I C  
CC  
INTERFACE  
SDAO  
ADR1  
ALERT  
ADR0  
ADIN  
R
20k  
ADIN  
2945 TA11  
CONꢁROL REG  
A2  
VOLAGE  
CURRENꢁ  
POWER  
DAꢁA  
DAꢁA  
SENSE  
SENSE  
DAꢁA  
ΔSENSE  
ADIN  
+
+
FORWARD  
REVERSE  
1
1
INTERNALLY GENERATED  
USE EXTERNAL μP TO  
+
MULTIPLY VOLTAGE (SENSE )  
AND CURRENT (ADIN) DATA  
RELATED PARTS  
PARꢁ NUMBER DESCRIPꢁION  
COMMENꢁS  
2
LTC4151  
LT6105  
High Voltage I C Current and Voltage Monitor  
Rail-to-Rail Input Current Sense Amplifier  
Easy-to-Use, Ultra-Tiny 16-Bit ADC  
7V to 80V Operation, 12-Bit Resolution with 1.25% TUE  
Very Wide Input Common Mode Range, 2.85V to 36V Operation  
LTC2450  
GND to V Single-Ended Input Range, 0.02 LSB RMS Noise, 2 LSB INL  
CC  
(No Missing Codes), 2 LSB Offset Error, 4 LSB Full-Scale Error  
8-Bit ADC, Adjustable Current Limit and Inrush, 2.9V to 15V Operation  
10-Bit ADC, Adjustable Current Limit and Inrush, 2.9V to 29V Operation  
2
LTC4215  
LTC4222  
LTC4260  
LTC4261  
LTC2940  
LTC2970  
LTC2974  
Single Channel, Hot Swap Controller with I C Monitoring  
2
Dual Channel, Hot Swap Controller with I C Monitoring  
2
Positive High Voltage Hot Swap Controller with I C Monitoring 8-Bit ADC, Adjustable Current Limit and Inrush, 8.5V to 80V Operation  
2
Negative High Voltage Hot Swap Controller with I C Monitoring 10-Bit ADC, Floating Topology, Adjustable Inrush  
Power and Current Monitor  
Four-Quadrant Multiplication, 5% Power Accuracy, 4V to 80V Operation  
14-Bit ADC with 0.5% TUE, Dual 8-Bit DACs  
2
Dual I C Power Supply Monitor and Margining Controller  
Quad Digital Power Supply Manager with EEPROM  
16-Bit ADC with 0.25% TUE, Supervise/Sequence/Monitor/Margin/  
2
Trim, Configuration/Fault Logging EEPROM, I C, Supervise/Monitor  
Current and Temperature  
LTC2978  
Octal Digital Power Supply Manager with EEPROM  
16-Bit ADC with 0.25% TUE, Supervise/Sequence/Monitor/Margin/  
2
Trim, Configuration/Fault Logging EEPROM, I C  
2945f  
LT 1012 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
32  
© LINEAR TECHNOLOGY CORPORATION 2012  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2974CUP-PBF

4-Channel PMBus Power System Manager
Linear

LTC2974CUPPBF

4-Channel PMBus Power System Manager
Linear

LTC2974IUPPBF

4-Channel PMBus Power System Manager
Linear

LTC2977

8-Channel PMBus Power System Manager Featuring Accurate Output Voltage Measurement
Linear

LTC2977CUPPBF

8-Channel PMBus Power System Manager Featuring Accurate Output Voltage Measurement
Linear

LTC2977IUPPBF

8-Channel PMBus Power System Manager Featuring Accurate Output Voltage Measurement
Linear

LTC2978

Octal PMBus Power Supply Monitor and Controller with EEPROM
Linear

LTC2978

Octal Digital Power Supply Manager with EEPROM
Linear System

LTC2978A

8-Channel PMBus Power System Manager Featuring Accurate Output Voltage Measurement
Linear

LTC2978ACUPPBF

8-Channel PMBus Power System Manager Featuring Accurate Output Voltage Measurement
Linear

LTC2978AIUPPBF

8-Channel PMBus Power System Manager Featuring Accurate Output Voltage Measurement
Linear

LTC2978CUPPBF

Octal PMBus Power Supply Monitor and Controller with EEPROM
Linear